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The purpose of this paper is to extend the mortar finite element method to handle the
unilateral contact model between two deformable bodies. The corresponding variational
inequality is approximated using finite element meshes which do not fit on the contact
zone. The mortar technique allows to match these independent discretizations of each
solid and takes into account the unilateral contact conditions in a convenient way. By
using an adaptation of Falk’s lemma and a bootstrap argument, we give an upper bound
of the convergence rate similar to the one already obtained for compatible meshes.

1. Introduction and Notations

In mechanics, the problems of contact between deformable bodies occur in many
applications. A great interest shows itself in the elaboration of numerical algorithms
taking into account the contact constraints in an efficient way. The numerical so-
lution was considered for instance by Kikuchi and Oden,20 Zhong,27. The math-
ematical framework for such problems consists of a variational inequality whose
approximation has been discussed by many authors. In particular, the analysis of
the low order finite element method was studied by Kikuchi and Oden,20 in the
case of one deformable body in contact with a rigid support (Signorini problem).
Haslinger, Hlaváček and Nečas,17 considered the case of two deformable bodies with
matching meshes across the contact surface.

The mortar element domain decomposition method introduced by Bernardi,
Maday and Patera,9 seems to fit naturally to contact problems. Indeed, this tech-
nique offers a great facility for coupling different variational approximations and,
in consequence, for using meshes that do not match at the interfaces of the solids.
Moreover, this method allows to consider independent discretizations within each
body that are well adapted to their particularities (geometries, loadings, constitu-
tive equations, etc . . .). In many realistic configurations, the mortar concept leads to
a significant reduction of the engineering time devoted to the generation of meshes
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because it allows to build globally unstructured/locally structured meshes.
In the theoretical area, a lot of mathematical results can be found providing the

optimality of the mortar approximation in a spectral and finite element framework.
The second order following variational problems have been studied: the Poisson
problem (Bernardi, Maday and Patera,9 Ben Belgacem,6), Stokes equations (Debit
and Maday,12), the linearized elasticity system (Le Tallec and Sassi,22) and, more
recently, the inversion of Maxwell’s operator (Ben Abdallah, Ben Belgacem and
Maday,3) or the bilateral contact problem (Ben Belgacem, Hild and Laborde,5). The
method is all the more attractive and competitive because it leads to an interesting
speed up in a parallel implementation (Ben Belgacem and Maday,4). Numerical ex-
periments confirm the effectiveness of such a technique, especially in Computational
Fluids Dynamics (Achdou and Pironneau,2 Mavriplis,24 for instance).

So far the method has been applied to partial differential equations. In the
present paper, we extend the mortar finite element procedure to approximate the
variational inequality modeling unilateral contact.

The paper is organized as follows. In the second section, we introduce the
model describing the unilateral contact without friction between two deformable
elastic bodies. The associated weak formulation is exhibited.

Then, in the third section, we consider a finite element method to solve the prob-
lem using independent meshes within each body. The discrete unilateral contact
conditions constitute the key point of the approximation model. On the contact
zone, we choose the trace of one of the two meshes and we consider the continuous
piecewise affine functions defined on this discretization of the interface. The uni-
lateral contact conditions are then approximated using a projection operator onto
this interface finite element space. Such a formulation allows us to obtain a simple
discrete contact condition.

In the fourth section, we carry out a numerical analysis of the approximation
method. We provide an adaptation of Falk’s lemma that will be used with a boot-
strap argument to derive an upper bound of the convergence rate. In the case
of incompatible meshes, the mortar method gives the same order of convergence as
Haslinger and Hlaváček,16 Haslinger, Hlaváček and Nečas,17 for compatible meshes.

First of all, we specify some notations we shall use. Let a Lipschitz domain
Ω ⊂ R2 be given ; the generic point of Ω is denoted x. The classical Lebesgue space
of square integrable functions L2(Ω) is endowed with the inner product:

(ϕ,ψ) =
∫

Ω

ϕψ dx.

We will make a constant use of the standard Sobolev space Hm(Ω), m ≥ 1, provided
with the norm:

‖ψ‖Hm(Ω) =
( ∑

0≤|α|≤m
‖∂αψ‖2L2(Ω)

) 1
2
,

where α = (α1, α2) is a multi–index in N2 and the symbol ∂α represents a partial
derivative. We adopt the convention H0(Ω) = L2(Ω). As in Grisvard,14 (Definition
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1.3.2.1) the fractionally Sobolev space Hτ (Ω), τ ∈ R+ \ N, is defined by the norm

‖ψ‖Hτ (Ω) =
(
‖ψ‖2Hm(Ω) +

∑

|α|=m

∫

Ω

∫

Ω

(∂αψ(x)− ∂αψ(y))2

|x− y|2+2θ
dx dy

) 1
2
,

where τ = m+ θ,m being the integer part of τ and θ ∈]0, 1[. The closure in Hτ (Ω)
of D(Ω) is denoted Hτ

0 (Ω), where D(Ω) is the space of indefinitely differentiable
functions whose support is contained in Ω.

As usually practised when dealing with finite element methods, we shall only con-
sider here, polygonally shaped domains. This assumption is not restrictive and al-
lows to avoid techniques required for the treatment of curved boundaries (Bernardi,7

Haslinger and Hlaváček,16 Haslinger, Hlaváček and Nečas,17) which is beyond the
scope of this paper. The boundary ∂Ω is the union of a finite number of segments
Γj , 0 ≤ j ≤ J . The common corner of Γj and Γj+1 is cj . In such a case, the
space Hτ (Ω) defined above coincides not only with the set of restrictions to Ω of all
functions of Hτ (R2) (see Ref.14, Theorem 1.4.5.2) but also with the Sobolev space
defined by hilbertian interpolation of standard spaces (Hm(Ω))m∈N and the norms
resulting from the different definitions of Hτ (Ω) are equivalent (see Triebel,26).

To handle trace functions we introduce, for any τ ∈ R+ \ N, the Hilbert space
Hτ (Γj) associated with the norm

‖ψ‖Hτ (Γj) =
(
‖ψ‖2Hm(Γj)

+
∫

Γj

∫

Γj

(∂mψ(x)− ∂mψ(y))2

|x− y|1+2θ
dΓdΓ

) 1
2
,

where m is the integer part of τ , θ its decimal part. In the previous integral, ∂mψ
stands for the m–order derivative of ψ along the segment Γj and dΓ denotes the
linear measure on Γj . The space H−τ (Γj) stands for the topological dual space of
Hτ (Γj). Following Adams,1 (Theorem 7.48) the previous norm is equivalent to the
norm corresponding to the definition of Hτ (Γj) by hilbertian interpolation of the
spaces Hm+1(Γj) and Hm(Γj) with index (1− θ).

We shall also need to use the space H
1
2
00(Γj), for any j, 1 ≤ j ≤ J . For this

purpose, let us define the map ρj as the distance to the extreme points of Γj

ρj(x) = dist (x, {cj−1, cj}), ∀x ∈ Γj .

Hence, the space H
1
2
00(Γj) is assigned with the norm

‖ϕ‖
H

1
2
00(Γj)

=
(
‖ϕ‖2

H
1
2 (Γj)

+
∫

Γj

ϕ(x)2

ρj(x)
dΓ
) 1

2
.

This space is also obtained as the hilbertian interpolation of H1
0 (Γj) and L2(Γj)

with index 1
2 (see Lions and Magenes,23 Theorems 11.1 and 11.7).

Finally the trace operator T : ψ 7→ (ψ|Γj )1≤j≤J , maps continuously Hτ (Ω) onto∏J
j=1H

τ− 1
2 (Γj) when τ > 1

2 . The space H
1
2 (∂Ω) (i.e. the set involving the traces of

all the functions of H1(Ω)) is the subspace of
∏J
j=1H

1
2 (Γj) satisfying some specific
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integral matching conditions at the corners cj (see Ref.14, Theorem 1.5.2.3). The
dual space of H

1
2 (∂Ω) is denoted H−

1
2 (∂Ω).

Bold Latin letters like u,v, indicate vector quantities, while the capital ones
(e.g. V ,K, . . .) are functional sets involving vector fields. The symbol σ stands for
the stress tensor and ε is the strain tensor.

2. Setting of the Problem and Weak Formulation

We consider the deformation of two elastic bodies occupying, in the initial un-
constrained configuration, two subsets Ω

`
of the space R2, ` = 1, 2. The domain Ω`

is only on one side of its boundary denoted ∂Ω`. The latter is smooth enough and
consists of Γ`u,Γ

`
g and Γ`c. The body Ω

`
is fixed along Γ`u and subjected to surface

traction forces g` ∈ (L2(Γ`g))2 on Γ`g; the body forces are denoted f ` ∈ (L2(Ω`))2.
In the initial configuration, both bodies have a common portion Γc = Γ1

c = Γ2
c

which will be considered as the candidate contact surface for the sake of simplicity.
In other words, the contact zone cannot enlarge during the deformation process
(Haslinger and Hlaváček,15 Haslinger, Hlaváček and Nečas,17). The contact is as-
sumed to be frictionless and will be effective on a portion of Γc that is not known in
advance. The measure of Γ`u does not vanish and the outward unit normal vector
of ∂Ω` is denoted n`.

The unilateral contact problem consists of finding the displacement field u =
(u`)` = (u|Ω1 ,u|Ω2), and the stress tensor field σ = (σ`)` satisfying the following
conditions (2.1)–(2.5) for ` = 1, 2:

div σ`(u`) + f ` = 0 in Ω`,

σ`(u`)n` − g` = 0 on Γ`g,

u` = 0 on Γ`u. (2.1)

The symbol div denotes the divergence operator of a tensor function and is defined
as

div σ =
(∂σij
∂xj

)
i
.

The summation convention of repeated indices is adopted. The stress tensor is
linked to the displacement by the constitutive law of linear elasticity

σ`(u`) = A`(x) ε(u`), (2.2)

where A`(x) = (a`ij,kh(x))1≤i,j,k,h≤2 ∈ (L∞(Ω`))16 is a fourth order tensor satisfying
the usual symmetry and ellipticity conditions in Elasticity.

In the sequel, when no confusion may occur, we shall simply write σ` instead
of σ`(u`). The situations we are investigating are restricted to infinitesimal defor-
mations (small perturbations hypothesis). In such a case the nonlinear (quadratic)
term is neglected, so that the strain tensor ε(v) produced by a displacement field
v is given by

ε(v) =
1
2

(∇v + (∇v)T ),
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where the symbol T indicates a transposition.
Finally, we give the following contact conditions on Γc:

(σ1n1).n1 = (σ2n2).n2 = σn, (2.3)

[u.n] ≤ 0, σn ≤ 0, σn[u.n] = 0, (2.4)

σ1
t = σ2

t = 0. (2.5)

The notation [u.n] represents the jump (u1.n1 +u2.n2) of the normal displacement
across the contact zone Γc and σ`t = σ`n` − σnn

` is the tangential constraint.
Conditions (2.4) allow each body to leave the other one on a portion of Γc: the
contact is unilateral between the two solids. Equation (2.3) expresses the action
and the reaction principle and finally (2.5) represents a contact without friction.

The subsequent study is based on an equivalent variational formulation (related
to the virtual work principle) which gives a mathematical sense to the previous
formal equations. To this end, let us define the vector spaces

V (Ω`) =
{
v` ∈ (H1(Ω`)

)2
, v` = 0 on Γ`u

}
.

The current vector field of the product space V (Ω1) × V (Ω2) is denoted (as pre-
viously indicated) v = (v1,v2). This space is endowed with the Hilbertian inner
product:

(v,w)∗ = (v1,w1)(H1(Ω1))2 + (v2,w2)(H1(Ω2))2 ,

for all v,w ∈ V (Ω1) × V (Ω2). The associated norm is denoted ‖.‖∗. Then, the
appropriate closed convex setK of admissible displacements is contained in V (Ω1)×
V (Ω2) and incorporates the contact condition,

K =
{
v = (v1,v2) ∈ V (Ω1)× V (Ω2), [v.n] ≤ 0 a.e. on Γc

}
.

Green’s formula applied to problem (2.1)–(2.5) leads to the variational inequal-
ity: find u ∈K such that

a(u,v − u) ≥ L(v − u), ∀v ∈K. (2.6)

In (2.6), we set:

a(u,v) =
2∑

`=1

∫

Ω`
A`(x) ε(u`). ε(v`) dx,

L(v) =
2∑

`=1

(∫

Ω`
f `.v` dx+

∫

Γ`g

g`.v` dΓ`
)
,

for all u,v ∈ V (Ω1)×V (Ω2). The symmetrical bilinear form a(., .) is coercive (via
Korn’s inequality) and continuous on V (Ω1) × V (Ω2). Moreover, the linear form
L(.) is continuous on V (Ω1)× V (Ω2).
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Inequality (2.6) was widely studied in convex analysis and optimization theory.
The existence and uniqueness of u ∈ K solution of problem (2.6) results from
Stampacchia’s theorem.

3. The Mortar Finite Element Approximation

Towards the construction of the discrete finite element space based on the mortar
concept, the first step consists of recalling some fundamental tools and results of
the classical finite element approximation theory.

Let us recall that the bodies Ω` are polygonally shaped, ` = 1, 2, and assume
that Γc is a straight line segment to simplify. Let the approximation parameter
h = (h1, h2) be a given pair of real positive numbers that will decay to 0. With
each Ω`, we associate a regular family of triangulations T `h, whose elements are
triangles denoted κ, the diameter of which does not exceed h`. We can write

Ω
`

=
⋃

κ∈T `
h

κ.

The extension to rectangular elements is straightforward owing to some slight mod-
ifications. The extreme points c1 and c2 of the contact zone Γc can be common
nodes of the meshes on both bodies. The contact zone Γc inherits two independent
families of discretizations associated with T 1

h and T 2
h . The mesh T `c,h on Γc is de-

fined as the set of all the edges of κ ∈ T `h on the contact zone. The set of the nodes
associated with T `c,h is denoted ξ`. In general ξ1 and ξ2 are not identical because of
the non compatibility of the meshes.

Denote P1(κ) the space of the polynomials on κ whose global degree is lower or
equal to one. With any κ, we associate the finite set Ξκ of the vertices of κ, so that
(κ,P1(κ),Ξκ) is a finite element of Lagrange type. The finite element space used in
Ω` is then defined as

Vh(Ω`) =
{
v`h ∈ (C(Ω`))2, ∀κ ∈ T `h, v`h|κ ∈ (P1(κ))2, v`h|Γ`u = 0

}
.

If I`h stands for for the Lagrange interpolation operator ranging in Vh(Ω`), we have
the following error estimate obtained from Ciarlet,11 by hilbertian interpolation: for
any couple of real numbers (µ, ν) ∈ [0, 1]×]1, 2], there exists a constant C = C(µ, ν)
satisfying:

‖v` − I`hv`‖(Hµ(Ω`))2 ≤ C(µ, ν)hν−µ` ‖v`‖(Hν(Ω`))2 , ∀v` ∈ (Hν(Ω`))2, (3.1)

with the convention H0 = L2. The interpolation property (3.1) seems to be false
for negative exponents µ. The mortar element method was born precisely because
such results were missing (Bernardi, Debit and Maday,8).

To express the contact constraints (2.4), we need to introduce some functional
spaces over Γc. Let W `

h(Γc) be the range of Vh(Ω`) by the normal traces operator
on Γc:

W `
h(Γc) =

{
ϕh = v`h|Γc .n`, v`h ∈ Vh(Ω`)

}
,
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which is called the mortar space. We introduce the space of the Lagrange multipliers
that will be useful to express in a weak sense the contact conditions:

M `
h(Γc) =

{
ψh ∈W `

h(Γc), ψh|T ∈ P0(T ), ∀T ∈ T `c,h, s.t. c1 or c2 ∈ T
}
.

Next, π`h stands for the projection operator on W `
h(Γc) defined for any function

ϕ ∈ C(Γc) as

π`hϕ ∈ W `
h(Γc),

(π`hϕ)(ci) = ϕ(ci) for i = 1 and 2,∫

Γc

(ϕ− π`hϕ)ψh dΓ = 0 ∀ψh ∈M `
h(Γc). (3.2)

We suppose that the (1D) family of triangulations T `c,h are uniformly regular so
that the inverse inequalities in the Sobolev spaces are available (Ciarlet,11). The
properties of π`h are enumerated in Ben Belgacem,6 and we just recall them.

Lemma 3.1 The projection operator π`h ranges continuously H
1
2
00(Γc) into H

1
2
00(Γc)

i.e.
‖π`hϕ‖

H
1
2
00(Γc)

≤ C‖ϕ‖
H

1
2
00(Γc)

, ∀ϕ ∈ H
1
2
00(Γc), (3.3)

and satisfies the following error estimate. Let 1
2 < µ ≤ 2, then

‖ϕ− π`hϕ‖
H

1
2
00(Γc)

≤ C ′hµ−
1
2

` ‖ϕ‖Hµ(Γc), ∀ϕ ∈ Hµ(Γc). (3.4)

Both constants C and C ′ are independent of h`.

We are in a position to define the discrete admissibility convex cone Kh:

Kh =
{
vh = (v1

h,v
2
h) ∈ Vh(Ω1)× Vh(Ω2), v1

h.n
1 + π1

h(v2
h.n

2) ≤ 0 on Γc
}
.

Notice that the condition incorporated in Kh makes sense because it is expressed
in the space W 1

h (Γc). Following the terminology of Bernardi, Maday and Patera,9,
W 2
h (Γc) stands for the mortar space. Of course, it is possible to give a symmetrical

definition of the convex by taking as mortar space W 1
h (Γc) and using the projection

π2
h. Besides, it is straightforward to see that Kh 6⊂ K, then the approximation is

not “Hodge” conforming.
When compatible meshes are used, the discrete contact constraints can be ex-

pressed merely by the natural pointwise condition [vh.n] ≤ 0 and the approximation
becomes conforming (Kh ⊂K). This situation was extensively studied by Haslinger
and Hlaváček,16 Haslinger, Hlaváček and Nečas,17.

The finite element problem issued from (2.6) is the following variational inequal-
ity: find uh ∈Kh such that

a(uh,vh − uh) ≥ L(vh − uh), ∀vh ∈Kh. (3.5)
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Using again Stamppachia’s theorem, we conclude to the existence and uniqueness
of the solution uh ∈Kh which satisfies the stability condition

‖uh‖∗ ≤ C
2∑

`=1

(
‖f `‖(L2(Ω`))2 + ‖g`‖(L2(Γ`g))2

)
. (3.6)

4. Error Estimation

In this section, we give an upper bound of the error resulting from the previous
finite element approximation.

4.1. The basic tool

The starting point is an adaptation of Falk’s lemma (Falk,13 Ciarlet,11 Haslinger,
Hlaváček and Nečas,17); this result is given in the following lemma.

Lemma 4.1 Assume that the solution u ∈ K of problem (2.6) is such that u1 ∈
(Hν(Ω1))2 and u2 ∈ (Hν(Ω2))2 with ν > 3

2 . Let uh ∈ Kh be the solution of (3.5).
Then

‖u− uh‖∗ ≤ C
{

inf
vh∈Kh

(
‖u− vh‖∗ +

∣∣∣
∫

Γc

σn[vh.n] dΓ
∣∣∣

1
2
)

+ inf
v∈K

∣∣∣
∫

Γc

σn[(v − uh).n] dΓ
∣∣∣

1
2
}
.

Proof. Let α be the ellipticity constant of the bilinear form a(., .) on V (Ω1)×V (Ω2).
We have

α‖u− uh‖2∗ ≤ a(u,u)− a(u,uh)− a(uh,u) + a(uh,uh).

Then, noticing that:

a(u,u) ≤ a(u,v)− L(v − u), ∀v ∈K,

a(uh,uh) ≤ a(uh,vh)− L(vh − uh), ∀vh ∈Kh,

we deduce the following inequality

α‖u− uh‖2∗ ≤ a(u,v − uh) − L(v − uh) + a(u,vh − u)

− L(vh − u) + a(uh − u,vh − u). (4.1)

Applying twice Green’s formula gives on the one side

a(u,v − uh)− L(v − uh) =
∫

Γc

σn[(v − uh).n] dΓ,

and on the other side, thanks to σn[u.n] = 0,

a(u,vh − u)− L(vh − u) =
∫

Γc

σn[(vh − u).n] dΓ =
∫

Γc

σn[vh.n] dΓ.
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Observing that when M is the norm of a(., .), we derive

a(uh − u,vh − u) ≤ M‖uh − u‖∗‖vh − u‖∗
≤ M

( α

2M
‖uh − u‖2∗ +

M

2α
‖vh − u‖2∗

)
.

The proof is achieved by using this inequality in (4.1).

Remark 4.1 In the previous statement, we recognize the approximation error

inf
vh∈Kh

(
‖u− vh‖∗ +

∣∣∣
∫

Γc

σn[vh.n] dΓ
∣∣∣

1
2
)
.

The boundary integral is due to the nature of the problem and does not disappear
even when the approximation is conforming. The consistency error is represented
by

inf
v∈K

∣∣∣
∫

Γc

σn[(v − uh).n] dΓ
∣∣∣

1
2
.

Indeed, this latter expression is generated by the non conformity of the finite element
method. Otherwise, for matching meshes on the contact zone, we have Kh ⊂ K
and the consistency error disappears.

Remark 4.2 The proof without regularity assumptions of the previous lemma
would require to consider functions belonging to dual Sobolev spaces (typically
H−

1
2 (∂Ω1) and H−

1
2 (∂Ω2)) whose non local character is well–known. To skip over

such a technical concern, and keeping in mind that the estimate results issued in an
important number of papers are proven from a H2 regularity condition, we make
weaker smoothness assumptions on the displacement field u, see the discussion to
the end of the section.

4.2. Analysis of the best approximation error

We attempt to derive an upper bound of the first infimum in Lemma 4.1.

Lemma 4.2 Let v = (v1,v2) ∈K such that v1 ∈ (Hν(Ω1))2 and v2 ∈ (Hν(Ω2))2

with 3
2 < ν ≤ 2. Assume that the normal stresses defined in (2.3) on the contact

zone Γc are identical:

(σ`(v`)n`).n` = σn(v), ` = 1, 2.

Then, there exists vh ∈Kh that satisfies the estimates

‖v − vh‖∗ ≤ C(v)(hν−1
1 + hν−1

2 ), (4.2)
∣∣∣
∫

Γc

σn(v)[(vh − v).n] dΓ
∣∣∣

1
2 ≤ C(v)(h

ν
2− 1

4
1 + hν−1

2 ), (4.3)

where the constant C(v) depends linearly on ‖v1‖(Hν(Ω1))2 and ‖v2‖(Hν(Ω2))2 .
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Proof. (i) Let v = (v1,v2) ∈K satisfying the regularity assumptions of the lemma.
By classical trace theorems in Sobolev spaces, it comes out that [v.n] ∈ Hν− 1

2 (Γc).
Using expansion operators, we can build up a vector field r ∈ (Hν(Ω1))2 ∩ V (Ω1)
such that r.n1 = [v.n] on Γc, and verifying the stability relation

‖r‖(Hν(Ω1))2 ≤ C‖[v.n]‖
Hν−

1
2 (Γc)

≤ C(‖v1‖(Hν(Ω1))2 + ‖v2‖(Hν(Ω2))2).

Then, setting w = (w1,w2) = (v1 − r,v2) ∈ V (Ω1) × V (Ω2), it is clear that
[w.n] = 0 on Γc and

w ∈ (Hν(Ω1))2 × (Hν(Ω2))2.

We are therefore in a similar situation to that of bilateral contact. Processing like
in Ref.5 we approximate w by wh = (w1

h,w
2
h) ∈ Vh(Ω1)× Vh(Ω2) satisfying

w1
h.n

1 + π1
h(w2

h.n
2) = 0,

and the estimate
‖w −wh‖∗ ≤ C(v)(hν−1

1 + hν−1
2 ),

with C(v) depending linearly on ‖v1‖(Hν(Ω1))2 and ‖v2‖(Hν(Ω2))2 . To achieve, we
define

vh = (v1
h,v

2
h) = (w1

h + I1
hr,w

2
h).

Because (I1
hr).n1 has the same sign as (r.n1) = [v.n], thus negative, it comes out

that
v1
h.n

1 + π1
h(v2

h.n
2) = (I1

hr).n1 ≤ 0.

It follows that vh belongs to Kh. Besides, thanks to (3.1), we have

‖v − vh‖∗ ≤ ‖w −wh‖∗ + ‖r − I1
hr‖(H1(Ω1))2

≤ C(v)(hν−1
1 + hν−1

2 ) + Chν−1
1 ‖r‖(Hν(Ω1))2

≤ C(v)(hν−1
1 + hν−1

2 ),

which yields the first estimate (4.2) of the lemma.
(ii) To determine an upper bound of the integral term, we write

∫

Γc

σn(v)[(vh − v).n] dΓ =
∫

Γc

σn(v)[wh.n] dΓ +
∫

Γc

σn(v)((I1
hr).n1 − r.n1) dΓ.

The first term is evaluated in a standard way like in Ref.9, and yields
∣∣∣
∫

Γc

σn(v)[wh.n] dΓ
∣∣∣ ≤ C(v)(h2(ν−1)

1 + h
2(ν−1)
2 ).

The second one is handled as follows
∣∣∣
∫

Γc

σn(v)((I1
hr).n1 − r.n1) dΓ

∣∣∣ ≤ ‖σn(v)‖L2(Γc)‖(I1
hr).n1 − r.n1‖L2(Γc)

≤ C(v)hν−
1
2

1 ‖σn(v)‖L2(Γc)‖r.n1‖
Hν−

1
2 (Γc)

≤ C(v)hν−
1
2

1 .
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Hence the lemma.

The estimate given in (4.3) is not optimal, due to the fact that the interpolation
operator does not provide good approximation results with respect to Sobolev norms
with negative exponents. In the forthcoming study, we prove that this estimate
slows down the convergence rate of the method.

4.3. First estimate of the consistency error

We are interested in providing a first (rough) bound of the consistency error
that will be used as a starting point of the study of the global error estimate. Due
to the use of an inverse inequality, we need to assume that the size of the meshes is
such that the ratio h1/h2 is bounded.

Lemma 4.3 Assume that the solution u ∈ K of problem (2.6) is such that u1 ∈
(Hν(Ω1))2 with 3

2 < ν ≤ 2 and let uh ∈Kh be the solution of (3.5). Then

inf
v∈K

∣∣∣
∫

Γc

σn(u)[(v − uh).n] dΓ
∣∣∣

1
2 ≤ C(u)h

ν
2− 1

2
1 ,

where the constant C depends only on ‖u1‖(Hν(Ω1))2 .

Proof. Choosing v ∈K such that

v1.n1|Γc = u1
h.n

1|Γc and v2.n2|Γc = π1
h(u2

h.n
2)|Γc ,

which is possible by using the extension operators, we have:
∫

Γc

σn[(v − uh).n] dΓ =
∫

Γc

σn(π1
h(u2

h.n
2)− u2

h.n
2) dΓ, (4.4)

and then:
∫

Γc

σn[(v − uh).n] dΓ =
∫

Γc

(σn − ψh)(π1
h(u2

h.n
2)− u2

h.n
2) dΓ,

for all ψh ∈M1
h(Γc). By duality, we obtain

∣∣∣
∫

Γc

σn[(v−uh).n] dΓ
∣∣∣ ≤ inf

ψh∈M1
h

(Γc)
‖σn−ψh‖

(H
1
2
00(Γc))′

‖π1
h(u2

h.n
2)−u2

h.n
2‖
H

1
2
00(Γc)

.

By using (3.4), we deduce, for any small positive ε

∣∣∣
∫

Γc

σn[(v − uh).n] dΓ
∣∣∣ ≤ Chν−1

1 ‖σn‖
Hν−

3
2 (Γc)

hε1‖u2
h.n

2‖
H

1
2 +ε(Γc)

.

Using the inverse inequality implies
∣∣∣
∫

Γc

σn[(v − uh).n] dΓ
∣∣∣ ≤ Chν−1

1

(h1

h2

)ε
‖u1‖(Hν(Ω1))2‖uh‖∗.
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The result is achieved due to the stability of the discrete solution given by (3.6) and
the assumption on the ratio h1/h2.

4.4. Bootstrap and global error estimate

Up to now, the preliminary lemmas do not lead to the expected convergence
rate. This is caused by the rough evaluation of the consistency error. However,
combining these first results with a bootstrap procedure, we are able to improve
the previous lemma and then to derive the following lemma. Using again this
bootstrap argument, we obtain Theorem 4.1 hereafter.

Lemma 4.4 Assume that the solution u ∈ K of problem (2.6) is such that u1 ∈
(Hν(Ω1))2 and u2 ∈ (Hν(Ω2))2 with 3

2 < ν ≤ 2 and let uh ∈Kh be the solution of
(3.5). Then

‖u− uh‖∗ ≤ C(u)(h
3
4 (ν−1)
1 + hν−1

2 ),

where the constant C depends only on ‖u1‖(Hν(Ω1))2 and ‖u2‖(Hν(Ω2))2 .

Proof. Putting together the results of Lemmas 4.1, 4.2 and 4.3 yields a first bound
of the error

‖u− uh‖∗ ≤ C(u)(h
ν
2− 1

2
1 + hν−1

2 ). (4.5)

Such an estimate allows to derive a better upper bound of the consistency error.
Taking back the intermediary term (4.4), we notice that it can be written as
∫

Γc

σn[(v − uh).n] dΓ =
∫

Γc

σn
{
π1
h((u2

h − I2
hu

2).n2)− ((u2
h − I2

hu
2).n2)

}
dΓ

+
∫

Γc

σn
{

((u2 − I2
hu

2).n2)− π1
h((u2 − I2

hu
2).n2)

}
dΓ

+
∫

Γc

σn(π1
h(u2.n2)− u2.n2) dΓ.

For the clarity of the presentation we shall denote T1, T2 and T3 the three different
integral quantities involved in the previous sum. We begin by bounding the third
one, it is made as in Ref.9, and yields

|T3| ≤ C ′(u)h2(ν−1)
1 ,

with C ′(u) depending linearly on ‖u2‖2(Hν(Ω2))2 . Using the nature of the operator
π1
h, it comes out that:

|T2| =
∣∣∣
∫

Γc

(σn − ψh)
{

((u2 − I2
hu

2).n2)− π1
h((u2 − I2

hu
2).n2)

}
dΓ
∣∣∣,

for all ψh ∈M1
h(Γc). By duality, we obtain

|T2| ≤ inf
ψh∈M1

h
(Γc)
‖σn−ψh‖

(H
1
2
00(Γc))′

‖((u2−I2
hu

2).n2)−π1
h((u2−I2

hu
2).n2)‖

H
1
2
00(Γc)

.
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Observing that u2.n2 − (I2
hu

2).n2 belongs to H
1
2
00(Γc), and thanks to the stability

(3.3), we have

|T2| ≤ Chν−1
1 ‖σn‖

Hν−
3
2 (Γc)

‖(u2 − I2
hu

2).n2‖
H

1
2
00(Γc)

.

Employing (3.1) and the inequality 2hν−1
1 hν−1

2 ≤ h2(ν−1)
1 + h

2(ν−1)
2 yields

|T2| ≤ C ′(u)(h2(ν−1)
1 + h

2(ν−1)
2 ).

We are left with the first term T1. Following the same points as for T2 leads to

|T1| ≤ Chν−1
1 ‖σn‖

Hν−
3
2 (Γc)

hε1‖u2
h.n

2 − (I2
hu

2).n2‖
H

1
2 +ε(Γc)

.

Applying the inverse inequality and inserting u2.n2 gives

|T1| ≤ Chν−1
1

(h1

h2

)ε
‖σn‖

Hν−
3
2 (Γc)

‖u2
h.n

2 − (I2
hu

2).n2‖
H

1
2 (Γc)

≤ Chν−1
1

(h1

h2

)ε
‖σn‖

Hν−
3
2 (Γc)

(‖u− uh‖∗ + ‖u2 − I2
hu

2‖(H1(Ω2))2).

Using estimate (4.5) together with (3.1) so as the boundedness of the ratio h1/h2

conclude to
|T1| ≤ C ′(u)(h

3
2 (ν−1)
1 + h

2(ν−1)
2 ).

Assembling estimates on different terms T1, T2 and T3 gives the following error
estimate

inf
v∈K

∣∣∣
∫

Γc

σn(u)[(v − uh).n] dΓ
∣∣∣

1
2 ≤ C(u)(h

3
4 (ν−1)
1 + hν−1

2 ).

Moreover, the best approximation error decays to zero faster as the consistency
error. That concludes the proof.

By applying as long as possible the bootstrap argument with the consistency
error, we obtain the following result.

Theorem 4.1 Assume that the solution u ∈K of problem (2.6) is such that u1 ∈
(Hν(Ω1))2 and u2 ∈ (Hν(Ω2))2 with 3

2 < ν ≤ 2 and let uh ∈Kh be the solution of
(3.5). Then

‖u− uh‖∗ ≤ C(u)(h
ν
2− 1

4
1 + hν−1

2 ),

where the constant C depends only on ‖u1‖(Hν(Ω1))2 and ‖u2‖(Hν(Ω2))2 .

Under the H2×H2 regularity conditions, the statement gives a convergence rate
in h

3
4
1 + h2.
In the particular case of compatible meshes, the discrete unilateral condition is

reduced to the natural pointwise condition, as above–mentioned in section 3. Then,
if the exact solution is assumed to lie in H2×H2, Theorem 4.1 gives the same rate
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of convergence in |h| 34 as in Haslinger, Hlaváček and Nečas,17. We denote by |h|
a given norm of h in R2. The present statement seems to be the first result for
non–matching meshes in unilateral problems.

Let us now consider the case without an embedding condition. The existence
and uniqueness results for this case are established in Ref.17. As a by-product of
Theorem 4.1, we obtain an information on the dual unknown of the displacement
field. The approximation of the stress field σ = (σ1, σ2) by the discrete one σh =
(σ1
h, σ

2
h) (where σ` = A`ε(u`) and σ`h = A`ε(u`h)), is governed by the following error

estimate. The notation |τ |∗ stands for the standard L2(Ω1 ∪ Ω2)–norm defined on
the space of tensor fields.

Corollary 4.1 Let us assume that Γ1
u = Γ2

u = Ø. Let there exist solutions u ∈K
and uh ∈ Kh of problems (2.6) and (3.5) respectively. Assume that the norms
‖uh‖∗ remain bounded and let the smoothness hypothesies of Theorem 4.1 hold.
Then

|σ − σh|∗ ≤ C(u)(h
ν
2− 1

4
1 + hν−1

2 ),

where the constant C(u) is independent on h.

This statement can be naturally formulated in terms of the strain tensor. Under
the same assumptions, the quantity |ε(u−uh)|∗ is dominated exactly as in Corollary
4.1. This property is immediately derived from the ellipticity condition satisfied by
the elasticity coefficients. Let us recall that the quantity |ε(v)|∗ defines an equivalent
norm to the H1–norm ‖v‖∗ if mesΓ`u > 0, (` = 1, 2), owing to Korn inequality.
Clearly, the corollary is still valid for the embedding case.

To our knowledge, there is no detailed study of the regularity aspects for uni-
lateral contact problems. Nevertheless, the smoothness condition in Theorem 4.1
can be removed and it can be proved that the condition u ∈ H1 ×H1 implies the
following convergence property, (Hild,18):

‖u− uh‖∗ → 0 as h→ 0.

Further comments on the regularity of the exact solution to the contact problem
can be found in Remark 4.4 hereafter.

Remark 4.3 The error estimate stated in Theorem 4.1 is close to the optimal prop-
erties obtained for finite element methods. Under the H

3
2 +ε regularity assumption,

the loss in rate of convergence is given by the factor |h| ε2 for the present unilateral
problem. Such a decrease is negligible for small values of ε > 0. In other respects, if
u is assumed to be in H2 ×H2, the loss is more important: the factor of reduction
is equal to |h| 14 . Nevertheless, if we compare to the known result in a unilateral
contact problem (conforming method), we have already noticed that Theorem 4.1
achieves the same error estimate in a more general situation.

Remark 4.4 The lack of regularity in the present contact problem comes from
many causes. The first one classically corresponds to the mixed boundary condi-
tions of Dirichlet type on Γ`u and Neumann type on Γ`g. The smoothness of the
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solution to the linear elasticity problem is well-studied and the resulting property
is close to the assumption used in the statement (Grisvard,14 Kinderlehrer and
Stampacchia,21). This first difficulty is not intrinsically connected to the contact
model, and the problem without an embedding condition is considered in Corol-
lary 4.1. A second cause of singularity results from the geometry of the polygonal
domains. Again, this cause is not directly connected to the contact problem, and
we have simply considered the case where Γc is a straight line segment. This case
allows to avoid nonconvex domains (Grisvard,14 Moussaoui and Khodja,25). A last
cause of nonsmoothness is more fundamental in our problem; this is the Signorini
condition. For the analogous problem defined by the Laplace operator and a Sig-
norini type boundary condition, it was proved that the solution is more regular than
H2 (Brezzi, Hager and Raviart,10 Moussaoui and Khodja,25). This somewhat sur-
prising property is to compare to the weaker smoothness condition used in Theorem
4.1.

Remark 4.5 In the proof of Theorem 4.1, we have stopped the bootstrap argument
because the global error is now equivalent to the best approximation error. However,
it is possible to push further the technique and to bound the consistency error by
C(u) (h

3ν
4 − 5

8
1 + hν−1

2 ) under the assumptions of Theorem 4.1.

5. Conclusion and Perspectives

In order to solve the contact problem between two elastic bodies, we have con-
sidered a finite element method of order one using non–matching meshes at the
contact zone. The extension of the mortar technique (with ν = 2 in Theorem 4.1)

yields a convergence rate in h
3
4
1 +h2, denoting h1 and h2 the discretization parame-

ters associated with each of the two bodies. Therefore, the convergence rate of the
method is the same as in the case of compatible meshes (Haslinger, Hlaváček and
Nečas,17).

As for the variational equalities (Bernardi, Debit and Maday,8), the discrete
matching constraint used in this paper should be preferred to a pointwise interpola-
tion constraint. The latter leads to a global error bounded by C(u, ε) (h

1
2−ε
1 + h2),

under H2 regularity conditions (Hild,18).
In other respects, we consider in Ref.19 the more general contact model taking

into account the friction.

Acknowledgments: Some useful remarks have been formulated by a referee and
we would like to thank him.
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