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Abstract

This work is concerned with the normal compliance model and friction in
linear elastostatics. We consider the two-dimensional sliding problem and we
seek those interface parameters leading to infinitely many solutions of the con-
tinuous and the finite element discretized problem. The determination of the
interface parameters uses a specific eigenvalue problem. In the discrete case the
framework is illustrated with an elementary example and some finite element
computations.
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1. Introduction and problem set-up

Contact mechanics involves highly nonlinear phenomena especially when friction
effects are taken into account. The most common model of friction is due to Coulomb
at the end of the eighteenth century and it is generally used together with the Signorini
(or unilateral) contact conditions. Such a macroscopic frictional contact model with a
very simple formulation nevertheless is strongly nonlinear and its understanding from
a mathematical point of view is not complete yet. A more recent model motivated
by phenomenological laws on the contact interface such as the presence of small
asperities, oxides and impurities has lead to the so-called normal compliance model
(with or without friction) introduced and studied in [13] and [12]. Note that this model
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can also be seen as a regularization of the Signorini contact conditions in which some
penetration is allowed. In elastostatics several works concerning existence and/or
uniqueness of solutions have been achieved: in [14] for the sliding case and in [9, 10]
for the general case.

This work deals with nonuniqueness of solutions to the normal compliance model
with friction. We focus on a simple and particular case of the model in which the
normal and tangential constraints depend in a linear way on the penetration on the
contact zone. According to [10] this problem admits a unique solution provided
that the interface parameters denoted ¢, and c¢; are small enough. In section 2,
we consider a solution u of this normal compliance problem which slips in a given
direction and penetrates into the foundation. Following the ideas of [5] we introduce
a specific eigenvalue problem. We prove that if ¢, is an eigenvalue then an infinity
of solutions to the normal compliance problem with friction exist in a neighborhood
of u. Section 3 deals with the finite dimensional case. We translate the results of
the previous section when finite elements are used. Finally we illustrate the theory
and we show some nonuniqueness cases with an elementary example and some finite
element computations.

We consider an elastic body occupying a domain €2 in R%. The boundary I' of € is
assumed to be Lipschitz and is divided as follows: ' = I' , Ul y UL where I'p, I'y and
['c are three open disjoint parts with meas(I'p) > 0. The given displacements U are
prescribed on the portion I'p, the part I'y is subjected to a density of surface forces
denoted F' € (L?(T'y))? and 2 is being acted upon by the body forces f € (L?*(2))2.
On the part I'¢ the body can come into contact with a rigid foundation. We denote by
n = (n1,ny) the unit outward normal vector on the boundary I and by ¢ = (ng, —n4)
the unit tangent vector.

The frictional contact problem with normal compliance in elastostatics is to find
the displacement field » such that equations (1.1)—(1.5) hold:

diveo(u)+ f=0 in(,
o(u)=Ce(u) in Q,

1
2
u=U onlp, .3
4

~ A~~~
—_ =
~— N N N

o(un=F on 'y,

where e(u) denotes the linearized strain tensor defined by e(u) = (Vu + V7 u)/2
and C = cijpn(z) € (L®(2))'® is the fourth order symmetric and elliptic tensor of
linear elasticity.

We decompose the stress vector o(u)n on the boundary I' into normal stress and
tangential stress denoted o, (u) and oy(u), respectively, so that o(u)n = o,(u)n +
oi(u)t. In the same way, the displacement field u on the boundary I' is written
u = u,n + u;t where u, and u; denote the normal and tangential displacements,
respectively.

Throughout this paper, we assume that the frictional contact behavior on the part
['c is governed by the normal compliance model introduced and studied by Oden and
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Martins (see [13]) in which the stresses follow the power law,

O'n(u) = —Cn(un)T”,
oy(u) = —c; sgn(uy) (u,)7t  if sliding occurs,

where sgn denotes the sign function and (.); stands for the positive part so that
(un)y represents the penetration of the body into the foundation. The constants
mn, > 1, my > 1 as well as the positive functions ¢, and ¢ in L*(T'¢) stand for
interface parameters characterizing the contact behavior between the body and the
rigid foundation. Then the conditions of normal compliance with friction on I'¢ are:

[ on(u) = —cn(un)T,

lov(u)| < cp(u,)tt  if w =0,

.
{ o (u)| = ci(un)i i w #0,
\

Ut O't(U) S 0.

(1.5)

Let us introduce the set of admissible displacements:
Vy = {'v € (H'(Q)* v=Uon FD}.
The weak form of problem (1.1)-(1.5) consists to find u € Vy such that:
a(u,v—u) + jo(u,v — u) + ji(u,v) — jiy(u,u) > L(v —u), YveVy (1.6)

where

a(u, v) = /Q (Ce(w)) : e(v) dQ,  L(v) = /Q fodQ+ /F P,

Jn(u,v) :/ cn(un) vy, dl, Ji(u,v) :/ ci(un) vy dT,
FC 1_‘C

for any u and v in (H'(Q2))? and 1 < m,,m; < +0co. The existence of solutions
to problem (1.6) was proved by Klarbring, Mikelic and Shillor in [9]. In the latter
reference (where U = 0) the authors prove also that if the loads f, F' and the interface
parameters ¢, and c¢; are small enough, then the problem (1.6) admits a unique
solution in a ball centered at the origin and whose radius depends on the interface
parameters and the loading. When m,, = m; = 1, the authors improve in [10] the
previous result and establish that the solution to (1.6) is globally unique when ¢, and
¢; are small enough.

If we search for solutions of (1.1)—(1.5) with slip in a given direction (i.e., uz > 0
or u; < 0) the conditions (1.5) become

on(u) = —cp(un)tm,
{ —oy(u) = c(un)Tt  if u >0, (1.7)

o(u) = cr(u,)pt it u <O.
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Set
V= {'u € (H'(Q)* v=0on FD}.

The variational formulation (1.6) with conditions (1.7) is to find w € Vy such that
sgn(uy) = +1 or sgn(u;) = —1 on ' and

a(u, v) +/ Cn(Un) vy, dI' + sgn(ut)/ ci(un) vy dl' = L(v), Vv €V. (1.8)
To

Te

In the next section we consider a solution to the sliding problem (1.8) when m,, =
m; = 1 and we look for sufficient conditions for nonuniqueness keeping in mind that
the solution is unique when ¢, and ¢; are small enough (see [10]).

2. Eigenvalues and multiplicity of solutions

2.1. Sufficient conditions for multiple solutions: a spectral approach
The sufficient conditions leading to infinitely many solutions of problem (1.8) re-
quire the introduction of an eigenvalue problem which consists, for a fixed real number
A, of finding (u, ) € C x ((H'(2))? — {0}) such that:
[ div o(p)=0 in Q,
o(p)=Ce(p) Q)
p=0 on I['p,
o(p)n=0 on 'y,
=—Ao,(¢p) on g,

(| onlp)=—ppn  onlg,

where ¢,, denotes the normal component of ¢ on I'c.
In order to introduce the variational formulation of problem (2.1) we define the
bilinear form b,(.,.) given by:

bx(u,v):)\/ upvy dI’ —/ Up Uy, d.
T'c T'c

The weak formulation of eigenvalue problem (2.1) consists, for a fixed real number
A, to find p € C and 0 # ¢ € V such that:

a(p,v) = uby (e, v), Vv eV. (2.2)

As a matter of fact one can easily check that if y € C and a nonzero eigenfunction ¢
satisfy (2.1), then the pair (u, ¢) is also a solution of (2.2). Conversely, any sufficiently
regular solution (u, ) of (2.2) satisfies (2.1).

Besides it is easy to see that if one chooses A = 0 then problem (2.1) admits only
negative eigenvalues . Moreover for any A, the value u = 0 cannot solve problem
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(2.1). Let us mention that a similar approach has already been introduced for the
Coulomb friction model in [5] and developed in [6]. Such an eigenvalue approach
has recently lead to explicit examples of nonuniqueness for the continuous Coulomb
friction model with unilateral contact in [8]. In the latter case the eigenvalue problem
does not depend on a constant A and the conditions on I'c in (2.1) become ¢, = 0
and o4(¢) = po, () where the eigenvalue p represents now a friction coefficient.

In the remainder of the paper we are interested in the problem with slip, (1.8), with
my = m, = 1. Moreover, we assume that ¢, and ¢; are positive constants independent
of x, and let u be an equilibrium position of the frictional contact problem with
normal compliance (1.8).

The following proposition establishes sufficient conditions for infinitely many so-
lutions of problem (1.8) located on a continuous branch originating at w.

Proposition 2.1 Let u be a solution of the frictional contact problem with normal
compliance (1.8) and assume that there exists « and B such that:

up(x) > >0, |u(x)>p>0 Veele.

Consider the eigenvalue problem (2.1) with A = — sgn(ut)&.
c

If ¢, is an eigenvalue of problem (2.1) with ¢ as corregponding etgenvector and
if on € L>®(L¢), o1 € L>®(T¢), then there exists 69 > 0 such that u + d¢ is also a
solution of the normal compliance contact problem (1.8) for any |§] < .

Proof. According to the hypotheses of the proposition, we get uw € Vi and dp € V
for any 6 € R. Hence u + d¢p € Vy for any 6 € R. Moreover

a(u,v) + cn/F (tn) 40y dl + sgn(ut)ct/F (up)4ve dl'=L(v) Vv €V, (2.3)
a(ep,v) + cn/

Te

OnUp dI' + sgn(ut)ct/ ©nvy dl' =0, Vo e V. (24)

Te

Since u,(x) > a > 0 and ¢,, € L>®(['¢), we deduce that there exists dy > 0 such that
(tn)+ +0@n = (un + S¢pn)+ (2.5)

for any |0| < 0. Similarly since |us(x)| > > 0 on I'c and ¢; € L®°(T), we see that
sgn(uy) = sgn(ug + d¢y) (2.6)

if |§] is small enough. Multiplying equation (2.4) with ¢ and adding it with (2.3)
completes the proof. O
Remark 2.2 The L*®°(T'¢) reqularity assumptions for ¢, and ¢; are made to avoid

any possible singularities of H'/?(I'¢) functions and to obtain estimates (2.5) and
(2.6).
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2.2. Existence of etgenvalues

This section is devoted to the existence of eigenvalues of problem (2.1). Let us
recall that p = 0 is not an eigenvalue in (2.1) since af(.,.) is V-elliptic.
So we define P : L*(T'¢) — V as follows: for any f € L*(T¢),

a(P(f),'v):)\/ fvth—/ fodl, WweV.

Te Te

The operator P is linear and continuous, and

PPl < Cull fllzzre)s

where ||.||; denotes the (H'(£2))%.-norm. Consider now the normal trace operator with
values in L?(I'¢): @ = IoTr such that Q(v) = v,, where T'r denotes the normal trace
operator from V into Hz(I'¢) and I is the canonical embedding from H?(I'¢) into
L?(T¢). According to the embedding theorem (see [1], Theorem 7.57), the mapping
I is compact and we deduce that 7' = P(Q) is also compact. Then, (u, ¢) is a solution
of the eigenvalue problem (2.1) if and only if

1

T(p) = 0 P-

Indeed, if (i, ¢) satisfies (2.2) then for any v € V one obtains

a(c,o,'v)z,u()\/F ©nvy dT _/1“ Onn dF)
C (&)

=u(M [ Quewdr— [ Q(p)v, dr)
Tc Te

= /L(Z(PQ((,O), ’U)
= na(T(p),v).

Therefore T'(¢) = (1/p)¢p. The compactness of T allows us to obtain the classical
result concerning its spectrum.

Proposition 2.3 The eigenvalues of problem (2.2) consist of a countable set of com-
plex numbers {pn}ner with {un} # 0. Each eigenvalue {un} is of finite algebraic
multiplicity. If the set I is infinite then lim |u,| = +oo.

n—oo

Remark 2.4 A more detailed study would be to find if positive eigenvalues to the
continuous problem (2.2) exist. In fact we are actually not able to exhibit configura-
tions in which such positive eigenvalues exist (whereas it is possible in the discrete
case, see the next section). Besides, note that if a positive eigenvalue p of problem
(2.2) exists then one can find a distribution of loads F,f and a displacement field
U such that a solution w of (1.1)—(1.4), (1.7) for the particular interface parameters
Cn = p and ¢ = pX sgn(\) satisfies the hypotheses of Proposition 2.1. To this end
let us suppose that 2 s an homogeneous and isotropic body whose constitutive law in
(1.2) reduces to

o(v) = Ltr(e(v))I + 2G g(v) in Q, (2.7)
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where tr denotes the trace operator, I represents the identity matriz and L, G are the
positive Lamé coefficients.

Assume for the sake of simplicity that U'c is a straight line segment located on
Oxy-azis so that n = (0, —1) and t = (—1,0). Set

U(zx) = (sgn()\)ﬁ + %)\MCUQ, —a— _T_’L;Gajz)
for all € = (x1,25) € I'p, with a > 0, > 0 and let f = 0. One can easily check
that u(x) = U(x), for all x € Q (and F given by o(u)n on I'y) is a solution of
(1.1)(1.4), (1.7) and also of (1.6). On I'c, we have o,(u) = —ap = —c,(up)+,
o(u) = alu = casgn(A) = —ci(up)+ sgn(uy), u, = a > 0 and |ug| = 5 > 0, we
deduce that the assumptions of Proposition 2.1 are fulfilled.

3. The discrete case

Our aim is to translate the analysis made in the previous section to the finite
dimensional case and to carry out some numerical experiments to illustrate the theory.
Note that such a study has already been performed for the Coulomb friction problem
with Signorini contact conditions in [7].

3.1. Finite element approxrimation

In this section we consider the finite element approximation of the compliance
problem (1.8) and of the eigenvalue problem (2.2) with its corresponding convergence
analysis. We discretize the domain by using a family of triangulations (7), where
h denotes the discretization parameter. The finite dimensional sets approximating
Vy and 'V are (see [4]):

VU,h = {’Uh; vy € (C(ﬁ))Q, 'Uh|T € (Pk(T))2 VT € 771, Vy = Uh on FD},
where U, denotes a convenient approximation of U and
V, = {’Uh; vy € (C(ﬁ))2, 'vh|T € (PIC(TV))2 VT € 771, v, =0 on FD}

The notation C(Q) represents the space of continuous functions on Q and Py (T)
stands for the space of polynomial functions of degree £ on 7. Note that in the
sections 3.3 and 3.4, we simply choose k£ = 1.

The finite element approximation of problem (1.8) (with m, = m; = 1) consists of
finding u,, € Vy,, such that sgn(up) = +1 or sgn(up) = —1 on I'c and

a(up,vp) + /

Cn(Uhn) +Vpn dT + sgn(uht)/ ¢t (Upn) 1 vpe dT = L(vp) (3.1)
Te

Te

for all v, € Vy,.
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We now focus on the finite element approximation of the eigenvalue problem (2.2)
which consists, for a real fixed number A, to find (i, ;) € C x (V,, — {0}) such that

a(@p, vp) = pbr(Ph, vr), Yo, € V. (3.2)

If =1 stands for an eigenvalue of T = PQ (defined in section 2) and I is the identity
map, there exists a least integer a such that Ker((u='I—T)%) = Ker((p~ I -T)*"!) =
E with dim(E) = m < oo (the algebraic multiplicity of p~! is m and a stands
for the ascent of u~'I — T). Denote by E the set of generalized eigenvectors of T
corresponding to p~! and let T be the adjoint operator of T defined on the dual
space V* . Then 7! is an eigenvalue of T* with algebraic multiplicity m and « is
also the ascent of 7' — T*. The notation E* = Ker((z *I — T*)%) stands for the
space of generalized eigenvectors of T associated with 7z L.

If A and B are two closed subspaces of V, we define the gap between A and B by

u€A,||ulj,=1 YD u€B,|[ufl;=1vEA

4(A, B) :max( sup  inf [|lu —v|l;, sup inf ||u—v||1).

When p stands for an eigenvalue of (2.2) of algebraic multiplicity m, there exists,
as h tends to zero, exactly m eigenvalues of (3.2) denoted py p, fo.ps -y fhm,p, CODVErging
to p. Denote by E} be the direct sum of the generalized eigenspaces associated with

H1hy M2,k s -y Hm b and set

Ep = Sup inf ||u—wvy|ly and e} = sup inf ||u — vyl:-
wEE,||julj1=1 vpEV) h wEE* |Jull =1 vpEVY,

The following theorem, proved by Kolata in [11] (see also [3]), states a convergence
result for the finite element approximation (3.2).

Theorem 3.1 If h is small enough, the following estimates hold:

1 m
‘/L - E Zﬂi,h

i=1

S C‘sh‘s;a |:U’ - ,U”i,h‘ S C(‘Sh‘s;;)éa 1 S l S m, 6(Ea Eh) S C‘Sha

where the constant C' does not depend on h.

Let us remark that the theorem does not prove that the solutions of the finite
element eigenvalue problem converge towards a solution of the continuous eigenvalue
problem. In fact the computed eigenvalues can have a limit which is not an eigenvalue
of the continuous problem (spurious modes).

The next proposition is the finite dimensional version of Proposition 2.1.

Proposition 3.2 Let uy be a solution of the discrete frictional contact problem with
normal compliance (3.1) and assume that there exists o and f such that:

Upn(x) > >0, |um(z)|>p0>0, Vaxele.

Consider the eigenvalue problem (3.2) with A = — sgn(uht)ﬁ.
c

n
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If ¢, is an eigenvalue of problem (3.2) with ¢, as corresponding eigenvector then
there exists 69 > 0 such that up + d¢p,, is also a solution of the normal compliance
contact problem (3.1) for any |6| < dy.

Proof. Obviously u, € Vyj, and d¢, € V), for any § € R so that u, + dp, € Vy
for any 6 € R. From the definitions of (3.2) and (3.1) and using the assumptions of
the proposition, we obtain

a(up, vy) + cn/

Te

a(en, vp) + cn/ OhnVhn AU + sgn(uht)ct/ OhnVpt dl =0, Yo, € V.

Te Te

(Uhn) +Vhn dT + sgn(uht)ct/ (Upn) 1 vne AU = L(vy), Yo, € Vi,

Fe

if 0 is small enough, there is

(unn)+ + 00nn = (Unn + 0pn)+ and sgn(uny) = sgn(uns + 6@nt).

That ends the proof as in Proposition 2.1. O

3.2. Algebraic formulation

In what follows, we consider the commonly used Hooke’s constitutive law in (2.7)
corresponding to homogeneous isotropic materials in (1.2). Note that the positive
Lamé coefficients L and G can be written L = (Ev)/((1 — 2v)(1 +v)) and G =
E/(2(1+v)) where E > 0 and 0 < v < 1/2 represent Young’s modulus and Poisson’s
ratio, respectively.

We are interested in the matrix formulation of problem (3.2). First we number
as follows the basis functions of V,: the normal displacement basis functions on I'¢
from 1 to p, the tangential displacement basis functions on I'c from p + 1 to 2p and
the basis functions of interior nodes from 2p+ 1 to m =dim(V}). With this notation
problem (3.2) can be written as follows

q)n _,UMq)n
Ké=K|[ & |=| xuMa, |, (3.3)
d, 0

where K denotes the stiffness matrix of order m, M is the mass matrix on I'¢ of order
p and ® (resp. ®,) denotes the vector associated with ¢, (resp. ¢p,). We adopt the
following notation (in the same spirit as for ®)

fgnn fgnt fgm

K'=| Ku Ky Ky

Kni Kii Ki;
Multiplying (3.3) with K ! and writing the first p equations leads to the following
eigenvalue problem: for a fixed real number A, find 1/u and ®,, satisfying:

o 1
MKt — Knp) M®, = —,. (3.4)
7
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Finding g and @, from (3.4), the eigenfunction ® is computed using (3.3), thus
solving (3.2).

3.3. An elementary example

We now illustrate with a simple example the eigenvalue problem in (3.4). This
means that we determine critical coefficients ¢, such that an infinity of solutions
located on a continuous branch exist (with slip only in one direction).

Figure 1: Problem involving a single element

We consider the triangular element, depicted in Figure 1 in which the two degrees
of freedom are the normal and tangential displacement at point A. The stiffness
matrix K becomes:

2\ L+G L+3G

and the 1-by-1 mass matrix on the contact zone I'c is £/3 where £ denotes the length
of I'c. We get

KZ}(L+3G L+G )

(LA+1)+GA+3))¢
6G(L + 2G)
In this case there exists a unique eigenvalue 1/ in (3.4) which is given by

_ 6G(L + 2G)
P=T O+ )+ GO+ 3)e

(AKpt — Kpp) M = —

(3.5)

Let us prove with a direct calculation of the solutions to (3.1) (with U = f = 0 to
simplify) that there exists, indeed, an infinity of solutions to the discrete problem (3.1)
when ¢, = u. Recalling that n = (0,—1) and t = (—1,0), let U, (resp. U;) denote
the normal (resp. tangential) component of w, at point A, i.e. the two unknowns in
(3.1). Let the notations F; and F; represent the (constant) surface loads on I'y in
the horizontal and vertical directions, respectively. Equation (3.1) can be written:

L+ 3G L+@G ley, LE.
N T ), = 22,
2 2 3 2 (3.6)
L L F '
+GUn+ +3GU¢4‘M(UR)+_—£—1

2 2 3 9
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Our aim is not to carry out a complete discussion of all the solutions of (3.6) but only
to find the multiple solutions which correspond to Proposition 3.2. Hence we solve
(3.6) with U, > 0 and A = —¢; sgn (U;)/c,. Then problem (3.6) admits an infinity of
solutions provided that the following two conditions hold:

6G (L + 2G)
(LIA+1)+GA+3)0

Cn = —

which is precisely the eigenvalue p of (3.2) obtained in (3.5) and

_L+G
T L+3G T

Since ¢, is positive, an infinity of solutions can occur only if A < —(L+3G)/(L+G) <
0 which implies that U; > 0 as well as '} < 0 and F5 < 0. Under the above-mentioned
assumption, the system of equations (3.6) admits an infinity of solutions verifying:

{Fy
U, e |0 —
S h e val L
- _ —30F, - 3(L+3G)U,

3(L+G)+2t

This result corresponds to an infinity of solutions located on a continuous branch.
In other words, if 4 = ¢, then there exists for some loads an infinity of solutions to
the problem (3.1).

3.4. A computational example

Next we study the convergence of the eigenvalue problem (3.4) using triangular and
quadrilateral linear finite elements and different meshes with the geometry depicted in
Figure 2. The chosen triangular meshes are of three different types: Delaunay, regular
(by considering an initial mesh made of squares and dividing into two triangles each
square following a prescribed diagonal), and regular when choosing the other diagonal.

& 7 L7

I

Figure 2: Geometry of the problem
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Let us recall that if a positive eigenvalue of problem (3.4) exists then infinitely
many solutions resulting from Proposition 3.2 can be explicitly constructed according
to Remark 2.4.

The material characteristics of 2 are F = 1 and v = 0.3 (or equivalently L =
15/26 and G = 5/13) and the length of the edges of Q is £ = 1. Solving (3.4),
we observe numerically that if A lies approximately in | — oo, —1.96[U]1.96, +oo] (in
fact such intervals depend slightly on the mesh size) then there always exists at
least one positive eigenvalue p. Choosing A = 5 the computations are performed
using triangular and quadrilateral linear elements. We see that the lowest positive
eigenvalue converges quite well to a limiting value as the discretization parameter
vanishes. The obtained limit is approximately 0.75 (see Figure 3). Such a limit
corresponds to values for ¢, and ¢; close to 0.75 and 3.75 respectively.

1.15 T T T T T
3-noded triangle (Delaunay) —+—
3-noded triangle (Regular mesh) ---x---
3-noded triangle (Regular mesh with other diagonal) ------
11 * N o]
) 4-noded rectangle -8
1.05 F i
R .
©
>
c
g ;
‘o 0.95 -
o ‘
= |
8 o9f -
- !
039 .
S 085 * _
0.8 _
0.75 _
07 | | | | | |
0 10 20 30 40 50 60 70

Number of nodes on the contact zone

Figure 3: Convergence of the lowest positive eigenvalue

4. Conclusion

In this work we study the links between a specific eigenvalue problem and the
existence of infinitely many solutions of the discrete and continuous friction problems
with normal compliance. The results are established in the simple case of static linear
elasticity in two space dimensions. A question actually under investigation is to deter-
mine explicit examples of nonuniqueness corresponding to the continuous framework
in this paper. Moreover several extensions of this work could lead to new interest-
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ing problems. In particular the study of the relation between these nonuniqueness
results and the uniqueness of the solutions in quasistatic frictional contact problems
for viscoelastic materials (see, e.g., [2, 15]) as well as the generalization to the three
dimensional case.
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