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Abstract

The present paper deals with linear and quadratic finite element approximations of the
two and three-dimensional unilateral contact problems between two elastic bodies with non-
matching meshes. We propose a simple noninterpenetration condition on the displacements
which is local as the well known node-to-segment and node-to-face conditions and accurate
like the mortar approach. This condition consists of averaging locally on a few elements the
noninterpenetration. We prove optimal convergence rates in 2D and 3D using various linear
and quadratic elements. The Taylor patch test and the Hertzian contact test illustrate the
theoretical results and show the capabilities of the method.
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1 Introduction and problem set-up

Finite element methods are currently used to approximate the unilateral contact problems, see,
e.g., [29, 37, 42, 57, 59]. Such problems show a nonlinear boundary condition, which roughly
speaking requires that (a component of) the solution u is nonpositive on a part of the boundary
of the domain Ω, see [50]. This nonlinearity leads to a weak formulation written as a variational
inequality which admits a unique solution, (see [25]) and the regularity of the solution shows
limitations whatever the regularity of the data is, see [45]. A consequence is that only finite
element methods of order one and of order two are of interest which is the scope of this work.

This paper is focused on the contact configurations of two bodies whose respective meshes
do not coincide on the contact interface, i.e., “nonmatching meshes”. This situation often occurs
in engineering computations since the different bodies are generally meshed in an independent
way and the resulting discretizations do not fit together. In dynamic computations this situation
also occurs at any time step and nonmatching meshes need to be handled if one wants to avoid
remeshing with matching meshes at any time step. The contact problems with nonmatching
meshes have been considered and studied from a theoretical point of view in the last twenty years.
It is now known that the local node-to-segment contact conditions in 2D or the equivalent node-
to-face conditions in 3D produce solutions with oscillations which degrade the accuracy and slow
down the convergence of the computations. On the contrary the mortar domain decomposition
method [10] handles in an optimal way the nonmatching meshes and its adaptation to contact
problems gave promising theoretical and numerical results at the end of the 90’s, see [4, 6, 7,
32, 33]. To summarize, this initial approach directly inspired from [10], considered a global
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L2 projection of linear finite element functions from a mesh to another mesh on the contact
area in two-dimensions. From a numerical point of view, this mortar concept has been adapted
and extended to many contact configurations such as friction, quadratic finite elements, large
deformations, three-dimensional problems... see, e.g. [13, 15, 19, 24, 28, 39, 43, 46, 47, 48, 53,
54, 56, 58] and the references therein.

Our aim in this study, is to propose the simplest contact condition which on the one hand gives
optimal convergence results in the energy norm and on the other hand can be easily implemented
in a industrial finite element code for various finite elements (3 and 6-node triangles, 4 and 8-node
quadrangles in 2D and 4 and 10-node tetrahedra, 8, 20 and 27-node hexahedra in 3D). So we
consider a discrete contact condition which requires, that the jump of the displacement denoted
[uh

N
] is nonpositive in average on some local patches (comprising one or several contact elements

of one of the trace meshes) that form a partition of the contact zone and we call this approach
Local Average Contact (LAC). The main benefit of this approach is that it naturally leads to
a local method which makes the implementation in an industrial FE code easier, in particular
Code Aster [18] in which we are interested. The paper is organized as follows:

• Section 2 deals with the two-dimensional unilateral contact problem between two elastic
bodies in the general case of nonmatching meshes. First, we introduce a new operator
denoted πh1 which locally preserves the average on the contact zone. We then perform the
error analysis of the problem using the LAC condition on any patch. The results proved in
this section are optimal without using any other assumption than the Sobolev regularity of
the solution of the continuous problem.

• In section 3, we extend the previous results to the three-dimensional case without any loss
on the convergence rates using only one mesh requirement hypothesis. This assumption can
be easily fulfilled from a practical point of view.

• Section 4 is devoted to establish the links between our contact condition and an equivalent
formulation with Lagrange multipliers: we introduce the corresponding mixed formulation
of the problem using the LAC condition, and then discuss on the inf-sup condition which
holds.

• In section 5, we show some numerical results of the method implemented in the industrial
study and research finite element software of Electricité de France (EDF), Code Aster .
The Taylor patch test and the Hertz contact are considered. These computations involve 3
and 6-node triangles, 4 and 8-node quadrangles in 2D and 4 and 10-node tetrahedra, 8, 20
and 27-node hexahedra in 3D.

Next, we specify some notations we shall use. Let ω be a Lebesgue-measurable subset of Rd

with nonempty interior ; the generic point of ω is denoted x. The classical Lebesgue space L2(ω)
and the standard Sobolev space Hm(ω), m ∈ N (we adopt the convention H0(ω) = L2(ω)) are
endowed with the norms:

‖ψ‖L2(ω) =

(∫

ω
|ψ(x)|2 dx

)1/2

, ‖ψ‖m,ω =


 ∑

0≤|α|≤m

‖∂αψ‖2L2(ω)




1/2

,

where α = (α1, . . . , αd) is a multi–index in Nd, |α| = α1 + · · ·+ αd and the symbol ∂α represents
a partial derivative. The fractional Sobolev space Hτ (ω), τ ∈ R+ \ N with τ = m + ν,m being
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the integer part of τ and ν ∈ (0, 1) is defined by the norm, see [3]:

‖ψ‖τ,ω =


‖ψ‖2m,ω +

∑

|α|=m

|∂αψ|2ν,ω




1/2

,

where for ν ∈ (0, 1) the seminorm is defined by:

|ψ|ν,ω =

(∫

ω

∫

ω

(ψ(x)− ψ(y))2

|x− y|d+2ν
dx dy

)1/2

.

Let Ω1 and Ω2 in Rd (d = 2, 3) stand for two polygonal or polyhedral domains representing
the reference configurations of two linearly elastic bodies. The boundaries ∂Ω`, ` = 1, 2 consist of

three nonoverlapping open parts Γ`
N

, Γ`
D

and Γ`C with Γ`
N
∪ Γ`

D
∪ Γ`C = ∂Ω`. We assume that the

measures in Rd−1of Γ`C and Γ`
D

are positive. The bodies are submitted to a Neumann condition on
Γ`

N
with a density of loads F` ∈ (L2(Γ`

N
))d, a Dirichlet condition on Γ`

D
(the bodies are assumed

to be clamped on Γ`
D

to simplify) and to volume loads denoted f` ∈ (L2(Ω`))d in Ω`. Moreover
we suppose to simplify that in the initial configuration the bodies have a common contact surface
denoted ΓC such that ΓC := Γ1

C = Γ2
C and that the final contact area after deformation is a

subset of ΓC . In the more general case where the final contact area is not expected to be a subset
of the initial contact area, we would need to define a gap function g (generally on Γ1

C or on Γ2
C)

representing the distance between both bodies. Finally, a frictionless unilateral contact condition
between the bodies holds on ΓC .

The problem consists in finding the displacement field u = (u1, u2) : Ω1 ×Ω2 → Rd satisfying
(1)–(6) with ` = 1, 2:

− div σ(u`) = f` in Ω`,(1)

σ(u`) = A`ε(u`) in Ω`,(2)

σ(u`)n` = F` on Γ`
N
,(3)

u` = 0 on Γ`
D
,(4)

where n` stands for the outward unit normal to Ω` on ∂Ω`, σ(u`) represents the stress tensor
field, ε(u`) = (∇u` + (∇u`)T )/2 denotes the linearized strain tensor field, and A` is the fourth
order elastic coefficient tensor which satisfies the usual symmetry and ellipticity conditions and
whose components are in L∞(Ω`).

On ΓC , we decompose the displacement and the stress vector fields in normal and tangential
components as follows:

u`N = u`.n`, u`T = u` − u`Nn`,
σ`N = (σ(u`)n`).n`, σ`T = σ(u`)n` − σ`Nn`,

and we denote by
[uN ] = u1N + u2N

the jump of the normal displacement across the contact interface.
The unilateral contact condition on ΓC is expressed by the following complementarity condi-

tion:

[uN ] ≤ 0, σN := σ1N = σ2N ≤ 0, [uN ]σN = 0,(5)
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where a vanishing gap between the two elastic solids has been chosen in the reference configuration.
When the gap function g does not vanish the quantity [uN ] in (5) has to be changed with [uN ]−g
where the jump is defined using a convenient parametrization.

The frictionless condition on ΓC reads as: for ` = 1, 2

σ`T = 0.(6)

Let us introduce the following Hilbert spaces:

V` =
{
v` ∈ (H1(Ω`))d : v = 0 on Γ`

D

}
,

V = V1 × V2.

The set of admissible displacements satisfying the noninterpenetration conditions on the contact
zone is:

K = {v ∈ V : [vN ] ≤ 0 on ΓC} .
Let be given the following forms for any u = (u1, u2) and v = (v1, v2) in V :

a(u, v) =
2∑

`=1

∫

Ω`

A`ε(u`) : ε(v`) dΩ`, l(v) =

2∑

`=1

∫

Ω`

f`.v` dΩ` +

∫

Γ`
N

F`.v` dΓ`.

From the previous assumptions it follows that a(·, ·) is a bilinear symmetric V -elliptic and con-
tinuous form on V ×V and l is a linear continuous form on V . The weak formulation of Problem
(1)–(6) is:

{
Find u ∈ K satisfying:

a(u, v − u) ≥ l(v − u), ∀ v ∈ K.
(7)

Problem (7) admits a unique solution according to Stampacchia’s Theorem.

Remark 1 It is known that the unilateral contact condition generates singularities at contact-
noncontact transition points: the work in [45] is restricted to R2 and considers the Laplace operator
on a polygonal domain and allows us to conclude that the solution to the Signorini problem is
H5/2−ε regular in the neighborhood of ΓC . If ΓC is not straight, e.g., ΓC is a union of straight
line segments, then additional singularities appear (see section 2.3 in [3] for a study in the two-
dimensional case). In the three-dimensional case the references [2, 1, 27] prove local C1,1/2

regularity results.

2 The Local Average Contact (LAC) in two dimensions (d=2)

Let V h
` ⊂ V` be a family of finite dimensional vector spaces indexed by h` coming from a regular

family T h` of triangulations or quadrangulations of the domain Ω`, ` = 1, 2 (see [11, 14, 23]).
The notation h` represents the largest diameter among all (closed) elements T ∈ T h` . We choose
standard continuous and piecewise affine or quadratic functions, i.e.:

V h
` =

{
vh` ∈ (C(Ω

`
))2 : vh` |T∈ Pk(T ),∀T ∈ T h` , vh` = 0 on ΓD

}
,

where k = 1 or k = 2. We set
V h = V h

1 × V h
2 .
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To simplify we next suppose that the candidate contact area ΓC is a straight line segment when
d = 2 or a polygon when d = 3. The extension of all the theoretical results in this paper to the
case where ΓC is a union of straight line segments when d = 2 or a union of polygons when d = 3
could be easily made with additional notations. The discrete set of admissible displacements
satisfying the average noninterpenetration conditions on the contact zone is given by

Kh =

{
vh ∈ V h :

∫

Im
[vh

N
] dΓ ≤ 0 ∀Im ∈ IM

}
. (8)

When k = 1 then IM is a one-dimensional macro-mesh constituted by macro-segments Im com-
prising (see Definition 1 hereafter) two adjacent segments of T h1 ∩ ΓC (i.e., the one-dimensional
mesh on ΓC inherited by T h1 ). When k = 2 then IM is simply the trace mesh on ΓC inherited by
T h1 . The only requirement (when k = 1 or k = 2) is that any element of IM admits an internal
degree of freedom. Note that we choose the trace mesh of T h1 but the symmetrical definition of
IM using T h2 could be another choice. The discrete variational inequality issued from (7) is

{
Find uh ∈ Kh satisfying:

a(uh, vh − uh) ≥ l(vh − uh), ∀ vh ∈ Kh.
(9)

According to Stampacchia’s Theorem, problem (9) admits also a unique solution.

Remark 2 The approximation using a local average contact condition on the macro-mesh IM is
said to be nonconforming since obviously Kh 6⊂ K.

Remark 3 We first give an answer to the question: “why this new method ?”. Our aim is
to propose a local contact condition (as the node-to-segment or the node-to-face methods) which
retains the stability and the accuracy of mortar approaches.

Note that even in the simplest case (matching meshes and k=1) our method does not reduce
to the two most common contact conditions:

[vh
N

] ≤ 0 on ΓC ,(10)

and
∫

T∩ΓC

[vh
N

]dΓ ≤ 0 on any contact element T ∩ ΓC .(11)

In fact we are not able to propose a method which is local, which reduces to (10) or (11) in the
case of matching meshes and which gives optimal convergence rates in the case of nonmatching
meshes. Nevertheless our approach is close to the one in (11) in which we slightly enlarge the
area where the average is considered (a patch Im of contact elements instad of a single contact
segment T ∩ ΓC).

We recall that we are interested in a simple local approach for computational purposes, see the
introduction, so the powerful modified mortar methods such as the dual one (see [36, 40, 46, 58])
are not the best solution in our case. The same remark also holds for the stabilized mixed methods
as in [35]. These methods are either non-local or too complex to be implemented in an simple and
generic way in an industrial FE code at the moment.
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2.1 The average preserving operator

We are going to define an operator denoted πh1 . We begin with the linear case k = 1 and the
quadratic case k = 2 will then be handled straightforwardly. We then show that the operator πh1
preserves the average on any macro-segment Im, it is Hs(ΓC)-stable for any s ∈ [0, 1] and it fulfills
other convenient properties. This operator will allow us to obtain an optimal approximation error
term in the forthcoming error analysis. Let W h

1 be the normal trace space of V h
1 on ΓC . We denote

by xi, i = 1, ..., n the nodes of the triangulation T h1 located on ΓC and by φi the corresponding
basis function of W h

1 . The support of φi (in ΓC) is denoted ∆i. We also suppose that the trace
mesh T h1 ∩ΓC is quasi-uniform (although there exists some less restrictive assumptions, see, e.g.,
[17]). We denote respectively hc, hi and hIm the largest mesh length on ΓC , the length of the
segment ∆i and the length of the segment Im. We denote by C a positive generic constant which
does neither depend on the mesh size nor on the function v.

Definition 1 Suppose that ΓC ∩ Γ1
D

= ∅.
1. Assume that n = 2p+ 1. Set IM = {[x1, x3], [x3, x5], · · · , [xn−2, xn]}. The operator

πh1 : L1(ΓC) −→W h
1

is as follows: for any v ∈ L1(ΓC), πh1v is defined locally on every Im = [xi, xi+2] ∈ IM by

πh1v =

i+2∑

j=i

αj(v)φj ,

where




αj(v) =

∫

∆j

v dΓ

|∆j |
, j = i, i+ 2,

αi+1(v) =

∫

Im
v dΓ−

∫

Im
αi(v)φi dΓ−

∫

Im
αi+2(v)φi+2 dΓ

∫

Im
φi+1 dΓ

.

(12)

2. Assume that n = 2p. Set IM = {[x1, x3], [x3, x5], · · · , [xn−5, xn−3], [xn−3, xn]}. The definition
of πh1v on any Im is the same as in (12) except for Im = [xn−3, xn] where

πh1v =

n∑

j=n−3

αj(v)φj ,

with




αj(v) =

∫

∆j

v dΓ

|∆j |
, j = n− 3, n− 2, n,

αn−1(v) =

∫

Im
v dΓ−

∫

Im
αn−3(v)φn−3 dΓ−

∫

Im
αn−2(v)φn−2 dΓ−

∫

Im
αn(v)φn dΓ

∫

Im
φn−1 dΓ

.
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x1 x2 x3 x4 x5 x6 xn−2 xn−1 xn

I1 I2 I
n−1
2

Ĩ2

T h
1 ∩ Γ

C

IM

Figure 1: The trace mesh T h1 ∩ ΓC and the macro-mesh IM .

Remark 4 If ΓC ∩ Γ1
D
6= ∅, the definition of IM is done as in the previous definition depending

on the even or odd number of contact segments on ΓC . The only difference with the previous case
in the definition of πh1v comes from the Dirichlet condition on the boundary node x1 and/or xn.
In that case we just need to define α1(v) = 0 and/or αn(v) = 0 so that πh1 preserves the boundary
conditions (i.e., πh1v(x1) = 0 and/or πh1v(xn) = 0).

Proposition 1 The operator πh1 is linear and satisfies

∫

Im
πh1v − v dΓ = 0, ∀v ∈ L1(ΓC), ∀Im ∈ IM .

Proof. The linearity of πh1 is obvious, the average preserving property on Im follows directly
from the definition of πh1 .

Proposition 2 Let ΓC ∩ΓD = ∅. For any s ∈ [0, 1], the operator πh1 is Hs(ΓC)-stable, i.e., there
exists C > 0 such that for any v ∈ Hs(ΓC)

‖πh1v‖s,ΓC
≤ C‖v‖s,ΓC

.

Proof. First we show that for any v ∈ L2(ΓC):

|αi(v)| ≤ Ch−
1
2

c ‖v‖0,Ĩm , ∀i = 1, · · · , n,(13)

where Ĩm is the patch surrounding Im: Ĩm =
⋃
i:xi∈Im ∆i (see Figure 1). Let xj ∈ Im, we have

either

|αj(v)| =

∣∣∣∣∣

∫

∆j

v dΓ

∣∣∣∣∣|∆j |−1 ≤ h−1
j

∫

∆j

|v| dΓ ≤ h−
1
2

j ‖v‖0,∆j ≤ Ch
− 1

2
c ‖v‖0,Ĩm(14)

or

|αj(v)| =
∣∣∣∣∣

∫

Im
v dΓ−

∑

k 6=j:xk∈Im

∫

Im
αk(v)φk dΓ

∣∣∣∣∣

∣∣∣∣∣

∫

Im
φj dΓ

∣∣∣∣∣

−1

≤ Ch−1
Im

(
h

1
2
Im‖v‖0,Im + h

1
2
c ‖v‖0,Ĩm + h

1
2
c ‖v‖0,Ĩm

)

≤ Ch−
1
2

c ‖v‖0,Ĩm ,
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where we use (14) together with |φi| ≤ 1 on ΓC and Cauchy-Schwarz inequality.
Next, we prove the local L2-stability (on ΓC) of πh1 .

‖πh1v‖0,Im =

∥∥∥∥∥
∑

j:xj∈Im
αj(v)φj

∥∥∥∥∥
0,Im

≤
∑

j:xj∈Im
|αj(v)|‖φj‖0,Im ≤ Ch

1
2
Im

∑

j:xj∈Im
|αj(v)|

≤ C‖v‖0,Ĩm .(15)

So we deduce from (15) the L2(ΓC)-stability of πh1 :

‖πh1v‖20,ΓC
=

∑

Im∈IM
‖πh1v‖20,Im ≤ C

∑

Im∈IM
‖v‖2

0,Ĩm
≤ C‖v‖20,ΓC

.(16)

We now need to prove the H1(ΓC)-stability of πh1 . We assume that v ∈ H1(ΓC) and we show
that

‖(πh1v)′‖0,ΓC
≤ C‖v′‖0,ΓC

,

where the notation v′ denotes the derivative of v. First we notice that

(πh1a)|
Im

= a|
Im
, ∀a ∈ P0(Ĩm), ∀Im ∈ IM .

Using the definition of ‖(πh1v)′‖0,Im , an inverse estimate and the local L2(Im)-stability (15) of πh1
we get, for all Im ∈ IM and all a ∈ P0(Ĩm):

‖(πh1v)′‖0,Im = ‖(πh1 (v − a))′‖0,Im ≤ Ch−1
Im‖πh1 (v − a)‖0,Im ≤ Ch−1

Im‖v − a‖0,Ĩm .

We set

a = |Ĩm|−1

∫

Ĩm
v dΓ.

Using the standard inequality

‖v − a‖0,Ĩm ≤ ChĨm‖v′‖0,Ĩm(17)

we deduce that
‖(πh1v)′‖0,Im ≤ C‖v′‖0,Ĩm ,

and by summation

‖(πh1v)′‖0,ΓC
≤ C‖v′‖0,ΓC

.(18)

Thanks to (16) and (18), we obtain

‖πh1v‖21,ΓC
= ‖πh1v‖20,ΓC

+ ‖(πh1v)′‖20,ΓC
≤ C(‖v‖20,ΓC

+ ‖v′‖20,ΓC
) = C‖v‖21,ΓC

.(19)

Using the last bound together with (16) and an hilbertian interpolation argument (see [44, 55])
allows us to prove the Hs(ΓC)-stability of πh1 for all s ∈ (0, 1).

Remark 5 If ΓC ∩ Γ1
D
6= ∅, the previous results can be easily extended. Obviously the estimates

(13), (15) and (16) still remain valid. Suppose first that ΓC ∩ Γ1
N

= ∅ (so α1(v) = αn(v) = 0) .
In that case we need to prove that ‖(πh1v)′‖0,ΓC

≤ C‖v′‖0,ΓC
for v ∈ H1

0 (ΓC). This only requires
to establish the local estimates ‖(πh1v)′‖0,Im ≤ C‖v′‖0,Ĩm for both extreme segments Im containing
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x1 and xn (here πh1 does not preserve the constant functions on the boundary segments). Since v
vanishes on Ĩm, we write

‖(πh1v)′‖0,Im ≤ Ch−1
Im‖πh1v‖0,Im ≤ Ch−1

Im‖v‖0,Ĩm ≤ C‖v′‖0,Ĩm .

This bound allows us to obtain estimate (18) and then (19) for any v ∈ H1
0 (ΓC). The stability

result in any interpolation space between L2(ΓC) and H1
0 (ΓC) follows. The case where only one

extremity of ΓC is submitted to a Dirichlet condition is handled in a similar way.

The extension to the quadratic case k = 2 is straightforward. The macro-mesh simply reduces
to the trace mesh and πh1 is defined on any quadratic segment Im = [xi, xi+2] as in Definition 1.1.
in which the midpoint xi+1 allows to preserve the average. It is easy to check that Propositions
1, 2 and Remarks 4 and 5 still hold.

Remark 6 The operator πh1 does not preserve the continuous piecewise affine functions of W h
1 :

if vh ∈W h
1 then πh1v

h 6= vh in general, so πh1 is not a projection operator. Moreover it is easy to
check that πh1 is not positivity preserving. Note that the operator πh1 shows some similarities with
the one in [12] (although πh1 is average preserving whereas the operator in [12] preserves affine
functions).

2.2 Error analysis in two dimensions

The forthcoming theorem shows that the local average contact conditions in Kh give optimal
convergence rates in the case of the unilateral contact of two elastic bodies with (and without)
nonmatching meshes on the contact zone ΓC . Denoting by u = (u1, u2) with u` = u|

Ω`
we set

‖u‖2s,Ω1,Ω2 = ‖u1‖2s,Ω1 + ‖u2‖2s,Ω2 . We recall that h1 and h2 denote the largest mesh sizes of T h1
and T h2 .

Theorem 1 Let u and uh be the solutions to Problems (7) and (9) respectively. Assume that
u ∈ (Hτ (Ω1))2 × (Hτ (Ω2))2 with 3/2 < τ ≤ min(k + 1, 5/2), k = 1, 2. Then, there exists a
constant C > 0 independent of h1, h2 and u such that

‖u− uh‖1,Ω1,Ω2 ≤ C(hτ−1
1 + hτ−1

2 )‖u‖τ,Ω1,Ω2 .(20)

Remark 7 Note that the same convergence rates could be proved for the standard mortar method
applied to the two-dimensional unilateral contact between two elastic bodies when considering
nonmatching meshes by using techniques of [21] and the standard tools from the mortar method.
As already mentioned in the introduction our aim in this study is to propose a method where the
noninterpenetration conditions are handled locally contrary to the standard mortar approach.

Proof. The use of Falk’s Lemma in the case Kh 6⊂ K gives (see, e.g., [8]):

α‖u− uh‖21,Ω1,Ω2 ≤ inf
vh∈Kh

(
‖u− vh‖21,Ω1,Ω2 +

∫

ΓC

σN [vh
N
− uN ] dΓ

)

+ inf
v∈K

∫

ΓC

σN [vN − uhN ] dΓ(21)

with α > 0. First, we will prove that the approximation error, i.e., the first infimum in (21) is
bounded in an optimal way. We choose vh ∈ V h as follows

vh1 = Ih1 u1 +Rh1(πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2)),

vh2 = Ih2 u2,
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where Ih` is the Lagrange interpolation operator mapping onto V h
` , πh1 : L1(ΓC) → W h

1 is the
operator defined in the previous section and Rh1 is a discrete extension operator from W h

1 into V h
1 .

Note that the discrete extension operators can be obtained by combining a standard continuous
extension operator with a local regularization operator (see, e.g., [49, 9]). First, we show that vh

belongs to Kh. Let Im ∈ IM
∫

Im
[vh

N
] dΓ =

∫

Im
vh1 .n1 + vh2 .n2 dΓ

=

∫

Im
Ih1 u1.n1 − πh1 (Ih1 u1.n1) dΓ +

∫

Im
Ih2 u2.n2 − πh1 (Ih2 u2.n2) dΓ +

∫

Im
πh1 [uN ] dΓ

=

∫

Im
πh1 [uN ] dΓ

=

∫

Im
[uN ] dΓ ≤ 0,

so vh ∈ Kh. Then, thanks to the H1/2(ΓC)-stability of πh1 (see Proposition 2), the trace theorem,
and the Lagrange interpolation error estimates, the norm term of the approximation error is
bounded in an optimal way:

‖u− vh‖1,Ω1,Ω2 ≤ ‖u1 − Ih1 u1‖1,Ω1 + ‖u2 − Ih2 u2‖1,Ω2 + ‖Rh1(πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2))‖1,Ω1

≤ ‖u1 − Ih1 u1‖1,Ω1 + ‖u2 − Ih2 u2‖1,Ω2 + C‖πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2)‖1/2,ΓC

≤ ‖u1 − Ih1 u1‖1,Ω1 + ‖u2 − Ih2 u2‖1,Ω2 + C‖[uN ]− Ih1 u1.n1 − Ih2 u2.n2‖1/2,ΓC

≤ C(‖u1 − Ih1 u1‖1,Ω1 + ‖u2 − Ih2 u2‖1,Ω2)

≤ C(hτ−1
1 + hτ−1

2 )‖u‖τ,Ω1,Ω2 , 3/2 < τ ≤ k + 1.(22)

In order to deal with the integral term of the approximation error, we consider the space Xh
1 of

the piecewise constant functions on the macro-mesh IM :

Xh
1 =

{
χh ∈ L2(ΓC) : χh|

Im
∈ P0(Im),∀Im ∈ IM

}
,

and the classical L2(ΓC)-projection operator π̄h1 : L2(ΓC)→ Xh
1 defined for any ϕ ∈ L2(ΓC) by

∫

ΓC

(ϕ− π̄h1ϕ)χh dΓ = 0, ∀χh ∈ Xh
1 .

The operator π̄h1 satisfies the following standard estimates for any 0 < r < 1 and any ϕ ∈ Hr(ΓC)
(see, e.g., [5]):

‖ϕ− π̄h1ϕ‖0,ΓC
+ h−1/2

c ‖ϕ− π̄h1ϕ‖1/2,∗,ΓC
≤ Chrc |ϕ|r,ΓC

,(23)

where ‖.‖1/2,∗,ΓC
stands for the dual norm of ‖.‖1/2,ΓC

and hc is the maximal length of a trace
segment on ΓC . When r = 0 (resp. r = 1) the previous estimates remain true by changing |ϕ|r,·
with ‖ϕ‖0,· (resp. ‖ϕ′‖0,·).

Since for all Im ∈ IM
∫

Im
([uN ]− Ih1 u1.n1 − Ih2 u2.n2)− πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2) dΓ = 0,
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we have:∫

ΓC

σN

(
[vh

N
]− [uN ]

)
dΓ

= −
∫

ΓC

σN

(
[uN ]− Ih1 u1.n1 − Ih2 u2.n2 − πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2)

)
dΓ

= −
∫

ΓC

(
σN − π̄h1σN

)(
[uN ]− Ih1 u1.n1 − Ih2 u2.n2 − πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2)

)
dΓ.

Finally, using Cauchy-Schwarz inequality, the L2(ΓC)-stability of πh1 , the trace theorem, the
Lagrange interpolation estimates and Young’s inequality we get:

∫

ΓC

σN ([vh
N

]− [uN ]) dΓ

≤ ‖σN − π̄h1σN ‖0,ΓC
‖[uN ]− Ih1 u1.n1 − Ih2 u2.n2 − πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2)‖0,ΓC

≤ C‖σN − π̄h1σN ‖0,ΓC
‖[uN ]− Ih1 u1.n1 − Ih2 u2.n2‖0,ΓC

≤ Ch
τ−3/2
1 |σN |τ−3/2,ΓC

(h
τ−1/2
1 + h

τ−1/2
2 )‖u‖τ,Ω1,Ω2

≤ C(h
2(τ−1)
1 + h

2(τ−1)
2 )‖u‖2τ,Ω1,Ω2 , 3/2 < τ ≤ 5/2.(24)

Then, we need to optimally bound the consistency error, the second infimum in (21) in which we
choose v = 0. The proof is long and technical and follows exactly the same lines as the consistency
error analysis in [21], Theorems 1 and 2. Here we simply summarize this proof in a few lines.
Since π̄h1σN is a nonpositive piecewise constant function on ΓC :

−
∫

ΓC

σN [uh
N

] dΓ ≤ −
∫

ΓC

(σN − π̄h1σN )[uh
N

] dΓ

= −
∫

ΓC

(σN − π̄h1σN )([uh
N

]− [uN ]) dΓ−
∫

ΓC

(σN − π̄h1σN )[uN ] dΓ.(25)

The first term in (25) is bounded by using (23), the trace theorem and Young’s inequality:

−
∫

ΓC

(σN − π̄h1σN )([uh
N

]− [uN ]) dΓ ≤ ‖σN − π̄h1σN ‖1/2,∗,ΓC
‖[uh

N
]− [uN ]‖1/2,ΓC

≤ Ch
2(τ−1)
1 ‖u‖2τ,Ω1,Ω2 +

α

2
‖u− uh‖21,Ω1,Ω2

, 3/2 < τ ≤ 5/2.(26)

The second term in (25) is bounded on any macro-element Im ∈ IM . We denote by ZC and ZNC

the contact and the noncontact sets in Im respectively, i.e., ZC = {x ∈ Im, [uN ](x) = 0} , and
ZNC = {x ∈ Im, [uN ](x) < 0} , and by |ZC |, |ZNC | their measures in R (so |ZC | + |ZNC | = hIm).
When |ZC | > 0 and |ZNC | > 0 (otherwise the integral term vanishes) we obtain (see [21]):

−
∫

Im
(σN − π̄h1σN )[uN ] dΓ ≤ C

h
2τ−3/2
Im

(
|σN |2τ−3/2,Im + |[uN ]′|2τ−3/2,Im

)

max(|ZC |1/2, |ZNC |1/2)
.

By noting that either |ZNC | or |ZC | is greater than hIm/2, summing over all the macro-elements
Im, and then using the trace theorem, we come to the conclusion that:

−
∫

ΓC

(σN − π̄h1σN )[uN ] dΓ ≤ Ch
2(τ−1)
1 ‖u‖2τ,Ω1,Ω2 , 3/2 < τ ≤ 5/2.(27)

Combining in (21) the approximation error estimates (22), (24) with the consistency error
estimates (26), (27) allows us to obtain the optimal estimate (20).
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3 The LAC in three dimensions (d=3)

In this section we extend the LAC approach to the three-dimensional case. The polyhedral
domains Ω1 and Ω2 have a common candidate contact zone ΓC which is is a polygon. We denote
by T h` the regular tetrahedra or hexaheda family discretizing the domain Ω` and by h` the largest
mesh size. In the following we will consider four nodes linear tetrahedra (TETRA 4), ten nodes
quadratic tetrahedra (TETRA 10), eight nodes linear hexahedra (HEXA 8), twenty and twenty-
seven nodes quadratic hexahedra (HEXA 20 and HEXA 27).

To deal with the error analysis we have to extend the definition of the operator πh1 (see
Definition 1) to the two-dimensional case. We also need that the main properties of πh1 (linearity,
average preserving, Hs(ΓC)-stability) remain true in this case. We have to introduce the “internal
degree of freedom hypothesis” which is needed to construct πh1 and to carry out the convergence
analysis.

Hypothesis 1 (internal d.o.f.) There exists a macro-mesh TM of ΓC whose elements are unions
of elements of T h` ∩ ΓC such that for every macro-element Tm ∈ TM , there exists (at least) a
degree of freedom xi of V h

` such that supp(φi) ⊂ Tm, where φi is the basis function associated to
xi. Moreover there exists a constant C such that the largest mesh size of the macro-mesh is lower
than Ch` (this last requirement is made to avoid a too coarse macro-mesh).

From a theoretical point of view one could try to show that this hypothesis can be generally
fulfilled by gathering some elements on ΓC but such a strategy would not be interesting from a
practical numerical point of view. We choose another strategy which consists of a local refinement
of the contact mesh T h` ∩ΓC whose aim is that the mesh T h` ∩ΓC before refinement becomes the
macro-mesh. For HEXA 27 elements, no refinement is needed and the trace mesh can be chosen
as macro-mesh since there is already an internal degree of freedom. For the other elements the
refinement strategy consists of adding (at least) an internal d.o.f. by refining the contact elements
as suggested in Figure 2.

Remark 8 1. The refinement strategy is local and only concerns the elements which have a face
on the contact area (see Figure 3 where a tetrahedra mesh is refined).

2. One can either choose to refine the mesh of one or of the other body.
3. The refinement does not affect the regularity and the quasi-uniformness properties of the

meshes.

3.1 The average preserving operator

We next suppose that TM is a macro-mesh of ΓC satisfying Hypothesis 1 and built from the mesh

of T h1 ∩ ΓC . Let W h
` be the normal trace space of V h

` = {vh` ∈ (C(Ω
`
))3 : vh` |T ∈ Pk(T ),∀T ∈

T h` , vh` = 0 on ΓD} on ΓC ⊂ R2 with k = 1, 2. Let φi be the basis functions associated to the
degrees of freedom of W h

1 . We denote xi, i = 1, .., n the corresponding nodes of T h1 ∩ ΓC and
∆i = supp(φi).

Definition 2 Assume that Hypothesis 1 holds. The operator

πh1 : L1(ΓC) −→W h
1

12



Figure 2: Upper picture: refinement strategy for linear (TETRA 4) and quadratic (TETRA 10)
tetrahedra. Middle picture: refinement strategy for linear (HEXA 8) and quadratic (HEXA 20)
hexahedra. Lower picture: for quadratic HEXA 27 hexahedra, no refinement is needed.

is as follows for any v ∈ L1(ΓC). If xi is a node in ΓC ∩ Γ1
D

, then πh1v(xi) = 0. Then πh1v is

defined locally on every macro-element Tm ∈ TM having as nodes xi, i = 1, ...,m (xi 6∈ ΓC ∩ Γ1
D

)
and as internal d.o.f. xm+1 by

πh1v =
m+1∑

j=1

αj(v)φj ,

where 



αj(v) =

∫

∆j

v dΓ

|∆j |
, j = 1, ...,m

αm+1(v) =

∫

Tm

v dΓ−
m∑

j=1

∫

Tm

αj(v)φj dΓ

∫

Tm

φm+1 dΓ

.

Remark 9 1. If TM contains more than one internal d.o.f. then we fix one of them which is
denoted xm+1 and the other internal d.o.f. are handled as standard nodes.

2. If we adopt the procedure depicted in Figure 2 when choosing TETRA 4, TETRA 10, HEXA
8, HEXA 20, HEXA 27 elements, we have respectively m = 3,m = 9,m = 7,m = 19,m = 8.

13



Figure 3: An example of a refinement on the ~Ox ~Oy face of a cube which stands for ΓC : the
original mesh on the left side and the refined one on the right side.

Proposition 3 1. The operator πh1 is linear and satisfies
∫

Tm

πh1v − v dΓ = 0, ∀v ∈ L1(ΓC), ∀Tm ∈ TM .

2. For any s ∈ [0, 1], the operator πh1 is Hs(ΓC)-stable, i.e., there exists C > 0 such that for any
v ∈ Hs(ΓC)

‖πh1v‖s,ΓC
≤ C‖v‖s,ΓC

.

Proof. The linearity of πh1 is obvious. The average preserving property on Tm follows directly
from the definition of πh1 . When ΓC ∩ Γ1

D
= ∅ then the proof of the stability is obtained from a

similar calculation as in the one-dimensional case. It is easy to check that for any j, we have

|αj(v)| ≤ C|∆j |−1/2‖v‖0,T̃m ≤ Ch−1
c ‖v‖0,T̃m(28)

where T̃m =
⋃
i:xi∈Tm ∆i. Therefore the local L2-stability: ‖πh1v‖0,Tm ≤ C‖v‖0,T̃m and hence

the global L2-stability ‖πh1v‖0,ΓC
≤ C‖v‖0,ΓC

follow. As in the one-dimensional case, the local
L2-stability of the gradient:

‖∇πh1v‖0,Tm ≤ C‖∇v‖0,T̃m(29)

is a direct consequence of the property ∇πh1a = 0 on Tm for all a ∈ P0(T̃m) and of the error
estimate (17) in two dimensions (see [5]).

When ΓC∩Γ1
D
6= ∅, the estimate (28) remains true for any j. It suffices then to prove the local

stability (29) still holds when Tm has at least a node in Γ1
D

(in that case the constant functions
are not preserved on Tm). So

‖∇πh1v‖0,Tm ≤ Ch−1
c ‖πh1v‖0,Tm ≤ Ch−1

c ‖v‖0,T̃m ≤ C‖∇v‖0,T̃m
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where the last bound follows from Poincaré inequality and since v vanishes on a set of positive
measure in ∂T̃m. Denoting by H1

0,Γ1
D

(ΓC) the functions of H1(ΓC) vanishing on ΓC ∩ Γ1
D

, we

deduce that πh1 is stable in any interpolation space between L2(ΓC) and H1
0,Γ1

D
(ΓC).

3.2 Error analysis in three dimensions

The forthcoming result shows that the use of the discrete cone Kh of admissible displacements in
the three-dimensional case (see definition hereafter) leads to optimal convergence in the energy
norm. As previously, we set ‖u‖2s,Ω1,Ω2 = ‖u1‖2s,Ω1 + ‖u2‖2s,Ω2 where u = (u1, u2) and u` = u|

Ω`
.

We recall that V h = V h
1 × V h

2 and we define Kh as

Kh =

{
vh ∈ V h :

∫

Tm

[vh
N

] dΓ ≤ 0 ∀Tm ∈ TM
}
.

Let uh be the unique solution of the three-dimensional discrete problem
{

Find uh ∈ Kh satisfying:

a(uh, vh − uh) ≥ l(vh − uh), ∀ vh ∈ Kh.
(30)

Theorem 2 Let u and uh be the solutions to Problems (7) and (30) respectively. Assume that
Hypothesis 1 is verified and that u ∈ (Hτ (Ω1))3 × (Hτ (Ω2))3 with 3/2 < τ ≤ min(k + 1, 5/2),
k = 1, 2. Then, there exists a constant C > 0 independent of h1, h2 and u such that

‖u− uh‖1,Ω1,Ω2 ≤ C(hτ−1
1 + hτ−1

2 )‖u‖τ,Ω1,Ω2 .

Remark 10 For the “standard mortar” approach, we would need to take care of the extreme
nodes of ΓC in order to get the optimal convergence rate when considering nonmatching meshes.
In fact the new result coming from [21] cannot be extended straightforwardly to the 3D “standard
mortar” framework (contrary to the 2D case). Note that the method in the present paper does
not have such limitations at the extreme nodes in the 3D case.

Proof. From Falk’s Lemma, we get the abstract error estimate (21). Due to the properties of
π1
h, we can bound the approximation error term in an optimal way as in the previous section by

choosing vh ∈ V h such that

vh1 = Ih1 u1 +Rh1(πh1 ([uN ]− Ih1 u1.n1 − Ih2 u2.n2)),

vh2 = Ih2 u2.

As in the two-dimensional case it is easy to check that vh ∈ Kh and to obtain the bound for the
approximation error when 3/2 < τ ≤ min(k + 1, 5/2):

inf
vh∈Kh

(
‖u− vh‖21,Ω1,Ω2 +

∫

ΓC

σN [vh
N
− uN ] dΓ

)
≤ C(h

2(τ−1)
1 + h

2(τ−1)
2 )‖u‖2τ,Ω1,Ω2 .

The consistency error is handled as in the two-dimensional case by using the techniques of [21].
We obtain for 3/2 < τ ≤ 5/2:

inf
v∈K

∫

ΓC

σN [vN − uhN ] dΓ ≤ Ch2(τ−1)
1 ‖u‖2τ,Ω1,Ω2 +

α

2
‖u− uh‖21,Ω1,Ω2

.

Both previous bounds and (21) prove the theorem.
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4 The mixed formulation of the LAC method

First, we introduce the equivalent mixed formulation of the variational inequality problem using
the LAC condition. Then we will discuss on the link between the macro-mesh of the contact zone
(in particular Hypothesis 1) and the inf-sup condition.

4.1 The equivalent mixed formulation of the unilateral contact problem using
the local average contact condition

Here we are going to show the link between the variational inequality methods ((9) when d = 2
and (30) when d = 3) using the local average noninterpenetration condition and the mixed
formulation of the unilateral contact problem. We rather adopt the notations of the 3D case,
in particular Tm, TM but of course the analysis also applies to 2D when noting Im, IM for the
macro-mesh.

Definition 3 We recall that V h = V h
1 × V h

2 where for d = 2, 3 and k = 1, 2:

V h
` =

{
vh` ∈ (C(Ω

`
))d : vh` |T∈ Pk(T ),∀T ∈ T h` , vh` = 0 on ΓD

}
.

We choose piecewise constant nonpositive Lagrange multipliers on the macro-mesh TM on ΓC ,
i.e., in the convex cone Mh:

Mh = {µh ∈ Xh
1 : µh ≤ 0 on ΓC} where Xh

1 = {µh ∈ L2(ΓC) : µh|
Tm
∈ P0(Tm),∀Tm ∈ TM}.

We also introduce the bilinear form b on Xh
1 × V h defined by

b(µh, vh) =

∫

ΓC

µh[vh
N

] dΓ.

Proposition 4 Assume that Hypothesis 1 holds. The problem (30) (or (9) when d = 2) and the
problem: find uh ∈ V h and λh ∈Mh such that

{
a(uh, vh)− b(λh, vh) = l(vh), ∀vh ∈ V h,

b(µh − λh, uh) ≥ 0, ∀µh ∈Mh,
(31)

are well-posed and equivalent, i.e., the solution uh of (30) (or (9) when d = 2) coincides with the
first component of the solution of (31).

Lemma 1 Assume that Hypothesis 1 holds. Let µh belong to Xh
1 . We have the following impli-

cation ∫

ΓC

µh[vh
N

] dΓ = 0, ∀vh ∈ V h ⇒ µh = 0.

Proof of the lemma. Let µh ∈ Xh
1 . It is sufficient to prove that for all Tm ∈ TM

µh|
Tm

= 0.(32)

Let Tm belong to TM . From Hypothesis 1, there exists φi such that supp(φi) ⊂ Tm. Then, we
set vh so that [vh

N
] = φi. Since µh belongs to Xh

1 , we have

0 =

∫

ΓC

µh[vh
N

] dΓ =

∫

Tm

µhφi dΓ = µh
∫

Tm

φi dΓ.
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So we obtain (32)
Proof of the proposition 4. First, we suppose that problem (31) is well-posed and we prove
the equivalence between (30) (or (9) when d = 2) and (31). Let (uh, λh) ∈ V h ×Mh be the
solution of (31). We have,

b(µh − λh, uh) ≥ 0, ∀µh ∈Mh.

Taking µh = 0 and µh = 2λh leads to:

b(λh, uh) = 0(33)

b(µh, uh) ≥ 0, ∀µh ∈Mh.(34)

Choosing in (34) µh = −1 on Tm and µh = 0 elsewhere allows us to conclude that uh ∈ Kh.
From (31) and (33), we get

a(uh, uh) = l(uh),(35)

and for any vh ∈ Kh, we obtain

a(uh, vh)− l(vh) = b(λh, vh) ≥ 0.(36)

Putting together uh ∈ Kh, (35) and (36) implies that uh is a solution of Problem (30). Since the
problems (30) and (31) are well-posed, they are equivalent.

Then, we show that Problem (31) is well-posed. The existence of the solution (uh, λh) ∈
V h×Mh of (31) and the uniqueness of uh come from standard results (see, e.g., [29]). It remains
to prove the uniqueness of the multiplier λh with the help of Lemma 1. Let (uh, λh1) ∈ V h ×Mh

and (uh, λh2) ∈ V h ×Mh be two solutions of (31). Therefore

a(uh, vh)− b(λh1 , vh) = l(vh), ∀vh ∈ V h,(37)

a(uh, vh)− b(λh2 , vh) = l(vh), ∀vh ∈ V h.(38)

By subtracting (38) from (37), we get

∫

ΓC

(λh1 − λh2)[vh
N

] dΓ = 0,∀vh ∈ V h.

Since λh1 −λh2 belongs to Xh
1 , the use of Lemma 1 gives us λh1 = λh2 . So, we obtain the uniqueness

of λh and the well-posedness of (31).

4.2 The inf-sup condition

Now we see that Hypothesis 1 we use on the contact mesh ensures that the corresponding mixed
method using piecewise constant Lagrange multipliers on the macro-mesh TM (or IM in 2D)
verifies the inf-sup condition.

The inf-sup condition involved in our formulation is as follows: there is a constant βh such
that

inf
µh∈Xh

1

sup
vh∈V h

b(µh, vh)

‖µh‖W ′ ‖vh‖1,Ω1,Ω2

≥ βh > 0,

where W is the normal trace space on ΓC issued from V1 and W ′ denotes its dual. It is easy to
check that Lemma 1 implies the existence of such a constant βh. Moreover it is well known that the
inf-sup constant βh also arises in the error analysis of the mixed formulation (31). In order to get
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the best convergence rate we need to prove that βh is independent of the mesh size h = (h1, h2).
Next, we show the link between Hypothesis 1, the operator πh1 and the mesh-independent inf-sup
condition: there is a constant β such that:

inf
µh∈Xh

1

sup
vh∈V h

b(µh, vh)

‖µh‖W ′ ‖vh‖1,Ω1,Ω2

≥ β > 0,(39)

that is the aim of the following proposition.

Proposition 5 There exists a positive constant β which does not depend on the mesh size such
that: for all µh ∈ Xh

1 , there exists vh ∈ V h, vh 6= 0 such that

b(µh, vh) ≥ β‖µh‖W ′‖vh‖1,Ω1,Ω2 .(40)

Proof. Note first that (40) and (39) are equivalent. Let µh belong to Xh
1 . Since Xh

1 ⊂ W ′, we
can use the continuous inf-sup condition (see, e.g., [29]): there is a constant β̃ such that

inf
µ∈W ′

sup
v∈V

b(µ, v)

‖µ‖W ′ ‖v‖1,Ω1,Ω2

≥ β̃ > 0.(41)

So, for all µh ∈ Xh
1 there exists v ∈ V such that:

b(µh, v) ≥ β̃‖µh‖W ′‖v‖1,Ω1,Ω2 .

To prove (40) it is sufficient to show that there exists vh ∈ V h satisfying the two following
conditions:

b(µh, vh) = b(µh, v),(42)

‖vh‖1,Ω1,Ω2 ≤ C‖v‖1,Ω1,Ω2 .(43)

In fact if (42) and (43) hold, we get (40) with β = β̃/C, i.e.,

b(µh, vh) = b(µh, v) ≥ β̃‖µh‖W ′‖v‖1,Ω1,Ω2 ≥ β̃

C
‖µh‖W ′‖vh‖1,Ω1,Ω2 .

In order to satisfy the condition (42), we set vh = (vh1 , v
h
2 ) such that

vh1 = Rh1π
h
1 [vN ], vh2 = 0,

where Rh1 ia a discrete extension operator. Since πh1 preserves the average on every macro-element
Tm, vh satisfies:

∫

Tm

[vh
N

] dΓ =

∫

Tm

πh1 [vN ] dΓ =

∫

Tm

[vN ] dΓ, ∀Tm ∈ TM .

By summing over the Tm and since µh is constant on any Tm, we get (42):

b(µh, vh) =

∫

ΓC

µh[vh
N

] dΓ =

∫

ΓC

µh[vN ] dΓ = b(µh, v).

To finish the proof, it remains to show that vh verifies (43). Thanks to the H
1
2 (ΓC)-stability of

πh1 and the trace theorem, we have

‖vh‖1,Ω1,Ω2 = ‖Rh1πh1 [vN ]‖1,Ω1 ≤ C‖πh1 [vN ]‖1/2,ΓC
≤ C‖[vN ]‖1/2,ΓC

≤ C‖v‖1,Ω1,Ω2 .
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We observe that the research of sufficient conditions on the meshes in order to construct the
stable average preserving operator πh1 is similar to the research of discrete approximation spaces
satisfying the inf-sup condition. Besides note that the three-dimensional refinement procedure
proposed for tetrahedra and hexahedra (whose aim is to obtain a simple macro-mesh) could also
be chosen in the linear two-dimensional case by dividing any contact element in two elements but
this is not necessary since it is simpler (and equivalent) to consider a segment with two contact
elements as in Section 2.

Remark 11 Here we can see some similarities (in the linear case) with the discontinuous mortar
domain decomposition studied in [30, 31] when considering its adaptation to the contact prob-
lem. The main difference is that the inf-sup condition directly comes from the definition of the
macro-mesh TM instead of being fulfilled by the introduction of a bubble enrichment of one of the
approximation space V h

` .

4.3 Error estimate

The following theorem shows that we can obtain the same convergence rates for the solution
to the mixed problem (31) than those stated in Theorem 1 and Theorem 2 for the variational
inequality problem.

Theorem 3 Let (u, λ = σN ) and (uh, λh) be the solutions to the continuous Problem (7) and to
the discrete Problem (31) respectively. Let d = 2, 3 and k = 1, 2. Assume that Hypothesis 1 is
verified when d = 3 and that u ∈ (Hτ (Ω1))d × (Hτ (Ω2))d with 3/2 < τ ≤ min(k + 1, 5/2). Then,
there exists a constant C > 0 independent of h = (h1, h2) and u such that

‖λ− λh‖1/2,∗,ΓC
+ ‖u− uh‖1,Ω1,Ω2 ≤ C(hτ−1

1 + hτ−1
2 )‖u‖τ,Ω1,Ω2 ,

where ‖.‖1/2,∗,ΓC
stands for the dual norm of ‖.‖1/2,ΓC

.

Proof. The proof is straightforward and standard. Since the inf-sup condition (39) is verified it
only remains to bound similar terms to the ones bound in the proof of Theorems 1 and 2 (see,
e.g., [34]).

5 Numerical experiments

The LAC method has been implemented in the finite element software of Electricité de France
(EDF), Code Aster . For more than 20 years, this FE code is both the repository of the research
in solid and structure mechanics led at the R&D department of EDF and the simulation tool
used by the engineering divisions to analyze various components of the power plants (nuclear,
hydraulic. . . ) and also to justify safety for the French nuclear safety authority (ASN).

We use an already implemented full non linear algorithm, see [41]. All the non linearities
(material behavior, geometrical, and contact) are solved inside a single Newton loop. At each
Newton step we perform a geometrical update and a contact pairing detection (segment-to-
segment pairing quite similar to the one in [48] with a search method based on [26]), and then we
construct and solve the linear system, see Figure 4. The locality of the proposed method allows
us to easily compute the linear system (at each Newton step) at an elementary level. The only
prerequisite to be satisfied is the fulfillment of the Hypothesis 1. This is accomplished thanks
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to a local pretreatment on the contact zone, see Figures 2, 3. So we are able to implement the
LAC method in an easy an generic way for the most common finite elements in 2D (3-node linear
and 6-node quadratic triangles, 4-node bi-linear and 8-node bi-quadratic quadrangles) and in 3D
(4-node linear and 10-node quadratic tetrahedra, 8-node bi-linear, 20 and 27-node bi-quadratic
hexahedra). More details on the numerical implementation are available in [20].

Figure 4: One Newton loop algorithm.

In this section, we analyze the behavior (in 2D and 3D) of the method facing the well-known
contact problems: the Taylor patch test and the Hertzian contact. To conclude the numerical
experiments, we will take a look at the numerical convergence rates.

5.1 Taylor patch test

5.1.1 Test configuration in 2D

We consider a structure which consists of two identical squares of edge lengths 50mm having
a common horizontal edge which is the contact area ΓC . The material characteristics are: a
Young modulus E = 2000MPa and a Poisson ratio ν = 0.3. We set symmetric conditions both
on the left part and on the lower part of the structure and apply a 25MPa pressure at the top
of the upper square. Both squares are meshed independently with 3-node triangles or 4-node
quadrangles which leads to nonmatching trace meshes on the contact zone (see Figures 5 to 7).
In this case the solution u to the continuous problem is linear and the stress field σyy in the
structure as well as the contact pressure σN are constant and equal to 25MPa. The mortar
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method is known to pass successfully this Taylor patch test whereas other methods based on
node-to-segment approaches fail when considering the general case of nonmatching meshes (see,
e.g., [33, 52]). Before computing the results with the LAC method, we consider in Figure 5 the
solutions obtained with a node-to-segment method. We see that the Lagrange multiplier (contact
pressure) and the stress field σyy around the contact zone show some oscillations (range between
24.2MPa and 25.6MPa). So the node-to-segment method does not satisfy the Taylor patch test
in a satisfactory way.

Figure 5: Numerical results obtained with a standard node-to-segment method in 2D when considering 3-node

triangles: on the left σyy on the deformed shape (scale factor 10), on the right Lagrange multipliers on ΓC .

The numerical results obtained with the LAC condition are depicted in Figures 6 and 7. We
get the expected results on the displacement field, the Lagrange multiplier equals 25± 10−9MPa
on ΓC , the gap numerically vanishes on ΓC and the Cauchy stress tensor component σyy equals
25± 10−9MPa in the structure.

Remark 12 We see in Figure 6 that the elements of the trace mesh on ΓC of the lower square
(which stands for Ω1) are gathered by pairs to form the macro-mesh IM . There are 34 elements
in the trace mesh of the lower square and the Lagrange multiplier space P0(IM ) admits 17 d.o.f.
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Figure 6: Numerical results obtained with the LAC condition in 2D when considering 3-node triangles: on the

left σyy on the deformed shape (scale factor 10), on the right Lagrange multipliers and gap on ΓC .

Figure 7: Numerical results obtained with the LAC condition in 2D when considering 4-node quadrangles: on

the left σyy on the deformed shape (scale factor 10), on the right Lagrange multipliers and gap on ΓC .

22



5.1.2 Test configuration in 3D

We now consider a structure which consists of two identical cubes of edge lengths 50mm having a
common horizontal face which is the contact area ΓC . The material characteristics are the same
as previously: a Young modulus E = 2000MPa and a Poisson ratio ν = 0.3 are chosen. We set

symmetric conditions on the two vertical faces
−→
Ox
−→
Oz and

−→
Oy
−→
Oz and on the lower part of the

structure (Oz stands for the vertical axis). We apply a 25MPa pressure at the top of the upper
cube. Both cubes are meshed independently with 4-node tetrahedra or 8-node hexahedra with
nonmatching trace meshes on the contact zone (see Figures 8 and 9).
As in the two-dimensional case, the solution u to the continuous problem is known (linear dis-
placement fields, constant σzz field and constant Lagrange multipliers both equal to 25MPa).
The results are depicted in Figures 8 and 9. We obtain the expected results on the displacement
field, the contact pressure (Lagrange multipliers) equals 25± 10−9MPa on ΓC and Cauchy stress
tensor component σzz equals 25± 10−9MPa in the structure.

Remark 13 In the right picture of Figures 8 and 9, we can see the result of the pre-processing
work which ensures that the trace mesh on the slave side of the contact zone (i.e., the mesh of Ω1

on ΓC) satisfies Hypothesis 1.

Figure 8: Numerical results obtained with the LAC condition in 3D when considering 4-node tetrahedra: on the

left σzz on the deformed shape (scale factor 10), on the right Lagrange multipliers on ΓC .
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Figure 9: Numerical results obtained with the LAC condition in 3D when considering 8-node hexahedra: on the

left σzz on the deformed shape (scale factor 10), on the right Lagrange multipliers on ΓC .

5.2 Hertzian contact

5.2.1 Test configuration in 2D

The aim of this example is to adapt the local average contact procedure to a more general
context than the theoretical convergence framework (vanishing initial gap and ΓC is a straight
line segment). We consider a benchmark for contact problems taken from [38]: a structure which
consists of a cylinder (diameter equal to 100mm, E = 2.1 · 105MPa and ν = 0.3) contacting
a square foundation (edge length equal to 200mm, E = 7 · 107MPa and ν = 0.3). We use a

symmetric condition on the
−→
Oy axis and we apply a vertical point load on the top of the cylinder

(F = 35kN). In such a configuration, we have to consider nonmatching meshes, on account of the
geometries of the bodies. Moreover, there is an initial gap and consequently, there are points of
the boundaries initially not in contact which will come into contact after deformation. Note that
the continuous noninterpenetration condition in (5) becomes [uN ] − g ≤ 0 where g is the intial
gap between both bodies. So the discrete contact condition in (8) becomes

∫
Im([vh

N
]− gh) dΓ ≤ 0

where gh is a suitable finite element approximation of the gap function.
This benchmark allows us to test our method when considering a geometric non-linearity

and non-linear boundary conditions (deformable-deformable contact with status transition in the
supposed contact area) together with quadratic elements. An analytical solution is known for the
contact pressure and presented in [38]: we recall that the contact pressure should be equal to

p(x) = pmax

√
1− x

a

2

24



where pmax = −3585.37MPa, and the half contact width a equals 6.21mm. Both objects
are meshed independently with 6-node triangles or 8-node quadrangles with nonmatching trace
meshes on the contact zone (see Figures 10 to 12). Before computing with the LAC method, we
first show in Figure 10 the solutions obtained with a node-to-segment method. As expected the
Lagrange multiplier and the Von Mises stresses around the contact zone show some oscillations.

Figure 10: Numerical results obtained with a standard node-to-segment method in 2D when considering 6-node

triangles: Von Mises stress on the deformed shape (top). Exact contact pressure (interpolated on the trace mesh)

and computed Lagrange multiplier (bottom).

Figure 11: Numerical results obtained with the LAC condition in 2D when considering 6-node triangles: Von

Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed

Lagrange multiplier and gap (bottom).
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Figure 12: Numerical results obtained with the LAC condition in 2D when considering 8-node quadrangles: Von

Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed

Lagrange multiplier and gap (bottom).

The results using the LAC method are depicted in Figures 11 and 12. We get the expected
results on the Lagrange multipliers. There is a slight error of 0.21% on pmax in the 6-node triangles
case and of 0.35% in the 8-node quadrangles case. Since the contact status is only known in
average on every macro-element the approximation of the contact area half width is not as accurate
as the one given by approach based on nodal contact status (“node-to-segment” or “standard
mortar” approaches). Nevertheless, we still get an estimate in good agreement with the analytical
solution, the computed half width a ranges between 5.94mm and 7.26mm when considering 6-
node triangles and 5.22mm and 6.66mm when considering 8-node quadrangles. Note that there
are only 4 or 5 true contacting elements, we could get even better results by considering a finer
mesh on the contact zone, especially if we want accurate results for the approximation of the
contact area half width.

5.2.2 Test configuration in 3D

We now consider two half spheres (radius equal to 100mm, E = 2000MPa, and ν = 0.3), we set

symmetric conditions on the two vertical faces
−→
Ox
−→
Oz and

−→
Oy
−→
Oz (so we only modeled one eighth

of each sphere), we apply a vertical displacement of −1.5mm on the top of the upper sphere and
respectively 1.5mm at the bottom of the lower sphere. An analytical solution is known for the
contact pressure (see [22]): we recall that the contact pressure should be equal to

p(r) = pmax

√
1− r

a

2

where pmax = −171.362MPa, and the half contact width a equals 12.247mm. It is also known
that the maximum Von Mises stress should be observed near the contact zone inside the half
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spheres. As previously, both objects are meshed independently with 10-node tetrahedra, or 20-
node hexahedra, or 27-node hexahedra with nonmatching trace meshes on the contact zone (see
Figures 13, 14 and 15). The results are depicted in Figures 13, 14 and 15.
We observe a good agreement between the numerical results and the analytical ones. The error
on pmax ranges between 1.9% and 2.3% depending on the kind and the number of elements used
(see also Remark 14). We also get a good localization of the maximum of Von Mises stress. As in
the previous case, the detection of the contact half width a is not as accurate as the one obtained
with a nodal based contact condition. We obtain a computed a for the finer mesh (10-node
tetrahedra) which ranges between 12.29mm and 12.55mm. Although the contact contribution is
only taken into account on a macro-element scale, we get a good circular shape for the contact area
and the expected parabolic contact pressure distribution across this area without any noticeable
oscillations as the ones that could occur when using a “node-to-face” approach.

Remark 14 A part of the error on the maximum contact pressure pmax is due to the full non-
linear algorithm used to solve the problem. This algorithm takes into account all the “small” non
linearities coming from the contact geometry. So, these non-linear contributions slightly take us
away from the small strain conditions which are used to get the exact solution. We notice that
this “gap” with the analytical contact pressure is more noticeable in the 3D case than in the 2D
case.

Figure 13: Numerical results obtained with the LAC condition in 3D when considering 10-node tetrahedra: Von

Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed

Lagrange multiplier and gap (bottom left). Trace mesh on ΓC and computed Lagrange multiplier (bottom right).
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Figure 14: Numerical results obtained with the LAC condition in 3D when considering 20-node hexahedra: Von

Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed

Lagrange multiplier and gap (bottom left). Trace mesh on ΓC and computed Lagrange multiplier (bottom right).

Figure 15: Numerical results obtained with the LAC condition in 3D when considering 27-node hexahedra: Von

Mises stress on the deformed shape (top). Exact Lagrange multiplier (interpolated on the trace mesh), computed

Lagrange multiplier and gap (bottom left). Trace mesh on ΓC and computed Lagrange multiplier (bottom right).
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5.2.3 Numerical convergence rates

Setting of the test We study the numerical convergence rates of the LAC method and we
compare them with the theoretical ones. We consider the Hertzian contact configuration intro-
duced previously in both the 2D and the 3D cases. We compute the L2-error in displacement
‖u− uh‖0,Ω1,Ω2 and the L2-error on the contact pressure ‖λ− λh‖0,ΓC

(seen as a Lagrange mul-
tiplier). Although there is to our knowledge no proof of optimal L2(Ω1 ∪ Ω2)-error decay on
the displacements (the only partial existing results can be found in [16, 51]) we can nevertheless
expect (or believe) that this error behaves like (h1 +h2)‖u−uh‖1,Ω1,Ω2 as in the linear case where
the Aubin-Nitsche argument can be applied. So we compare our numerical convergence rates
with these unproved and expected optimal theoretical rates.

Concerning the L2(ΓC)-error on the Lagrange multiplier the situation is simpler. By using
standard results (inverse inequality and approximation properties as in [16, 51]) we easily obtain
from Theorem 3:

‖λ− λh‖0,ΓC
≤ Ch−1/2

1 (hτ−1
1 + hτ−1

2 )‖u‖τ,Ω1,Ω2 ,

where 3/2 < τ ≤ min(k + 1, 5/2).
Since there does not exist an analytical solution for the displacement field u we will use a

numerical reference solution computed with a sufficiently fine mesh. All the results are reported
in Tables 1 and 2 for the 2D and the 3D cases respectively. Even though the test cases are tough
(geometrical non linearity, contact transition, small effective contact zone, deformable-deformable
contact), the numerical convergence rates can be compared with the expected ones.

Element type ‖u− uh‖0,Ω1,Ω2 ‖λ− λh‖0,ΓC

Expected Numerical Expected Numerical

3-node triangle 2.0 2.33 0.5 (1)3 0.71
6-node triangle 2.5 3.11 1.0 0.91

4-node quadrangle 2.0 2.04 0.5 (1) 0.76
8-node quadrangle 2.5 2.24 1.0 0.83

Table 1: Convergence rates in the 2D case

Element type ‖u− uh‖0,Ω1,Ω2 ‖λ− λh‖0,ΓC

Expected Numerical Expected Numerical

4-node tetrahedron 2.0 1.97 0.5 (1) 0.83
10-node tetrahedron 2.5 2.42 1.0 0.97

8-node hexahedron 2.0 2.24 0.5 (1) 0.83
20-node hexahedron 2.5 2.36 1.0 0.95
27-node hexahedron 2.5 2.30 1.0 0.99

Table 2: Convergence rates in the 3D case

3In a recent paper [51] the authors prove for a standard conforming linear finite element approximation of the
Signorini problem in 2D and 3D that the L2(ΓC)-error bound on the multipliers could be improved with a factor
h1/2. This could explain the better convergence we observe in our framework which is very close to that considered
in [51].
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6 Conclusion

In order to handle nonmatching meshes on the contact interface between two and three-dimensional
elastic bodies, we propose a method using a simple local average noninterpenetration condition
for various linear and quadratic finite elements. In the case of the two-dimensional unilateral
contact problem the Local Average Contact (LAC) condition allows us to obtain optimal con-
vergence results without any other assumption than the Sobolev regularity of the continuous
solution u (as the standard approaches considered with matching meshes, see [21]). Note that
the standard mortar approach would also give optimal bounds by using the results of [21]. In
the three-dimensional case, our method only requires a minor hypothesis on the mesh (i.e., the
averages must be computed on patches containing at least the support of a basis function) to
extend the two-dimensional optimal results. These results for non matching meshes are mostly
due to the operator π1

h developed to tackle the error analysis when considering the local average
contact condition. The first numerical results, considering 3 and 6-node triangles, 4 and 8-node
quadrangles in the 2D case and 4 and 10-node tetrahedra, 8, 20 and 27-node hexahedra in the 3D
case, confirm the good behavior of the LAC method and its “developer-friendly” implementation
in an industrial FE code. Further numerical experiments and the extension to the dynamic and
friction cases should be considered.
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