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Abstract

The aim of this note is to propose an example of nonuniqueness for the continuous static unilateral contact model
with Coulomb friction in linear elasticity. To cite this article: P. Hild, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Le but de cette note est de proposer un exemple de non-unicité pour le modèle continu statique de contact
unilatéral avec frottement de Coulomb en élasticité linéaire. Pour citer cet article : P. Hild, C. R. Acad. Sci.
Paris, Ser. I 336 (2003).

1. Introduction

The Coulomb model [2] is the most common law of friction used in solid mechanics in order to describe
slipping or sticking bodies on a contact surface. This law is very often coupled with the unilateral contact
model which takes into account the possible separation of the body from the surface. In the simple case
of elastostatics, the variational formulation of the unilateral contact problem with Coulomb friction (see
[3,4]) was followed some years later by an existence result in the case of an infinitely long strip with small
friction (see [8]). These results were generalized with more classical geometries and the bounds ensuring
existence were improved, particularly in references [7] and [5]. Nevertheless this (simple) model shows
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numerous mathematical difficulties so that there does not exist, to our knowledge neither uniqueness
results nor nonuniqueness or nonexistence examples.

The aim of this note is to propose a simple example of nonuniqueness for the continuous unilateral
contact model with Coulomb friction for a linear elastic body lying on a rigid foundation. This example
admits at least two solutions provided the friction coefficient is greater than a critical value. Moreover
these two solutions (one which sparates from the foundation and another one corresponding to stick on
the foundation) do not depend on the friction coefficient.

2. Problem set-up

Let us consider the deformation of an elastic body occupying, in the initial unconstrained configuration
a domain Ω in R2. The boundary ∂Ω of Ω consists of ΓD,ΓN and ΓC where the measure of ΓD does
not vanish. The body Ω is submitted to given displacements U on ΓD, it is subjected to surface traction
forces F on ΓN and the body forces are denoted f . In the initial configuration, the part ΓC is considered
as the candidate contact surface on a rigid foundation which means that the contact zone cannot enlarge
during the deformation process. The contact is assumed to be frictional and the stick, slip and separation
zones on ΓC are not known in advance. We denote by µ > 0 the given friction coefficient on ΓC . The unit
outward normal and tangent vectors on ∂Ω are n = (nx, ny) and t = (−ny, nx) respectively.

The unilateral contact problem with Coulomb’s friction law consists of finding the displacement field
u : Ω→ R2 satisfying (1)–(6):

div σ(u) + f = 0 in Ω, (1)

σ(u) = C ε(u) in Ω, (2)

u = U on ΓD, (3)

σ(u)n = F on ΓN . (4)

The notation σ(u) : Ω → S2 represents the stress tensor field lying in S2, the space of second order
symmetric tensors on R2. The linearized strain tensor field is ε(u) = (∇u +∇Tu)/2 and C is the fourth
order symmetric and elliptic tensor of linear elasticity.

Afterwards we choose the following notation for any displacement field u and for any density of surface
forces σ(u)n defined on ∂Ω:

u = unn + utt and σ(u)n = σn(u)n + σt(u)t.

On ΓC , the three conditions representing unilateral contact are as follows

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0, (5)

and the Coulomb friction law on ΓC is described by the following conditions:




ut = 0 =⇒ |σt(u)| ≤ µ|σn(u)|,

ut 6= 0 =⇒ σt(u) = −µ|σn(u)| ut|ut| .
(6)

Remark. Let us mention that the true Coulomb friction law involves the tangential contact velocities
and not the tangential displacements. However, a problem analogous to the one discussed here is obtained
by time discretization of the quasi-static frictional contact evolution problem. In this case (see [1]) u, f
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and F stand for u((i + 1)∆t), f((i + 1)∆t) and F((i + 1)∆t) respectively and ut has to be replaced by
ut((i+ 1)∆t)−ut(i∆t), where ∆t denotes the time step. For simplicity and without any loss of generality
only the static case described above will be considered in the following.

The variational formulation of problem (1)–(6) consists of finding u ∈ K satisfying (see [3,4]):

a(u,v − u)−
∫

ΓC

µσn(u)(|vt| − |ut|) dΓ ≥ L(v − u), ∀v ∈ K, (7)

where

a(u,v) =
∫

Ω

(Cε(u)) : ε(v) dΩ, L(v) =
∫

Ω

f .v dΩ +
∫

ΓN

F.v dΓ,

for any u and v in the Sobolev space (H1(Ω))2. In these definitions the notations · and : represent the
canonical inner products in R2 and S2 respectively.

In (7), the set K stands for the convex of admissible displacement fields:

K =
{

v ∈ (H1(Ω))2; v = U on ΓD, vn ≤ 0 on ΓC
}
.

As far as we know there only exist existence results in the case of small friction coefficients (see [8,7,5])
for problem (1)–(6) and there are neither uniqueness results (unless the loads f ,F and U are equal to
zero) nor nonuniqueness or nonexistence examples available.

3. A nonuniqueness example

We consider the triangle Ω of vertexes A = (0, 0), B = (1, 0) and C = (3/4, 1/4) and we define ΓD =
[B,C], ΓN = [A,C], ΓC = [A,B]. The body Ω lies on the rigid foundation, the half-space delimited by
the straight line (A,B). We suppose that the body Ω is governed by Hooke’s law concerning homogeneous
isotropic materials so that (2) becomes

σ(u) =
Eν

(1− 2ν)(1 + ν)
tr(ε(u))I +

E

1 + ν
ε(u)

where I represents the identity matrix, tr is the trace operator, E and ν denote Young’s modulus and
Poisson ratio, respectively. The chosen material characteristics are ν = 1/5 and E = 1 (the choice of E
is only made for the sake of simplicity and any choice of a postive E would lead to the same kind of
nonuniqueness example). Let (x = (1, 0), y = (0, 1)) stand for the canonical basis of R2. We suppose that
the volume forces f = (fx, fy) = (0, 0) are absent and that the surface forces denoted F = (Fx, Fy) are
such that

Fx = −35
√

10
48

α, Fy = 0,

where α > 0. On ΓD, the presribed displacements U = (Ux, Uy) are given by

Ux = 6α(x− 1), Uy =
3
4
α(x− 1).

where α < 4/3 (to avoid some penetration of ΓD in the rigid foundation).

Set 0 < α < 4/3 and introduce two linear displacement fields u = (ux, uy) and u = (ux, uy) in Ω:

ux = (7x+ y − 7)α, uy =
(
−x− 7

4
y + 1

)
α, (8)
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ux = −6yα, uy = −3
4
yα. (9)

The displacement field u moves points A and C to (−7α, α) and (3/4− 3α/2, 1/4− 3α/16) respectively
whereas position of point B remains unchanged. When considering u the points A and B are stuck and
the new position of point C becomes (3/4− 3α/2, 1/4− 3α/16).

In the next proposition we show that the two displacement fields u and u are solutions of the frictional
contact problem(1)–(6) if the friction coefficient µ is large enough.
Proposition. Let be given Ω,ΓD,ΓN ,ΓC , E, ν, f ,F,U, α as previously. For any µ ≥ 3 there exist at least
two solutions (given by (8) and (9)) of the Coulomb frictional contact problem (1)–(6).

Proof. Using the constitutive relation (2), one easily obtains:

σ(u) = α
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 , σ(u) = α
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As a result the equilibrium equations div σ(u) = 0 and div σ(u) = 0 are satisfied in Ω. On ΓD, the two
fields u and u coincide with the prescribed displacement field U and the stress vectors σ(u)n and σ(u)n
are equal to F on ΓN (since n = (−1/

√
10, 3/

√
10)). It remains to verify the fulfillment of the frictional

contact conditions for both fields. We begin with u. On ΓC , n = (0,−1), t = (1, 0) and we get

σn(u) = 0, σt(u) = 0, un = α(x− 1), ut = 7α(x− 1).

Since α > 0 it follows that un ≤ 0. This together σn(u) = σt(u) = 0 implies that u satisfies conditions
(5)–(6) for any positive µ. In fact u is a solution which separates from the rigid foundation except at point
B. We now consider the displacement field u. The displacements, the normal and tangential stresses on
ΓC are:

σn(u) = −5
6
α, σt(u) =

5
2
α, un = 0, ut = 0.

Obviously σn(u) < 0 and |σt(u)| ≤ µ|σn(u)| when µ ≥ 3. As a consequence, the displacement field u
satisfies conditions (5)–(6) for any µ ≥ 3. Note that this solution is stuck on the rigid foundation. This
concludes the proof of the proposition.

Remarks. 1. The values µ ≥ 3 in the proposition correspond to quite large friction coefficients from an
practical point of view. Nevertheless such a choice allows to exhibit a simple non-uniqueness example.
In fact it is possible to obtain examples of non-uniqueness with µ ≥ 1 + ε for any ε > 0. This result is
obtained together with the theoretical framework considering the general setting in which such nonunique
isolated solutions occur. This work is in preparation.

2. The are probably some other types of nonuniqueness cases for problem (1)–(6): a different approach
from the one presented in this note consists of searching sufficient conditions of nonuniqueness involving
infinitely many solutions (which all remain in slipping contact) for critical (eigen)values of the friction
coefficient (see [6]).

3. The existence of examples with nonunique solutions to (1)–(6) for arbitrary small friction coefficients
is an open question.
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Etrangers, X (1785), 163-332. Reprinted by Bachelier, Paris 1809.
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