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Abstract

This work is concerned with the flow of a viscous plastic fluid. We choose

a model of Bingham type taking into account inhomogeneous yield limit of

the fluid, which is well-adapted in the description of landslides. After setting

the general threedimensional problem, the blocking property is introduced.

We then focus on necessary and sufficient conditions such that blocking of

the fluid occurs. The anti-plane flow in twodimensional and onedimensional

cases is considered. A variational formulation in terms of stresses is deduced.

More fine properties dealing with local stagnant regions as well as local regions

where the fluid behaves like a rigid body are obtained in dimension one.

Résumé

Nous considérons le problème de l’écoulement d’un fluide viscoplastique.

Intervenant dans la modélisation des glissements de terrain, le modèle choisi

est de type Bingham avec un seuil de plasticité non homogène. La propriété

de blocage du fluide est tout d’abord introduite pour le problème tridimen-

sionnel général. Nous nous intéressons ensuite aux conditions nécessaires et

suffisantes de blocage du fluide. Le problème antiplan est considéré dans les

cas bidimensionnel et monodimensionnel et une formulation variationnelle en

contraintes est obtenue et utilisée. Des propriétés plus fines concernant les

zones stagnantes du fluide ainsi que celles où le fluide se comporte localement

comme un corps rigide sont établies en dimension un.
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∗Laboratoire de Mathématiques, UMR CNRS 5127, Université de Savoie,
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1 Introduction

Due the importance of evaluation of landslide risk, great efforts have been devoted
to analyzing, modeling, and predicting such phenomena in the last decades. A
stability analysis, which treats the geologic material as a rigid viscoplastic body, may
provide information on the safety factor of stable mass of soil. One of the simplest
and convenient viscoplastic constitutive relation is the one modeling a Bingham
fluid [1], exhibiting viscosity and yield stress.

Although the Bingham model deals with fluids, it was also seen as a solid, called
the “Bingham solid” (see for instance [20]) and investigated to describe the defor-
mation and displacement of many solid bodies. Therefore this model was often
used in metal-forming processes; it was first introduced for wire drawing in [3] and
intensively used thereafter [4, 13]. More recently, the inhomogeneous (or density-
dependent) Bingham fluid was considered in landslides modeling [5, 2, 6]. In this
work, the inhomogeneous yield limit is a key point in describing a natural slope.
Indeed, due to their own weight, the geomaterials are compacted (i.e., their den-
sity increase with depth), so that the mechanical properties also vary with depth.
Therefore the choice of a Bingham model in which the yield limit g and the viscosity
coefficient η vary with density is motivated.

A particularity of the Bingham model lies in the presence of rigid zones located
in the interior of the flow of the Bingham solid/fluid. As the yield limit g increases,
these rigid zones become larger and may completely block the flow. This property
is called the blocking property. When considering oil transport in pipelines, in the
process of oil drilling or in the case of metal forming, the blocking of the solid/fluid is
a catastrophic event to be avoided. In a completely opposite context, when modeling
landslides, the solid is blocked in its natural configuration and the beginning of a
flow can be seen as a disaster.

This paper deals with some boundary-value problems describing the flow of an
inhomogeneous Bingham fluid through a bounded domain in R

3. We focus on the
blocking phenomenon, the description of the rigid zones and also the stagnant re-
gions (i.e., the zones near the boundary of the domain where the fluid does not
move). More precisely, we study the link between the yield limit distribution and
the external forces distribution (or the mass density distribution) for which the flow
of the Bingham fluid is blocked or exhibits rigid zones. In opposition to the previous
works dealing only with homogeneous Bingham fluids [8, 9, 11, 12, 16, 17, 18], we
are interested in a fluid whose yield limit is inhomogeneous.

An outline of the paper is as follows. The equations modeling the flow of a Bing-
ham fluid are introduced in section 2 and the corresponding variational formulation
is recalled. Section 3 is concerned with the blocking property in the threedimensional
context. There we give a necessary and sufficient condition which characterizes the
blocking property in the inhomogeneous case. The stationary anti-plane problem
(twodimensional) is considered in section 4. We obtain a variational formulation in
terms of stresses which is useful in the description of the rigid zones.
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The onedimensional problem describing the flow between two infinite planes is
studied in section 5. Several necessary and sufficient conditions for blocking and also
local conditions of blocking (stagnant zones) and rigid body behavior are obtained
in this case. Finally, we examine in section 6 a simple onedimensional problem
(flow between an infinite plane and a rigid roof) in which the exact solution can be
determined analytically.

2 Statement of the 3D-problem

We consider here the evolution equations in the time interval (0, T ), T > 0 describing
the flow of an inhomogeneous Bingham fluid in a domain D ⊂ R

3 with a smooth
boundary ∂D. The notation u stands for the velocity field, σ denotes the Cauchy
stress tensor field, p = − trace(σ)/3 represents the pressure and σ′ = σ + pI is the
deviatoric part of the stress tensor. The momentum balance law in the Eulerian
coordinates reads

ρ
(∂u

∂t
+ (u · ∇)u

)
− div σ′ + ∇p = ρf in D × (0, T ), (1)

where ρ = ρ(t, x) ≥ ρ > 0 is the mass density distribution and f denotes the body
forces. Since we deal with an incompressible fluid, we get

div u = 0 in D × (0, T ). (2)

The conservation of mass becomes

∂ρ

∂t
+ u · ∇ρ = 0 in D × (0, T ). (3)

We notice from the above equation that, excepting some special cases (see sections 4–
6), the flow of an incompressible fluid with inhomogeneous mass density is not
stationary.

If we denote by D(u) = (∇u + ∇
T u)/2 the rate deformation tensor, the con-

stitutive equation of the Bingham fluid can be written as follows:

σ′ = 2ηD(u) + g
D(u)

|D(u)|
if |D(u)| 6= 0, (4)

|σ′| ≤ g if |D(u)| = 0, (5)

where η ≥ η0 > 0 is the viscosity distribution and g ≥ 0 is a nonnegative continuous
function which stands for the yield limit distribution in D. The type of behavior
described by equations (4–5) can be observed in the case of some oils or sediments
used in the process of oil drilling. The Bingham model, also denominated “Bingham
solid” (see for instance [20]) was considered in order to describe the deformation of
many solid bodies. In metal-forming processes, it was introduced for wire drawing
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in [3] and intensively studied in [4, 13]. Recently, the inhomogeneous (or density-
dependent) Bingham fluid was chosen in landslides modeling [5, 2, 6].

When considering a density-dependent model, the viscosity coefficient η and the
yield limit g depend on the density ρ through two constitutive functions, i.e.,

η = η(ρ(t, x)), g = g(ρ(t, x)). (6)

In order to complete equations (1–6) with some boundary conditions we assume that
∂D is divided into two disjoint parts so that ∂D = ∂0D ∪ ∂1D and

u = 0 on ∂0D × (0, T ), σn = 0 on ∂1D × (0, T ), (7)

where n stands for the outward unit normal on ∂D. Finally the initial conditions
are given by

u|t=0 = u0, ρ|t=0 = ρ0. (8)

Setting
V =

{
v ∈ H1(D)3, div v = 0 in D,v = 0 on ∂0D

}
,

we give the variational formulation of (1), (2), (4), (5) and (7) for the velocity field
(see [8])






∀t ∈ (0, T ), u(t, ·) ∈ V,

∀v ∈ V,

∫

D

ρ
(∂u

∂t
+ (u · ∇)u

)
· (v − u)

+

∫

D

2ηD(u) : (D(v) − D(u))

+

∫

D

g|D(v)| −

∫

D

g|D(u)| ≥

∫

D

ρf · (v − u).

(9)

Finally the problem of the flow of a inhomogeneous Bingham fluid becomes:

Find the velocity field u and the mass density field ρ such that conditions (3), (6),
(8) and (9) hold.

As far as we know there does not exist any uniqueness result for this problem.
For the Navier-Stokes model (i.e., when g = 0) existence results can be found in
[7, 19, 15].

4



3 The blocking property for the 3-D problem

When considering a viscoplastic model of Bingham type, one can observe rigid zones
(i.e., zones where D(u) = 0) in the interior of the flow of the solid/fluid. When g
increases, the rigid zones are growing and if g becomes sufficiently large, the fluid
stops flowing (see [10]). Commonly called the blocking property, such a behavior can
lead to unfortunate consequences in oil transport in pipelines, in the process of oil
drilling or in the case of metal forming. On the contrary, in landslides modeling, it
is precisely the blocking phenomenon which ensures stability of the slope.

We suppose in what follows that the volume forces are independent of time, i.e.
f = f(x). We say that the Bingham fluid is blocked if u ≡ 0 satisfies equations and
conditions (3), (6), (8), (9). One can easily check that the fluid is blocked if and
only if the density has no time evolution (i.e., ρ(t, x) = ρ0(x)) and fulfills:

∫

D

g(ρ0(x))|D(v(x))| dx ≥

∫

D

ρ0(x)f(x) · v(x) dx, ∀v ∈ V.

Hence the study of the blocking property consists in finding the link between ρ0

and f such that the above inequality holds. Since in landslides modeling the yield
limit g = g(ρ) depends also on some other parameters (as water concentration),
another formulation of the blocking property is more adequate. Indeed if we define

b(x) = ρ0(x)f(x), g(x) = g(ρ0(x)),

then the blocking of the Bingham fluid can be characterized by:
∫

D

g(x)|D(v(x))| dx ≥

∫

D

b(x) · v(x) dx, ∀v ∈ V. (10)

Now the main problem consists in finding properties on b and g such that inequal-
ity (10) holds.

We suppose in what follows that

b ∈ L∞(D)3, and

∫

D

b · r = 0, ∀r ∈ R ∩ V, (11)

where R = ker D = {r : D → R
3 ; r(x) = m + n ∧ x} is the set of rigid motions.

The first condition in (11) is a natural assumption for the body forces. The second
one, which is implied by (10), is always satisfied if ∂0D 6= ∅. These two conditions
ensure the existence of a blocking state for large enough yield limit. More precisely
we have:

Proposition 3.1 If (11) holds then

g∗
hom := sup

v∈V\R

∫

D

b · v
∫

D

|D(v)|
< +∞

and if g(x) ≥ g∗
hom, a.e. x ∈ D then the blocking occurs, i.e. (10) holds.
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Proof. The space LD(D) = {v ∈ L1(D)3; D(v) ∈ L1(D)3×3} is a closed subspace
of the space BD(D) introduced in [21, 24] and includes (strictly) the space W 1,1(D)3

(see [23]). We define l ∈ V ′ by:

l(v) =

∫

D

b(x) · v(x) dx, ∀v ∈ V,

and let W be the subspace of LD(D):

W =
{
v ∈ LD(D); div v = 0 in D,v = 0 on ∂0D

}
.

Since b ∈ L∞(D)3 we deduce that l ∈ W ′, hence there exists C1 > 0 such that
|l(v)| ≤ C1||v||LD(D) for all v ∈ LD(D). On the other hand, from the Korn inequal-
ity in LD(D) (see [23]), we deduce that there exists C2 > 0 such that, for all v ∈ W
there exists rv ∈ R ∩ W which satisfies ‖v − rv‖LD(D) ≤ C2

∫
D
|D(v)|. Using the

last two inequalities we get |l(v)| = |l(v − rv)| ≤ C1C2

∫
D
|D(v)| for all v ∈ V, thus

g∗
hom ≤ C1C2. If g(x) ≥ g∗

hom a.e. x ∈ D then

∫

D

g|D(v)| ≥ g∗
hom

∫

D

|D(v)| ≥

∫

D

b · v, ∀v ∈ V \ R

and (10) holds, taking (11) into account.

In the homogeneous case, it is easy to check that the condition g ≥ g∗
hom is a

complete characterization of the blocking property. In the inhomogeneous case it
is only a rough sufficient condition. Indeed the following statement gives a more
accurate condition for (10).

We define

H = {τ ∈ L2(D)3×3; τij = τji, trace(τ ) = 0 in D}

which stands for the deviatoric subspace of L2(D)3×3
S , and we consider

Ab =
{
τ ∈ H ; ∃p ∈ L2(D), div τ −∇p = −b in D, (τ − pI)n = 0 on ∂1D

}
,

where (τ − pI)n = 0 lies in H−1/2(∂D)3. Using the characterization of the gradient
of a distribution (see for instance [22], p.14) we obtain another characterization of
the set Ab:

Ab =

{
τ ∈ H ;

∫

D

τ : D(v) =

∫

D

b · v, ∀v ∈ V

}
.

Theorem 3.1 The Bingham fluid is blocked, i.e., (10) holds, if and only if there
exists a function σ ∈ Ab such that g(x) ≥ |σ(x)|, a.e. x ∈ D.
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Proof. Let σ ∈ Ab such that g(x) ≥ |σ(x)|, a.e. x ∈ D. Then for all v ∈ V we
have ∫

D

b · v =

∫

D

σ : D(v) ≤

∫

D

|σ| |D(v)| ≤

∫

D

g|D(v)|

and (10) follows.
Suppose now that (10) holds and we consider J : H → R given by

J (τ ) =
1

2

∫

D

[|τ | − g]2+,

where [ ]+ denotes the positive part. From standard arguments of convex analysis
we deduce that there exists (at least) a σ ∈ Ab solution of the minimization problem
J (σ) ≤ J (τ ) for all τ ∈ Ab. Indeed J is a convex continuous functional and from
[|τ | − g]2+ ≥ |τ |2 − 2g|τ | we get that J is coercive on H. Euler’s equation for J
reads ∫

D

[|σ| − g]+
|σ|

σ : τ = 0, ∀ τ ∈ A0,

where A0 is Ab for b = 0, the tangent space to Ab. (Here [|σ| − g]+σ/|σ| stands
for 0 if σ = 0.)

Since the orthogonal subspace of A0 in H is D(V) we deduce that there exists

w ∈ V such that
[|σ| − g]+

|σ|
σ = D(w). We put v = w in (10). Then we get

∫

D

g|D(w)| ≥

∫

D

b · w =

∫

D

σ : D(w) =

∫

D

[|σ| − g]+
|σ|

|σ|2.

Bearing in mind that |D(w)| = [|σ|− g]+ we obtain
∫
D
[|σ|− g]+(g−|σ|) ≥ 0 which

implies that |σ(x)| ≤ g(x) a.e. x ∈ D.

4 The stationary anti-plane flow

We consider in this section the particular case of the stationary anti-plane flow.
Therefore, D = Ω × R where Ω is a bounded domain in R

2. The boundary of Ω,
denoted by Γ, is divided into two parts Γ = Γ0 ∪ Γ1, such that ∂0D = Γ0 × R,
∂1D = Γ1 × R. We are looking for a flow in the Ox3 direction, i.e. u = (0, 0, u),
which does not depend on x3 and t so that ρ = ρ(x1, x2) and u = u(x1, x2). Note
that under these assumptions the equations (2-3) are satisfied, hence the density ρ
represents now a parameter of the inhomogeneous problem and we cannot talk about
a density dependent model anymore. Indeed the density is implied only in the spatial
distribution of inhomogeneous parameters g, η and the body forces f are defined as
follows

η(x1, x2) = η(ρ(x1, x2)), g(x1, x2) = g(ρ(x1, x2)), f(x1, x2) = ρ(x1, x2)f3(x1, x2),
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where f3 denotes the component of the forces in the Ox3 direction. We suppose in
the following that

f, g, η ∈ L∞(Ω), g ≥ 0, η(x) ≥ η0 > 0, a.e. x ∈ Ω.

If we define
V = {v ∈ H1(Ω); v = 0 on Γ0}

then the variational formulation (9) for the anti-plane flow becomes

u ∈ V, ∀v ∈ V,

∫

Ω

η(x)∇u(x) · ∇(v(x) − u(x)) dx

+

∫

Ω

g(x)|∇v(x)| dx −

∫

Ω

g(x)|∇u(x)| dx ≥

∫

Ω

f(x)(v(x) − u(x)) dx.

(12)

The above problem is a standard variational inequality. If meas(Γ0) > 0 then it has
a unique solution u. If Γ0 = ∅ and

∫
Ω

f(x) dx = 0 then a solution exists and it is
unique up to an additive constant. In the following we will always assume that one
of these cases holds.

In order to give the variational formulation in terms of stresses for (12) we define
H = (L2(Ω))2 and

Af = {τ ∈ H; div τ = −f in Ω, τ · n = 0 on Γ1}, (13)

where τ · n is considered in H− 1

2 (Γ). Let J : H → R be the following functional

J(τ ) =

∫

Ω

1

2η(x)
[|τ (x)| − g(x)]2+ dx. (14)

Proposition 4.1 There exists at least a σ ∈ Af minimizing J on Af , i.e. J(σ) ≤
J(τ ), for all τ ∈ Af , which is characterized by

σ ∈ Af and

∫

Ω

[|σ(x)| − g(x)]+
η(x)|σ(x)|

σ(x) · τ (x) dx = 0, ∀ τ ∈ A0 (15)

where A0 is Af with f = 0.

Proof. From [|τ | − g]2+ ≥ |τ |2 − 2g|τ | we deduce that J is coercive on H and since
J is a convex and continuous functional we get the existence of σ. The variational
equation (15) is Euler’s equation associated with the minimization problem.

The following theorem gives the connection between (12) and (15).

Theorem 4.1 Let u be the solution of (12) and let σ be a solution of (15). Then
we have

∇u(x) =
[|σ(x)| − g(x)]+

η(x)|σ(x)|
σ(x), a.e. x ∈ Ω. (16)
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Proof. Let σ be a solution of (15). This implies that σ̄ = 1
η
[1− g

|σ|
]+ σ belongs to

the orthogonal subspace of A0 in H. So there exists w ∈ V such that ∇w = σ̄. We
now prove that for all r ∈ R

2 and a.e. x ∈ Ω we have

σ(x) · (r − σ̄(x)) ≤ η(x)σ̄(x) · (r − σ̄(x)) + g(x)|r| − g(x)|σ̄(x)|. (17)

Indeed if |σ(x)| > g(x) then σ(x) =
(
η(x) + g(x)

|σ̄(x)|

)
σ̄(x) and (17) follows. If

|σ(x)| ≤ g(x) then σ̄(x) = 0 which implies (17).
Since σ ∈ Af we have

∫

Ω

f(x)(v(x) − w(x)) dx =

∫

Ω

σ(x) · (∇v(x) −∇w(x)) dx.

If we put r = ∇v(x) in (17) and then integrate over Ω we deduce that w is a solution
of (12). Since the solution of (12) is unique we obtain u = w,∇u = σ̄, and (16)
follows.

The above theorem gives the opportunity to describe the rigid zones Ωr and the
shearing zones Ωs defined by

Ωr = {x ∈ Ω; |∇u(x)| = 0}, Ωs = {x ∈ Ω; |∇u(x)| > 0}.

Indeed, from (16) we have the following result.

Corollary 4.1 The solution σ of (15) is unique in Ωs, i.e., if σ1,σ2 are two so-
lutions of (15) then σ1(x) = σ2(x) a.e. x ∈ Ωs. For any σ solution of (15) we
have

Ωr = {x ∈ Ω; |σ(x)| ≤ g(x)}, Ωs = {x ∈ Ω; |σ(x)| > g(x)}. (18)

Proof. If x ∈ Ωs then |∇u(x)| > 0 and from (16) we have

σ(x) =

(
η(x) +

g(x)

|∇u(x)|

)
∇u(x).

The uniqueness follows.

The previous description of the rigid zones can be used to study the blocking
property, i.e., when the whole Ω is a rigid zone (Ω = Ωr). In this case u ≡ 0 is the
solution of (12) characterized by the following problem:
Find the link between f and g such that

∫

Ω

g(x)|∇v(x)| dx ≥

∫

Ω

f(x)v(x) dx, ∀v ∈ V. (19)

9



As in the threedimensional case, the blocking always occurs for large enough
yield distribution. Indeed, there exists an homogeneous yield limit g∗

hom > 0 given
by

g∗
hom = sup

v∈V, v 6=const

∫

Ω

f(x)v(x) dx
∫

Ω

|∇v(x)| dx

such that if g(x) ≥ g∗
hom, a.e. x ∈ Ω then the blocking occurs, i.e. (19) holds. More-

over we have the the following complete characterization of the blocking property.

Proposition 4.2 The Bingham fluid is blocked if and only if there exists σ ∈ Af

such that |σ(x)| ≤ g(x) a.e. x ∈ Ω.

Proof. If |σ(x)| ≤ g(x) a.e. x ∈ Ω then J(σ) = 0 ≤ J(τ ), for all τ ∈ Af and from
(16) we deduce ∇u ≡ 0.

5 Flow between two infinite planes

We shall consider here the anti-plane flow in one dimension, i.e. D = Ω × R
2, with

Ω = (0, ℓ) ⊂ R. The choice of ∂0D = Γ0 × R
2 with Γ0 = {0, ℓ} corresponds to the

flow between two infinite planes x = 0 and x = ℓ. In this case V = H1
0 (Ω). Let u

be the solution of (12), satisfying:

u ∈ V, ∀v ∈ V,

∫

Ω

η(x) u′(x) (v′(x) − u′(x)) dx

+

∫

Ω

g(x)(|v′(x)| − |u′(x)|) dx ≥

∫

Ω

f(x)(v(x) − u(x)) dx.

(20)

We denote by F the antiderivative of f such that

F (x) :=

∫ x

0

f(s) ds.

Note that in the case of the flow between two infinite planes, Af becomes an
affine set of dimension one. Indeed from (13) we have

Af = −F + R = {−F − C; C ∈ R},

and the functional J defined in (14) can be reduced to the one-variable functional
j : R → R given by

j(C) =

∫ ℓ

0

1

2η(x)

[
|F (x) + C| − g(x)

]2

+
dx.

In the general twodimensional case the minimizer of J is not unique. But here, if
blocking does not occur, then the uniqueness of the minimizer of j can be proved.
More precisely we have:
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Theorem 5.1 Either the flow is blocked, i.e. u ≡ 0 in Ω, or the minimizer C0 of j
over R, is unique. In the latter case, C0 is the solution of the scalar equation

∫

Ω

[
|F (x) + C0| − g(x)

]
+

η(x)
sign(F (x) + C0) dx = 0, (21)

and u is given by

u(x) = −

∫ x

0

[
|F (s) + C0| − g(s)

]
+

η(s)
sign(F (s) + C0) ds. (22)

Proof. We suppose that there exist two minimizers C1 6= C2 of j over R. We have
j′(C1) = j′(C2) = 0. This implies that (j′(C1) − j′(C2))(C1 − C2) = 0. Define h on
R×Ω by h(t, x) = t−g(x) if t > g(x), h(t, x) = 0 if |t| ≤ g(x) and h(t, x) = t+g(x)
if t < −g(x). Then j′(C) =

∫
Ω

h(F (x) + C, x) dx and we have
∫
Ω
(h(F (x) + C1, x)−

h(F (x) + C2, x))(C1 − C2) dx = 0. Since t → h(t, x) is nondecreasing for all x ∈ Ω
we have h(F (x) + C1, x) = h(F (x) + C2, x) in Ω. Bearing in mind that t → h(t, x)
is increasing on R \ [−g(x), g(x)] we deduce that |F (x) + Ci| ≤ g(x) for all x ∈ Ω,
i = 1, 2. We can use now Proposition 4.2 to deduce that the Bingham fluid is
blocked, a contradiction. The expression of u follows from (16), keeping in mind
that σ = −F − C0.

Since the minimizer C0 cannot be obtained directly from the equation (21),
we complete here the picture of the solution u with some qualitative results. Of
particular interest in applications are the rigid zones and the blocking zones, that
is, intervals where u′ ≡ 0 and where u ≡ 0 respectively.

The following theorem characterizes the intervals of monotony for the solution u.
It makes use of a preliminary lemma.

Lemma 5.1 Let I = [a, b] ⊂ Ω; The following statements are equivalent:

max
x∈I

[−g(x) − F (x)] ≤ min
x∈I

[g(x) − F (x)] , (23)

∀(x, y) ∈ I × I, g(x) + g(y) ≥ |F (y) − F (x)| , (24)

∃C > 0, ∀x ∈ I, |C + F (x)| ≤ g(x). (25)

Theorem 5.2 Let I ⊂ Ω satisfying (23). Then u is monotone in I.

Remark 1. The solution u is monotone in any interval I such that
∫

I

|f | ≤ 2 min
I

g. (26)

For instance, it is sufficient to have for the length of I:

|I| ≤ 2
minΩ g

maxΩ |f |
. (27)

Indeed if (26) is satisfied, then (24) obviously holds in I.
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Proof of Lemma 5.1. We will prove that (25) ⇒ (23) ⇒ (24) ⇒ (25).

Proof of (25) ⇒ (23). We have from (25) (F (x) + C)2 ≤ g(x)2 for all x ∈ I,
hence (C + F (x) − g(x))(C + F (x) + g(x)) ≤ 0. That implies −g(x) − F (x) ≤
C ≤ g(x) − F (x). Since this must be true for all x ∈ I, and C is a constant, we
deduce (23).

Proof of (23) ⇒ (24). From (23), we have, for any (x, y) ∈ I2, −g(x)−F (x) ≤
g(y) − F (y), or equivalently g(x) + g(y) ≥ F (y) − F (x). Exchanging x and y, we
have also g(x) + g(y) ≥ F (x) − F (y), hence (24).

Proof of (24) ⇒ (25). Since g + F is a continuous function on I, it attains a
global minimum at some x0 ∈ I, which gives g(x) + F (x) ≥ g(x0) + F (x0) for all
x ∈ I. On the other hand, we have from (24) g(x0)+g(x) ≥ F (x)−F (x0). Defining
C := −g(x0) − F (x0), this yields g(x) ≥ −F (x) − C and g(x) ≥ F (x) + C. This
proves (25).

Proof of Theorem 5.2. Assume that there exist α < β in I such that u(α) =
u(β). We define J := [α, β]. For any w ∈ L2(J) satisfying

∫
J
w = 0, define W (t) := 0

for t < α, and W (t) =
∫ t

α
w otherwise. Then W ∈ H1

0 (J), v := u + W ∈ H1
0 (Ω), so

from (20) we get

∀w ∈ L2(J),

∫

J

w = 0,

∫

J

ηu′w +

∫

J

g(|u′ + w| − |u′|) ≥ −

∫

J

Fw. (28)

Since
∫

J
u′ = u(β) − u(α) = 0, we can apply this inequality to w = u′ and to

w = −u′:
∫

J

η(u′)2 +

∫

J

g |u′| ≥ −

∫

J

Fu′

−

∫

J

η(u′)2 −

∫

J

g |u′| ≥

∫

J

Fu′.

This yields ∫

J

η(u′)2 +

∫

J

g |u′| = −

∫

J

Fu′.

¿From the Lemma 5.1, we know that (23) implies (25), that is, there exists C ∈ R

such that −F − C ≤ g. Hence using again
∫

J
u′ = 0:

∫

J

η(u′)2 +

∫

J

g |u′| = −

∫

J

Fu′ =

∫

J

(−C − F )u′ ≤

∫

J

g |u′| .

We conclude that
∫

J
η(u′)2 = 0, that is u′ ≡ 0 almost everywhere in J = [α, β].

Since this holds for any α, β such that u(α) = u(β), u is monotone in I.
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Now we give some necessary conditions for the existence of the rigid zones.

Proposition 5.1 Let I ⊂ Ω be a rigid zone (u′ ≡ 0 in I). Then any of (23-25)
hold.

Proof. Since u′ ≡ 0 in I, we deduce from (20) that for any v ∈ H1
0 (I), one has∫

I
g |v′| ≥

∫
I
fv = −

∫
I
Fv′. Considering the same property for −v, and defining

w = v′, we deduce that

∀w ∈ L2(I),

∫

I

w = 0,

∫

I

g |w| ≥

∣∣∣∣
∫

I

Fw

∣∣∣∣ .

Let ϕ1 be a continuous function on R with compact support in (−1, 1). We define
ϕn(t) := nϕ1(nt) so that (ϕn) converges to the Dirac mass at 0 as n → ∞. Let
x, y be given in the interior of I, and wn(t) := ϕn(t − x) − ϕn(t − y). For n
large enough, we have

∫
I
wn = 0, so

∫
I
g |wn| ≥

∣∣∫
I
Fwn

∣∣. In the limit, this yields
g(x) + g(y) ≥ |F (x) − F (y)|. We deduce (24) for interior points of I, and then for
any (x, y) ∈ I2 by continuity.

The following corollary gives sufficient conditions for the existence of the rigid
zones and the blocking property.

Property 5.1 Assume that I = [a, b] ⊂ Ω satisfies any of (23–25). Then

1. If u(a) = u(b), then u ≡ u(a) in I (that is, I is a rigid zone).

2. If there exists σ ∈ {−1, +1} such that the following three conditions hold:

(a) F (b) − F (a) = σ(g(a) + g(b)),

(b) either a = 0 or F + σg is increasing in a left-neighborhood of a,

(c) either b = ℓ or F − σg is increasing in a right-neighborhood of b,

then I = [a, b] is a maximal rigid zone (no interval strictly containing I is a
rigid zone).

3. If I = Ω then the fluid is blocked (u ≡ 0).

Proof. ¿From the Theorem 5.2 we know that u is monotone in I; if u(a) = u(b) we
deduce that u is constant in I.

If
∫ b

a
f = ±(g(a) + g(b)) we have equality in (23). For instance, if

∫ b

a
f =

g(a) + g(b), we obtain:

max
I

(−g − F ) ≥ −g(a) − F (a) = g(b) − F (b) ≥ min
I

(g − F ).

If a > 0, the additional assumption on a implies that for any α in a left-
neighborhood of a, we have max[α,a] (−g − F ) > −g(a) − F (a). This implies that
the interval [α, b] does not satisfy (23) and therefore is not a rigid zone from Propo-
sition 5.1. A similar argument near b gives the maximality of I.
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The monotonicity property proved in Theorem 5.2 implies that u does not attain
a strict extremum in Ω. The following property gives a more precise estimate:

Property 5.2 Assume that g > 0 in Ω. Then all local extremums of u in Ω are
intervals [α, β] of rigid zones such that:

β − α ≥ 2
min[α,β] g

max[α,β] |f |
≥ 2

minΩ g

maxΩ |f |
. (29)

In particular, the solution u does not have any local strict extremum in Ω.

Proof. Assume that the interval I = [α, β] ⊂ Ω (with β ≥ α) is a local maximizer
of u. That is, there exists ω ⊂ Ω, an open neighborhood of [α, β] such that x ∈ ω \ I
implies u(x) < m := u(y), ∀y ∈ I. For ε > 0 small enough, u−1([m − ε,m]) ∩ ω =
[αε, βε] =: Iε, and limε→0 αε = α, limε→0 βε = β.

Since u(αε) = u(βε) but u is not constant in Iε, we deduce from Proposition 5.1
that (23) is not satisfied in Iε, that is, there exists xε, yε ∈ Iε such that

−g(xε) − F (xε) > g(yε) − F (yε). (30)

On the other hand, u′ ≡ 0 in I, hence from Proposition 5.1, xε /∈ I or yε /∈ I. We
assume for instance that xε /∈ I.

Hence limε→0 xε = α, and extracting subsequences, we may assume yε → γ ∈ I.
Should they have the same limit (γ = α), (30) would give −g(α) ≥ g(α), in contra-
diction to the assumption g > 0. Hence α < β and γ ∈ ]α, β]; we get from (30) in
the limit

g(α) + g(γ) ≤

∣∣∣∣
∫ γ

α

f(t) dt

∣∣∣∣ ≤ (γ − α) max
[α,γ]

|f | ≤ (β − α) max
[α,β]

|f |

and (29) follows.

In the physical model the sign of f is constant. We consider now the case f ≥ 0;
similar properties hold for f ≤ 0 (changing u with −u).

Theorem 5.3 Assume that the fluid is not blocked (u 6≡ 0) and that f ≥ 0 in Ω.
Then there exists x0 ∈ Ω such that u is nondecreasing in [0, x0] and nonincreasing
in [x0, ℓ].

Additionally if g is homogeneous (g(x) = ghom = const.) then there exists a
unique rigid (non blocking) zone for u in the interior of Ω.

Proof. Let C0 be the constant number given in Theorem 5.1. Since f ≥ 0, F̂ (x) :=

F (x) + C0 is nondecreasing. Hence there exists x0 ∈ [0, ℓ] such that F̂ (x) ≤ 0 in

[0, x0[ and F̂ (x) ≥ 0 in ]x0, ℓ]. From (21),

∫ ℓ

0

[
|F̂ (x)| − g(x)

]
+

sign(F̂ (x))
dx

η(x)
= 0 (31)
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so either the integrand is zero in Ω (and then u ≡ 0 contrary to the assumptions
of the Theorem) or the integrand shows positive and negative values. In the latter

case, F̂ also shows positive and negative values, and x0 is an interior point of Ω.
Using (22) we get

−u′(x)η(x) =
[
|F̂ (x)| − g(x)

]
+

sign(F̂ (x)).

Therefore u is nondecreasing in [0, x0] and nonincreasing in [x0, ℓ].
If we assume that g is constant, then the rigid zones are given by Ωr = {x ∈ Ω ;

|F̂ (x)| ≤ ghom}, which is an interval [ar, br] since F̂ is nondecreasing. If ar = 0 then
the integrand in (31) is everywhere nonegative, a contradiction. Hence ar > 0 and
similarly br < ℓ. This concludes the proof of the Theorem.

6 Flow between an infinite plane and a rigid roof

We suppose that Γ0 = {0} and Γ1 = {ℓ}, i.e. V = {v ∈ H1(Ω); v(0) = 0}. Such a
boundary condition corresponds to the flow on the plane x = 0 with a rigid roof at
x = ℓ.

Remark 2. The problem described here occurs in modeling the landslides on a
natural slope (see [5]). If we consider the geometry plotted in Figure 1 and if we
denote by γ the vertical gravitational acceleration then the body forces are given by
f(x) = γρ(x) sin θ, where θ is the angle of the slope.

If we consider (13) in our case we come to the conclusion that the set Af is re-
duced to a single function σ and |σ| defines the inhomogeneous critical yield limit g∗,
that is

σ(x) =

∫ ℓ

x

f(s) ds, Af = {σ}, g∗(x) =

∣∣∣∣
∫ ℓ

x

f(s) ds

∣∣∣∣ .

We point out that in this particular case the inhomogeneous critical yield limit g∗

characterizes the rigid and the shearing zones. Indeed, from Corollary 4.1 we have

Ωr = {x ∈ Ω; g(x) ≥ g∗(x)}, Ωs = {x ∈ Ω; g(x) < g∗(x)}. (32)

¿From (16) we get the analytical expression of the solution

u(x) =

∫ x

0

1

η(s)

[
g∗(s) − g(s)

]
+
sign σ(s) ds.

In order to illustrate the previous simple result we consider, as in [5], the case of
a natural slope involving a linear variation with depth of the density

ρ(x) = ρ0 −
ρ0 − ρℓ

ℓ
x (33)
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Shearing zone

Rigid body zone

No flow

u(x)

θ

Figure 1: The geometry of a landslide on a natural slope

where ρ0 is the density at the bottom and 0 < ρℓ < ρ0 is the density at the top. In
this case the critical yield stress is

g∗(x) = γ sin θ (ℓ − x)

[
ρ0 −

ρ0 − ρℓ

2ℓ
(ℓ + x)

]
. (34)

We remark that the variation with depth of this critical yield stress is quadratic. If
the yield stress g has a non-linear variation with depth of the type :

g(x) = (g0 − gℓ)
(
1 −

x

ℓ

)m

+ gℓ

with m > 1, where g0 is the yield limit on the bottom and gℓ < g0 the yield limit on
the top (see [5]). In this case the rigid and shearing zones can be easily deduced (see
Figure 2) from (32). The intersection between the graphs of g and g∗ represents the
separation boundary between of the rigid and shearing zones. Note that the rigid
zone on the bottom x = 0 is a blocking (or non-flow zone).

This work is supported by Tempra-Peco (Program 91502961/11, région Rhône-
Alpes) and Contract No 41993, Grant 195D with World Bank.
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