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Abstract. This paper deals with the flow problem of a viscous plastic fluid in a
cylindrical pipe. In order to approximate this problem governed by a variational
inequality, we apply the nonconforming mortar finite element method. By using
appropriate techniques, we are able to prove the convergence of the method and to
obtain the same convergence rate as in the conforming case.

Résumé. On considère le problème de l’écoulement d’un fluide visqueux plas-
tique dans une conduite cylindrique. Afin d’approcher ce problème régi par une
inéquation variationnelle, nous appliquons la méthode non conforme des éléments
finis avec joints. En utilisant des techniques appropriées, on devient en mesure de
prouver la convergence de la méthode avec un taux de convergence identique au cas
conforme.
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1. Introduction

The nonconforming mortar domain decomposition method allows the coupling of
different approximation methods (e.g. finite elements, spectral elements, wavelets)
and also the efficient handling of independent discretizations of the subdomains. The
setting of the method as well as the first analyses have been performed in [6, 8].
Then the mortar procedure has been studied and extended to numerous areas and
especially in fluid and solid mechanics.

In the fluid mechanics context on which we will focus, the mortar finite element
approach has been considered from a theoretical or numerical point of view in [1, 3, 12],
for the Stokes and the Navier-Stokes equations.

From a mathematical point of view, the mortar method was originally studied
for problems governed by variational equalities and the first extension of the method
to variational inequalities was achieved in [5, 16] for the two-dimensional unilateral
contact problem in elasticity when using finite elements.
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Our purpose in this paper is to consider a variational inequality arising in fluid me-
chanics and modeling the flow of a viscous plastic fluid (also called Bingham fluid) in
a cylindrical pipe. As for unilateral contact, our aim is to prove that the mortar finite
element method leads to a convergence rate which is similar to the rate obtained when
using conforming finite elements (see [15]). Let us mention that significant differences
will occur in the convergence analysis in comparison with unilateral contact. In the
latter case, the inequality of the problem is ”concentrated” on the boundary whereas
in the context of the Bingham fluid the inequality problem holds on the entire do-
main. This fact leads to the use of new techniques in the error estimates, particularly
in the consistency error estimate due to the nonconformity of the method.

The outline of the paper is as follows. The variational formulation of the viscous-
plastic medium is given in the next section and in section 3 the well posed finite
element approximation of order one is stated. Section 4 deals with the convergence
analysis of the method and begins with an adapted version of Falk’s lemma (see [14])
to our problem. The main characteristic of this tool is to measure an important term
of the consistency error in the W 1,1-norm that will lead us to a global convergence
rate of order h

1
2 as in the conforming case (see [15]).

Notations. Let Ω be an open bounded subset of R2 whose generic point is denoted
x = (x1, x2) and denote by Lp(Ω), 1 ≤ p < ∞ the set of real-valued Lebesgue
measurable functions ψ such that |ψ|p is integrable. The Banach space Lp(Ω) is
endowed with the norm

‖ψ‖Lp(Ω) =
(∫

Ω
|ψ(x)|p dΩ

) 1
p .

When p = 2, L2(Ω) is the Hilbert space associated with the inner product

(ϕ, ψ) =
∫

Ω
ϕ(x)ψ(x) dΩ.

Let m ∈ N and p ≥ 1. Define the Sobolev spaces

Wm,p(Ω) =
{
ψ ∈ Lp(Ω), Dαψ ∈ Lp(Ω), |α| ≤ m

}
,

where α = (α1, α2) is a multi–index in N2 and |α| = α1 +α2. The notation Dα denotes

the partial derivative ∂α1∂α2

∂xα1
1 ∂x

α2
2

. The convention W 0,p(Ω) = Lp(Ω) is adopted. The

Banach spaces Wm,p(Ω) are equipped with the norm

‖ψ‖Wm,p(Ω) =
( ∑

|α|≤m
‖Dαψ‖pLp(Ω)

) 1
p .

We shall denote by Wm,p
0 (Ω) the closure of D(Ω) (i.e. the space of indefinitely differ-

entiable functions with compact support in Ω) in Wm,p(Ω). When p = 2, the spaces
Wm,2(Ω) and Wm,2

0 (Ω) are denoted by Hm(Ω) and Hm
0 (Ω) respectively which are

Hilbert spaces.
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Let γ be a connected portion of the boundary of Ω. For any τ ∈ R+\N, the Hilbert
space Hτ (γ) is assigned with the norm

‖ψ‖Hτ (γ) =

(
‖ψ‖2

Hm(γ) +
∫

γ

∫

γ

(Dmψ(x)−Dmψ(y))2

|x− y|1+2θ
dγdγ

) 1
2

,

where m is the integer part of τ and θ its decimal part (see [2]). In the previous
integral, Dmψ stands for the m–order derivative of ψ along γ and dγ denotes the
linear measure on γ.

In order to define the space H
1
2
00(γ), let us introduce the map ρ as the distance to

the extreme points p1 and p2 of γ:

ρ(x) = dist (x, {p1, p2}), ∀x ∈ γ.

The space H
1
2
00(γ) is then endowed with the norm

‖ψ‖
H

1
2
00(γ)

=

(
‖ψ‖2

H
1
2 (γ)

+
∫

γ

ψ(x)2

ρ(x)
dγ

) 1
2

.

2. The variational formulation of the problem

Let us consider the laminar stationary flow of a Bingham fluid in a cylindrical pipe
of cross-section Ω ⊂ R2. According to Duvaut and Lions [13], the problem consists of
finding the velocity field u defined in Ω and solution of the variational inequality

u ∈ V, µ
∫

Ω
∇u.(∇v −∇u) dΩ + g

∫

Ω
(|∇v| − |∇u|) dΩ

≥
∫

Ω
f(v − u) dΩ, ∀v ∈ V, (2.1)

where V = H1
0 (Ω). The notation µ > 0 stands for the viscosity of the fluid and g > 0

denotes the yield limit of the fluid. Such a fluid starts to flow only when the applied
forces locally exceed g. The following notations have been used for any v ∈ V :

∇v =
( ∂v
∂x1

,
∂v

∂x2

)
and |∇v| =

√( ∂v
∂x1

)2
+
( ∂v
∂x2

)2
.

Finally, f represents the decay of the pressure in the pipe. Henceforward we assume
that f ∈ L2(Ω).

The existence and uniqueness statement for the variational inequality (2.1) follows
directly from Lions-Stampacchia’s theorem [17]. We recall this result (see [15]):

Proposition 2.1 Problem (2.1) admits a unique solution u ∈ V satisfying the stabil-
ity property ‖u‖H1(Ω) ≤ (C/µ)‖f‖L2(Ω) where the positive constant C is independent
of f .

Concerning the regularity of the solution u, the result of [10] is as follows:
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Proposition 2.2 The solution u of (2.1) satisfies u ∈ H2(Ω)∩ V . Moreover, if Ω is
a convex set, there exists a positive constant C independent of f such that ‖u‖H2(Ω) ≤
(C/µ)‖f‖L2(Ω).

A significant investigation on the qualitative properties of the solution u has been
accomplished in the references [18, 19, 20]. In particular, the authors proved that there
always exists at least one region of Ω where the fluid behaves like a rigid medium (i.e.
∇u(x) = 0) and looked for the shape of such zones. The research of stagnant regions
(i.e. u(x) = 0) as well as their shape was also carried out.

In the case where Ω is a circular domain and if the function f is constant in Ω
then an exact solution can be exhibited (see [15]). This solution depends then only

on the variable
√
x2

1 + x2
2. In that case, the velocity field lies in V ∩W 2,∞(Ω)∩Hs(Ω)

for any s < 5
2
, (see [15]).

Remark 2.1 Let u be the solution of problem (2.1). Then u is solution of the mini-
mization problem

u ∈ V, J(u) = min
v∈V

J(v),

where
J(v) =

µ

2

∫

Ω
∇v.∇v dΩ + g

∫

Ω
|∇v| dΩ−

∫

Ω
fv dΩ,

Moreover u is characterized by the existence of p satisfying:

u ∈ V, µ
∫

Ω
∇u.∇v dΩ + g

∫

Ω
p.∇v dΩ =

∫

Ω
fv dΩ, ∀v ∈ V,

p ∈ Λ, p.∇u = |∇u| a.e. in Ω,

where
Λ = {q, q ∈ (L2(Ω))2, |q(x)| ≤ 1 a.e. in Ω}.

3. Finite element approximation

The present section consists of building the spaces approximating H1
0 (Ω) in the

mortar finite element context in order to set the approximation of problem (2.1).
The framework of the mortar domain decomposition method consists of dividing
Ω into K polygonal open subdomains. For the sake of simplicity, we assume that
the polygonally shaped domain Ω is the union of two subdomains Ω1 and Ω2 with
Ω1 ∩ Ω2 = γ where γ is the straight line segment [p1, p2]. We set

X(Ω`) =
{
v` ∈ H1(Ω`), v`|∂Ω∩∂Ω` = 0

}
, ` = 1, 2,

where ∂Ω, ∂Ω` denote the boundaries of Ω and Ω` respectively. Define

X =
{
v ∈ L2(Ω), ∀`, v` = v|Ω` ∈ X(Ω`)

}
=

2∏

`=1

X(Ω`).
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The norm on X, denoted ‖.‖, is as follows

‖v‖ =
(
‖v1‖2

H1(Ω1) + ‖v2‖2
H1(Ω2)

) 1
2 , ∀v = (v1, v2) ∈ X.

The space V can be identified with the subspace of X containing the functions satis-
fying continuity conditions on γ:

V =
{
v = (v1, v2) ∈ X, v1|γ = v2|γ

}
.

Let us define the continuous bilinear form a(., .), the continuous functional j(.) and
the continuous linear form L(.):

a(u, v) =
2∑

`=1

∫

Ω`
∇u`.∇v` dΩ`, ∀u, v ∈ X,

j(v) =
2∑

`=1

∫

Ω`
|∇v`| dΩ`, ∀v ∈ X,

L(v) =
2∑

`=1

∫

Ω`
f `v` dΩ`, ∀v ∈ X.

With each subdomain Ω` is associated a regular family of discretizations T `
h (see

[11]) of triangles κ of diameter hκ so that

h` = max
κ∈T `

h

hκ

represents the discretization parameter on Ω` and we set

h = max(h1, h2).

Let Pq(κ) denote the space of polynomial functions whose degree is ≤ q on κ. Define

Vh(Ω
`) =

{
v`h ∈ C (Ω

`
), ∀κ ∈ T `

h , v`h|κ ∈ P1(κ), v`h|∂Ω∩∂Ω` = 0
}
.

Let I`h denote the Lagrange interpolation operator of order one on T `
h . The following

error estimate is obtained from [11] by hilbertian interpolation: for any pair of real
numbers (η, ν) ∈ [0, 1]×]1, 2], there exists a constant C = C(η, ν) verifying:

‖v` − I`hv`‖Hη(Ω`) ≤ C(η, ν)hν−η` ‖v`‖Hν(Ω`), ∀v` ∈ Hν(Ω`). (3.1)

The trace space of Vh(Ω
`) on γ is given by

W `
h(γ) =

{
v`h|γ, v`h ∈ Vh(Ω`)

}
,

and corresponds to the continuous functions on γ, piecewise linear on the trace T `h
of the triangulation T `

h on γ and vanishing at p1 and p2. Notice that (3.1) remains
true when Ω` is replaced by γ and when I`h is replaced by the Lagrange interpolation
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operator of order one on T `h . As T 1
h and T 2

h are generated independently, it follows
that the meshes of both subdomains do not coincide on the interface γ and therefore
W 1
h (γ) 6= W 2

h (γ). In order to use inverse inequalities, we suppose that both families
of one-dimensional triangulations T 1

h and T 2
h are uniformly regular. We then consider

the spaces M `
h(γ) defined as follows

M `
h(γ) =

{
q`h ∈ C (γ), ∀T ∈ T `h , q`h|T ∈ P1(T ) and q`h|T ∈ P0(T ) if p1 or p2 ∈ T

}
.

The space approximating V = H1
0 (Ω) becomes (see [8]):

Vh =
{
vh = (v1

h, v
2
h) ∈ Vh(Ω1)× Vh(Ω2),

∫

γ
(v1
h − v2

h)qh dγ = 0, ∀qh ∈Mh(γ)
}
, (3.2)

where Mh(γ) = M1
h(γ) or Mh(γ) = M2

h(γ).
The integral condition incorporated in (3.2) expresses a ”weak continuity” relation

across γ. It is easy to see that the finite element approximation is nonconforming
(Vh 6⊂ V ) in the general case of nonmatching meshes on γ.

When the meshes fit together on γ, then the integral condition in (3.2) is equivalent
to v1

h = v2
h on γ so that the inclusion Vh ⊂ V holds. The latter case is considered in

[15].

The discretized problem issued from (2.1) becomes: find uh such that

uh ∈ Vh, µa(uh, vh − uh) + gj(vh)− gj(uh) ≥ L(vh − uh), ∀vh ∈ Vh. (3.3)

We are now in a position to state the following existence and uniqueness result.

Proposition 3.1 Problem (3.3) admits a unique solution uh ∈ Vh.

Proof. The bilinear form a(., .) is continuous on Vh and Vh-elliptic (see [8]) and the
linear form L(.) is continuous on Vh. Moreover, j(.) is a convex continuous functional
on Vh. The hypotheses of Lions-Stampacchia’s theorem are then fulfilled.

4. Error analysis

This section consists of obtaining a priori error estimates in the ‖.‖-norm commit-
ted by the finite element approximation. Our purpose is to generalize the convergence
results of the conforming finite element method to the more general case described
here and to prove that the error decays at least like h

1
2 which is the error bound

obtained in the conforming case (see [15]). The starting point is the next lemma: an
adaptation of Falk’s lemma (see [14]) to our problem.

Lemma 4.1 Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the
solution of (3.3). Then the following estimate holds:

‖u− uh‖2 ≤ C

{
inf
vh∈Vh

(
‖u− vh‖2 + ‖u− vh‖

)

+ inf
v∈V

( 2∑

`=1

‖v` − u`h‖W 1,1(Ω`)

)

+
∣∣∣
∫

γ

∂u1

∂n1
(u1

h − u2
h) dγ

∣∣∣
}
. (4.1)
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where the constant C is independent of h.

Proof. Let α be the ellipticity constant of a(., .) on X. Then,

αµ‖u− uh‖2 ≤ µa(u− uh, u− uh) = µa(u, u)− µa(u, uh)− µa(uh, u) + µa(uh, uh).

Using (2.1) and (3.3), we write:

µa(u, u)≤µa(u, v)− L(v − u) + gj(v)− gj(u), ∀v ∈ V,
µa(uh, uh)≤µa(uh, vh)− L(vh − uh) + gj(vh)− gj(uh), ∀vh ∈ Vh.

Hence, the following inequality

αµ‖u− uh‖2≤µa(uh − u, vh − u)

+µa(u, vh − u)− L(vh − u) + gj(vh)− gj(u)

+µa(u, v − uh)− L(v − uh) + gj(v)− gj(uh). (4.2)

We now estimate separately the terms of (4.2). Denoting by M the norm of the
continuous bilinear form a(., .) on X yields

µa(uh − u, vh − u) ≤ µM‖u− uh‖‖u− vh‖ ≤ µα

2
‖u− uh‖2 +

µM2

2α
‖u− vh‖2. (4.3)

Using again the continuity of a(., .) so as the boundedness of ‖u‖ gives

µa(u, vh − u) ≤ µM‖u‖‖u− vh‖ ≤ C‖f‖L2(Ω)‖u− vh‖. (4.4)

Moreover, the following estimate holds

L(vh − u) ≤ ‖f‖L2(Ω)‖vh − u‖L2(Ω) ≤ ‖f‖L2(Ω)‖vh − u‖. (4.5)

Noting that |∇v`h| − |∇u`| ≤ |∇(v`h − u`)|, we can write

gj(vh)− gj(u) = g
2∑

`=1

∫

Ω`
|∇v`h| − |∇u`| dΩ`≤ g

2∑

`=1

∫

Ω`
|∇(v`h − u`)| dΩ`

≤ g
2∑

`=1

√
meas(Ω`)‖v`h − u`‖H1(Ω`)

≤ g
√

2
√
meas(Ω)‖vh − u‖. (4.6)

The term µa(u, v−uh) is handled by using Green’s formula and the property v1 = v2

on γ. The notation ∂u`/∂n` stands for the outward normal derivative of u` on Ω` and
we have ∂u1/∂n1 + ∂u2/∂n2 = 0 on γ.

µa(u, v − uh) =µ
2∑

`=1

∫

Ω`
∇u`.∇(v` − u`h) dΩ`

=−µ
2∑

`=1

∫

Ω`
∆u`(v` − u`h) dΩ` + µ

2∑

`=1

∫

γ

∂u`

∂n`
(v` − u`h) dγ
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≤µ‖∆u‖L2(Ω)‖v − uh‖L2(Ω) + µ
∫

γ

∂u1

∂n1
(u2

h − u1
h) dγ

≤µ‖u‖H2(Ω)‖v − uh‖L2(Ω) + µ
∫

γ

∂u1

∂n1
(u2

h − u1
h) dγ

≤C
2∑

`=1

‖v` − u`h‖W 1,1(Ω`) + µ
∫

γ

∂u1

∂n1
(u2

h − u1
h) dγ (4.7)

where the continuous imbedding W 1,1(Ω`) ↪→ L2(Ω`) has been used (see [2]). Notice
that if Ω is a convex set then the constant C of (4.7) does not depend on u according
to Proposition 2.2.

Using the same imbedding as previously yields

L(v − uh) ≤ ‖f‖L2(Ω)‖v − uh‖L2(Ω) ≤ ‖f‖L2(Ω)

2∑

`=1

‖v` − u`h‖W 1,1(Ω`). (4.8)

The last term gj(v)− gj(uh) is evaluated as follows:

gj(v)− gj(uh) = g
2∑

`=1

∫

Ω`
|∇v`| − |∇u`h| dΩ`≤ g

2∑

`=1

∫

Ω`
|∇(v` − u`h)| dΩ`

≤ g
2∑

`=1

‖v` − u`h‖W 1,1(Ω`). (4.9)

Putting the estimates obtained in (4.3)-(4.9) into (4.2), and taking both infimum
on V and Vh, we conclude to the existence of a positive constant independent of h
satisfying (4.1). That ends the proof of the lemma.

The nonconformity of the method leads to two supplementary terms in (4.1) in
comparison with the conforming case studied in [15]: the second infimum (on V ) as
well as the integral term. The estimate of the first infimum (i.e. the approximation
error) is a standard result of the mortar finite element method proved by Bernardi,
Maday and Patera in [8] which we recall hereafter to render the paper self-contained
and also to introduce some useful tools. Afterwards, in order to simplify the notations,
we will choose Mh(γ) = M1

h(γ) in the definition of the approximation space in (3.2).
Of course the symmetrical definition is also possible.

Lemma 4.2 Let u ∈ H2(Ω) ∩ V be the solution of (2.1). Then there exists vh ∈ Vh
such that:

‖u− vh‖ ≤ Ch,

where the positive constant C is independent of h.

Proof. Denoting by I`h the Lagrange interpolation operator of order one on T `
h and

from the definition of the norm ‖.‖, we get for any vh ∈ Vh
‖u− vh‖≤‖u1 − v1

h‖H1(Ω1) + ‖u2 − v2
h‖H1(Ω2)

≤‖u1 − I1
hu

1‖H1(Ω1) + ‖I1
hu

1 − v1
h‖H1(Ω1)

+‖u2 − I2
hu

2‖H1(Ω2) + ‖I2
hu

2 − v2
h‖H1(Ω2)

≤‖I1
hu

1 − v1
h‖H1(Ω1) + ‖I2

hu
2 − v2

h‖H1(Ω2) + Ch, (4.10)
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where the error bounds (3.1) committed by I`h, ` = 1, 2 have been used. Choosing

v1
h = I1

hu
1 +R1

h(π
1
h(I2

hu
2 − I1

hu
1)) and v2

h = I2
hu

2, (4.11)

where π1
h represents the projection operator on W 1

h (γ) defined for any function ϕ ∈
H

1
2
00(γ) by

π1
hϕ ∈W 1

h (γ),∫

γ
(ϕ− π1

hϕ)ψh dγ= 0, ∀ψh ∈M1
h(γ). (4.12)

Such an operator is stable in L2(γ), in H1
0 (γ) and in H

1
2
00(γ) (the proofs require the

uniform regularity of the family of one-dimensional meshes T 1
h , see [8]): let Y = L2(γ)

or H1
0 (γ) or H

1
2
00(γ), then

‖π1
hv‖Y ≤ C‖v‖Y , ∀v ∈ Y. (4.13)

Moreover the following approximation property holds (see [4]): for any 1
2
< ν ≤ 2

‖v − π1
hv‖L2(γ) + h

1
2
1 ‖v − π1

hv‖
H

1
2
00(γ)
≤ Chν1‖v‖Hν(γ), ∀v ∈ Hν(γ) ∩H

1
2
00(γ). (4.14)

In (4.11), the notation R1
h stands for a lifting operator from W 1

h (γ) ∩H1
0 (γ) into

Vh(Ω
1) satisfying ‖R1

hψ
1
h‖H1(Ω1) ≤ C‖ψ1

h‖
H

1
2
00(γ)

for any ψ1
h ∈ W 1

h (γ) ∩ H1
0 (γ) (see

[7, 9]). Besides, it is straightforward that vh ∈ Vh. The definition of vh and of the
lifting operator, the stability condition (4.13) and the trace theorem yield

‖I1
hu

1 − v1
h‖H1(Ω1) = ‖R1

h(π
1
h(I2

hu
2 − I1

hu
1))‖H1(Ω1)

≤C‖π1
h(I2

hu
2 − I1

hu
1)‖

H
1
2
00(γ)

≤C‖I2
hu

2 − I1
hu

1‖
H

1
2
00(γ)

≤C
(
‖u2 − I2

hu
2‖
H

1
2
00(γ)

+ ‖u1 − I1
hu

1‖
H

1
2
00(γ)

)

≤C
(
‖u2 − I2

hu
2‖H1(Ω1) + ‖u1 − I1

hu
1‖H1(Ω2)

)

≤Ch. (4.15)

Using estimate (4.15) with (4.10) and noticing that ‖I2
hu

2 − v2
h‖H1(Ω2) = 0 leads to

the estimate of the lemma.
Next, we estimate the integral term of Lemma 4.1 which disappears in the con-

forming case of matching meshes (see [15]).

Lemma 4.3 Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the
solution of (3.3). Then the following estimate holds

∣∣∣
∫

γ

∂u1

∂n1
(u1

h − u2
h) dγ

∣∣∣ ≤ C(h‖u− uh‖+ h2),

where the positive constant C is independent of h.
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Proof. As uh belongs to Vh, we can write
∫

γ

∂u1

∂n1
(u1

h − u2
h) dγ=

∫

γ

(∂u1

∂n1
− ψh

)
(u1

h − u2
h) dγ,

for all ψh ∈ M1
h(γ). Denoting by (H

1
2
00(γ))′ the topological dual space of H

1
2
00(γ), we

get

∣∣∣
∫

γ

∂u1

∂n1
(u1

h − u2
h) dγ

∣∣∣≤ inf
ψh∈M1

h
(γ)

∥∥∥∂u
1

∂n1
− ψh

∥∥∥
(H

1
2
00(γ))′

‖u1
h − u2

h‖
H

1
2
00(γ)

≤Ch
∥∥∥∂u

1

∂n1

∥∥∥
H

1
2 (γ)
‖u1

h − u2
h‖

H
1
2
00(γ)

≤Ch‖u1
h − u2

h‖
H

1
2
00(γ)

. (4.16)

where the infimum is bounded as in ([8], section 5.2) and the trace theorem has been
used.

Since u1
h = π1

hu
2
h where π1

h has been defined in (4.12), we obtain thanks to the
stability (4.13), the approximation property (4.14) and the trace theorem:

‖u1
h − u2

h‖
H

1
2
00(γ)

= ‖π1
hu

2
h − u2

h‖
H

1
2
00(γ)

≤‖π1
h(u

2
h − u2)− (u2

h − u2)‖
H

1
2
00(γ)

+ ‖π1
hu

2 − u2‖
H

1
2
00(γ)

≤C‖u2
h − u2‖

H
1
2
00(γ)

+ Ch‖u2‖
H

3
2 (γ)

≤C‖u− uh‖+ Ch,

and combining the latter result with (4.16) ends the proof of the lemma.
Having estimated the integral term, it remains to handle the second term of the

consistency error which requires a quite specific treatment.

Lemma 4.4 Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the
solution of (3.3). Then, there exists v ∈ V such that:

2∑

`=1

‖v` − u`h‖W 1,1(Ω`) ≤ C(h
1
2‖u− uh‖+ h

3
2 ),

where the positive constant C is independent of h.

Proof. (i) Let us choose v2 = u2
h in Ω2. In Ω1, we define ϕ1 = u1

h + R1(u2
h − u1

h)
where R1 denotes a standard continuous lifting operator from L1(γ) into W 1,1(Ω1)
satisfying R1(u2

h − u1
h) = 0 on ∂Ω ∩ ∂Ω1. Hence

‖ϕ1 − u1
h‖W 1,1(Ω1) = ‖R1(u2

h − u1
h)‖W 1,1(Ω1) ≤ C‖u2

h − u1
h‖L1(γ) ≤ C ′‖u2

h − u1
h‖L2(γ).

Denoting by i2h the Lagrange interpolation operator of order one on T 2
h and noticing

that u1
h = π1

hu
2
h (definition of π1

h in (4.12)), it follows that

‖u2
h − u1

h‖L2(γ) = ‖u2
h − π1

hu
2
h‖L2(γ)≤‖u2 − π1

hu
2‖L2(γ)

+‖(i2hu2 − u2)− π1
h(i

2
hu

2 − u2)‖L2(γ)

+‖(u2
h − i2hu2)− π1

h(u
2
h − i2hu2)‖L2(γ).(4.17)
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The first term of (4.17) is estimated with (4.14) so that

‖u2 − π1
hu

2‖L2(γ) ≤ Ch
3
2‖u2‖

H
3
2 (γ)

. (4.18)

The handling of the second term of (4.17) uses the L2(γ)-norm stability (4.13) and
the interpolation error estimate issued from (3.1):

‖(i2hu2 − u2)− π1
h(i

2
hu

2 − u2)‖L2(γ) ≤ C‖i2hu2 − u2‖L2(γ) ≤ Ch
3
2‖u2‖

H
3
2 (γ)

. (4.19)

It remains to bound the third term of (4.17). Let ` = 1, 2: the family of one-
dimensional meshes T `h is supposed uniformly regular which means that there exists
a constant C satisfying

length(T ) ≤ C length(T ′), ∀T, T ′ ∈ T `h .

We then denote by h̃1 and h̃2 the greatest length of the meshes belonging to T 1
h and

T 2
h respectively. Set

ηh = min

(
h̃1

2h̃2

,
h̃2

2h̃1

)
. (4.20)

Obviously 0 < ηh ≤ 1
2
. According to (4.14) and applying an inverse inequality gives

‖(u2
h − i2hu2)− π1

h(u
2
h − i2hu2)‖L2(γ)≤Ch̃

1
2

+ηh
1 ‖u2

h − i2hu2‖
H

1
2 +ηh (γ)

≤Ch̃
1
2
1

(
h̃1

h̃2

)ηh
‖u2

h − i2hu2‖
H

1
2 (γ)

.

It is easy to check that

x(min(x
2
, 1
2x

)) ≤ e
1
2e , ∀x > 0.

Hence
(
h̃1

h̃2

)ηh
≤ e

1
2e . (4.21)

And consequently

‖(u2
h − i2hu2)− π1

h(u
2
h − i2hu2)‖L2(γ)≤Ch

1
2‖u2

h − i2hu2‖
H

1
2 (γ)

≤Ch 1
2 (‖u2

h − u2‖
H

1
2 (γ)

+ ‖u2 − i2hu2‖
H

1
2 (γ)

)

≤Ch 1
2 (‖uh − u‖+ h).

Putting together estimates (4.18), (4.19) and (4.22) in (4.17) leads to

‖ϕ1 − u1
h‖W 1,1(Ω1)≤C(h

1
2‖u− uh‖+ h

3
2 ). (4.22)
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Since ϕ1 ∈ W 1,1(Ω1), the pair (ϕ1, v2) does not belong to V . The construction of an
appropriate (v1, v2) ∈ V is accomplished hereafter.

(ii) Next, we show that for every positive ε, there exists v1 ∈ X(Ω1) verifying v1 = u2
h

on γ and ‖v1 − ϕ1‖W 1,1(Ω1) ≤ ε. To do this, introduce ψ1 = u1
h + R1∗(u2

h − u1
h)

where R1∗ denotes a continuous lifting operator from H
1
2
00(γ) into H1(Ω1) satisfying

R1∗(u2
h − u1

h) = 0 on ∂Ω ∩ ∂Ω1. It follows that ϕ1 − ψ1 ∈ W 1,1
0 (Ω1).

Let then ε > 0 be given. A density argument implies that there exists χ1 ∈ H1
0 (Ω1)

verifying ‖χ1 − (ϕ1 − ψ1)‖W 1,1(Ω1) ≤ ε. Setting v1 = χ1 + ψ1, we deduce that

v1 ∈ X(Ω1), ‖v1 − ϕ1‖W 1,1(Ω1) ≤ ε and v = (v1, v2) ∈ V.

The latter estimate together with (4.22) gives

2∑

`=1

‖v` − u`h‖W 1,1(Ω`) = ‖v1 − u1
h‖W 1,1(Ω1)≤‖v1 − ϕ1‖W 1,1(Ω1) + ‖ϕ1 − u1

h‖W 1,1(Ω1)

≤ ε+ C(h
1
2‖u− uh‖+ h

3
2 ).

Choosing ε = h
3
2 ends the proof of the lemma.

Remark 4.1 The technique leading to the bound (4.21) by choosing ηh as in (4.20)
avoids the introduction of the hypothesis “h1/h2 bounded as h → 0” which should be
used if ηh does not depend on h.

We are now in a position to exhibit an upper bound of the error committed by the
mortar finite element approximation in the following theorem.

Theorem 4.5 Let u ∈ H2(Ω) ∩ V be the solution of (2.1) and let uh ∈ Vh be the
solution of (3.3). One has:

‖u− uh‖ ≤ Ch
1
2 ,

where the positive constant C is independent of h.

Proof. Putting together in (4.1) the estimates obtained in Lemmas 4.2, 4.3, and 4.4
yields the following bound

‖u− uh‖2 ≤ Ch+ Ch
1
2‖u− uh‖.

Writing Ch
1
2‖u− uh‖ ≤ 1

2
‖u− uh‖2 + 1

2
C2h accomplishes the proof.

Notice that the bound obtained in Theorem 4.5 is similar to that already known
in the conforming case [15].
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thesis, University of Toulouse III, France (1998).
17. J.–L. Lions and G. Stampacchia, Variational Inequalities. Comm. Pure. Applied Math.

XX (1967) 493–519.
18. P.P. Mosolov and V.P. Miasnikov, Variational Methods in the Theory of the Fluidity of

a Viscous-Plastic Medium. PPM, J. Mech. and Appl. Math. 29 (1965) 545–577.
19. P.P. Mosolov and V.P. Miasnikov, On Stagnant Flow Regions of a Viscous-Plastic

Medium in Pipes. PPM, J. Mech. and Appl. Math. 30 (1966) 841–854.
20. P.P. Mosolov and V.P. Miasnikov, On Qualitative Singularities of the Flow of a Vis-

coplastic Medium in Pipes. PPM, J. Mech and Appl. Math. 31 (1967) 609–613.


