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A POSTERIORI ERROR ANALYSIS FOR POISSON’S EQUATION

APPROXIMATED BY XFEM ∗

Patrick Hild1, Vanessa Lleras2 and Yves Renard3

Abstract. This paper presents and studies a residual a posteriori error estimator for Laplace’s equa-
tion in two space dimensions approximated by the eXtended Finite Element Method (XFEM). The
XFEM allows to perform finite element computations on multi-cracked domains by using meshes of
the non-cracked domain. The main idea consists of adding supplementary basis functions of Heaviside
type and singular functions in order to take into account the crack geometry and the singularity at the
crack tip respectively.

Résumé. Dans ce travail on propose et on étudie un estimateur d’erreur par résidu pour l’équation de
Laplace en deux dimensions d’espace discrétisée par la méthode d’éléments finis étendue (XFEM). La
XFEM permet de réaliser des simulations par éléments finis sur des domaines multi-fissurés en utilisant
des maillages du domaine non fissuré. L’idée principale de la méthode consiste à ajouter des fonctions
de base supplémentaires de type Heaviside et des fonctions singulières afin de prendre en compte la
géométrie de la fissure et la singularité en pointe de fissure.

1. Introduction and notation

The eXtended Finite Element Method (XFEM) was introduced in [20,21] (in the linear elasticity context) in
order to avoid remeshing in domains with evolutionary cracks. The idea of the method is to enrich the classical
finite element basis with both non-smooth functions representing the singularities at the reentrant corners (as
in the singular enrichment method introduced in [24]) and also with step functions (of Heaviside type) along the
crack since the finite element mesh does not coincide with the cracked domain. After numerous numerical works
developed in various contexts of mechanics, the first convergence results with a priori error estimates (in linear
elasticity) were recently obtained in [6,7]: in the convergence analysis, a difficulty consists in evaluating the local
error in the elements cut by the crack by using appropriate extension operators and specifical estimates. In the
latter references, the authors obtain an error estimate of order h (h denotes the discretization parameter) under
H2+ε regularity of the regular part of the solution keeping in mind that the solution is only H3/2−ε regular.

In the present work we propose and analyze an error estimator of residual type (see [2] for the early ideas
and analyzes and e.g., [25] and the references therein for a more complete overview) for the XFEM in the simple
framework of Laplace equation. Since the meshes do not coincide with the domain we need to introduce and
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to study a new quasi-interpolation operator of averaging type (see e.g., [3, 8, 10, 18, 22, 23] for various averaging
type operators). The use of the new operator allows us to perform a first a posteriori error analysis.

We introduce some useful notation and several functional spaces. As usual, we denote by (L2(.))d and by
(Hs(.))d, s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in one and two space dimensions (see [1]). The usual
norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation when d = 1 or d = 2. For shortness the
(L2(D))d-norm will be denoted by ‖ · ‖D when d = 1 or d = 2. In the sequel the symbol | · | will denote either
the Euclidean norm in R

2, or the length of a line segment, or the area of a plane domain. Finally the notation
a . b means here and below that there exists a positive constant C independent of a and b (and of the meshsize
of the triangulation) such that a ≤ C b. The notation a ∼ b means that a . b and b . a hold simultaneously.

2. The Poisson problem on a cracked domain

Let Ω be a open subset of R
2 having a crack, with a polygonal boundary ∂Ω where ΓC ⊂ ∂Ω denotes the crack

(the crack ΓC consists of two distinct straight line segments having the same location). We fix a “partition” of
∂Ω into three open disjoint subsets ΓD, ΓN and ΓC where we will consider homogeneous Dirichlet (on ΓD) and
homogeneous Neumann (on ΓN ∪ ΓC) boundary conditions respectively. We choose homogeneous conditions
to simplify the notation and the extension to nonhomogeneous conditions can be made without additional
difficulties. We assume that ∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄C . We further suppose that the measures of ΓD and ΓC are
positive (see Figure 1).
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Figure 1. The geometry of the cracked domain Ω

In this paper we consider the Poisson problem: for f ∈ L2(Ω) let u ∈ H1(Ω) be the variational solution of







−∆u = f in Ω,
u = 0 on ΓD,
∂nu = 0 on ΓN ∪ ΓC ,

(1)

where ∂nu = ∇u · n = ∂u/∂n means the outward normal derivative of u along the boundary and n stands for
the unit outward normal vector of ∂Ω. We choose Laplace operator instead of the elasticity operator to avoid
supplementary notation keeping in mind that the XFEM was intensively studied in the elasticity context. Set

V =
{

u ∈ H1(Ω) : u = 0 on ΓD

}

.

Then the variational solution of (1) is the unique solution u of

u ∈ V,

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx, ∀v ∈ V. (2)
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The solution u to the Poisson problem can be written as a sum of a singular part us = Kr1/2 sin(θ/2) and a
regular part u − us (see, e.g, [15, 16]) where K ∈ R is the stress intensity factor and the notation (r, θ) denotes
the polar coordinates with respect to the crack tip (the value θ = π corresponds to the crack so that us is

discontinuous across the crack). It can be checked that for any positive ε, us lies in H
3
2
−ε(Ω) (see, e.g. [15,16]).

3. Discretization of the Poisson problem with the XFEM

We approximate problem (1) by the so called XFEM (eXtended Finite Element Method) introduced in
[21]. Namely we consider a regular family of triangulations Th, h > 0 of the noncracked domain made of
closed triangles T such that Ω̄ = ∪T∈Th

T (see [5, 9, 11]). For T ∈ Th we recall that hT is the diameter of
T and h = maxT∈Th

hT . The regularity of the mesh implies in particular that for any edge E of T one has
hE = |E| ∼ hT . Since the triangles in Th do not coincide with the geometry of the body on the crack we define
the family of generalized elements Gh, h > 0 containing the following elements (see Figure 2):

• the triangles in T ∈ Th whose interior does not intersect ΓC ,
• the (non closed) triangles and quadrangles obtained when the crack cuts (in two parts) a triangle in Th,
• the (non closed) cracked triangle containing the crack tip.
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Figure 2. Standard elements T ∈ Th and generalized elements G ∈ Gh

This implies that Ω̄ = ∪G∈Gh
Ḡ and ∪G∈Gh

G◦ ⊂ Ω where G◦ denotes the largest open set contained in G.
We next give an important definition:

Definition 3.1. Let Nh be the set of nodes of the triangulation Th. We say that a node x ∈ Nh is enriched if
the patch surrounding x : ωx = ∪T :x∈Th

T is cut in (at least) two subsets by the crack (see Figure 3) and we
denote by NH

h ⊂ Nh the set of enriched nodes. We say that a triangle is enriched (resp. partially enriched) if
its three nodes (resp. one or two nodes) are enriched.

We denote by hx the diameter of the patch ωx. If T ∈ Th we denote by ωT the union of all elements in Th

having a nonempty intersection with T . Similarly for a edge E of a triangle in Th we denote by ωE the union
of all elements in Th having a nonempty intersection with Ē. Set ND

h = Nh ∩ Γ̄D (note that the extreme nodes
of Γ̄D belong to ND

h ).
Let Eh denote the set of edges of the elements in Gh (the edges are supposed to be relatively open). Set

Eint
h = {E ∈ Eh : E ⊂ Ω} the set of interior edges of Gh, Eext

h = Eh \ Eint
h . We denote by EN

h = {E ∈ Eh :
E ⊂ ΓN}, EC

h = {E ∈ Eh : E ⊂ ΓC} the set of exterior edges included into the part of the boundary where
we impose Neumann conditions. For a generalized element G ∈ Gh (resp. standard element T ∈ Th), we will
denote by EG the set of edges of G (resp., by ET the set of edges of T ) and according to the above notation, we
set Eint

G = EG ∩Eint
h , EN

G = EG ∩EN
h , EC

G = EG ∩EC
h . For an edge E of a generalized element G we introduce

nG,E = (nx, ny) the unit outward normal vector to G along E. Furthermore for each edge E ∈ Eh we fix one
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Figure 3. Enriched nodes x ∈ NH
h

of the two normal vectors and denote it by nE . The jump of some function v across an edge E ∈ Eh at a point
y ∈ E is defined as

[[

v(y)
]]

E
=

{

limα→0+ v(y + αnE) − v(y − αnE) ∀E ∈ Eint
h ,

v(y) ∀E ∈ Eext
h .

The main idea of the extended finite element method is to enrich the classical finite element space by both:

• a singular function at the crack tip in order to take into account the corner singularity (note that in the
vector valued case, as elasticity, several singular functions have to be added),

• discontinuous functions located near the crack in order to take into account the discontinuity of the
solution across the crack.

The latter discontinuous functions are constructed using the Heaviside function H which is equal to 1 on one
side (of the straight extension, see Figure 4) of the crack and to −1 on the other side.

We denote by λx the classical finite element P1 basis functions at node x ∈ Nh satisfying λx(x′) = δx,x′, for
any x′ ∈ Nh. The extended finite element space is defined as follows:

Vh =

{

vh ∈ C(Ω) : vh =
∑

x∈Nh

axλx +
∑

x∈NH
h

bxHλx + cχr1/2 sin(θ/2)

= vh,r + χvh,s, ax, bx, c ∈ R

}

⊂ V, (3)

where χ ∈ C2(Ω̄) is a cutoff function defined as follows. Let be given 0 < r0 < r1 and denoting by r the distance
to the crack tip, we have:







χ(r) = 1 if r ≤ r0,
0 < χ(r) < 1 if r0 < r < r1,
χ(r) = 0 if r ≥ r1.

The cutoff function χ was introduced in [6, 7] in order to improve the performances (in terms of convergence)
of the original method introduced in [21].

The finite element problem issued from (2) consists of finding uh such that

uh ∈ Vh,

∫

Ω

∇uh · ∇vh dx =

∫

Ω

fvh dx, ∀vh ∈ Vh. (4)

Using the Lax-Milgram Lemma, we deduce that problem (4) admits a unique solution.

Remark 3.2. A quasi-optimal a priori error estimate is obtained in [6, 7] for the XFEM involving the cutoff
function χ. Under H2+ε(Ω) regularity for u − us, the authors prove that ‖u − uh‖1,Ω . h‖u − us‖2+ε,Ω. Note
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that when using a classical finite element method we obtain a convergence rate of only h1/2−ε since u lies in
H3/2−ε(Ω).

4. The quasi-interpolation operator

4.1. Definition

In order to perform a residual a posteriori error analysis one currently uses a quasi-interpolation operator
πh : V → Vh of averaging type (see e.g., [3, 8, 10, 18, 22, 23] for various operators). At a node x, the value of
the quasi-interpolation is often an ”average” of the function on the patch ωx surrounding x. To simplify the
forthcoming discussion we suppose (as in Figure 1) that the end points of the crack belonging to ∂Ω̄ are not
submitted to Dirichlet conditions.

So the first idea would be to use such an operator on the regular mesh Th. In such an analysis there are
terms such as ‖u − uh‖1,ωT

(where T ∈ Th) which appear and unfortunately u does not lie in H1(Ω̄) (hence
u − uh does in general not lie in H1(ωT )) due to the discontinuity across the crack.

A second idea would be to define πhv (with v ∈ H1(Ω)) separately on each side of the crack. If we divide Ω
into Ω1 and Ω2 using the crack and a straight extension of the crack (see Figure 4) one could first try to define
πhv on Ω1 (resp. Ω2) by using the only values of v on Ω1 (resp. Ω2). This consists of defining πhv on each
generalized element G ∈ Gh. It is easy to see that this approach leads to technical difficulties since the elements
in Gh are sometimes quadrangles and so on.
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Figure 4. Domain decomposition using a straight extension of the crack

So we choose an approach which consists to determine πhv separately on each side of the crack by defining
πhv|G , G ∈ Gh and by using the values of v on both sides of the crack. This leads us to use extension operators.
As already mentioned, let us divide Ω into Ω1 and Ω2 using the crack and a straight extension of the crack (see
Figure 4). Let v ∈ H1(Ω) with v1 = v|Ω1

∈ H1(Ω1) and v2 = v|Ω2
∈ H1(Ω2). We define an extension of v1

defined on Ω (see [1, 12]) denoted ṽ1 such that

‖ṽ1‖1,Ω . ‖v1‖1,Ω1
≤ ‖v‖1,Ω (5)

and an extension ṽ2 (defined on Ω) of v2 such that

‖ṽ2‖1,Ω . ‖v2‖1,Ω2
≤ ‖v‖1,Ω, (6)

where the constant C depends neither on v1 nor on v2.
For any v ∈ H1(Ω), we define πhv as the unique element in Vh such that

πhv =
∑

x∈Nh

αx(v)λx +
∑

x∈NH
h

βx(v)Hλx. (7)
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Remark 4.1. Note that πh(V ) ⊂ Vh with πh(V ) 6= Vh since the singular function at the crack tip does not
belong to the range of πh.

• Step 1. Definition of πhv at the nodes Nh of the triangulation Th.
(i: not enriched nodes) If x ∈ Nh \ ND

h is such that ωx is not cut (i.e., not divided into more than one part)
by the crack then

πhv(x) =
1

|ωx|

∫

ωx

v(y) dy.

From Cauchy Schwarz inequality, we get

|πhv(x)| . |ωx|
−1/2‖v‖ωx

∼ h−1
x ‖v‖ωx

≤ h−1
x ‖v‖ωx

+ ‖∇v‖ωx
.

Note that the three nodes of the triangle containing the crack tip are concerned with the latter case (see Figure
3).

(ii: enriched nodes) If x ∈ Nh \ ND
h , x ∈ Ω̄ℓ, ℓ = 1, 2, is such that ωx is cut by the crack then we set

πhv(x) =
1

|ωx|

∫

ωx

ṽℓ(y) dy.

Note that if x lies on the crack and (ii) is satisfied then there are two values of πhv(x): one corresponding to
πhv(x) on Ω̄1 and the other one to πhv(x) on Ω̄2. So we deduce

|πhv(x)| . |ωx|
−1/2‖ṽℓ‖ωx

∼ h−1
x ‖ṽℓ‖ωx

≤ h−1
x ‖ṽℓ‖ωx

+ ‖∇ṽℓ‖ωx
.

(iii) If x ∈ ND
h , denote Γx = ωx ∩ ΓD (recall that Γ̄C ∩ Γ̄D = ∅ to simplify the discussion) and set:

πhv(x) =
1

|Γx|

∫

Γx

v(y) dΓ.

By using a scaled trace inequality (see, e.g., [15, 17]):

‖v‖E . h
−1/2
E ‖v‖T + h

1/2
E ‖∇v‖T , ∀v ∈ H1(T ), ∀T ∈ Th, ∀E ∈ ET , (8)

we get

|πhv(x)| . |Γx|
−1/2‖v‖Γx

∼ h−1/2
x ‖v‖Γx

. h−1/2
x

(

h−1/2
x ‖v‖ωx

+ h1/2
x ‖∇v‖ωx

)

. h−1
x ‖v‖ωx

+ ‖∇v‖ωx
.

• Step 2. Definition of πhv on Ω.
With the previous nodal expressions we define by linear interpolation the function πhv on any triangle

excepted those cut by the crack. Note that a triangle can be totally enriched (i.e., its three nodes are enriched)
and not cut by the crack. If the triangle is cut by the crack then it is either enriched (three nodes enriched)
or partially enriched (one or two enriched nodes). The definition on the triangles cut by the crack is given
hereafter.

Consider first a totally enriched triangle T with e.g., x1 ∈ Ω1 and x2, x3 ∈ Ω2. In order to determine
(πhv)|Ω1∩T

, we write:

πhv(x) =
1

|ωx|

∫

ωx

ṽ1(y) dy. (9)

for x = x1, x2, x3. Then πhv is defined by linear interpolation on T and then we restrict πhv to T ∩ Ω1.
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Similarly we define (πhv)|Ω2∩T
by linear interpolation on T by using:

πhv(x) =
1

|ωx|

∫

ωx

ṽ2(y) dy. (10)

for x = x1, x2, x3 and then we restrict the function to T ∩ Ω2.
A similar construction is achieved for the partially enriched triangles: if a node x is not enriched then we

compute the value of πhv(x) at this node and if it is enriched then we compute both quantities (9) and (10)
corresponding to ṽ1 and ṽ2 at this node.

Remark 4.2. From the previous construction of πhv and expression (7) we see that αx(v) = πhv(x) if x ∈
Nh \ NH

h . If x ∈ NH
h , x ∈ Ω̄k and denoting ℓ = 3 − k, we have

αx(v) + βx(v)H(x) =
1

|ωx|

∫

ωx

ṽk(y) dy, and αx(v) − βx(v)H(x) =
1

|ωx|

∫

ωx

ṽℓ(y) dy.

Hence

αx(v) =
1

2|ωx|

∫

ωx

ṽk(y) + ṽℓ(y) dy, and βx(v) =
H(x)

2|ωx|

∫

ωx

ṽk(y) − ṽℓ(y) dy.

4.2. Stability

Next we consider the stability properties on the generalized elements:

Lemma 4.3. For all v ∈ H1(Ω) and all T ∈ Th one has:
(i) if none of the nodes of T is enriched (so the crack does not cut T ) then:

‖πhv‖T . ‖v‖ωT
+ hT ‖∇v‖ωT

,

(ii) if the three nodes of T are enriched, then for ℓ = 1 and ℓ = 2, we have:

‖πhv‖T∩Ωℓ
. ‖ṽℓ‖ωT

+ hT ‖∇ṽℓ‖ωT
,

(iii) if one or two nodes of T are enriched and if ωT is cut by the crack (so T ⊂ Ω̄ℓ for ℓ = 1 or ℓ = 2) we have:

‖πhv‖T . ‖ṽℓ‖ωT
+ hT ‖∇ṽℓ‖ωT

,

(iv) if one or two nodes of T are enriched and if ωT contains the crack tip then for ℓ = 1 or ℓ = 2, we have:

‖πhv‖T∩Ωℓ
. ‖ṽℓ‖ωT

+ ‖v‖ωT
+ hT ‖∇ṽℓ‖ωT

+ hT ‖∇v‖ωT
.

Remark 4.4. Due to the mesh regularity there is a mesh independent bounded number of triangles satisfying
(iv): more precisely this set is contained in ωT∗ where T ∗ is the triangle containing the crack tip. Some of the
triangles in this set are cut by the crack and others no.

Proof: (i). If none of the nodes is enriched then for any of the three nodes of T , we have:

|πhv(x)| . h−1
x ‖v‖ωx

+ ‖∇v‖ωx
.

Writing πhv =
∑

x∈T πhv(x)λx on T and using ‖λx‖T ∼ hT ∼ hx implies the result.
(ii). Set e.g., ℓ = 1. Noting that for any of the three node of T , we have

|πhv(x)| . h−1
x ‖ṽ1‖ωx

+ ‖∇ṽ1‖ωx
,

and using the same estimates as in (i) yields the result. The same result holds when ℓ = 2.
(iii) and (iv). These estimates are obtained as the previous ones.
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Now we consider the stability properties of πh on the edges of the generalized elements not located on the
crack.

Lemma 4.5. For all v ∈ H1(Ω) and all edge E of a triangle T ∈ Th one has:
(i) if both end points of E are not enriched:

‖πhv‖E . h
−1/2
E ‖v‖ωE

+ h
1/2
E ‖∇v‖ωE

,

(ii) if both end points of E are enriched then for ℓ = 1 or ℓ = 2, we have:

‖πhv‖E∩Ω̄ℓ
. h

−1/2
E ‖ṽℓ‖ωE

+ h
1/2
E ‖∇ṽℓ‖ωE

,

(iii) if only one end point of E is enriched and if ωE is cut by the crack (so E ⊂ Ω̄ℓ for ℓ = 1 or ℓ = 2), we
have:

‖πhv‖E . h
−1/2
E ‖ṽℓ‖ωE

+ h
1/2
E ‖∇ṽℓ‖ωE

,

(iv) if only one end point of E is enriched and if ωE contains the crack tip then for ℓ = 1 or ℓ = 2, we have:

‖πhv‖E∩Ω̄ℓ
. h

−1/2
E ‖ṽℓ‖ωE

+ h
−1/2
E ‖v‖ωE

+ h
1/2
E ‖∇ṽℓ‖ωE

+ h
1/2
E ‖∇v‖ωE

.

Remark 4.6. There is a meshsize independent bounded number of edges satisfying (iv). More precisely all
these edges have an end point belonging to the triangle containing the crack tip.

Proof: (i). For both end points of E, we have:

|πhv(x)| . h−1
x ‖v‖ωx

+ ‖∇v‖ωx
.

Writing πhv =
∑

x∈E πhv(x)λx and using ‖λx‖E ∼ h
1/2
E , hE ≤ hx implies the result.

(ii). Suppose first that E lies in Ω̄ℓ. Then E ∩ Ω̄ℓ = E and for both end points of E, we have:

|πhv(x)| . h−1
x ‖ṽℓ‖ωx

+ ‖∇ṽℓ‖ωx
.

The estimate is obtained as in (i). If E is cut by the crack the discussion is the same.
(iii) and (iv). Straightforward (see (i) and (ii)).

Now we need to study the stability of the quasi-interpolation operator πh on the crack. We denote by
Fh ⊂ Eh the set of edges lying on the crack (these edges are the ones of the generalized elements on the crack).

Lemma 4.7. For all v ∈ H1(Ω) and all edge F ∈ Fh one has:
(i) If F ⊂ T ∈ Th where T is totally enriched, then for ℓ = 1 and ℓ = 2, we have:

‖(πhv)|Ωℓ
‖F . h

1/2
F h−1

T ‖ṽℓ‖ωT
+ h

1/2
F ‖∇ṽℓ‖ωT

,

(ii) If F ⊂ T ∈ Th where T is partially enriched, then for ℓ = 1 and ℓ = 2, we have:

‖(πhv)|Ωℓ
‖F . h

1/2
F h−1

T ‖ṽℓ‖ωT
+ h

1/2
F ‖∇ṽℓ‖ωT

+ h
1/2
F h−1

T ‖v‖ωT
+ h

1/2
F ‖∇v‖ωT

,

(iii) If F ⊂ T ∈ Th where the crack tip lies in the interior of T , (then (πhv)|Ω1
= (πhv)|Ω2

on F ), we have:

‖πhv‖F . h
1/2
F h−1

T ‖v‖ωT
+ h

1/2
F ‖∇v‖ωT

.
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Proof: (i) and (ii). First we consider an edge F = (a, b) which does not contain the crack tip and we fix
ℓ = 1 or ℓ = 2. On F , we have

(πhv)|Ωℓ
= (πhv)|Ωℓ

(a)λa + (πhv)|Ωℓ
(b)λb,

where λa and λb are the edge basis functions at a and b. Let T = x1x2x3 ∈ Th be the triangle containing F .
Since (πhv)|Ωℓ

is constructed by the restriction of an affine extension on T , it is straightforward that (πhv)|Ωℓ
(a)

and (πhv)|Ωℓ
(b) are convex combinations of πhṽℓ(xi). Depending on the fact that xi is enriched or not we have

either:
|πhṽℓ(xi)| . h−1

xi
‖ṽℓ‖ωxi

+ ‖∇ṽℓ‖ωxi
,

or
|πhṽℓ(xi)| . h−1

xi
‖v‖ωxi

+ ‖∇v‖ωxi
.

Using ‖λa‖F ∼ ‖λb‖F ∼ h
1/2
F , implies the result in (i), (ii) and (iii).

4.3. Error estimates

We now consider the local error estimates in the L2 norms.

Lemma 4.8. For all v ∈ H1(Ω) and all T ∈ Th one has:
(i) if none of the nodes of T is enriched then

‖v − πhv‖T . hT ‖∇v‖ωT
,

(ii) if the three nodes of T are enriched then for ℓ = 1 or ℓ = 2, we have:

‖v − πhv‖T∩Ωℓ
. hT ‖∇ṽℓ‖ωT

,

(iii) if one or two nodes of T are enriched and if ωT is cut by the crack (so T ⊂ Ω̄ℓ for ℓ = 1 or ℓ = 2) we have:

‖v − πhv‖T . hT ‖∇ṽℓ‖ωT
,

(iv) if one or two nodes of T are enriched and if ωT contains the crack tip then for ℓ = 1 or ℓ = 2, we have:

‖v − πhv‖T∩Ωℓ
. hT

√

− ln(hT ) (‖∇ṽℓ‖Ω + ‖∇v‖Ω) .

Proof: We first note that πh preserves the constant functions (note that we can suppose that constant
functions are extended on the other side of the crack by the same constant functions). Hence, for any v ∈ H1(Ω)
and any constant function c(x) = c we can write:

v − πhv = v − c − πh(v − c).

(i) In this case

‖v − πhv‖T ≤ ‖v − c‖ωT
+ ‖πh(v − c)‖T . hT ‖∇v‖ωT

,

where we use Lemma 4.3(i) and we choose c = |ωT |−1
∫

ωT
v(x)dx together with hT ∼ hωT

.

(ii) We write, for any constant function c:

‖v − πhv‖T∩Ωℓ
≤ ‖ṽℓ − c‖ωT

+ ‖πh(v − c)‖T∩Ωℓ

. ‖ṽℓ − c‖ωT
+ hT ‖∇ṽℓ‖ωT

. hT ‖∇ṽℓ‖ωT
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where c = |ωT |−1
∫

ωT
ṽℓ(x)dx and we conclude as in (i) using Lemma 4.3(ii).

(iii) As the previous cases.
(iv) This estimate is obtained as follows using Lemma 4.3(iv) and choosing

c = |ωT |−1
∫

ωT
ṽℓ(x)dx:

‖v − πhv‖T∩Ωℓ
≤ ‖ṽℓ − c‖ωT

+ ‖πh(v − c)‖T∩Ωℓ

. ‖ṽℓ − c‖ωT
+ ‖v − c‖ωT

+ hT ‖∇ṽℓ‖ωT
+ hT ‖∇v‖ωT

. ‖ṽℓ − v‖ωT
+ hT ‖∇ṽℓ‖ωT

+ hT ‖∇v‖ωT
.

Moreover, denoting by 1X the characteristic function of the set X , we write

‖ṽℓ − v‖ωT
= ‖(ṽℓ − v)1ωT

‖Ω

≤ ‖ṽℓ − v‖Lq(Ω)‖1ωT
‖

L
2q

q−2 (Ω)

. h
1− 2

q

T ‖ṽℓ − v‖Lq(Ω)

. q
1
2 h

1− 2
q

T ‖ṽℓ − v‖1,Ω

. q
1
2 h

1− 2
q

T ‖∇(ṽℓ − v)‖Ω

. q
1
2 h

1− 2
q

T (‖∇ṽℓ‖Ω + ‖∇v‖Ω)

where 2 < q < ∞ and we have used the Sobolev inequality ‖w‖Lq(Ω) ≤ Cq1/2‖w‖1,Ω, see e.g. [13]. We obtain
the final estimate by choosing q = − ln(hT ).

Lemma 4.9. For all v ∈ H1(Ω) and all edge E of a triangle T ∈ Th one has:
(i) if both end points of E are not enriched :

‖v − πhv‖E . h
1/2
E ‖∇v‖ωE

,

(ii) if both end points of E are enriched then for ℓ = 1 or ℓ = 2, we have:

‖v − πhv‖E∩Ω̄ℓ
. h

1/2
E ‖∇ṽℓ‖ωE

,

(iii) if only one end point of E is enriched and if ωE is cut by the crack (so E ⊂ Ω̄ℓ for ℓ = 1 or ℓ = 2), we
have:

‖v − πhv‖E . h
1/2
E ‖∇ṽℓ‖ωE

,

(iv) if only one end point of E is enriched and if ωE contains the crack tip then for ℓ = 1 or ℓ = 2, we have:

‖v − πhv‖E∩Ω̄ℓ
. h

1/2
E

√

− ln(hE)(‖∇ṽℓ‖Ω + ‖∇v‖Ω).

Proof: (i) Since πh preserves the constant functions we have for all v ∈ H1(Ω) and all constant function
c(x) = c : v − πhv = v − c − πh(v − c). So by the scaled trace inequality (8) and Lemma 4.5(i), we obtain

‖v − πhv‖E ≤ ‖v − c‖E + ‖πh(v − c)‖E . h
−1/2
E ‖v − c‖ωE

+ h
1/2
E ‖∇v‖ωE

,

and we choose c = |ωE|−1
∫

ωE
v(x)dx together with hE ∼ hωE

.

(ii, iii) As in the previous cases.
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(iv) This estimate is obtained as follows by using Lemma 4.5(iv) and choosing c = |ωE |−1
∫

ωE
ṽℓ(x)dx. We

then achieve the same calculations as in Lemma 4.8(iv):

‖v − πhv‖E∩Ω̄ℓ
≤ ‖ṽℓ − c‖E + ‖πh(v − c)‖E∩Ω̄ℓ

. h
−1/2
E ‖ṽℓ − c‖ωE

+ h
−1/2
E ‖v − c‖ωE

+ h
1/2
E ‖∇ṽℓ‖ωE

+ h
1/2
E ‖∇v‖ωE

. h
−1/2
E ‖ṽℓ − v‖ωE

+ h
1/2
E ‖∇ṽℓ‖ωE

+ h
1/2
E ‖∇v‖ωE

. h
1/2
E

√

− ln(hE)(‖∇ṽℓ‖Ω + ‖∇v‖Ω).

The next lemma consists of estimating the error committed by the averaging operator on the edges of the
generalized elements located on the crack. The set of such edges is denoted Fh.

Lemma 4.10. For all v ∈ H1(Ω) and all edge F ∈ Fh one has:
(i) If F ⊂ T ∈ Th where T is totally enriched, then for ℓ = 1 and ℓ = 2, we have:

‖(v − πhv)|Ωℓ
‖F . h

1/2
T ‖∇ṽℓ‖ωT

,

(ii) If F ⊂ T ∈ Th where T is partially enriched, then for ℓ = 1 and ℓ = 2, we have:

‖(v − πhv)|Ωℓ
‖F . h

1/2
T

√

− ln(hT )(‖∇ṽℓ‖Ω + ‖∇v‖Ω),

(iii) If F ⊂ T ∈ Th where the crack tip lies in the interior of T , (then (πhv)|Ω1
= (πhv)|Ω2

on F ), we have:

‖v|Ωℓ
− πhv‖F . h

1/2
T ‖∇v‖ωT

.

Proof: (i) Since πh preserves the constant functions we have for all v ∈ H1(Ω) and all constant function
c(x) = c : v − πhv = v − c − πh(v − c). By the generalized scaled trace inequality (see [15, 17]):

‖w‖F . h
−1/2
T ‖w‖T + h

1/2
T ‖∇w‖T ,

and Lemma 4.7, we obtain

‖(v − πhv)|Ωℓ
‖F ≤ ‖ṽℓ − c‖F + ‖πh(ṽℓ − c)‖F

. h
−1/2
T ‖ṽℓ − c‖T + h

1/2
T ‖∇ṽℓ‖T + h

1/2
F h−1

T ‖ṽℓ − c‖ωT
+ h

1/2
F ‖∇ṽℓ‖ωT

.

Hence the conclusion. The proof of (ii) and (iii) are the same as previously.

5. Error estimators

5.1. Definition of the residual error estimators

Writing uh = uh,r + χuh,s as in (3), the exact element residual is defined by

RG = f + ∆uh = f + ∆(χuh,s) = f + c∆(χr1/2 sin(θ/2))

on each generalized element G ∈ Gh. Since ∆(r1/2 sin(θ/2)) = 0 we deduce that the expression ∆(χr1/2 sin(θ/2))
vanishes excepted on the elements (distant from the crack tip) having an nonempty intersection with the ring
shaped area where χ maps onto (0, 1).
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Definition 5.1 (Residual error estimator). Let G ∈ Gh and T ∈ Th be the triangle containing G. The local
and global residual error estimators are defined by

η1G = hT C(hT )‖f + ∆(χuh,s)‖G,

η2G = h
1/2
T D(hT )





∑

E∈Eint
G

∪EN
G
∪EC

G

‖
[[

∂uh/∂n
]]

E
‖2

E





1/2

,

ηG =
(

η2
1G + η2

2G

)1/2
,

η =

(

∑

G∈Gh

η2
G

)1/2

,

where C(hT ) =
√

− ln(hT ) for the elements in case (iv) of Lemma 4.8, otherwise C(hT ) = 1 and D(hT ) =
√

− ln(hT ) for the elements in case (iv) of Lemma 4.9 or in case (ii) of Lemma 4.10, otherwise D(hT ) = 1.

Remark 5.2. The presence of the ln(hT )-terms in the estimator results from technical reasons and appears only
for a bounded number (independent of the mesh) of elements near the crack tip. From a numerical point of view,
these ln(hT )-terms are negligible. In the case of a standard finite element method with coinciding finite element
meshes on the crack we have Gh = Th and G = T (obviously the XFEM is not a generalization of a standard
finite element method with noncoinciding finite element meshes on the crack). In the case of coinciding meshes
on the crack it is easy to show that the cases involving the ln(hT )-terms disappear (i.e., C(hT ) = D(hT ) = 1)
and we recover the classical residual estimator (see e.g., [4,25]).

5.2. Upper error bound

Theorem 5.3. Let u ∈ V be the solution of (2) and let uh ∈ Vh be the solution of (4). Then

‖∇(u − uh)‖Ω . η.

Proof: Denoting the error by

e = u − uh,

we have, according to (2) and (4):

‖∇e‖2
Ω =

∫

Ω

∇u · ∇(u − uh) −

∫

Ω

∇uh · ∇(u − uh)

=

∫

Ω

f(u − uh) −

∫

Ω

∇uh · ∇(u − uh)

=

∫

Ω

f(u − vh) −

∫

Ω

∇uh · ∇(u − vh), ∀vh ∈ Vh.
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Splitting up the integrals on each generalized element G ∈ Gh and writing uh = uh,r + χuh,s, we arrive at

‖∇e‖2
Ω =

∑

G∈Gh

∫

G

f(u − vh)

−
∑

G∈Gh

∫

G

∇uh,r · ∇(u − vh) −
∑

G∈Gh

∫

G

∇(χuh,s) · ∇(u − vh)

=
∑

G∈Gh

∫

G

(f + ∆(χuh,s))(u − vh)

−
∑

E∈Eint
h

∫

E

[[

∂uh,r/∂n
]]

E
(u − vh) −

∑

E∈EN
h
∪EC

h

∫

E

∂uh

∂nE
(u − vh), ∀vh ∈ Vh, (11)

where we have used the Green formula on each generalized element (note that although the triangle containing
the crack tip has a boundary which is not Lipschitz, it can be divided in two parts by using a straight extension
of the crack and then one can use separately Green’s formula on each part to obtain the desired result) as well
as ∆uh,r = 0 on G and

[[

∂(χuh,s)/∂n
]]

E
= 0 for all E ∈ Eint

h .
At this stage we fix the choice of vh. We set

vh = uh + πh(u − uh).

We consider (11): with the above choice we are able to estimate each term of the right-hand side of the previous
expression. Cauchy-Schwarz inequality implies

∑

G∈Gh

∫

G

(f + ∆(χuh,s))(u − vh) ≤
∑

G∈Gh

‖f + ∆(χuh,s)‖G‖u − vh‖G.

Therefore it remains to estimate ‖u−vh‖G for any generalized element G. Let T ∈ Th be the triangle containing
G. Using Lemma 4.8, we obtain for the triangles considered in cases (i)–(iii):

‖u − vh‖G = ‖e − πhe‖G . hT ‖∇e‖ωT
(12)

or
‖u − vh‖G = ‖e − πhe‖G . hT ‖∇ẽ‖ωT

, (13)

where ẽ is an extension of the error across the crack (see (5), (6)). If T belongs to the finite set of triangles (iv)
in Lemma 4.8, we have

‖u − vh‖G = ‖e − πhe‖G . hT

√

− ln (hT ) (‖∇ẽ‖Ω + ‖∇e‖Ω) . (14)

So, depending on the cases (i)–(iv) of Lemma 4.8 and using estimates (12)–(14), we can write

∑

G∈Gh

∫

G

(f + ∆(χuh,s))(u − vh) (15)

.





∑

G∈Gh,cases(i)−(iii)

h2
T ‖f + ∆(χuh,s)‖

2
G





1/2



∑

G∈Gh,cases(i)−(iii)

(‖∇ẽ‖ωT
+ ‖∇e‖ωT

)2





1/2

+





∑

G∈Gh,case(iv)

h2
T (− ln(hT ))‖f + ∆(χuh,s)‖

2
G





1/2



∑

G∈Gh,case(iv)

(‖∇ẽ‖Ω + ‖∇e‖Ω)2





1/2

. η‖∇e‖Ω.
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Let us now pass to the estimate of the remaining terms: as before the application of Cauchy-Schwarz inequality
leads to

−
∑

E∈Eint
h

∫

E

[[

∂uh,r/∂n
]]

E
(u − vh) −

∑

E∈EN
h
∪EC

h

∫

E

∂uh

∂nE
(u − vh)

= −
∑

E∈EN
h
∪Eint

h
∪EC

h

∫

E

[[

∂uh/∂n
]]

E
(e − πhe)

≤
∑

E∈EN
h
∪Eint

h
∪EC

h

‖
[[

∂uh/∂n
]]

E
‖E‖e − πhe‖E . (16)

Using the Lemmas 4.9(i,ii,iii) and 4.10(i,iii) and denoting by T ∈ Th a triangle containing E, we obtain

‖e − πhe‖E . h
1/2
T (‖∇ẽ‖ωT

+ ‖∇e‖ωT
) . (17)

If E belongs to the finite set of triangles in Lemma 4.9(iv) or in Lemma 4.10(ii), we have

‖e − πhe‖E . h
1/2
T

√

− ln (hT ) (‖∇ẽ‖Ω + ‖∇e‖Ω) . (18)

Using estimates (17) and (18) with (16) as well as (15) ends the proof of the theorem.

6. Concluding remarks and perspectives

In this work we perform a residual a posteriori error analysis of the extended finite element method applied
to Poisson’s problem. To our knowledge, this is the first residual a posteriori analysis for XFEM. We build an
appropriate quasi-interpolation operator which allows us to obtain an upper bound of the discretization error.
The proof of a lower bound remains an open problem and the forthcoming numerical experiments in [19] using
Getfem (see [14]) will give more information on the performances of this estimator.
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