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Abstract

The Local Average Contact (LAC) method allows the handling of nonmatch-
ing meshes in an easy way by averaging locally the interpenetration between
the contacting bodies. In this paper we consider several numerical experi-
ments involving two and three-dimensional bodies discretized with various
linear and quadratic finite elements. We also present a convergence analysis
of the method in the geometrical nonconforming case in which the boundary
points of the candidate contact areas do not coincide.

Keywords: Local Average Contact (LAC) condition, Unilateral contact,
nonmatching meshes, geometrical nonconformity.

1. Introduction

Finite element methods are currently used to approximate the unilateral
contact problems in solid mechanics (see, e.g., [1, 2, 3, 4, 5]). Such problems
show a nonlinear boundary condition, which requires that the normal compo-
nent of the relative displacement field of the contacting bodies is nonpositive
on a part of their boundaries (see [6]). This nonlinearity leads to a weak for-
mulation written as a variational inequality which admits a unique solution
(see [7]) and the regularity of the solution shows limitations whatever the
regularity of the data is (see [8]). A consequence is that only finite element
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methods of order one and of order two are of interest which is the scope of
this work.

The present paper focuses on the contact problems between two or more
bodies whose respective meshes may not coincide on the contact interface,
the so called “nonmatching meshes” or “noncoinciding meshes”. This situ-
ation which often occurs in engineering computations (since the bodies are
usually meshed independently) has been considered from a numerical and
theoretical point of view in the last twenty years. It is now known that
the local node-on-segment contact conditions in 2D or the equivalent node-
on-face conditions in 3D produce solutions with oscillations which degrade
the accuracy and slow down the convergence of the computations. On the
contrary the mortar domain decomposition method [9] handles in an opti-
mal way the nonmatching meshes and its adaptation to contact problems
gave promising theoretical and numerical results at the end of the 90’s (see
[10, 11, 12, 13, 14]). To summarize, this initial approach directly inspired
from [9], considered a global L2-projection of linear finite element func-
tions from a mesh to another mesh on the contact area in two-dimensions.
From a numerical point of view, this mortar concept has been adapted
and extended to many contact configurations such as friction, quadratic fi-
nite elements, large deformations, three-dimensional problems... see, e.g.
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and the references
therein.

The Local Average Contact (LAC) method introduced in [29] is an ap-
proach handling in a local way the contact constraint by averaging locally
the jump of the normal displacement denoted [uh

N
] independently of the space

dimension and of the degree and type of the finite elements. In a similar way,
the LAC method can be seen as a Lagrange method in which the multiplier
representing the contact pressure is piecewise constant independently of the
degree (one or two) of the finite elements chosen for the displacements. This
method provides optimal convergence results in the energy norm in the gen-
eral case of nonmatching meshes (see the analysis in [29] where the problem
is written as a variational inequality) and therefore combines both the ad-
vantages of locality and accuracy. In this paper we now consider the LAC
approximation using mixed finite elements with Lagrange multipliers, we
recover the optimal results of [29] and we show on various examples the ca-
pabilities of the method. In addition we focus on the theoretical and practical
handling of geometrical nonconformity in which the boundary of the candi-
date contact area (which is of dimension d−2 if the problem is d-dimensional)
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does not coincide with any of the discretizations.
The paper is organized as follows: section 2 deals with the equations and

the weak formulations modeling the unilateral contact problem between two
elastic bodies in linear elasticity. In section 3, the LAC method is intro-
duced. A special attention is paid to the geometrical nonconforming case for
which a first convergence analysis is carried out. Section 4 is concerned in
particular with the generalized Newton algorithm used to solve the problem
and in section 5, we show various numerical results in order to check the
capabilities of the method: a standard Taylor patch test in 2D and 3D and
similar tests with curved boundaries with self included disks and self included
spheres. Then we compute numerical convergence rates in 2D and 3D using
examples where the exact solutions are known. Finally we consider a more
sophisticated three dimensional example, the contact of a deformable ring on
a deformable block which is computed using different finite elements (8, 20
and 27 node hexahedra).

2. Problem set-up

2.1. Spaces and norms

First, we specify some notations we shall use. Let ω be a Lebesgue-
measurable subset of Rd, d ≥ 1 with nonempty interior ; the generic point
of ω is denoted x. The classical Lebesgue spaces Lp(ω), 1 < p < ∞ and the
standard Sobolev space Hm(ω), m ∈ N (we adopt the convention H0(ω) =
L2(ω)) are endowed with the norms:

‖ψ‖Lp(ω) =

(∫
ω

|ψ(x)|p dx
)1/p

, ‖ψ‖m,ω =

 ∑
0≤|α|≤m

‖∂αψ‖2
L2(ω)

1/2

,

where α = (α1, . . . , αd) is a multi–index in Nd, |α| = α1 + · · · + αd and
the symbol ∂α represents a partial derivative. The fractional Sobolev space
Hτ (ω), τ ∈ R+\N with τ = m+ν,m being the integer part of τ and ν ∈ (0, 1)
is defined by the norm ‖.‖τ,ω involving the semi-norm |.|ν,ω:

‖ψ‖τ,ω=

‖ψ‖2
m,ω+

∑
|α|=m

|∂αψ|2ν,ω

1/2

, |ψ|ν,ω=

(∫
ω

∫
ω

(ψ(x)− ψ(y))2

|x− y|d+2ν
dxdy

)1/2

.
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2.2. Formulation of contact problem

Let Ω1 and Ω2 in Rd, d = 2, 3 stand for two domains representing
the reference configurations of two linearly elastic bodies. The boundaries
∂Ω`, ` = 1, 2 consist of three nonoverlapping open parts Γ`

N
, Γ`

D
and Γ`C where

Γ`
N
∪Γ`

D
∪Γ`C = ∂Ω`. We assume that the measures in Rd−1of Γ`C and Γ`

D
are

positive and we set

ΓC = Γ1
C ∩ Γ2

C ,

ΓC is the initial common contact area. The bodies are submitted to a Neu-
mann condition on Γ`

N
with a density of loads F` ∈ (L2(Γ`

N
))d, a Dirichlet

condition on Γ`
D

(the bodies are assumed to be clamped on Γ`
D

to simplify)
and to volume loads denoted f` ∈ (L2(Ω`))d in Ω`. Finally, a (frictionless)
unilateral contact condition between the bodies holds on ΓC .

The problem consists in finding the displacement field u = (u1, u2) :
Ω1 × Ω2 → Rd satisfying (1)–(7) with ` = 1, 2:

− div σ`(u`) = f` in Ω`, (1)

σ(u`) = A`ε(u`) in Ω`, (2)

σ`(u`)n` = F` on Γ`
N
, (3)

u` = 0 on Γ`
D
, (4)

where n` stands for the outward unit normal to Ω` on ∂Ω`. On Γ`C \ ΓC we
simply set homogeneous Neumann conditions :

σ`(u`)n` = 0 on Γ`C \ ΓC . (5)

On ΓC , we decompose the displacement and the stress vector fields in normal
and tangential components as follows:

u`N = u`.n`, u`T = u` − u`Nn`,

σ`N = (σ`(u`)n`).n`, σ`T = σ`(u`)n` − σ`Nn`,

and we denote by
[u

N
] = u1N + u2N

the jump of the normal displacement across the contact interface.

4



The unilateral contact condition on ΓC is expressed by the following com-
plementarity condition:

[u
N

] ≤ 0, σ1N = σ2N = σ
N
≤ 0, [u

N
]σ

N
= 0, (6)

where a vanishing gap between the two elastic solids has been chosen in the
reference configuration.

The frictionless condition on ΓC reads as: for ` = 1, 2

σ`T = 0. (7)

We introduce the spaces V` =
{
v` ∈ (H1(Ω`))d : v = 0 on Γ`

D

}
and the prod-

uct space
V = V1 × V2

endowed with the broken norm

‖v‖ =
( 2∑
`=1

‖v`‖2
1,Ω`

) 1
2
, ∀v = (v1, v2) ∈ V.

The forthcoming mixed variational formulation uses the convex cone M of
multipliers on ΓC

M =
{
µ ∈ W ′,

〈
µ, ψ

〉
W ′,W

≥ 0 for all ψ ∈ W,ψ ≤ 0 a.e. on ΓC

}
,

where W ⊂ H
1
2 (ΓC) is the range of V by the normal trace operator on ΓC ,

W ′ denotes its dual and
〈
., .
〉
W ′,W

stands for the duality product. Next we

denote by ‖.‖W ′ the dual norm of W .
Let be given the following forms for any u = (u1, u2), v = (v1, v2) in V

and µ ∈ W ′:

a(u, v) =
2∑
`=1

∫
Ω`
A`ε(u`) : ε(v`) dΩ`, l(v) =

2∑
`=1

∫
Ω`
f`.v` dΩ`+

∫
Γ`
N

F`.v` dΓ`,

b(µ, v) =

∫
ΓC

µ[v
N

] dΓ.

The weak formulation of Problem (1)–(7) is to find u ∈ V and λ ∈ M such
that {

a(u, v)− b(λ, v) = l(v), ∀v ∈ V,
b(µ− λ, u) ≥ 0, ∀µ ∈M.

(8)

The existence and uniqueness of (u, λ) solution to (8) has been first stated
in [1]. Moreover, the second argument λ solution to (8) satisfies λ = σ

N
.
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3. The Local Average Contact (LAC) method

3.1. Definition

Let V h
` ⊂ V` be a family of finite dimensional vector spaces indexed

by h` coming from a regular family T h` of triangulations, quadrangulations,
tetrahedralizations or hexahedralizations of the domains Ω`, ` = 1, 2 (see [30,
31, 32]). We assume that the boundary parts Γ`

N
, Γ`

D
and Γ`C are consistent

with the discretizations of Ω` and we set ΓC = Γ1
C ∩Γ2

C . Note that we do not
suppose that ΓC is consistent with one of the discretizations (in other words
ΓC is neither a union of trace meshes coming from one nor from the other
body), see Figure 1.

Ω1

Ω2

Γ1
C Γ2

C

Γ
C

Figure 1: Problem set-up

The notation h` represents the largest diameter among all (closed) el-
ements T ∈ T h` . We choose standard continuous and piecewise affine or
quadratic functions, i.e.:

V h
` =

{
vh` ∈ (C(Ω

`
))d : vh` |T∈ Pk(T ),∀T ∈ T h` , vh` = 0 on Γ`

D

}
,

where d = 2, 3 and k = 1, 2. We set

V h = V h
1 × V h

2 .

We have to introduce the internal degree of freedom hypothesis which is
needed to carry out the convergence analysis.
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Hypothesis 1. (internal d.o.f.) There exists a (d− 1 dimensional) macro-
mesh TM of Γ1

C (or of Γ2
C) whose macro-elements are unions of elements of

T h1 ∩Γ1
C (or of T h2 ∩Γ2

C) such that for every macro-element Tm ∈ TM , there
exists (at least) a degree of freedom xi of V h

` such that supp(φi) ⊂ Tm, where
φi is the trace of the basis function associated to xi. Moreover there exists
a constant C such that the largest diameter of a the macro-element is lower
than Ch` (this last requirement is made to avoid a too coarse macro-mesh).

From a theoretical point of view a macro-mesh satisfying Hypothesis 1
always exist if the mesh is fine enough (it suffices to gather the elements)
but the practical construction of the macro-mesh is a key point of the LAC
method in particular in the threedimensional case (see the implementation
hereafter, e.g. section 4.4 and Figure 2).

From now on we suppose that TM is a macro-mesh of (e.g.) Γ1
C satisfying

Hypothesis 1.
In the forthcoming definition of the LAC method we have also to take

into account that ΓC = Γ1
C ∩ Γ2

C does not coincide with a union of trace
meshes of one or the other body. So we only consider the macro-elements
which have a sufficiently large intersection with ΓC and we simply neglect
the contact contribution of the macro-elements with a too small intersection.
The size of the intersection is evaluated using the parameter ε ∈ (0, 1] in the
forthcoming definition.

Definition 1. Let ε > 0 be a fixed small parameter. Suppose that Hypothesis
1 holds. The macro-element Tm is said to be admissible if∫

Tm∩ΓC

φm?+1 dΓ√
|Tm ∩ ΓC ||Tm|

= φm?+1

√
δ ≥ ε,

where φm?+1 is the basis function associated to the internal degree of freedom,
φm?+1 denotes its average over Tm ∩ΓC and δ = |Tm ∩ΓC |/|Tm| is the ratio
of the element Tm belonging to ΓC. We denote by TMad the set of admissible
elements in Γ1

C.

It is easy to see that any macro-element included into ΓC (i.e. δ = 1) is
admissible provided that ε is smaller than a value depending only on d and
on choice of the finite element (e.g., 1/2 for linear elements and d = 2, 1/3
for linear elements and d = 3). Conversely any macro-element Tm having an
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empty intersection with ΓC (i.e. δ = 0) is never admissible. In the remaining
case (i.e., Tm intersects partially ΓC). Tm is admissible if (roughly speaking)
its intersection with ΓC is not too small.

Remark 1. If Tm contains more than one internal d.o.f. then we fix one
of them which satisfies |Tm ∩ ΓC | > 0, which is denoted xm?+1 and the other
internal d.o.f. are handled as standard nodes.

Therefore the candidate contact area ΓC can be written as a disjoint
union:

ΓC = ΓadC ∪ ΓεC

where ΓadC = ∪Tm∈TMad (Tm∩ΓC) denotes the set of admissible macro-elements
Tm intersected with ΓC and ΓεC stands for the remaining area.

We choose piecewise constant nonpositive Lagrange multipliers on ΓC
which vanish on ΓεC , i.e., in the convex cone Mh:

Mh = {µh ∈ Xh : µh ≤ 0 on ΓC}

with
Xh = {µh ∈ L2(ΓC) : µh|

Tm∩ΓC,T
m∈TM

∈ P0(Tm ∩ ΓC), µh|
Γε
C

= 0}.

Note that Xh ⊂ W ′ so that the bilinear form b is well defined on Xh×V h.
The discrete problem to be solved becomes: find uh ∈ V h and λh ∈Mh such
that {

a(uh, vh)− b(λh, vh) = l(vh), ∀vh ∈ V h,

b(µh − λh, uh) ≥ 0, ∀µh ∈Mh.
(9)

The existence of a solution (uh, λh) of (9) as well as the uniqueness of uh

follows from standard arguments (see, e.g., [1]). When ΓC is consistent with
one of the discretizations (i.e., ΓC is a union of trace meshes coming from
one or from the other body), which corresponds to the case ΓC = ΓadC or
equivalently ΓεC = ∅, the uniqueness of λh can be established (see [33, 29])
as well as the existence of a constant βh such that

inf
µh∈Xh

sup
vh∈V h

b(µh, vh)

‖µh‖W ′ ‖vh‖
≥ βh > 0. (10)

Again, in this case it can be proved that βh is independent of h, i.e., βh = β
(see the details in [33, 29]).
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When ΓC is not consistent with one of the discretizations, in order to
prove the uniqueness of the solution (uh, λh) of (9) as well as the existence
of βh in (10) we need to check that for any µh ∈ Xh we have the following
implication b(µh, vh) = 0, ∀vh ∈ V h ⇒ µh = 0. In the case of linear finite
elements, we can use Lemma 3.1 in [33] or Lemma 1 in [29] and the result
is obvious since all the basis fonctions are nonnegative everywhere. The
dependence of βh on h in the general case will be studied in the appendix.

Remark 2. An equivalent formulation : the discrete set of admissible dis-
placements satisfying the average noninterpenetration conditions on the con-
tact zone is given by

Kh
ε =

{
vh ∈ V h :

∫
Tm∩ΓC

[vh
N

] dΓ ≤ 0, ∀Tm ∈ TMad
}
.

The corresponding discrete variational inequality is to find uh ∈ Kh
ε such that

a(uh, vh−uh) ≥ l(vh−uh),∀ vh ∈ Kh
ε . According to Stampacchia’s Theorem,

this inequality admits a unique solution and its solution uh coincides with the
first argument of the solution to (9).

3.2. Error estimates

3.2.1. An abstract error estimate

We begin with a standard abstract error estimate.

Proposition 1. Let (u, λ) be the solution of (8) and let (uh, λh) be the solu-
tion of (9). Then, there exists a positive constant C independent of h and ε
satisfying:

‖u− uh‖ ≤ C

{
(1 +

1

βh
) inf
vh∈V h

‖u− vh‖+ inf
µh∈Xh

‖λ− µh‖W ′

+(max(0,−b(uh, λ)))1/2

}
,

‖λ− λh‖W ′ ≤ C(1 +
1

βh
)
(
‖u− uh‖+ inf

µh∈Xh
‖λ− µh‖W ′

)
.
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Proof. The proof is classical, we write it here only to show the depen-
dence of the inf-sup constant βh. Let vh ∈ V h. According to (8) and (9), we
have

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u, vh − uh)− a(uh, vh − uh)
= a(u− uh, u− vh) + b(λ, vh − uh)− b(λh, vh − uh)
= a(u− uh, u− vh) + b(λ− λh, vh − u) + b(λ− λh, u− uh).

Besides, we have b(λ, u) = 0. Similarly, (9) leads to b(λh, uh) = 0. There-
fore

a(u− uh, u− uh) = a(u− uh, u− vh)− b(λ− λh, u− vh)− b(λ, uh)− b(λh, u).

Denoting by α the ellipticity constant of a(., .) on V , by M the continuity
constant of a(., .) on V and using the trace theorem, we obtain:

α‖u− uh‖2 ≤ M‖u− uh‖‖u− vh‖+ C‖λ− λh‖W ′‖u− vh‖
−b(λ, uh)− b(λh, u). (11)

Now, let us consider problem (8). The inclusion V h ⊂ V implies

a(u, vh)− b(λ, vh) = l(vh), ∀ vh ∈ V h.

The latter equality together with (9) yields

a(u− uh, vh)− b(λ− λh, vh) = 0, ∀ vh ∈ V h.

Inserting µh ∈ Xh, using the continuity of a(., .) as well as the trace
theorem gives

b(λh − µh, vh) = −a(u− uh, vh) + b(λ− µh, vh)
≤ M‖u− uh‖‖vh‖+ C‖λ− µh‖W ′‖vh‖, ∀µh ∈ Xh,∀ vh ∈ V h.

The inf-sup condition and the previous bound allow us to write

βh‖λh − µh‖W ′ ≤ sup
vh∈V h

b(λh − µh, vh)
‖vh‖

≤ M‖u− uh‖+ C‖λ− µh‖W ′ ,

for any µh ∈ Xh.
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Since

‖λ− λh‖W ′ ≤ ‖λ− µh‖W ′ + ‖µh − λh‖W ′ , ∀µh ∈ Xh,

we finally come to the conclusion that there exists C > 0 such that

‖λ− λh‖W ′ ≤ C(1 +
1

βh
)
(
‖u− uh‖+ inf

µh∈Xh
‖λ− µh‖W ′

)
. (12)

Putting together (12) and (11) and using Young inequality gives any
vh ∈ V h

α‖u− uh‖2 ≤ C

{
(1 +

1

βh
)2 inf

vh∈V h
‖u− vh‖2 + inf

µh∈Xh
‖λ− µh‖2

W ′

}
−b(λ, uh)− b(λh, u),

and, since b(λh, u) ≥ 0, we conclude that

α‖u− uh‖ ≤ C

{
(1 +

1

βh
) inf
vh∈V h

‖u− vh‖+ inf
µh∈Xh

‖λ− µh‖W ′
}

+(max(0,−b(λ, uh)))1/2.

3.2.2. Error estimate when ΓC is consistent with the discretization

We first give an error estimate when ΓC is consistent with the discretiza-
tion either of Ω1 (as in the next theorem) or of Ω2. Of course, the meshes of
Ω1 and Ω2 are not supposed to fit together on ΓC , so there are nonmatching
meshes on the contact area.

Theorem 1. Let d = 2, 3 and k = 1, 2. Suppose that ΓC is consistent with
the discretization of e.g. Ω1. Let (u, λ) and (uh, λh) be the solutions to the
continuous and to the discrete problems (8) and (9) respectively where the
Hypothesis 1 is used to build the Lagrange multiplier space. Assume that
u ∈ (Hτ (Ω1))d × (Hτ (Ω2))d with 3/2 < τ ≤ min(k + 1, 5/2). Then, there
exists a constant C > 0 independent of h = max(h1, h2) and u such that

‖u− uh‖+ ‖λ− λh‖W ′ ≤ Chτ−1‖u‖τ,Ω.
Proof. In this case all the macro-elements are admissible since ΓC is the
union of (entire) macro-elements, the inf-sup constant βh does not depend
on h (see [29] or the appendix) and it suffices to choose in Proposition 1
vh = (Ihu1, I

hu2) where Ih is the Lagrange interpolation operator of degree
k, µh = π̄h1λ where π̄h1 is the L2-projection operator onto Xh (ΓεC = ∅) which
lead to standard optimal error estimates. The remaining error estimate on
b(λ, uh) can be found in [29] and uses the techniques developed in [34].
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3.2.3. Error estimate when ΓC is not consistent with the discretization

The forthcoming theorem is concerned with the general case (nonmatch-
ing meshes and geometrical nonconforming case), i.e., when ΓC is consistent
with none of both discretizations of Ω`. Actually, for technical reasons, we
are only able to achieve the analysis for linear finite elements.

Theorem 2. Let d = 2, 3 and k = 1. Suppose that ΓC is consistent with
none discretization of Ω`, ` = 1, 2. Let (u, λ) and (uh, λh) be the solutions
to the continuous and to the discrete problems (8) and (9) respectively where
the Hypothesis 1 is used to build the Lagrange multiplier space. Assume that
u ∈ (Hτ (Ω1))d × (Hτ (Ω2))d with 3/2 < τ ≤ 2. Then, there exists constants
C,C(η) > 0 independent of h = max(h1, h2) and u such that when d = 2:

‖u− uh‖+ ‖λ− λh‖W ′ ≤
{
Chτ−1

√
− ln(h)‖u‖τ,Ω, 3/2 < τ < 2,

C(η)h1−η‖u‖2,Ω,∀η > 0, τ = 2,

and when d = 3:

‖u− uh‖+ h
3(τ−1)
2(τ+2)‖λ− λh‖W ′ ≤ Ch(τ−1) 2τ+1

2τ+4‖u‖τ,Ω 3/2 < τ ≤ 2.

We note that the estimates are quasi-optimal in 2D. On the contrary
we are not able (for technical reasons) to obtain the same quasi-optimal
convergence rates in 3D and we only prove convergence with some lower
rates. As far as we know these estimates are the first ones in the geometrical
nonconforming case. Note that there are other techniques which could maybe
be adapted to our problem such as the ones issued from fictituous domains
or extended finite element methods (see, e.g., [35, 36]) already applied to
contact problems in a different context.
Proof. We use again Proposition 1 and we have to bound two norm terms
and −b(λ, uh). As in Theorem 1, we choose vh = (Ihu1, I

hu2) and µh = π̄h1λ.
Obviously ‖u− vh‖ ≤ Chτ−1‖u‖τ,Ω.

We have −b(λ, uh) = −
∫

ΓadC
λ[uhN ]dΓ −

∫
ΓεC
λ[uhN ]dΓ. By using standard

techniques as in [29], it is easy to show that the first integral term yields:

−
∫

ΓadC

λ[uhN ]dΓ ≤ Ch2(τ−1)‖u‖2
τ,Ω +

α

2
‖u− uh‖2.

The second integral term coming from−b(λ, uh) can be bounded using λuN =
0, generalized Hölder inequalities, Sobolev embeddings and the trace theo-
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rem: for d = 2 and 1 < p < 2 (see [37, 38]):

−
∫

ΓεC

λ[uhN ]dΓ =

∫
ΓεC

λ[(u− uh)N ]dΓ

≤ ‖λ‖Lp(ΓεC)‖[(u− uh)N ]‖Lp/(p−1)(ΓC)

≤ C

√
p

p− 1
‖λ‖L1/(2−τ)(ΓεC)|ΓεC |τ−2+1/p‖[(u− uh)N ]‖1/2,ΓC

≤ C

√
p

p− 1
‖λ‖τ−3/2,ΓC |ΓεC |τ−2+1/p‖u− uh‖, (13)

for 3/2 < τ < 2 and where |ΓεC | denotes the onedimensional measure of ΓεC .
Choosing p = ln |ΓεC |/(1 + ln |ΓεC |) gives

−
∫

ΓεC

λ[uhN ]dΓ ≤ C (− ln |ΓεC |)
1/2 ‖λ‖τ−3/2,ΓC |ΓεC |τ−1‖u− uh‖. (14)

When d = 3, the bound is obtained in a similar (and simpler) way:

−
∫

ΓεC

λ[uhN ]dΓ ≤ ‖λ‖L4/3(ΓεC)‖[(u− uh)N ]‖L4(ΓC)

≤ C‖λ‖L4/(5−2τ)(ΓεC)‖[(u− uh)N ]‖1/2,ΓC |ΓεC |
τ−1

2

≤ C‖λ‖τ−3/2,ΓC |ΓεC |
τ−1

2 ‖u− uh‖, (15)

for 3/2 < τ < 5/2.
The bound of the second norm term ‖λ− π̄h1λ‖W ′ in Proposition 1 needs

an additional calculus since the functions of Xh (here π̄h1λ) vanish on ΓεC . So

‖λ− π̄h1λ‖W ′ = sup
ψ∈W

∫
ΓC

(λ− π̄h1λ)ψ dΓ

‖ψ‖W

≤ sup
ψ∈W

∫
ΓadC

(λ− π̄h1λ)ψ dΓ

‖ψ‖W
+ sup

ψ∈W

∫
ΓεC

λψ dΓ

‖ψ‖W
.

The first supremum is optimally bounded in a standard way (using the ap-
proximation properties of π̄h1 , see, e.g. [33, 34, 29]) by Chτ−1‖u‖τ,Ω. The
second supremum comes from the geometrical nonconformity and is bounded
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exactly as in (14), (15) by changing u − uh with ψ (and ‖[(u − uh)N ]‖1/2,ΓC

with ‖ψ‖W ).
According to the appendix, we can choose the inf-sup constant βh = Cε.

From the previous bounds and Proposition 1, we get when d = 2 and 3/2 <
τ < 2:

‖u− uh‖+ ε‖λ− λh‖W ′ ≤ C
(
ε−1hτ−1 + |ΓεC |τ−1 (− ln |ΓεC |)

1/2
)
‖u‖τ,Ω.

It is easy to show that the measure of ΓεC is lower than Cε2/3h. Therefore,
fixing ε small (and independent of h) we get the estimate:

‖u− uh‖+ ‖λ− λh‖W ′ ≤ C(ε)hτ−1
√
− ln(h)‖u‖τ,Ω

when the constant ε is chosen independent of h. In the case τ = 2, estimate
(13) does not hold: it suffices to see that u also lies in H2−η/2 for any positive
η, to use the previous bounds with τ = 2− η/2 together with the asymptot-
ical estimate

√
− ln(h) ≤ Ch−η/2. Note that the bounds in the 2D case are

quasioptimal.
When d = 3 and 3/2 < τ ≤ 2 we use (15) and get the bound

‖u− uh‖+ ε‖λ− λh‖W ′ ≤ C
(
ε−1hτ−1‖u‖τ,Ω + ‖λ‖τ−3/2,ΓC |ΓεC |(τ−1)/2

)
.

Given a nonadmissible triangular or quadrangular macro-element T , we want
to bound the area of T ∩ ΓC (which is a triangle or a quadrangle, since the
intersection is supposed small and which intersects two or three edges of T ).
Let δ1h and δ2h be the lenghts of the two largest edges of T ∩ ΓC included
in the edges of T . It is easy to check that δ (resp. φm?+1) (see Definition 1)
are equivalent to (up to constants independent of h) δ1δ2 (resp. min(δ1, δ2)).
Since the element is nonadmissible we have min2(δ1, δ2)δ1δ2 ≤ Cε2 hence
δ3

1δ
3
2 ≤ Cε2 (note that this estimate is very rough) which implies that the

area of T ∩ ΓC is bounded by Ch2ε2/3 and finally |ΓεC | ≤ Chε2/3. Therefore

‖u− uh‖+ ε‖λ− λh‖W ′ ≤ C(ε−1hτ−1 + ε(τ−1)/3h(τ−1)/2)‖u‖τ,Ω.

This suboptimal rate gives for the particular choice of ε = h
3(τ−1)
2(τ+2) a bound of

h(τ−1) 2τ+1
2τ+4 .

14



4. Implementation of method

4.1. Specifications

To implement a new contact method in a standard finite element software
(here [39]), we impose three constraints:

1. No use of non-local operators as much as possible and keep the inde-
pendence of elementary quantities (vector, matrix) before assembly;

2. Possibility of using this method without changes of the most suitable
hypotheses in the model (choice of elements, choice of material be-
haviour, etc...);

3. Possibility of using standard linear solvers for contact problems, in par-
ticular solvers which are now mostly parallelized on parallel computers.

4.2. Comparing LAC method with other methods

Several methods, based on mortar methods can been used. Any of the
methods use L2-projections on well chosen spaces, named here mortar spaces.
When using linear and bilinear finite elements in 3D (4-node tetrahedra and
8-node hexahedra) the contact surface is made of triangles and quadrangles.
There are usually three choices of mortar spaces, i.e.:

• “Pk−1 mortar”: the space is defined by constant approximations in P0

or Q0 on the slave surface mesh, see [40, 41] for instance. This method
needs a stabilization process.

• “Standard mortar”: the space is directly built on the slave space dis-
cretization, see [14, 3, 23, 5].

• “Dual mortar”: the space is the dual of the slave space discretization,
see [42, 43].

When using three dimensional quadratic finite elements (10-node tetrahedra,
20 and 27-node hexahedra), the contact surface is made of 6-node triangles
or 8 and 9-node quadrangles. Correct mortar space is more difficult to im-
plement, and for some choices, we can obtain non-physical gaps between the
surfaces. Two solutions were proposed:

• “Pk−1 mortar”: the space is defined using a linear approximation P1 or
Q1 on the slave surface mesh, [41, 24].
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• “Dual quadratic mortar”: the space is the dual of the slave space dis-
cretization, [43, 22]. It requires numerical basis functions that have to
be computed (there are not defined by analytical functions) except for
the easiest case of 27-node hexahedra.

After the choice of the correct mortar space, we have to define both the
formulation and the algorithm to solve the contact problem. The “dual”
and “dual quadratic” methods allow local static condensation of contact un-
knowns (Lagrange multipliers) thanks to the identity coupling matrix. The
“standard” and “Pk−1 mortar” spaces use analytical basis functions. How-
ever, these methods need special adaptation of software to be implemented
efficiently: the “standard” method [12, 13, 23, 24] is non local and as already
mentioned the “dual” method [42, 22] uses basis functions which need to be
numerically computed.

4.3. Problem to solve

We recall that the discrete problem to be solved is (see (9)): find uh ∈ V h

and λh ∈Mh such that{
a(uh, vh)− b(λh, vh) = l(vh), ∀vh ∈ V h,

b(µh − λh, uh) ≥ 0, ∀µh ∈Mh,

with

Mh = {µh ∈ L2(ΓC) : µh|Tm ∈ P0(Tm),∀Tm ∈ TM , µh ≤ 0 on ΓC}.

This “P0 mortar” has been automatically stabilized thanks to the convenient
definition of TM (hypothesis 1). We define the spaceMn,k(R) of rectangular
real matrices with n lines and k columns andMk(R) =Mk,k(R). The matrix
CS ∈Mn,k(R) and CM ∈Mm,k(R) are defined by:

CS
ij =

∫
Tj

φSiN dΓ , CM
ij =

∫
Tj

φMiN dΓ ,

and the matrix MLAC ∈Mk(R) is:

MLAC
ij = δij|T i|,

where φS (resp. φM) denotes the basis function of the finite element method
on the slave (resp. master) surface and T i (resp. |T i|) is the support (resp.
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the measure of the support) of the basis function P0(TM) (on macro-mesh).
Writing the displacements U as follows: U = (UN , UM , US) (UN involves
the d.o.f. inside the bodies, UM and US contain the d.o.f. of the master
and slave parts) and denotong by Λ the vector of Lagrange multipliers, the
matrix formulation of (9) becomes:

KNN KNM KNS 0
KMN KMM KMS CM

KSN KSM KSS CS



UN

UM

US

Λ

 = F ,

MLAC−1

(tCSUS +t CMUM) ≤ 0 in Rk,

MLACΛ ≤ 0 in Rk,

MLAC−1

(tCSUS +t CMUM).MLACΛ = 0 in R.

(16)

Note that MLAC is a diagonal and positive-definite matrix, we can write (16)
in this equivalent form:

KNN KNM KNS 0
KMN KMM KMS CM

KSN KSM KSS CS



UN

UM

US

Λ

 = F ,

tCSUS +t CMUM ≤ 0 in Rk,

Λ ≤ 0 in Rk,

(tCSUS +t CMUM).Λ = 0 in R.

(17)

4.4. Building the macro-mesh TM

From a practical point of view, an essential question is “how can Hypoth-
esis 1 be fulfilled ?”

1. In the twodimensional case with linear elements it suffices to gather
the elements to obtain a macro mesh TM ;

2. In the twodimensional case with quadratic elements, the trace mesh
already satisfies Hypothesis 1;

3. In the threedimensional case a refinement strategy is adopted. The
strategy is depicted on Figure 2. For 27-node hexahedra, local refine-
ment is not required (as in the 2D quadratic case) since there already
exists a node located at the center of the contact face. This refinement

17



Refinement for 4-node tetrahedron

Refinement for 8-node hexahedron (version 1)

Refinement for 8-node hexahedron (version 2)

Refinement for 27-node hexahedron

Figure 2: Refinement of the first layer of elements for contact

strategy is local and only concerns the elements which have a face on
the contact area.

One can either choose to refine the mesh of one or of the other body.
Moreover the above-mentioned refinement does not affect the regularity and
the quasi-uniformness properties of the meshes.

Remark 3. 1. This strategy could be easily extended to other elements
(pyramids or prisms for instance);

2. The local refinement for an hexahedra is not unique, see Figure 2.

3. The preparation of the contact surface (see previous item in the remark)
is achieved at the beginning of the computation and then never changes.
Of course it could been “hidden” to code users.
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4.5. General algorithm

We choose a full-Newton algorithm based on a single Newton step for all
non-linearities: contact and other non-linear mechanical behaviours (large
strains, plasticity, etc...). The general algorithm is based on a Generalized
Newton Method [44]. The contact status are computed with the active-set
method strategy [45]. We have:

[
U
Λ

]
=


UN

UM

US

Λ

 , K =

KNN KNM KNS

KMN KMM KMS

KSN KSM KSS

 , C =

 0
CM

CS

 .
Given an initial gap g0, the average initial gap G0 on the contact zone is:

G0 =

∫
Tm∩ΓC

g0 dΓ.

The problem (17) is equivalent to (when taking into account the initial gap):

[
K C

]
×
[
U
Λ

]
= F ,

tCU ≤ G0 in Rk,

Λ ≤ 0 in Rk,
tCU.Λ = 0 in R.

(18)

We define the function A:

A(U,Λ) = Λ + max(0, ρ(CU −G0)− Λ), ∀ρ > 0.

Therefore (18) is equivalent to:
[
K C

]
×
[
U
Λ

]
= F ,

A(U,Λ) = 0.

We define S(Λi) as the status of contact for each Lagrange multiplier indexed
by i. To solve the non-linearity coming from the contact, we have to establish
the active-set i.e., S(Λi) = 1 and the non-active set S(Λi) = 0. Finally we
obtain the algorithm described hereafter.
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Algorithm 1 Generalized Newton Method for contact

1: Initial pairing → G0

2: for i = 1..dim(Λ) do

3: if G0
i ≤ 0 then

4: S(Λi
0) = 0 (no contact)

5: else
6: S(Λi

0) = 1 (contact)
7: end if
8: end for
9: k = 1

10: while S(Λk) 6= S(Λk+1),∀k and ‖rk‖2 ≥ tole do
11: Compute rigidity matrix [Kk] and second member rk
12: Compute second member for contact
13: for i = 1 ..dim(Λ) do
14: if S(Λi

k) = 1 then
15: Compute contact matrix  0 CS

k 0
tCS

k 0 tCM
k

0 CM
k 0


16: else
17: Compute no-contact matrix 0 0 0

0 Id 0
0 0 0


18: end if
19: end for
20: Assembling matrix and second member
21: Solve system : [

Kk Ck
tCk 0

]
×
[
∆Uk

∆Λk

]
=

[
rk
Gk

]
.

22: Update unknowns:
23: Uk+1 = Uk + ∆Uk

24: Λk+1 = Λk + ∆Λk

25: Update pairing → Gk+1

26: Update contact status
27: for i = 1..dim(Λ) do
28: if (Λi

k+1 + ρGi
k+1) ≤ 0 then

29: S(Λi
k+1) = 1

30: else
31: S(Λi

k+1) = 0
32: end if
33: end for
34: Compute residual for convergence: rk+1

35: end while 20



4.6. Pairing algorithm

For the pairing, we propose to adapt the PANG algorithm in [46] to the
case of mortar contact. This algorithm is of linear complexity but it is not
robust in the contact case. We change it to find all good initial contact pairs
even with non-connex slave contact zone. The main principles of pairing
algorithm are:

1. A robust and rapid algorithm to find all contact pair;

2. A Newton algorithm with line search to find the projection of a node
on another element;

3. Using a reference space instead of a real space when computing the
projection;

4. Using PANG’s algorithm.

To evaluate several integrals we use a simple tesselation of the mortar contact
zone.

5. Numerical experiments

In this section, we will analyze the behavior of the method facing some
simple problems in two and three space dimensions. We consider the Taylor
patch test (see [47]), the contact problems of two self included disks/spheres
submitted to an internal pressure. Then we will confirm the theoretical
convergence rate using the manufactured solution process. The last part
of this section will be dedicated to a more realistic and complex contact
problem, the crush of an hyperelastic half-ring on a hyperelastic foundation
in the 3D case which illustrates also a geometrical nonconforming case (see
[48, 49, 27]).

5.1. Taylor patch test

We consider a structure which consists of two identical cubes (or squares
in 2D) of edge length 50mm. The material characteristics are: a Young
modulus E = 2000MPa and a Poisson ratio ν = 0.3. We set the following
boundary conditions (in 3D): symmetries hold on the lower part and on the
−→
Ox
−→
Oz and

−→
Oy
−→
Oz faces, a pressure p = 25MPa is applied at the top of the

structure. The expected results are a constant contact pressure and a uniform
vertical Cauchy stress component equal to 25MPa. The numerical results
obtained for linear nonmatching meshes using 4-node quadrangles in 2D and
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8-node hexahedra in 3D with the LAC condition are depicted in Figures 3
and 4.

Figure 3: Numerical results obtained with the LAC condition in 2D when considering
4-node quadrangles: on the left σyy, on the right Lagrange multipliers and gap on ΓC .
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Figure 4: Numerical results obtained with the LAC condition in 3D when considering
8-node hexahedra: on the left σzz on the deformed shape (scale factor 10), on the right
Lagrange multipliers and gap on ΓC .

This test case is successfully passed by the LAC method for all the con-
sidered linear elements. We see in Tables 1 and 2 that the relative error is
about 10−12% (near the machine precision). This accuracy is due to the fact
that the linear elements are sufficient to perfectly describe the exact solution
(as the piecewise constant Lagrange multiplier representing the contact pres-
sure) and to the fact that all intersections on the contact zone are precisely
computed. Then the integration scheme used to compute the contact contri-
butions is accurate enough for linear functions. So we observe (as predicted
by the theory) that the LAC method behaves as well as the standard mortar
approach. We recall that the method using node-to-face (or node-to-segment
in 2D) exhibits in this test with nonmatching meshes some oscillations for
the contact pressure (see, e.g. [14]).
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Element type Maximum relative Maximum relative
error |λ− λh| error |σyy − σhyy|

3-node triangle 5 · 10−12% 2 · 10−12%
4-node quadrangle 4 · 10−12% 4 · 10−12%

Table 1: Relative error on λ and σyy in 2D.

Element type Maximum relative Maximum relative
error |λ− λh| error |σzz − σhzz|

4-node tetrahedron 8 · 10−12% 2 · 10−12%
8-node hexahedron 6 · 10−12% 4 · 10−12%

Table 2: Relative error on λ and σzz in 3D.

Remark 4. In this example we only considered linear finite elements. Note
that the quadratic finite elements also successfully pass the Taylor patch test.
The quadratic finite element using LAC contact condition will be investigated
in the next test case which deals with curved contact areas.

5.2. Self-included spheres, self-included disks

In this example, we consider two self-included disks/spheres in 2D/3D
denoted Ω1 (internal body) and Ω2 (external body). The internal/external
radii of Ω1 are (r1

int, r
1
ext) = (20mm, 30mm) and the internal/external radii

of Ω2 are (r2
int, r

2
ext) = (30mm, 40mm). So the contact area is a sphere of

radius 30mm. Due to the curved geometries we only use quadratic finite
elements. The material characteristics for both bodies are a Young modulus
E = 2000MPa and a Poisson ratio ν of 0.3. The internal boundary r = r1

int is
subject to a pressure load p = 25MPa while the external boundary r = r2

ext

is a free surface. In 2D, the analytical results are as follows for 20 ≤ r ≤ 40
and 0 ≤ θ ≤ 2π (polar coordinates):

ur(r, θ) =
(r1
int)

3

(r2
ext)

3 − (r1
int)

3

(
(1− 2ν)r + (1 + ν)

(r1
ext)

3

2r2

)
p

E
,

σrr(r, θ) = − (r1
int)

3

(r2
ext)

3 − (r1
int)

3

(
(r2
ext)

3

r3
− 1

)
p.
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Therefore

ur(20, θ) = 0.2mm,

ur(40, θ) = 0.075mm,

σrr(20, θ) = −25MPa,

λ = σrr(30, θ) = −4, 894179894MPa,

σrr(40, θ) = 0MPa.

Figure 5: Numerical results obtained with LAC in 2D when considering 6-node triangles.
Top left : radial displacement; top right : Von Mises stresses; bottom left : radial stresses;
bottom right : contact pressure.
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Figure 6: Numerical results obtained with LAC in 3D when considering 10-node tetrahe-
dra. Top left : radial displacement; top right : Von Mises stresses; bottom left : radial
stresses; bottom right : contact pressure

The numerical results obtained with the LAC for quadratic meshes using
6-node triangles with 2D axisymmetric modeling and 10-node tetrahedra in
3D are depicted in Figures 5 and 6. Although there are nonmatching meshes
on the contact areas we observe no spurious oscillations near the contact area
neither for the displacement nor for the constraints and we obtain a contact
pressure (Lagrange multiplier) which is almost constant on the contact area
and close to the exact value. The relative errors are very low as shown in
Tables 3 and 4.
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Element Maximum relative Maximum relative Maximum relative
type error |λ− λh| error |σrr − σhrr| error |σrr − σhrr|

Slave Master
6-node 0.02% 1.52% 0.43%
triangle
8-node 1.82 · 10−4% 0.19% 0.37%
quadrangle

Table 3: Relative error on λ and σrr in the 2D case.

Element Maximum relative Maximum relative Maximum relative
type error |λ− λh| error |σrr − σhrr| error |σrr − σhrr|

Slave Master
10-node 0.5% 1.37% 0.76%
tetrahedron
20-node 1.61% 3.57% 2.33%
hexahedron
27-node 1.46% 2.4% 2.58%
hexahedron

Table 4: Relative error on λ and σrr in the 3D case.

Remark 5. Since we did not use any strategy to take into account the geo-
metrical error in the linear finite element case, the results for this test with
linear elements are not representative unless we use very fine and almost
compatible meshes.

5.3. Numerical convergence rate

As third example we study the numerical convergence rates of the LAC
method which are compared with the theoretical ones. In order to perform
this study, we choose the manufactured solutions approach in both the 2D
and the 3D cases, see [50]. In 2D we consider a square Ω = (0, 1)2, (E =
1, ν = 0) having initially one contact point with a curved rigid foundation of
equation y ≤ −0.05(x − 0.5)2 and which is pressed against the foundation.
Figure 7 shows the displacement of the deformed bodies. We analytically
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define the load and boundary conditions to be applied to the structure in
order to get the following solution:

ux(x, y) = −0.2y3(x− 0.5),

uy(x, y) = −0.05(x− 0.5)2(1 + y)− 0.01y.

(a) Horizontal (b) Vertical

Figure 7: Displacement for the manufactured solution in 2D

The 3D case is similar: a cube Ω = (0, 1)3 initially in contact with the
curved foundation z ≤ −0.2(1 + x2 + y2)− 0.3. Figure 8 shows the displace-
ment of the deformed bodies. We analytically define the load and boundary
conditions to be applied to the structure in order to get the following solution:

ux(x, y, z) = 0.2xyz2,

uy(x, y, z) = 0.2xyz2,

uz(x, y, z) = −0.2(1 + x2 + y2)(1 + 0.01z)− 0.01z − 0.3.

Then we compute the L2-error in displacement ‖u − uh‖0,Ω and the L2-
error on the contact pressure ‖λ − λh‖0,ΓC (seen as a Lagrange multiplier).
Although there is to our knowledge no proof of optimal L2(Ω)-error decay on
the displacements (the only partial existing results can be found in [51, 52])
we can nevertheless expect that this error behaves like h‖u−uh‖1,Ω as in the
linear case where the Aubin-Nitsche argument can be applied. So we compare
our numerical convergence rates with this unproved and expected optimal
theoretical rate. Concerning the L2(ΓC)-error on the Lagrange multiplier
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(a) Horizontal-x (b) Horizontal-y

(c) Vertical

Figure 8: Displacement for 3D manufactured solution

the situation is simpler. By using standard results (inverse inequality and
approximation properties as in [51, 52]) we easily obtain from Theorem 1:

‖λ− λh‖0,ΓC ≤ Chτ−3/2‖u‖τ,Ω,

where 3/2 < τ ≤ min(k + 1, 5/2).
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Element type ‖u− uh‖0,Ω ‖λ− λh‖0,ΓC

Expected Numerical Expected Numerical
3-node triangle 2.0 1.99 0.5 (1)1 1.01
6-node triangle 2.5 2.99 1.0 1.04

4-node quadrangle 2.0 2.00 0.5 (1) 1.01
8-node quadrangle 2.5 2.96 1.0 1.08

Table 5: Convergence rates in the 2D case

Element type ‖u− uh‖0,Ω ‖λ− λh‖0,ΓC

Expected Numerical Expected Numerical
4-node tetrahedron 2.0 1.99 0.5 (1) 1.51
10-node tetrahedron 2.5 2.99 1.0 1.99
8-node hexahedron 2.0 1.98 0.5 (1) 1.93
20-node hexahedron 2.5 2.54 1.0 1.04
27-node hexahedron 2.5 2.97 1.0 1.01

Table 6: Convergence rates in the 3D case

As shown in tables 5 and 6, the numerical convergence rates are either
very close or better than the expected ones; in the latter case we observe
some superconvergence. The superconvergence on the displacement error
could be explained by the fact that the solution of the continuous problem
is indefinitely continuously differentiable and therefore more regular than
H5/2. Concerning the superconvergence which is sometimes observed for the
Lagrange multiplier, it may be possible that we observe at first the geometric
error convergence and not the asymptotic error decay rate.

5.4. Ring on block

In this last numerical experiment, we consider an hyperelastic half-ring
(external diameter 190mm and internal diameter 170mm) made of two ma-
terials of same thickness (5mm) and a hyperelastic base of 250mm length,
50mm height and 50mm depth, see Figure 9. We apply a −90mm vertical

1In the paper [52] the authors prove for a standard conforming linear finite element
approximation of the Signorini problem in 2D and 3D that the L2(ΓC)-error bound on
the multipliers could be improved with a factor h1/2. This could also explain the better
convergence we observe in our framework which is very close to that considered in [52].
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displacement at both ends of the half-ring. There is an initial gap of 20mm
between the bottom of the half-ring and the base. In order to reduce the
model size, we use a symmetry condition and we only consider a quarter of
the structure. We will compute the solution on six different meshes (linear
and quadratic hexahedra with two levels of refinement), the mesh character-
istics are described in Table 7.

Figure 9: Test case configuration
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Mesh type Nodes Elements
8-node hexahedron coarse 3085 4162
20-node hexahedron coarse 11133 4162
27-node hexahedron coarse 13998 3037
8-node hexahedron fine 17998 21784
20-node hexahedron fine 67454 21784
27-node hexahedron fine 102114 17284

Table 7: Considered meshes

We are mainly studying two variables of interest: the displacement at the
middle of the half-ring as a function of the load step (we use 60 load steps), so
each load step represents a vertical displacement of approximatively 1.16mm
and the contact pressure. The results, displacement field on the deformed
shape and contact pressure (in the case of 20-node hexahedra) are depicted
in Figure 10.
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Figure 10: Displacement of the half-ring center depending on the imposed displacement
(left: coarse meshes, right: fine meshes)
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Figure 11: Displacement field and contact pressure for 20-node hexahedra at different load
steps.

The obtained results are very close to those in [49]: we get the same pattern
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and the same maximum value for the displacement of the center of the half-
ring. We also notice that the contact pressure shows no perceptible oscillation
when using quadratic meshes (some oscillation may occur when using coarse
linear meshes due to the geometric error disturbing the contact detection
and computation). These results confirm the capacity of the LAC method
to deal with more complicated contact problems.

6. Conclusion

The Local Average Contact approach allows to handle the nonmatching
meshes independently of the space dimension and of the degree and type
of finite elements. Basically, it consists of averaging the interpenetration of
the bodies on small areas (macro-elements) or equivalently to consider La-
grange multipliers which are constant on these small areas. We show that
this appoach gives interesting and accurate results as proved by the theory.
This method could be promising in particular for complex three dimensional
contact problems with quadratic elements since it is simple and local and it
benefits from mathematical proofs of convergence. The next step would be
to consider real-life engineering simulations.

Appendix A. A stable average preserving operator for the inf-sup
condition

We need to define an operator denoted πh1 when d = 2, 3 and k = 1 which is
the generalization of the operator in [29] to the geometrical nonconforming
case (i.e., ΓεC 6= ∅) in order to study the behavior of the inf-sup constant
βh. Actually we are not able to achieve the analysis in the geometrical
nonconforming case with quadratic elements for technical reasons. For the
analysis in the geometrical conforming case (with nonmatching meshes) and
quadratic elements we refer the reader to [33, 29]. We next suppose that TM

is a macro-mesh of ΓC satisfying Hypothesis 1 and built from the mesh of
T h1 ∩ΓC . Let W h

` be the normal trace space of V h
` on Γ`C . Let φi stand for the

basis functions associated to the degrees of freedom of W h
1 . We denote xi,

i = 1, .., n the corresponding nodes of T h1 ∩Γ1
C and ωi is the union of (closed)

macro-meshes containing xi. The next definition defines the operator on
admissible macro-elements.

Definition 2. Assume that Hypothesis 1 holds. The operator

πh1 : L1(ΓC) −→ W h
1
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is as follows for any v ∈ L1(ΓC). If xi is a node in Γ1
C ∩ Γ1

D
, then πh1v(xi) =

0. The operator πh1v is defined locally on every admissible macro-element

Tm ∈ TMad having as nodes xi, i = 1, ...,m? (xi 6∈ Γ1
C ∩ Γ1

D
) and as internal

d.o.f. xm?+1 by

πh1v =
m?+1∑
j=1

αj(v)φj,

where 

αi(v) =

∫
ωi∩ΓC

v dΓ

|ωi ∩ ΓC |
, 1 ≤ i ≤ m?,

αm?+1(v) =

∫
Tm∩ΓC

v dΓ−
m?∑
j=1

∫
Tm∩ΓC

αj(v)φj dΓ∫
Tm∩ΓC

φm?+1 dΓ
.

We have:

Proposition 2. 1. The operator πh1 is linear and satisfies∫
Tm∩ΓC

πh1v − v dΓ = 0, ∀v ∈ L1(ΓC),∀Tm ∈ TMad .

2. The operator πh1 is locally Hs-stable, for 0 ≤ s ≤ 1, i.e., there exists C > 0
such that for any v ∈ Hs(Tm), ∀Tm ∈ TMad ,

‖πh1v‖s,Tm ≤ Cε−1‖v‖s,T̃m ,

where T̃m is the patch surrounding Tm in ΓC: T̃m =
⋃
i:xi∈Tm(ωi ∩ ΓC).

Proof of the proposition. The linearity of πh1 is obvious. The average
preserving property on Tm ∩ ΓC for any admissible Tm follows directly from
the definition of πh1 .
Let v ∈ L2(ΓC), Tm ∈ TMad and let T̃m be the patch surrounding Tm in ΓC :
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T̃m =
⋃
i:xi∈Tm(ωi ∩ ΓC). Let xi ∈ Tm, 1 ≤ i ≤ m?, we have

|αi(v)| ≤ |ωi ∩ ΓC |−1

∫
ωi∩ΓC

|v| dΓ ≤ |ωi ∩ ΓC |−
1
2‖v‖0,ωi∩ΓC

≤ |Tm ∩ ΓC |−
1
2‖v‖0,T̃m

≤ ε−1φm+1|Tm|−
1
2‖v‖0,T̃m

≤ ε−1|Tm|−
1
2‖v‖0,T̃m . (A.1)

Then

|αm?+1(v)|

=

∣∣∣∣∣
∫
Tm∩ΓC

v dΓ−
∑

k 6=m?+1:xk∈Tm

∫
Tm∩ΓC

αk(v)φk dΓ

∣∣∣∣∣
∣∣∣∣∣
∫
Tm∩ΓC

φm?+1 dΓ

∣∣∣∣∣
−1

≤

(
|Tm ∩ ΓC |

1
2‖v‖0,Tm∩ΓC +

∑
k 6=m?+1:xk∈Tm

|Tm ∩ ΓC |
1
2‖v‖0,T̃m

)∣∣∣∣∣
∫
Tm∩ΓC

φm?+1 dΓ

∣∣∣∣∣
−1

≤ C
(
φm?+1

)−1 |Tm ∩ ΓC |−1/2‖v‖0,T̃m

≤ Cε−1|Tm|−1/2‖v‖0,T̃m

where we use (A.1) together with |φi| ≤ 1 on ΓC and Cauchy-Schwarz in-
equality. Next, we prove the local L2-stability of πh1 .

‖πh1v‖0,Tm =

∥∥∥∥∥ ∑
i:xi∈Tm

αi(v)φi

∥∥∥∥∥
0,Tm

≤
∑

i:xi∈Tm
|αi(v)|‖φi‖0,Tm

≤ |Tm|
1
2

∑
i:xi∈Tm

|αi(v)|

≤ Cε−1‖v‖0,T̃m . (A.2)

We now need to prove the local H1-stability of πh1 . We assume that v ∈
H1(ΓC). Let Tm ∈ TMad and let a ∈ P0(T̃m). Since πh1a = a on Tm, we get
from an inverse estimate and the local L2(Tm)-stability of πh1 (the notations
correspond to the case d = 2 but it can be straightforwardly extended to the
three-dimensional case, see [29] and the references therein).

‖(πh1v)′‖0,Tm = ‖(πh1 (v − a))′‖0,Tm ≤ Ch−1
Tm‖π

h
1 (v − a)‖0,Tm

≤ Ch−1
Tmε

−1‖v − a‖0,T̃m .
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If a is the average of v on T̃m, we get ‖v − a‖0,T̃m ≤ ChT̃m‖v′‖0,T̃m from
which

‖(πh1v)′‖0,Tm ≤ Cε−1‖v′‖0,T̃m ,

follows and consequently the local H1-stability. An hilbertian interpolation
argument (see [53, 54]) allows us to prove the Hs(ΓC)-stability of πh1 for all
s ∈ (0, 1).
In order to satisfy the infsup condition (10) we need to to show (see [33, 29])
that there is a constant C such that: for all µh ∈ Xh and all v ∈ V there
exists vh ∈ V h such that

b(µh, vh) = b(µh, v), (A.3)

‖vh‖ ≤ C‖v‖. (A.4)

In fact if (A.3) and (A.4) hold, we get βh = β̃/C where β̃ is the inf-sup
constant of the continuous problem (see [1]).
We set vh = (vh1 , v

h
2 ) such that

vh1 = Rh
1π

h
1 [v

N
], vh2 = 0,

where Rh
1 ia a discrete extension operator from H1/2(TMad ) in V h

1 . Since πh1
preserves the average on every admissible macro-element intersected with ΓC
and the multipliers µh ∈ Xh vanish on ΓεC , we get (A.3). It remains to show

that vh verifies (A.4). Thanks to the H
1
2 (TMad )-stability of πh1 with a constant

Cε−1 and the trace theorem, we have

‖vh‖ = ‖Rh
1π

h
1 [v

N
]‖1,Ω1 ≤ C‖πh1 [v

N
]‖1/2,TMad

≤ Cε−1‖[v
N

]‖1/2,ΓC ≤ Cε−1‖v‖.

So the constant βh in (10) can be chosen βh = Cε where C is independent
of h and ε.
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