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Abstract

This paper is concerned with the unilateral contact problem in linear elas-
ticity. We define two a posteriori error estimators of residual type to evaluate
the accuracy of the mixed finite element approximation of the contact prob-
lem. Upper and lower bounds of the discretization error are proved for both
estimators and several computations are performed to illustrate the theoretical
results.
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1 Introduction

The finite element method is currently used in the numerical realization of contact
problems occurring in several engineering applications (see [24, 19, 18, 25, 30]). An
important task consists of evaluating numerically the quality of the finite element
computations by using a posteriori error estimators. There are two important diffi-
culties in developing such tools for contact problems in elasticity: the first one comes
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from the inequality (unilateral) conditions in the model and the second one is due
to the location of these inequality conditions which hold on (a part of) the bound-
ary. For the linear elasticity system with standard boundary conditions (leading to
a variational identity), many different approaches leading to various error estimators
have been developed and a review of the different a posteriori error estimators can
be found in [29]. Some of these approaches have been chosen and studied for fric-
tionless or frictional unilateral contact problems, in particular in [31, 7, 26] (residual
approach using a penalization of the contact condition or the normal compliance law),
in [12, 10] (equilibrated residual method) and finally in [14] (residual approach for
BEM-discretizations).

Besides, let us mention that many studies dealing with residual estimators for
scalar variational inequality problems of the first kind have been achieved in other
contexts than elasticity. In particular a great effort was devoted to the obstacle
problem (see e.g., [6, 8, 27] and the references therein). Moreover a residual type
estimator for the Signorini problem in its standard formulation can be found in [21]
(note that the Signorini problem could be seen as a simplification in the scalar case
of the unilateral contact model). For residual estimators dealing with variational
inequalities of the second kind we refer the reader to [5] and the references therein.
We recall that a variational inequality of the first (resp. second) kind is of the form:
u ∈ C, a(u, v − u) ≥ L(v − u),∀v ∈ C (resp. u ∈ X, a(u, v − u) + j(v) − j(u) ≥
L(v − u),∀v ∈ X) where X is an Hilbert space, C ⊂ X is a nonempty closed convex
set, a(., .) is bilinear, X-elliptic and continuous onX×X, L(.) is linear and continuous
onX, j(.) is proper convex and lower semi continuous onX (with values in R∪{+∞}).
More details concerning variational inequalities of the first or second kind can be found
in e.g., [2, 17].

In the present work we are interested in developing residual estimators for the
two-dimensional unilateral contact model in linear elasticity. This problem can be
written as a variational inequality of the first kind but also (among others) as a mixed
formulation where the unknowns are the displacement field and the contact pressure.

The paper is organized as follows. In Section 2 we introduce the equations mod-
elling the frictionless unilateral contact problem between an elastic body and a rigid
foundation. We write the problem using a mixed formulation where the unknowns
are the displacement field in the body and the pressure on the contact area. In the
third section, we choose a classical discretization involving continuous finite elements
of degree one and continuous piecewise affine multipliers on the contact zone. Section
4 is concerned with the study of a first residual estimator which can be seen as the
natural one arising from the discrete problem. We obtain both global upper and
local lower bounds of the error. In section 5 we consider a second estimator resulting
from another discrete model where the displacement field is the same as in the first
model but where the multiplier is modified. The main novelty of the second discrete
model is that the multipliers have a constant sign. As in Section 4, we obtain global
upper and local lower bounds of the error. Finally in section 6 we implement both
estimators and we compare them on several examples.

Finally we introduce some useful notation and several functional spaces. In what
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follows, bold letters like u,v, indicate vector valued quantities, while the capital ones
(e.g., V,K, . . .) represent functional sets involving vector fields.

As usual, we denote by (L2(.))d and by (Hs(.))d, s ≥ 0, d = 1, 2 the Lebesgue
and Sobolev spaces in one and two space dimensions (see [1]). The usual norm of
(Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation when d = 1 or d = 2.
For shortness the (L2(D))d-norm will be denoted by ‖ · ‖D when d = 1 or d = 2. In
the sequel the symbol | · | will denote either the Euclidean norm in R

2, or the length
of a line segment, or the area of a plane domain. Finally the notation a . b means
here and below that there exists a positive constant C independent of a and b (and
of the meshsize of the triangulation) such that a ≤ C b. The notation a ∼ b means
that a . b and b . a hold simultaneously.

2 The unilateral contact problem in elasticity

Let Ω represent an elastic body in R
2 where plane strain assumptions are assumed.

The boundary ∂Ω is supposed to be polygonal, i.e., it is the union of a finite number
of linear segments. Moreover we suppose that the boundary consists in three nonover-
lapping parts ΓD, ΓN and ΓC with meas(ΓD) > 0 and meas(ΓC) > 0. The normal
unit outward vector on ∂Ω is denoted n = (n1, n2) and we choose as unit tangential
vector t = (−n2, n1). In its initial configuration, the body is in contact on ΓC and
we suppose that the unknown final contact zone after deformation will be included in
ΓC . The body is clamped on ΓD for the sake of simplicity. It is subjected to volume
forces f = (f1, f2) ∈ (L2(Ω))2 and to surface forces g = (g1, g2) ∈ (L2(ΓN))2.

The unilateral contact problem in elasticity consists in finding the displacement
field u : Ω → R

2 verifying the equations and conditions (1)–(6):

div σ(u) + f = 0 in Ω,(1)

where div denotes the divergence operator of tensor valued functions and σ =
(σij), 1 ≤ i, j ≤ 2, stands for the stress tensor field. The latter is obtained from
the displacement field by the constitutive law of linear elasticity

σ(u) = Aε(u) in Ω,(2)

where A is a fourth order symmetric and elliptic tensor and ε(v) = (∇v +t∇v)/2
represents the linearized strain tensor field. On ΓD and ΓN , the conditions are as
follows:

u = 0 on ΓD,(3)

σ(u)n = g on ΓN .(4)

Afterwards we choose the following notation for any displacement field v and for any
density of surface forces σ(v)n defined on ∂Ω:

v = vnn + vtt and σ(v)n = σn(v)n + σt(v)t.
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The conditions modelling unilateral contact on ΓC are (see e.g., [15, 16, 13]):

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0.(5)

Finally the condition

σt(u) = 0(6)

on ΓC means that friction is omitted.

In order to derive the variational formulation of (1)–(6), we consider the Hilbert
space

H1
ΓD

(Ω) =
{

v ∈ H1(Ω) : v = 0 on ΓD

}

,

equipped with the H1(Ω)-norm. We further use the Hilbert space

V = (H1
ΓD

(Ω))2.

For our next uses, we introduce the trace space H
1

2 (ΓC) as follows:

H
1

2 (ΓC) =
{

φ ∈ L2(ΓC) : ∃u ∈ H1
ΓD

(Ω) such that φ = γu on ΓC

}

,

equipped with the norm

‖φ‖ 1

2
,ΓC

= inf
u∈H1

ΓD
(Ω):φ=γu

‖u‖1,Ω,

where γ is the standard trace operator from H1(Ω) to H
1

2 (∂Ω) (see [1]). The topo-

logical dual space of H
1

2 (ΓC) will be denoted by H− 1

2 (ΓC), whose norm is

‖ψ‖− 1

2
,ΓC

= sup
φ∈H

1

2 (ΓC)

〈ψ, φ〉− 1

2
, 1
2
,ΓC

‖φ‖ 1

2
,ΓC

,

where the notation 〈., .〉− 1

2
, 1
2
,ΓC

represents the duality pairing between H− 1

2 (ΓC) and

H
1

2 (ΓC).
The forthcoming mixed variational formulation uses the following convex cone of

multipliers on ΓC

M =
{

µ ∈ H− 1

2 (ΓC) : 〈µ, ψ〉− 1

2
, 1
2
,ΓC

≥ 0 for all ψ ∈ H
1

2 (ΓC), ψ ≥ 0 a.e. on ΓC

}

.

Define

a(u,v) =

∫

Ω

σ(u) : ε(v) dΩ, b(µ,v) = 〈µ, vn〉− 1

2
, 1
2
,ΓC
,

L(v) =

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓ,

for any u and v in V and µ in H− 1

2 (ΓC).
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The mixed formulation of the unilateral contact problem without friction (1)–(6)
consists then in finding u ∈ V and λ ∈M such that:

{

a(u,v) + b(λ,v) = L(v), ∀v ∈ V,

b(µ− λ,u) ≤ 0, ∀µ ∈M.
(7)

An equivalent formulation of (7) consists in finding (λ,u) ∈M × V satisfying

L(µ,u) ≤ L(λ,u) ≤ L(λ,v), ∀v ∈ V, ∀µ ∈M,

where L(µ,v) = 1
2
a(v,v) − L(v) + b(µ,v). Another classical weak formulation of

problem (1)–(6) is a variational inequality: find u such that

u ∈ K, a(u,v − u) ≥ L(v − u), ∀v ∈ K,(8)

where K denotes the closed convex cone of admissible displacement fields satisfying
the non-penetration conditions:

K = {v ∈ V : vn ≤ 0 on ΓC}.

The existence and uniqueness of (λ,u) solution to (7) has been stated in [19]. More-
over, the first argument u solution to (7) is also the unique solution of problem (8)
and λ = −σn(u).

3 Mixed finite element approximation

We approximate this problem by a standard finite element method. Namely we fix a
family of meshes Th, h > 0, regular in Ciarlet’s sense [9], made of closed triangles. For
K ∈ Th we recall that hK is the diameter of K and h = maxK∈Th

hK . The regularity
of the mesh implies in particular that for any edge E of K one has hE = |E| ∼ hK .

Let us define Eh (resp. Nh) as the set of edges (resp. nodes) of the triangulation
and set Eint

h = {E ∈ Eh : E ⊂ Ω} the set of interior edges of Th (the edges are
supposed to be relatively open). We denote by EN

h = {E ∈ Eh : E ⊂ ΓN} the set
of exterior edges included into the part of the boundary where we impose Neumann
conditions, and similarly EC

h = {E ∈ Eh : E ⊂ ΓC} is the set of exterior edges
included into the part of the boundary where we impose unilateral contact conditions.
Set ND

h = Nh ∩ΓD (note that the extreme nodes of ΓD belong to ND
h ). Let S denote

the set of vertices of Ω and denote by NNC
h the set of nodes which belong to ΓC ∩ΓN

and by NCC
h the nodes belonging to ΓC ∩ S. Set finally NC

h = (Nh \ NCC
h ) ∩ ΓC

(NC
h contains the nodes in ΓC which are not vertices of Ω). For an element K, we

will denote by EK the set of edges of K and according to the above notation, we set
Eint

K = EK ∩ Eint
h , EN

K = EK ∩ EN
h , EC

K = EK ∩ EC
h .

For an edge E of an elementK, introduce nK,E = (n1, n2) the unit outward normal
vector to K along E and the tangent vector tK,E = n⊥

K,E = (−n2, n1). Furthermore
for each edge E we fix one of the two normal vectors and denote it by nE and we set

5



tE = n⊥
E. The jump of some vector valued function v across an edge E ∈ Eint

h at a
point y ∈ E is defined as

[[v]]E(y) = lim
α→+0

v(y + αnE) − v(y − αnE), ∀E ∈ Eint
h .

Note that the sign of [[v]]E depends on the orientation of nE. Finally we will need
local subdomains (also called patches). As usual, let ωK be the union of all elements
having a nonempty intersection with K. Similarly for a node x and an edge E, let
ωx = ∪K:x∈KK and ωE = ∪

x∈Eωx.
The finite element space used in Ω is then defined by

Vh =
{

vh ∈ (C(Ω))2 : ∀κ ∈ Th, vh|κ ∈ (P1(κ))
2, vh|ΓD

= 0
}

.

We suppose that the contact area consists in several straight line segments, that we
denote by Γi

C , 1 ≤ i ≤ q such that ΓC = ∪iΓi
C . In order to express the contact

constraints by using Lagrange multipliers on the contact zone, we have to introduce
the space

Wh =
{

µh : ∪iΓi
C → R, µh|Γi

C

∈ C(Γi
C),∃vh ∈ Vh s.t. vh · n = µh on ∪i Γi

C

}

.(9)

The choice of the space Wh allows us to define the following closed convex cone:

Mh =
{

µh ∈ Wh :

∫

ΓC

µhψh dΓ ≥ 0, ∀ψh ∈ Wh, ψh ≥ 0
}

.

Remark 3.1 It is easy to check that Mh 6⊂M .

The discretized mixed formulation of the unilateral contact problem without fric-
tion is to find uh ∈ Vh and λh ∈Mh satisfying:

{

a(uh,vh) + b(λh,vh) = L(vh), ∀vh ∈ Vh,

b(µh − λh,uh) ≤ 0, ∀µh ∈Mh.
(10)

Problem (10) consists in finding (λh,uh) ∈Mh × Vh satisfying

L(µh,uh) ≤ L(λh,uh) ≤ L(λh,vh), ∀vh ∈ Vh, ∀µh ∈Mh,

where L(µh,vh) = 1
2
a(vh,vh) − L(vh) + b(µh,vh). In order to prove that there is a

unique solution to Problem (10), and since we are in the finite dimensional case, we
only have to check (see [19], Theorem 3.9 and Example 3.8) that

sup
vh∈Vh,vh 6=0

b(µh,vh)

‖vh‖1,Ω

is a norm on Wh. So we have to verify that

{µh ∈ Wh : b(µh,vh) = 0, ∀vh ∈ Vh} = {0},

which is satisfied according to the definition of Wh in (9). As a consequence, we
obtain the following statement:
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Proposition 3.2 Problem (10) admits a unique solution (λh,uh) ∈Mh × Vh.

Proposition 3.3 If (λh,uh) is the solution of (10), then uh is also the unique solu-
tion of the variational inequality: find uh such that

uh ∈ Kh, a(uh,vh − uh) ≥ L(vh − uh), ∀vh ∈ Kh,(11)

where Kh denotes the discrete closed convex cone of admissible displacement fields
satisfying the non-penetration conditions, i.e.,

Kh = {vh ∈ Vh : vhn ≤ 0 on ΓC}.

Proof: Taking µh = 0 and µh = 2λh in (10) leads to b(λh,uh) = 0 and to

b(µh,uh) =

∫

ΓC

µhuhn dΓ ≤ 0, ∀µh ∈Mh.

The latter inequality implies by polarity that uhn ∈ −M∗
h (the notation X∗ stands for

the positive polar cone of X for the inner product on Wh induced by b(., .), see [22],
p. 119). Let Qh = {µh ∈ Wh : µh ≥ 0}. We have M∗

h = (Q∗
h)

∗ = Qh since Qh is a
closed convex cone. Hence uhn ∈ −Qh and uh ∈ Kh. Besides (10) and b(λh,uh) = 0
lead to

a(uh,uh) = L(uh)(12)

and for any vh ∈ Kh, we get

a(uh,vh) − L(vh) = −b(λh,vh) = −
∫

ΓC

λhvhn dΓ ≥ 0,(13)

owing to λh ∈ Q∗
h.

Putting together (12) and (13) implies that uh is solution of the variational in-
equality (11) which admits a unique solution according to Stampacchia’s theorem.

Remark 3.4 A priori error analyses for this discretization of the unilateral contact
problem can be found in [4, 11, 23]. The a priori error estimates are of order h(1+ν)/2

if u ∈ (H3/2+ν(Ω))2, 0 < ν ≤ 1/2 (see [4, 11]). If an additional assumption dealing
with the finiteness of transition points between contact and separation is added then
an optimal error estimate of order h1/2+ν is obtained (see [23]).

We consider the quasi-interpolation operator πh: for any v ∈ L1(Ω), we define πhv
as the unique element in Vh = {vh ∈ C(Ω) : ∀κ ∈ Th, vh|κ ∈ P1(κ), vh|ΓD

= 0} such
that:

πhv =
∑

x∈Nh\N
D
h

αx(v)λx,(14)
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where for any x ∈ Nh\ND
h , λx is the standard basis function in Vh satisfying λx(x

′) =
δx,x′ , for all x′ ∈ Nh \ ND

h and αx(v) is defined as follows:

αx(v) =
1

|ωx|

∫

ωx

v(y) dy, ∀x ∈ Nh \ ND
h .

The following estimates hold (see, e.g., [29])

Lemma 3.5 For any v ∈ H1
ΓD

(Ω) we have

‖v − πhv‖K . hK‖∇v‖ωK
,∀K ∈ Th,

‖v − πhv‖E . h
1/2
E ‖∇v‖ωE

,∀E ∈ Eh.

Since we deal with vector valued functions we can define a vector valued operator
(which we denote again by πh for the sake of simplicity) whose components are defined
above. Consequently we can directly state the

Lemma 3.6 For any v ∈ V we have

‖v − πhv‖K . hK‖v‖1,ωK
,∀K ∈ Th,(15)

‖v − πhv‖E . h
1/2
E ‖v‖1,ωE

,∀E ∈ Eh.(16)

4 A first error estimator: η

4.1 Definition of the residual error estimators

The element residual of the equilibrium equation (1) is defined by

divσ(uh) + f = f on K.

As usual this element residual is replaced by some computable finite dimensional
approximation called approximate element residual

fK ∈ (Pk(K))2.

A current choice is to take fK =
∫

K
f(x) /|K| since for f ∈ (H1(Ω))2, scaling argu-

ments yield ‖f−fK‖K . hK‖f‖1,K and is then negligible with respect to the estimator
η defined hereafter. In the same way g is approximated by a computable quantity
denoted gE on any E ∈ EN

h .

Definition 4.1 (First residual error estimator) The local and global residual er-
ror estimators are defined by

ηK =

(

6
∑

i=1

η2
iK

)1/2

,

η1K = hK‖fK‖K ,
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η2K = h
1/2
K





∑

E∈Eint
K

∪EN
K

‖JE,n(uh)‖2
E





1/2

,

η3K = h
1/2
K





∑

E∈EC
K

‖λh + σn(uh)‖2
E





1/2

,

η4K = h
1/2
K





∑

E∈EC
K

‖σt(uh)‖2
E





1/2

,

η5K =





∑

E∈EC
K

∫

E

−λh+uhn





1/2

,

η6K =





∑

E∈EC
K

‖λh−‖2
E





1/2

,

η =

(

∑

K∈Th

η2
K

)1/2

,

where the notations λh+ and λh− denote the positive and negative parts of λh, respec-
tively; JE,n(uh) means the constraint jump of uh in normal direction, i.e.,

JE,n(uh) =

{

[[σ(uh)nE]]E,∀E ∈ Eint
h ,

σ(uh)nE − gE,∀E ∈ EN
h .

(17)

The local and global approximation terms are defined by

ζK =



h2
K

∑

K′⊂ωK

‖f − fK′‖2
K′ + hE

∑

E⊂EN
K

‖g − gE‖2
E





1/2

, ζ =

(

∑

K∈Th

ζ2
K

)1/2

.(18)

Remark 4.2 In the Definition 4.1, we could also set instead of η5K:

η̂5K =





∑

E∈EC
K

∫

E

−λh−uhn





1/2

since
∫

ΓC
λh+uhn =

∫

ΓC
λh−uhn. Note that η̂5K 6= η5K although

∑

K∈Th
η̂2

5K =
∑

K∈Th
η2

5K.

4.2 Upper error bound

Theorem 4.3 Let (λ,u) be the solution of (7) and let (λh,uh) be the solution of (10).
Then we have

‖u − uh‖1,Ω + ‖λ− λh‖− 1

2
,ΓC

. η + ζ.
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Proof: Afterwards we adopt the following notation for the displacement error term:

eu = u − uh.

Let vh ∈ Vh. From the V-ellipticity of a(., .) and the equilibrium equations in (7)
and (10) we obtain:

‖eu‖2
1,Ω . a(u − uh,u − uh)

= a(u − uh,u − vh) + a(u − uh,vh − uh)

= L(u − vh) − b(λ,u − vh) − a(uh,u − vh) + b(λh − λ,vh − uh).

Integrating by parts on each triangle K, using the definition of JE,n(uh) in (17) and
the complementarity conditions b(λ,u) = b(λh,uh) = 0 yields:

‖eu‖2
1,Ω .

∫

Ω

f · (u − vh) + b(λh,vh) + b(λ,uh) +
∑

E∈EN
h

∫

E

(g − gE) · (u − vh)

−
∑

E∈EC
h

∫

E

(σ(uh)n) · (u − vh) −
∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh).(19)

Splitting up the integrals on ΓC into normal and tangential components gives:

‖eu‖2
1,Ω .

∫

Ω

f · (u − vh) + b(λh,u) + b(λ,uh)

+
∑

E∈EC
h

∫

E

(λh + σn(uh))(vhn − un) +
∑

E∈EC
h

∫

E

σt(uh)(vht − ut)

−
∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh) +
∑

E∈EN
h

∫

E

(g − gE) · (u − vh).(20)

We now need to estimate each term of this right-hand side. For that purpose, we take

vh = uh + πh(u − uh)(21)

where πh is the quasi-interpolation operator defined in Lemma 3.6.
We start with the integral term. Cauchy-Schwarz’s inequality implies

∣

∣

∣

∣

∫

Ω

f · (u − vh)

∣

∣

∣

∣

≤
∑

K∈Th

‖f‖K‖u − vh‖K ,

and it suffices to estimate ‖u − vh‖K for any triangle K. From the definition of vh

and (15) we get:

‖u − vh‖K = ‖eu − πheu‖K . hK‖eu‖1,ωK
.

As a consequence
∣

∣

∣

∣

∫

Ω

f · (u − vh)

∣

∣

∣

∣

. (η + ζ)‖eu‖1,Ω.(22)
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We now consider the interior and Neumann boundary terms in (20): as previously
the application of Cauchy-Schwarz’s inequality leads to

∣

∣

∣

∣

∣

∣

∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh)

∣

∣

∣

∣

∣

∣

≤
∑

E∈Eint
h

∪EN
h

‖JE,n(uh)‖E‖u − vh‖E.

Therefore using the expression (21) and estimate (16), we obtain

‖u − vh‖E = ‖eu − πheu‖E . h
1/2
E ‖eu‖1,ωE

.

Inserting this estimate in the previous one we deduce that

∣

∣

∣

∣

∣

∣

∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh)

∣

∣

∣

∣

∣

∣

. η‖eu‖1,Ω.(23)

Moreover
∣

∣

∣

∣

∣

∣

∑

E∈EN
h

∫

E

(g − gE) · (u − vh)

∣

∣

∣

∣

∣

∣

. ζ‖eu‖1,Ω.(24)

The two following terms are handled in a similar way as the previous ones so that

∣

∣

∣

∣

∣

∣

∑

E∈EC
h

∫

E

(λh + σn(uh))(vhn − un)

∣

∣

∣

∣

∣

∣

. η‖eu‖1,Ω(25)

and
∣

∣

∣

∣

∣

∣

∑

E∈EC
h

∫

E

σt(uh)(vht − ut)

∣

∣

∣

∣

∣

∣

. η‖eu‖1,Ω.(26)

Noting that uhn ≤ 0 on ΓC , we have

b(λ,uh) ≤ 0,(27)

and it remains to estimate one term in (20). Using the discrete complementarity
condition b(λh,uh) = 0 implies

b(λh,u) =

∫

ΓC

λhun =

∫

ΓC

λh(un − uhn)

=

∫

ΓC

(λh+ − λh−)(un − uhn)

≤ −
∫

ΓC

λh+uhn −
∫

ΓC

λh−(un − uhn)

≤ η2 −
∫

ΓC

λh−(un − uhn).(28)
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The last term in the previous expression is estimated using Cauchy-Schwarz’s and
Young’s inequalities:

∣

∣

∣

∣

∫

ΓC

λh−(un − uhn)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

E∈EC
h

∫

E

λh−(un − uhn)

∣

∣

∣

∣

∣

∣

≤
∑

E∈EC
h

‖λh−‖E‖un − uhn‖E

≤
∑

E∈EC
h

(

α‖un − uhn‖2
E +

1

4α
‖λh−‖2

E

)

,

for any α > 0. A standard trace theorem implies the existence of C > 0 such that
∣

∣

∣

∣

∫

ΓC

λh−(un − uhn)

∣

∣

∣

∣

≤ α‖un − uhn‖2
ΓC

+
1

4α

∑

E∈EC
h

‖λh−‖2
E

≤ Cα‖eu‖2
1,Ω +

η2

4α
.(29)

Estimates (28) and (29) give

b(λh,u) ≤ Cα‖eu‖2
1,Ω + η2

(

1 +
1

4α

)

(30)

for any α > 0.
Putting together the estimates (22), (23), (24), (25), (26), (27) and (30) with α

small enough in (20), and using Young’s inequality, we come to the conclusion that

‖u − uh‖1,Ω . η + ζ.(31)

We now search for an upper bound on the discretization error λ−λh corresponding
to the multipliers. Let v ∈ V and vh ∈ Vh. From the equilibrium equations in (7)
and (10) we get:

b(λ− λh,v) = b(λ,v − vh) − b(λh,v − vh) + b(λ− λh,vh)

= L(v − vh) − a(u,v − vh) − b(λh,v − vh) + a(uh − u,vh)

= L(v − vh) − a(u − uh,v) − a(uh,v − vh) − b(λh,v − vh).

An integration by parts on each element K gives

b(λ− λh,v) =

∫

Ω

f · (v − vh) − a(u − uh,v) −
∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (v − vh)

−
∑

E∈EC
h

∫

E

(λh + σn(uh))(vn − vhn) −
∑

E∈EC
h

∫

E

σt(uh)(vt − vht)

+
∑

E∈EN
h

∫

E

(g − gE) · (v − vh).

12



Choosing vh = πhv where πh is the quasi-interpolation operator defined in Lemma
3.6 and achieving a similar calculation as in (22), (23), (24), (25) and (26) we deduce
that

|b(λ− λh,v)| . (η + ζ + ‖u − uh‖1,Ω)‖v‖1,Ω

for any v ∈ V. As a consequence

‖λ− λh‖− 1

2
,ΓC

. η + ζ + ‖u − uh‖1,Ω.(32)

Putting together the two estimates (31) and (32) ends the proof of the theorem.

4.3 Lower error bound

Theorem 4.4 For all elements K, the following local lower error bounds hold:

η1K . ‖u − uh‖1,K + ζK ,(33)

η2K . ‖u − uh‖1,ωK
+ ζK .(34)

Assume that λ ∈ L2(ΓC). For all elements K such that K ∩ EC
h 6= ∅, the following

local lower error bounds hold:

η3K .
∑

E∈EC
K

h1/2‖λ− λh‖E + ‖u − uh‖1,K + ζK ,(35)

η4K . ‖u − uh‖1,K + ζK ,(36)

η5K .
∑

E∈EC
K

(

‖λ− λh‖E + ‖u − uh‖E + ‖λ− λh‖1/2
E ‖un‖1/2

E(37)

+‖u − uh‖1/2
E ‖λ‖1/2

E

)

,

η6K .
∑

E∈EC
K

‖λ− λh‖E.(38)

Proof: The estimates of η1K and η2K in (33) and (34) are standard (see, e.g., [28]).
We now estimate η3K . Writing wE = wEnn + wEtt on E ∈ EC

K and denoting by
bE the edge bubble function associated with E (i.e., bE = 4λa1

λa2
, when a1, a2 are the

two extremities of E; we recall that λx is the standard basis function at node x in Vh

satisfying λx(x
′) = δx,x′ for any node x′, see (14)), we choose wEn = (λh + σn(uh))bE

and wEt = 0 in the element K containing E (here we made a slight abuse of notation
to simplify) and wE = 0 in Ω \K. Therefore

‖λh + σn(uh)‖2
E ∼

∫

E

(λh + σn(uh))wEn

= b(λh,wE) +

∫

K

σ(uh) : ε(wE)

= b(λh,wE) −
∫

K

σ(u − uh) : ε(wE) +

∫

K

σ(u) : ε(wE)

= b(λh − λ,wE) + L(wE) −
∫

K

σ(u − uh) : ε(wE)

. ‖λ− λh‖E‖wE‖E + ‖f‖K‖wE‖K + ‖u − uh‖1,K‖wE‖1,K .

13



An inverse inequality and estimate (33) imply

h
1/2
K ‖λh + σn(uh)‖E . h1/2‖λ− λh‖E + ‖u − uh‖1,K + h‖f‖K

. h1/2‖λ− λh‖E + ‖u − uh‖1,K + ζK .

This estimate gives the estimate of η3K in (35). The bound of η4K in (36) is obtained
as previously by choosing wEn = 0 and wEt = σt(uh)bE.

We now consider η5K . If E ∈ EC
K , let F ⊂ E be the part of the edge where

λh = λh+. So
∫

E

−λh+uhn =

∫

F

−λhuhn

=

∫

F

(λh − λ)(un − uhn) −
∫

F

λhun −
∫

F

λuhn

=

∫

F

(λh − λ)(un − uhn) −
∫

F

(λh − λ)un −
∫

F

λ(uhn − un)

. ‖λ− λh‖E‖u − uh‖E + ‖λ− λh‖E‖un‖E + ‖u − uh‖E‖λ‖E.

The last estimate implies (37) by taking the square root.
The estimate on η6K is obvious. Since λ ≥ 0 then we have 0 ≤ λh− ≤ |λ− λh| on

ΓC . So
‖λh−‖E ≤ ‖λ− λh‖E

and (38) is proved.

Remark 4.5 Assume that u ∈ (H2(Ω))2 (so λ ∈ H
1

2 (ΓC)), and that optimal a priori
error estimates hold (note that the question of optimality remains open in the a priori
error analysis since the known a priori error estimates are not optimal) and define:

ηi =
(

∑

K∈Th

η2
iK

)1/2

, 1 ≤ i ≤ 6.

Then one would have η1 . h, η2 . h, η3 . h, η4 . h, η5 . h1/4, η6 . h1/2. So
η . h1/4.

5 A second error estimator: η̃

The analysis of this error estimator requires a nonstandard definition of the error
(in comparison with the already known results in the literature dealing with contact
problems). We begin with some preliminaries.

5.1 Preliminaries

For any µh ∈ Wh and vh ∈ Vh we define the bilinear form c(., .) such that

c(µh,vh) =

q
∑

i=1

∫

Γi
C

Ih(µhvhn)

14



where Ih is the linear Lagrange interpolation operator at the nodes of Γi
C (to simplify

the notations we write Ih instead of I i
h). Let W+

h be the closed convex cone of
nonnegative functions in Wh. We define the following discrete problem issued from
(7): find uh ∈ Vh and λ̃h ∈ W+

h such that

{

a(uh,vh) + c(λ̃h,vh) = L(vh), ∀vh ∈ Vh,

c(µh − λ̃h,uh) ≤ 0, ∀µh ∈ W+
h .

(39)

The following proposition establishes the link between problems (39) and (10).

Proposition 5.1 (i) Problem (39) admits a unique solution (λ̃h,uh) ∈ W+
h × Vh.

(ii) The displacement field uh in (39) coincides with the displacement field solving
(10) (and also with the one solving (11)).
(iii) The link between the contact pressures λ̃h and λh solving (39) and (10) is:

c(λ̃h,vh) = b(λh,vh), ∀vh ∈ Vh.(40)

More precisely, if ψi
j denotes the (scalar) canonical basis function at node xj in Γi

C \
ΓD, we have

λ̃h(xj) =

∫

Γi
C

λhψ
i
j

∫

Γi
C

ψi
j

, ∀i,∀j.(41)

Proof: (i). As for problem (10) and according to [19] (Theorem 3.9 and Example
3.8), it suffices to verify that

sup
vh∈Vh,vh 6=0

c(µh,vh)

‖vh‖1,Ω

is a norm onWh, which reduces to the condition {µh ∈ Wh : c(µh,vh) = 0, ∀vh ∈ Vh} =
{0}. The latter condition is fulfilled according to the definition of Wh in (9).

(ii). The discussion is the same as in Proposition 3.3 noting that c(., .) induces an
inner product on Wh and that W+

h is a closed convex cone.
(iii). Equality (40) is straightforward. Let us show that dim(Wh) = #NC

h +
#NNC

h + 2#NCC
h where the notation # stands for the cardinal of a set. We denote

by ψi
j the ”canonical basis function” at node xj in Γi

C \ΓD (i.e., ψi
j is defined on ∪ℓΓℓ

C ,

the support of ψi
j lies in Γi

C , ψi
j is continuous and piecewise of degree one on Γi

C , and

ψi
j(xk) = δk,j,∀xk ∈ Γi

C \ ΓD). Note that ψi
j is not continuous if xj ∈ NCC

h .
If xj ∈ NC

h ∪NNC
h it is straightforward that ψi

j ∈Wh.

If xj ∈ NCC
h then xj ∈ Γi

C ∪ Γi+1
C . It suffices to show that there exists vh =

(vh1, vh2) ∈ Vh such that ψi
j = vh · n on ∪ℓΓℓ

C and wh = (wh1, wh2) ∈ Vh such

that ψi+1
j = wh · n on ∪ℓΓℓ

C . Without loss of generality we can assume that the unit
outward normal vector along Γi

C is equal to (0,−1) and then the unit outward normal

15



vector along Γi+1
C is equal to (− sin θ, cos θ), for some θ ∈]0, 2π[ such that θ 6= π (θ

being the interior angle between Γi
C and Γi+1

C ). Since vh · n is linear on Γi
C and Γi+1

C ,
it suffices to show that vh · n coincides with ψi

j at the nodes. Therefore we take vh

equal to zero at each node except xj and for the values at xj we get

vh(xj) · (0,−1) = −vh2(xj) = 1,

vh(xj) · (− sin θ, cos θ) = −vh1(xj) sin θ + vh2(xj) cos θ = 0.

As sin θ 6= 0, this system has the unique solution: vh1(xj) = −cos θ/sin θ and
vh2(xj) = −1. The solution wh is obtained similarly and is characterized by

wh1(xj) = − 1

sin θ
, wh2(xj) = 0,

wh being zero at the other vertices.
Equality (41) follows from (40) and the previous discussion.

Remark 5.2 The a priori error estimates for the discretization (39) of the unilateral
contact problem are given in [20]. The obtained estimates are the same as for the
discretization (10) (see Remark 3.4).

5.2 Definition of the residual error estimators

As for the first estimator the element residual is defined by divσ(uh)+f = f on K and
this element residual is replaced by some computable finite dimensional approximation
called approximate element residual: fK ∈ (Pk(K))2. Similarly g is approximated by
a computable quantity denoted gE on any E ∈ EN

h .

Definition 5.3 (Second residual error estimator) The local and global residual
error estimators are defined by

η̃K =

(

5
∑

i=1

η̃2
iK

)1/2

,

η̃1K = hK‖fK‖K ,

η̃2K = h
1/2
K





∑

E∈Eint
K

∪EN
K

‖JE,n(uh)‖2
E





1/2

,

η̃3K = h
1/2
K





∑

E∈EC
K

‖λ̃h + σn(uh)‖2
E





1/2

,

η̃4K = h
1/2
K





∑

E∈EC
K

‖σt(uh)‖2
E





1/2

,
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η̃5K =





∑

E∈EC
K

∫

E

−λ̃huhn





1/2

,

η̃ =

(

∑

K∈Th

η̃2
K

)1/2

,

where we recall that JE,n(uh) is the constraint jump of uh in normal direction defined
by (17).

As in the previous section, the local and global approximation terms ζK and ζ are
defined by (18).

Remark 5.4 From the previous definitions we have η̃1K = η1K, η̃2K = η2K and
η̃4K = η4K. We mention that there is no term as η6 in the second estimator since the
multipliers λ̃h are of constant sign (note that a similar approach was adopted in [27]
for the obstacle problem).

5.3 Upper error bound

Theorem 5.5 Let (λ,u) be the solution of (7) and let (λ̃h,uh) be the solution of (39).
We have

‖u − uh‖1,Ω + ‖λ− λ̃h‖− 1

2
,ΓC

. η̃ + ζ.

Proof: We adopt the following notations for the error term in the displacement:
eu = u−uh. Let vh ∈ Vh. According to the V-ellipticity of a(., .) and the equilibrium
equations in (7) and (39) we obtain:

‖eu‖2
1,Ω . a(u − uh,u − uh)

= a(u − uh,u − vh) + a(u − uh,vh − uh)

= L(u − vh) − b(λ,u − vh) − a(uh,u − vh) + b(λ̃h − λ,vh − uh)

+c(λ̃h,vh − uh) − b(λ̃h,vh − uh).

Integrating by parts on each triangle K, using the definition of JE,n(uh) in (17) and
the complementarity conditions b(λ,u) = b(λh,uh) = c(λ̃h,uh) = 0 gives:

‖eu‖2
1,Ω .

∫

Ω

f · (u − vh) + b(λ,uh) + c(λ̃h,vh) +
∑

E∈EN
h

∫

E

(g − gE) · (u − vh)

−
∑

E∈EC
h

∫

E

(σ(uh)n) · (u − vh) −
∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh),

which is the same inequality as in (19) according to (40). Splitting up the integrals
on ΓC into normal and tangential components yields:

‖eu‖2
1,Ω .

∫

Ω

f · (u − vh) + b(λ,uh) + b(λ̃h,u) − b(λ̃h,vh) + c(λ̃h,vh)
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+
∑

E∈EC
h

∫

E

(λ̃h + σn(uh))(vhn − un) +
∑

E∈EC
h

∫

E

σt(uh)(vht − ut)

−
∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh) +
∑

E∈EN
h

∫

E

(g − gE) · (u − vh).(42)

As before to estimate each term of this right-hand side, we take vh of the form (21).
We start with the integral term. As in the case of the first estimator we deduce

from (21) and (15) that

∣

∣

∣

∣

∫

Ω

f · (u − vh)

∣

∣

∣

∣

≤
∑

K∈Th

‖f‖K‖u − vh‖K

.
∑

K∈Th

‖f‖KhK‖eu‖1,ωK

. (η̃ + ζ)‖eu‖1,Ω.(43)

We now consider the interior and Neumann boundary terms in (42): as previously
the application of Cauchy-Schwarz’s inequality and (16) lead to

∣

∣

∣

∣

∣

∣

∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (u − vh)

∣

∣

∣

∣

∣

∣

≤
∑

E∈Eint
h

∪EN
h

‖JE,n(uh)‖E‖u − vh‖E

.
∑

E∈Eint
h

∪EN
h

‖JE,n(uh)‖Eh
1/2
E ‖eu‖1,ωE

. η̃‖eu‖1,Ω.(44)

Besides we get
∣

∣

∣

∣

∣

∣

∑

E∈EN
h

∫

E

(g − gE) · (u − vh)

∣

∣

∣

∣

∣

∣

. ζ‖eu‖1,Ω.(45)

The two following terms are handled in a similar way as the previous ones so that

∣

∣

∣

∣

∣

∣

∑

E∈EC
h

∫

E

(λ̃h + σn(uh))(vhn − un)

∣

∣

∣

∣

∣

∣

. η̃‖eu‖1,Ω(46)

and
∣

∣

∣

∣

∣

∣

∑

E∈EC
h

∫

E

σt(uh)(vht − ut)

∣

∣

∣

∣

∣

∣

. η̃‖eu‖1,Ω.(47)

Noting that uhn ≤ 0 and λ̃h ≥ 0 on ΓC , we have

b(λ,uh) ≤ 0, b(λ̃h,u) ≤ 0(48)

18



and it remains to estimate two terms in (42), namely

c(λ̃h,vh) − b(λ̃h,vh) = −b(λ̃h,uh) + c(λ̃h, πheu) − b(λ̃h, πheu)

≤ η̃2 +

∫

ΓC

Ih(λ̃h(πheu)n) − λ̃h(πheu)n.(49)

The integral term in the previous expression is estimated as follows using a basic error
estimate of numerical integration (trapezoidal formula):

∣

∣

∣

∣

∫

ΓC

Ih(λ̃h(πheu)n) − λ̃h(πheu)n

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

E∈EC
h

∫

E

Ih(λ̃h(πheu)n) − λ̃h(πheu)n

∣

∣

∣

∣

∣

∣

.
∑

E∈EC
h

h3
E|(λ̃h(πheu)n)′′|

.
∑

E∈EC
h

h3
E|λ̃′h((πheu)n)′|

.
∑

E∈EC
h

h2
E‖λ̃′h‖E‖((πheu)n)′‖E

.
∑

E∈EC
h

h
3/2
E ‖λ̃′h‖E‖πheu‖1,ωE

.
∑

E∈EC
h

h
3/2
E ‖λ̃′h‖E‖eu‖1,ωE

=
∑

E∈EC
h

h
3/2
E ‖(λ̃h + σn(uh))

′‖E‖eu‖1,ωE

.
∑

E∈EC
h

h
1/2
E ‖λ̃h + σn(uh)‖E‖eu‖1,ωE

≤ η̃‖eu‖1,Ω.(50)

Above we have used the H1 stability of πh, proved in Lemma 3.1 of [8] (see also [28])
and the trace inequality on an element (see [28]).

Putting together the estimates (43), (44), (45), (46), (47), (48), (49) and (50) in
(42) and using Young’s inequality, we come to the conclusion that

‖u − uh‖1,Ω . η̃ + ζ.(51)

Next we search for an upper bound on the discretization error λ−λh corresponding
to the multipliers. Let v ∈ V and vh ∈ Vh. From the equilibrium equations in (7)
and (39) we get:

b(λ− λ̃h,v) = b(λ,v − vh) − b(λ̃h,v − vh) + b(λ− λh,vh) + b(λh − λ̃h,vh)

= L(v − vh) − a(u,v − vh) − b(λ̃h,v − vh) + a(uh − u,vh)

+b(λh − λ̃h,vh)

= L(v − vh) − a(u − uh,v) − a(uh,v − vh) − b(λ̃h,v − vh)

+b(λh − λ̃h,vh).
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An integration by parts on each element K yields

b(λ− λ̃h,v) =

∫

Ω

f · (v − vh) − a(u − uh,v) −
∑

E∈Eint
h

∪EN
h

∫

E

JE,n(uh) · (v − vh)

−
∑

E∈EC
h

∫

E

(λ̃h + σn(uh))(vn − vhn) −
∑

E∈EC
h

∫

E

σt(uh)(vt − vht)

+ c(λ̃h,vh) − b(λ̃h,vh) +
∑

E∈EN
h

∫

E

(g − gE) · (v − vh).

Choosing vh = πhv where πh is the quasi-interpolation operator defined Lemma 3.6
and achieving a similar calculation as in (43), (44), (45), (46), (47) and (50) we deduce
that

∣

∣

∣
b(λ− λ̃h,v)

∣

∣

∣
. (η̃ + ζ + ‖u − uh‖1,Ω)‖v‖1,Ω

for any v ∈ V. As a consequence

‖λ− λ̃h‖− 1

2
,ΓC

. η̃ + ζ + ‖u − uh‖1,Ω.(52)

Putting together the two estimates (51) and (52) ends the proof of the theorem.

5.4 Lower error bound

Theorem 5.6 For all elements K, the following local lower error bounds hold:

η̃1K . ‖u − uh‖1,K + ζK ,(53)

η̃2K . ‖u − uh‖1,ωK
+ ζK .

Assume that λ ∈ L2(ΓC). For all elements K such that K ∩ EC
h 6= ∅, the following

local lower error bounds hold:

η̃3K .
∑

E∈EC
K

h
1/2
E ‖λ− λ̃h‖E + ‖u − uh‖1,K + ζK ,(54)

η̃4K . ‖u − uh‖1,K + ζK ,

η̃5K . η̃
1/2
3K ‖uh‖1/2

1,K .(55)

Proof: According to Remark 5.4 and Theorem 4.4 we only need to estimate η̃3K and
η̃5K .

We first estimate η̃3K . Writing wE = wEnn + wEtt on E ∈ EC
K and denoting by

bE the edge bubble function associated with E (i.e., bE = 4λa1
λa2

, when a1, a2 are the
two extremities of E), we choose wEn = (λ̃h + σn(uh))bE and wEt = 0 in the element

20



K containing E (here we made a slight abuse of notation to simplify) and wE = 0 in
Ω \K. So

‖λ̃h + σn(uh)‖2
E ∼

∫

E

(λ̃h + σn(uh))wEn

= b(λ̃h,wE) +

∫

K

σ(uh) : ε(wE)

= b(λ̃h,wE) −
∫

K

σ(u − uh) : ε(wE) +

∫

K

σ(u) : ε(wE)

= b(λ̃h − λ,wE) + L(wE) −
∫

K

σ(u − uh) : ε(wE)

. ‖λ− λ̃h‖E‖wE‖E + ‖f‖K‖wE‖K + ‖u − uh‖1,K‖wE‖1,K .

An inverse inequality and estimate (53) imply

h
1/2
K ‖λ̃h + σn(uh)‖E . h1/2‖λ− λ̃h‖E + ‖u − uh‖1,K + h‖f‖K

. h1/2‖λ− λ̃h‖E + ‖u − uh‖1,K + ζK .

This bound gives the estimate of η̃3K in (54).
We finally consider η̃5K . If E ∈ EC

K , one has

∫

E

−λ̃huhn =

∫

E

Ih(λ̃huhn) − λ̃huhn

. h3
E|(λ̃huhn)′′|

. h3
E|λ̃′hu′hn|

. h2
E‖λ̃′h‖E‖u′hn‖E

= h2
E‖(λ̃h + σn(uh))

′‖E‖u′hn‖E

. hE‖λ̃h + σn(uh)‖E‖u′hn‖E

. h
1/2
E η̃3K‖u′hn‖E

. η̃3K‖uh‖1,K .

The last estimate implies (55) by taking the square root.

Remark 5.7 Assume that u ∈ (H2(Ω))2 (so that λ ∈ H
1

2 (ΓC)). Then the integral
term in η̃5K can be bounded as follows:
∫

E

−λ̃huhn =

∫

E

Ih(λ̃huhn) − λ̃huhn

. h3
E|(λ̃huhn)′′|

. h3
E|λ̃′hu′hn|

= h2
E‖λ̃′hu′hn‖L1(E)

≤ h2
E‖λ̃′h(u′hn − u′n)‖L1(E) + h2

E‖λ̃′hu′n‖L1(E)
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. h2
E‖λ̃′h‖E‖(uhn − un)′‖E + h2

E‖λ̃′h‖L
q

q−1 (E)
‖u′n‖Lq(ΓC)

. h2
E‖(λ̃h + σn(uh))

′‖E‖(uhn − un)′‖E + h2
E

√
q‖(λ̃h + σn(uh))

′‖
L

q
q−1 (E)

‖u‖2,Ω

. hE‖λ̃h + σn(uh)‖E‖(uhn − un)′‖E + h2
Eh

q−2

2q

E

√
q‖(λ̃h + σn(uh))

′‖E‖u‖2,Ω

. h
1/2
E η̃3K‖un − uhn‖1,E + hE

√

− ln(hE)η̃3K‖u‖2,Ω,

where 1 < q < ∞ (we choose q = − ln(hE), hE is supposed small enough) and we
have used the following embedding (see [3]): for any real number p ∈ [1,∞[,

‖v‖Lp(ΓC) ≤ C
√
p‖v‖

H
1

2 (ΓC)
, ∀v ∈ H

1

2 (ΓC),

where C is independent of p. Define

η̃i =
(

∑

K∈Th

η̃2
iK

)1/2

, 1 ≤ i ≤ 5.

Assume that optimal a priori error estimates hold (this requires additional assump-
tions, see Remark (5.2)). Then the previous result leads to the following bounds: η̃i .

h, 1 ≤ i ≤ 4 and η̃5 . h3/4(− ln(h))1/4. Therefore η̃ . h3/4(− ln(h))1/4. If we use only
the known a priori error estimates (see Remark (5.2)), we get: η̃i . h3/4, 1 ≤ i ≤ 4
and η̃5 . h5/8(− ln(h))1/4. Therefore η̃ . h5/8(− ln(h))1/4 and our result is not far
away from ”optimality” since we have a loss of convergence of only h1/8(− ln(h))−1/4.

The second error estimator allows us to obtain improved upper and lower bounds of
the error in comparison with the one in the previous section. Note that the definition
of the discretization error was modified in this section where we compare ‖u−uh‖1,Ω+
‖λ− λ̃h‖− 1

2
,ΓC

with η̃ (whereas in the previous section we compare ‖u−uh‖1,Ω +‖λ−
λh‖− 1

2
,ΓC

with η). The forthcoming numerical experiments will help us to compare
the performances of both estimators and suggest us that η̃ is more appropriate than
η for the unilateral contact problem.

6 Numerical experiments

This section is concerned with the numerical implementation of both estimators. We
suppose that the bodies are homogeneous isotropic materials so that Hooke’s law (2)
becomes:

σ(u) =
Eν

(1 − 2ν)(1 + ν)
tr(ε(u))I +

E

1 + ν
ε(u)(56)

where I represents the identity matrix, tr is the trace operator, E and ν denote
Young’s modulus and Poisson’s ratio, respectively with E > 0 and 0 ≤ ν < 1/2.

Our main aim is to validate our theoretical results by computing the different
contributions of the estimators η and η̃ and their orders of convergence for different
meshes. We also compute some effectivity indices and show that the estimator can be
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determined in more general cases than the theoretical framework. In our numerical
experiments we do not consider optimized computations obtained from the estimators
and a mesh adaptivity procedure which are beyond the scope of this paper. In the
following we denote by NC , the number of elements of the mesh on ΓC . Since we use
uniform meshes (made of triangular elements), this parameter measures the size of
the mesh.

6.1 First example: comparison of the error terms in both
estimators

We consider the domain Ω =]0, 1[×]0, 1[. We choose a realistic physical example.
Namely we suppose that the body is an iron square of 1m2 whose material charac-
teristics are E = 2.1 1011Pa, ν = 0.3 and ρ = 7800kg.m−3. The body is clamped on
ΓD = {1}×]0, 1[, it is initially in contact with ΓC = {0}×]0, 1[ and it is acted on by
its own weight only (with g = 9.81m.s−2). Moreover ΓN =]0, 1[×({0} ∪ {1}). We
begin with achieving computations involving criss-cross meshes (this means that the
body is divided into identical squares, each of them being divided into four identical
triangles).

Figure 1: Initial and deformed configuration with NC = 50 (deformation is amplified
by a factor 2. 105).

We observe (see Figure 1) that ΓC is divided into two parts: an upper part where
the body remains in contact with the axis x = 0 and the lower part of ΓC where it
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separates from this axis. We determine the convergence of all the terms involved in
both estimators η and η̃ and we report the results in Table 1 and Table 2 where we
adopt the notations of Remarks 4.5 and 5.7:

ηi =
(

∑

K∈Th

η2
iK

)1/2

, 1 ≤ i ≤ 6, η̃j =
(

∑

K∈Th

η̃2
jK

)1/2

, 1 ≤ j ≤ 5.

In these tables we compute the average convergence rates by averaging the rates
between NC = 4 and NC = 128 and we give the limit rates if we observe that the
rates seem to converge (this is not always the case). Note that the convergence rate
of the terms: η1 = η̃1 = h(

∑

K∈Th
‖fK‖2

K)1/2 ∼ h is 1.

Estimator η η2 η3 η4 η5 η6

NC = 1 94716 35788 29586 3.20112 10−2 13771
NC = 2 102670 23307 14128 1.96822 10−2 12322
NC = 4 78460 9240.6 5989.7 5.02411 10−3 820.96
NC = 8 50672 3150.8 2429.3 3.32207 10−3 1562.1
NC = 16 30376 1108.1 938.10 4.31419 10−4 53.836
NC = 32 17806 389.83 356.38 1.67433 10−4 31.015
NC = 64 10424 138.49 134.19 6.30827 10−5 17.193
NC = 128 6142.2 49.502 50.194 2.39545 10−5 9.8331

Convergence:
Average rate 0.74 1.51 1.38 1.54 1.28
Limit rate 0.76 1.48 1.42 1.40 0.81

Table 1: Contributions in the estimator η (criss-cross mesh)

Estimator η̃ η̃2 η̃3 η̃4 η̃5

NC = 1 94716 11959 29586 3.39530 10−2

NC = 2 102670 9536.6 14128 1.04538 10−2

NC = 4 78460 5014.3 5989.7 6.93578 10−3

NC = 8 50672 2270.7 2429.3 2.16306 10−3

NC = 16 30376 900.17 938.10 7.61047 10−4

NC = 32 17806 339.23 356.38 2.71989 10−4

NC = 64 10424 125.04 134.19 9.69379 10−5

NC = 128 6142.2 45.618 50.194 3.46036 10−5

Convergence:
Average rate 0.74 1.36 1.38 1.53
Limit rate 0.76 1.45 1.42 1.49

Table 2: Contributions in the estimator η̃ (criss-cross mesh)

From the experiments we see that the terms η2 = η̃2, η3, η̃3 and η4 = η̃4 converge
towards zero and that η3 is close to η̃3 (η2 is the term converging the slowest towards
zero and we observe that the main part of the error in η and η̃ is located near the
singular points (1, 0) and (1, 1)). The error terms measuring the non fulfillment of
the complementary condition (i.e., η5 and η̃5) show a convergence rate close to 1.5
which is much higher than the ones expected from the theoretical part (see Remarks
4.5 and 5.7). Moreover η5 and η̃5 are small in comparison with the other terms: this
is not surprising since these terms are the only ones which depend on the Young
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modulus E. More precisely, if u(E) solves the elasticity problem in Figure 1 with
a Young modulus E then it is easy to check from (56) that u(E)/k solves the same
problem with a Young modulus kE (if we had nonhomogeneous Dirichlet conditions,
this would not be true) whereas σ(u(E)) = σ(u(kE)). This implies that η5 and η̃5

behave as E−1/2 and maybe a normalization of η5 and η̃5 would be necessary to avoid
this phenomenon. The term η6 whose theoretical convergence rate is also not optimal
shows a non uniform decay towards zero, but faster than η2. So we can reasonably
expect that η2 is the greatest term when NC → +∞.

If we choose more general unstructured quasi-uniform meshes (instead of criss-
cross meshes) on Ω we obtain the following results reported in Tables 3 and 4:

Estimator η η2 η3 η4 η5 η6

NC = 1 88542 31184 32591 2.24674 10−2 9851.5
NC = 2 99918 21238 13833 1.70126 10−2 10315
NC = 4 95846 10861 5703.5 2.50567 10−3 737.97
NC = 8 69987 4082.7 2448.9 3.27411 10−3 1502.8
NC = 16 44123 1494.5 981.63 3.83538 10−4 144.18
NC = 32 26776 505.22 373.78 1.0720 10−4 42.542
NC = 64 15548 158.77 145.82 2.53311 10−5 9.1921
NC = 128 9296.4 54.193 53.902 3.58675 10−6 0.72587

Convergence:
Average rate: 0.67 1.53 1.35 1.89 2.00
Limit rate: 0.74 1.55 1.44 no limit rate no limit rate

Table 3: Contributions in the estimator η (unstructured mesh)

Estimator η̃ η̃2 η̃3 η̃4 η̃5

NC = 1 88542 19751 32591 2.38302 10−2

NC = 2 99918 10687 13833 1.06738 10−2

NC = 4 95846 7155.9 5703.5 5.95065 10−3

NC = 8 69987 3387.7 2448.9 2.20742 10−3

NC = 16 44123 1288.3 981.63 6.76565 10−4

NC = 32 26776 453.06 373.78 2.45212 10−4

NC = 64 15548 143.92 145.82 8.87555 10−5

NC = 128 9296.4 49.590 53.902 3.17811 10−5

Convergence
Average rate: 0.67 1.43 1.35 1.51
Limit rate: 0.74 1.54 1.44 1.48

Table 4: Contributions in the estimator η̃ (unstructured mesh)

The main conclusions are similar to the ones when criss-cross meshes are used
and we notice that the terms η5 and η6 converge rapidly but with a non uniform rate
towards zero.

From this test we conclude that the implementation of η̃ is simpler than for η: there
is one term less in the computation of η̃ and the terms η5 and η6 involve negative parts
of λh (this would be more difficult to compute, especially in the three-dimensional
case). Besides it seems that the convergence rate of η̃5 is more uniform than the ones
of η5 and η6 and that there are very few elements (near the transition points from
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contact to separation) where the error of η̃5 is located and this is not the case for η5

and η6.

6.2 Second example: a more regular case

We consider the geometry Ω̂ =]0, 2[×]0, 1[ of area 2 square meters. We adopt sym-
metry conditions (i.e., un = 0, σt(u) = 0) on ΓS = {1}×]0, 1[ and we achieve the
computations on the square Ω =]0, 1[×]0, 1[. We set ΓC =]0, 1[×{0} and ΓN is the
remaining part of the boundary of Ω. A Poisson ratio of ν = 0.2 and a Young modu-
lus of E = 1Pa are chosen (the latter value is of course not realistic from a physical
point of view). A density of surface forces g of magnitude 1N.m−2 oriented inwards
Ω is applied on {0}×]1/2, 1[ and ]1/2, 1[×{1}. Such a configuration corresponds to
a K-elliptic case (see [19], Theorem 6.3) and the problem admits a unique solution.
We use criss-cross meshes in this example. Figure 2 depicts the initial and deformed
configurations of the body. Here again ΓC shows a contact and a separation part.

Figure 2: Initial and deformed configuration with NC = 50 (deformation is amplified
by a factor 0.1).

It is easy to see that the symmetry conditions on ΓS lead to supplementary error
terms similar to the ones in η4 = η̃4 and we add these terms to η2 and η̃2. Moreover
we have η1 = η̃1 = 0. The results concerning both estimators are reported in Tables
5 and 6.

26



Estimator η η2 η3 η4 η5 η6

NC = 2 0.93715 0.16483 5.46634 10−2 5.77944 10−2 7.91410 10−2

NC = 4 0.56976 7.17157 10−2 3.63730 10−2 2.32941 10−2 4.26924 10−2

NC = 8 0.33391 2.27644 10−2 1.53814 10−2 1.67857 10−2 1.62697 10−2

NC = 16 0.19152 1.00065 10−2 7.79360 10−3 4.73869 10−3 7.69676 10−3

NC = 32 0.10682 3.66909 10−3 3.24986 10−3 2.44547 10−3 5.90999 10−3

NC = 64 5.84672 10−2 1.17072 10−3 1.24725 10−3 8.11375 10−4 1.44793 10−3

NC = 128 3.15747 10−2 4.85373 10−4 5.05263 10−4 3.12555 10−4 1.38974 10−3

Convergence:
Average rate 0.83 1.44 1.23 1.24 0.99
Limit rate 0.89 1.27 1.30 1.38 no limit rate

Table 5: Contributions in the estimator η

Estimator η̃ η̃2 η̃3 η̃4 η̃5

NC = 2 0.93715 0.10459 5.46634 10−2 7.89660 10−2

NC = 4 0.56976 5.01141 10−2 3.63730 10−2 1.41282 10−2

NC = 8 0.33391 1.84373 10−2 1.53814 10−2 1.30765 10−2

NC = 16 0.19152 7.52496 10−3 7.79360 10−3 2.79887 10−3

NC = 32 0.10682 2.85827 10−3 3.24986 10−3 1.04594 10−3

NC = 64 5.84672 10−2 1.03522 10−3 1.24725 10−3 6.23388 10−4

NC = 128 3.15747 10−2 4.01120 10−4 5.05263 10−4 1.50507 10−4

Convergence:
Average rate 0.83 1.39 1.23 1.31
Limit rate 0.89 1.37 1.30 no limit rate

Table 6: Contributions in the estimator η̃

As in the previous example, η2 is the main term in the estimators with the lowest
(but greater then in the previous example) convergence rate. We observe that the
error is mainly located near the transition point between contact and separation and
near the singularities (0, 1/2) and (1/2,1) due to the jumps of the density of surface
forces at these points and also, due to the very small Young modulus. As in the
previous example the error terms η5 and η̃5 measuring the non fulfillment of the
complementary condition converge with an higher rate than theoretically expected.
The term η6 shows a slow convergence rate in comparison with η5 and η̃5.

If we denote by (a(u− uh,u− uh))
1/2 the energy norm of the discretization error

(which is equivalent to the (H1(Ω))2- norm of the error), we compute the convergence
rates α, α̃ and β of η, η̃ and (a(u − uh,u − uh))

1/2 respectively. Moreover we are
interested in determining the effectivity indices:

γ =
η

(a(u − uh,u − uh))1/2
and γ̃ =

η̃

(a(u − uh,u − uh))1/2
.

These ratios measure the reliability of our estimators.
To our knowledge this problem does not admit an explicit solution u. So, in order

to determine (a(u−uh,u−uh))
1/2, we need to compute a reference solution denoted

by uref corresponding to a mesh which is as fine as possible. The most refined mesh
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corresponds to NC = 128 and it furnishes the reference solution uref which is the
chosen approximation for u.

η η̃ (a(u − uh,u − uh))1/2 γ γ̃

NC = 2 0.95823 0.94784 0.29249 3.28 3.24
NC = 4 0.57746 0.57329 0.17068 3.38 3.36
NC = 8 0.33585 0.33503 9.66688 10−2 3.47 3.47
NC = 16 0.19215 0.19185 5.32324 10−2 3.61 3.61
NC = 32 0.10712 0.10691 2.81764 10−2 3.80 3.79

Table 7: Estimators, error in the energy norm and effectivity indices

The results are reported in Table 7 where the errors are computed from NC = 2
to NC = 32 (the value NC = 64 would give a underestimated error in the energy
norm since the field uh is then too close to the reference solution). The average
convergence rates (between NC = 2 and NC = 32) are the following: α = 0.79,
α̃ = 0.79 and β = 0.84 and are therefore close. We also observe that the effectivity
indices vary between 3.24 and 3.80 which correspond to reasonable values.

In this example the term η6 converges slowly whereas the terms η3 and η̃3, η5 and
η̃5 are similar. Concerning the convergence rates of η and η̃ we find that there are
similar and that the effectivity indices are also very close. So we conclude that there
is no reason to choose η instead of η̃ which is simpler to implement.

6.3 Third example: a Hertz type problem

In this test we consider the contact problem between an elastic disc (of 1m in diam-
eter) and a rigid half plane which corresponds to a Hertz type problem. A Poisson
ratio of 0.4 and a Young modulus E = 10000Pa are chosen. The aim of this example
is to extend the range of applicability of the estimator η̃ to a more general case involv-
ing a curved contact zone with an initial gap between the foundation and the elastic
body and an increasing contact area. Initially in the unconstrained configuration, the
contact part between the disc and the half-plane is a single point. A density of surface
loads g = (0,−200)N.m−2 is applied on the upper quarter part of the boundary so
that the problem becomes symmetric. We use quasi-uniform unstructured meshes.
Note that the unilateral contact conditions in (5) have to be changed to take into
account the gap between the contacting bodies. The conditions modelling unilateral
contact on ΓC become:

un − ξ ≤ 0, σn(u) ≤ 0, σn(u) (un − ξ) = 0,

where ξ = ξ(x) is the distance from x ∈ ΓC to the rigid foundation. As a consequence
the definition of η̃5 in Definition 5.3 has to be changed into

η̃5K =





∑

E∈EC
K

∫

E

−λ̃h(uhn − ξ)





1/2

.
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Figure 3: Initial and deformed configuration (deformation is not amplified).

The initial and a deformed configuration are depicted in Figure 3. The results con-
cerning the implementation of η̃ are reported in Table 8.

Estimator η̃ η̃2 η̃3 η̃4 η̃5

h = 1/10 236.36 48.899 41.727 0.20734
h = 1/20 138.60 17.341 20.835 6.25309 10−2

h = 1/40 89.959 10.645 10.912 2.98565 10−2

h = 1/80 42.857 2.2564 4.3787 1.68111 10−2

h = 1/160 22.865 1.1549 2.5559 4.50074 10−3

Convergence:
Average rate 0.84 1.35 1.00 1.38

Table 8: Contributions in the estimator η̃

As previously explained and observed in the first example, the term η̃5 is small
and it admits a convergence rate which is really more important than theoretically
expected. We obtain for this example results which are similar to the previous ones.

7 Conclusion

In this work we propose and analyze two estimators (η and η̃) of residual type associ-
ated with two mixed finite element approximations of the two-dimensional frictionless
unilateral contact problem in linear elasticity. For both estimators we obtain upper
and lower bounds of the discretization error. From the numerical experiments we come

29



to the conclusion that the results given by the two estimators are roughly speaking
similar and that all the terms converge towards zero with satisfactory convergence
rates (the slowest convergence is observed for the classical terms denoted by η2 and
η̃2 which measure in particular the constraint jumps across the interior edges, and all
the terms coming from the contact approximation converge better). Nevertheless η̃
has one term less to evaluate in comparison with η and its numerical implementation
is (a bit) simpler. We also observe that the supplementary term in η (i.e., η6) does
not admit in the general case a uniform convergence rate. Our conclusion concerning
the comparison of both estimators is that η̃ could be more promising than η. Besides
we see that the error terms measuring the non fulfillment of the complementarity
condition (i.e., η5 and η̃5) converge much faster than theoretically expected; this al-
lows us to expect that some improved theoretical estimates for these terms could be
obtained.

This work is partially supported by ”l’Agence Nationale de la Recherche”, project
ANR-05-JCJC-0182-01.
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