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Abstract

This work is concerned with friction problems in linear elasticity. We con-
sider the unilateral contact model with the static Coulomb friction law in the
continuous and finite element contexts. Having at our disposal a solution of
the problem where stick does not occur on the entire contact zone, we consider
the simple problem which consists of checking if the stick configuration solves
also the friction problem. We prove that this solution multiplicity phenomenon
occurs in the continuous case when a solution with grazing contact exists. We
perform the corresponding finite element computations as well as some ones
dealing with separation solutions.

Keywords : stick configuration, Coulomb friction, unilateral contact, finite elements, linear
elasticity, solution multiplicity.

1. Introduction

Finite element codes do not generally propose several solutions to the user when
the problem under consideration admits more than a solution. On the one hand if the
set of solutions is locally connected, one can easily imagine that convergence problems
of the algorithms could occur. On the other hand if the set of solutions consists of
several isolated points, the setting is quite different and a computed solution can be
obtained with a good convergence of the algorithms although there exist other distant
solutions.

This paper is concerned with the latter phenomenon in the case of the unilateral
contact model with Coulomb friction in two and three space dimensions (see [4, 11]).
In the simplest case of continuum static elasticity, this frictional contact problem
shows important difficulties in its mathematical handling. The existence of a solution
was proven in [12] in the case of a small friction coefficient (with generalizations con-
cerning the geometries and improvements of the bound ensuring existence in [10, 5]).
As far as we know there does not exist any nonexistence example for the continuous
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problem. On the one hand a first uniqueness result has been obtained very recently
in [14] with the assumption that a regular solution exists and that the friction coeffi-
cient is sufficiently small. On the other hand there are at least three classes of explicit
non-uniqueness examples in the continuous case:

• a first one involving an infinity of slipping solutions (none of them with stick
anywhere on the contact zone) located on a connected set when the friction
coefficient is a precise value (see [8]);

• a second class dealing with two isolated (here the denomination ”isolated”
means that the set of solutions is not connected) solutions (stick and strict
separation) for large friction coefficients (see [9]);

• a third one which is exhibited in this paper and corresponding to two solutions
(stick and grazing contact) for large friction coefficients.

An outline of the paper is as follows. In section 2 we consider a body lying on a rigid
foundation in the continuum setting and we check if the stick configuration solves
the friction problem when a first solution is known. We then prove in section 3 that
the phenomenon exists (at least in some cases) when a first solution with grazing
contact (zero density of surface forces and zero normal displacement on the contact
zone) is known. We also recall the results obtained in [9] concerning solutions with
strict separation from the foundation. In section 4 we carry out the finite element
computations corresponding to the solution multiplicity phenomena considered in the
previous sections.

2. The continuous problem and the stick criterion

Let be given a domain Ω in R
n, n = 2, 3 which represents an elastic body in the

initial unconstrained configuration. Its boundary ∂Ω = ΓD ∪ ΓN ∪ ΓC consists of
three non-overlapping domains ΓD, ΓN and ΓC where the measures (in R

n−1) of ΓD

and ΓC are positive. The body Ω is submitted to given displacements U on ΓD, it is
subjected to surface traction forces F on ΓN and the body forces are denoted f . In
the initial configuration, the part ΓC is considered as the candidate contact surface
on a rigid foundation which means that the contact zone cannot enlarge during the
deformation process. The contact is assumed to be frictional and the stick, slip and
separation zones on ΓC are not known in advance. The unit outward normal vector
on ∂Ω is n and µ ≥ 0 stands for the friction coefficient on ΓC .

The Coulomb friction problem in elastostatics with unilateral contact conditions
is to find the displacement field u : Ω → R

n, (n = 2, 3) satisfying (2.1)–(2.6):

div σ(u) + f =0 in Ω, (2.1)

σ(u) =C ε(u) in Ω, (2.2)

where the notation σ(u) represents the stress tensor field lying in Sn the space of
second order symmetric tensors on R

n. The linearized strain tensor field is ε(u) =
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(∇u + ∇
T u)/2 and C is the fourth order symmetric and elliptic tensor of linear

elasticity. Next we define the Dirichlet and Neumann conditions:

u =U on ΓD, (2.3)

σ(u)n =F on ΓN . (2.4)

The following notation is adopted for any displacement field u and for any density of
surface forces σ(u)n defined on the boundary of Ω:

u = unn + ut and σ(u)n = σn(u)n + σt(u),

where ut ·n = 0 and σt(u)·n = 0. On ΓC , the three conditions representing unilateral
contact are as follows:











un ≤ 0,

σn(u) ≤ 0,

σn(u) un = 0,

(2.5)

and the Coulomb friction law on ΓC is summarized by the following conditions:







ut = 0 =⇒ |σt(u)| ≤ −µσn(u),

ut 6= 0 =⇒ σt(u) = µσn(u)
ut

|ut|
.

(2.6)

When µ = 0 the friction law in (2.6) simply reduces to the condition σt(u) = 0

and the problem admits a unique solution [6]. Moreover it is easy to see that the
solution u = 0 is unique when U = F = f = 0.

Remark 2.1 We mention that the physically relevant Coulomb friction law involves
the tangential contact velocities and not the tangential displacements. Nevertheless,
a problem analogous to the one considered in (2.6) is obtained by time discretization
of the quasi-static frictional contact evolution problem. In this case u, f and F stand
for u((i+1)∆t), f((i+1)∆t) and F((i+1)∆t) respectively and ut has to be replaced
by ut((i+1)∆t)−ut(i∆t), where ∆t denotes the time step. For simplicity and without
any loss of generality only the static case described above will be considered in this
work. Finally let us remark that from a mathematical point of view the same kind of
result as for the static case (existence of a solution if the friction coefficient is small)
has been obtained for the quasi-static problem in [2, 13].

Now we consider a solution u of the unilateral contact problem with Coulomb
friction (2.1)–(2.6) in which stick does not occur everywhere on the contact zone ΓC .
Having at our disposal this field verifying u 6≡ 0 on ΓC , we check if the field with
stick everywhere on the contact zone solves the contact problem. The problem is to
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find the displacement field ū : Ω → R
n, (n = 2, 3) such that:



































div σ(ū) = f in Ω,

σ(ū) =C ε(ū) in Ω,

ū =U on ΓD,

σ(ū)n =F on ΓN ,

ū =0 on ΓC .

(2.7)

When the compatibility conditions at the possible common points of the boundary
parts ΓD and ΓC are satisfied which we assume for the sake of simplicity (in fact this
will be the case in all the forthcoming examples and numerical experiments), problem
(2.7) admits a unique solution ū. Let us mention that the fields we consider in this
study are ”regular”. As a consequence, the normal and tangential stresses on the
contact zone are at least defined almost everywhere.

The following proposition furnishes a sufficient condition for the non-uniqueness
of the equilibrium solution u to problem (2.1)–(2.6).

Proposition 2.2 Let u be a displacement field solving problem (2.1)–(2.6) such that
u 6≡ 0 on ΓC. Let ū be the solution of problem (2.7). If µ > 0 and |σt(ū)| ≤ −µσn(ū)
on ΓC, then ū is another solution of Coulomb’s frictional contact problem (2.1)–(2.6).

Proof. Straightforward.

3. Examples in the continuous context

We next show examples in two space dimensions where the solution u satisfies graz-
ing contact or separates from the rigid foundation and which fulfill the assumptions
of the Proposition 2.2.

3.1. Case where u satisfies grazing contact

We now search a field u solving (2.1)–(2.6) and verifying grazing contact (i.e.,
un = σn(u) = 0 on ΓC). If ū is a field satisfying the assumptions of the proposition,
we denote

ϕ = ū − u, (3.1)

and we observe that ϕ is a nonzero displacement field satisfying:






















div σ(ϕ) =0 in Ω,

σ(ϕ) =C ε(ϕ) in Ω,

ϕ =0 on ΓD,

σ(ϕ)n =0 on ΓN .

We show that Proposition 2.2 can be illustrated in the case when Ω is a triangle in
which the edges represent ΓD, ΓN and ΓC (or also a trapezoid, see the Remark 3.1
hereafter) and the displacement fields u and ū are linear.
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We consider the triangle Ω of vertexes A = (0, 0), B = (1, 0) and C = (xc, yc) with
yc > 0 and we set ΓD =]B,C[, ΓN =]A,C[, ΓC =]A,B[. The body Ω lies on a rigid
foundation, the half-space delimited by the straight line (A,B) as depicted in Figure
1. We suppose that the body Ω is governed by Hooke’s law concerning homogeneous

-
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Figure 1: The geometry of the body Ω

isotropic materials so that (2.2) becomes

σ(u) =
Eν

(1 − 2ν)(1 + ν)
tr(ε(u))I +

E

1 + ν
ε(u), (3.2)

where I is the identity matrix, tr represents the trace operator, E and ν denote
Young’s modulus and Poisson’s ratio, respectively with E > 0 and 0 ≤ ν < 1/2.
Let (x = (1, 0), y = (0, 1)) stand for the canonical basis of R

2. We suppose that the
volume forces f = (fx, fy) = (0, 0) are absent in Ω and that the surface forces on ΓN

are denoted by F = (Fx, Fy). Let U = (Ux, Uy) represent the given displacements on
ΓD.

We begin with the determination of ϕ = (ϕx, ϕy) in (3.1). The field ϕ is linear
and ϕy = 0 on ΓC ∪ ΓD (since uy = ūy = 0 on ΓC). Therefore we get ϕy = 0 in Ω.
Moreover ϕx = 0 in ΓD. Hence

ϕx = α(ycx + (1 − xc)y − yc), (3.3)

ϕy = 0, (3.4)

where α ∈ R \ {0}.
Inserting now the expressions (3.3)–(3.4) of ϕ in the constitutive law (3.2) gives

σ(ϕ) =
αE

1 + ν









yc(1 − ν)

1 − 2ν

1 − xc

2

1 − xc

2

ν yc

1 − 2ν









, (3.5)
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and div σ(ϕ) = 0 in Ω. Then we consider the Neumann condition: σ(ϕ)n = 0 on ΓN .
Since the unit outward normal vector on ΓN is n = (−yc/

√

x2
c + y2

c , xc/
√

x2
c + y2

c ),
the stress vector on ΓN becomes

σ(ϕ)n =











αE(2νy2
c − 2y2

c − x2
c + 2x2

cν + xc − 2xcν)

2(1 − 2ν)(1 + ν)
√

x2
c + y2

c

αEyc(xc − 1 + 2ν)

2(1 − 2ν)(1 + ν)
√

x2
c + y2

c











.

Keeping in mind that 0 ≤ ν < 1/2, yc > 0, E > 0 and α 6= 0, the Neumann condition
is equivalent to the two following equalities (3.6) and (3.7):

ν =
1 − xc

2
, (3.6)

yc = xc

√

1 − xc

1 + xc

. (3.7)

Hence

xc ∈]0, 1[, yc = xc

√

1 − xc

1 + xc

. (3.8)

The admissible line γ in which are located the pairs (xc, yc) satisfying (3.8) is depicted
in Figure 2.

-
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Figure 2: The admissible line γ for point C = (xc, yc).

In this case the normal and tangential constraints on ΓC given by (3.5) (with
n = (0,−1), t = (1, 0), and denoting σt(ϕ) = σt(ϕ)t) become

σn(ϕ) =
αE(1 − xc)

3 − xc

√

1 − xc

1 + xc

, (3.9)

σt(ϕ) =
αE(1 − xc)

xc − 3
.
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Remark 3.1 If instead a triangle we consider a trapezoid of vertexes A = (0, 0),
B = (θ, 0), C = (xc, yc) and D = (xc + θ(1 − xc), (1 − θ)yc) with yc > 0 and
0 < θ < 1 the discussion is the same as previously. In fact it suffices to define
ΓD =]C,D[, ΓN =]A,C[∪]B,D[, ΓC =]A,B[ and to observe that the lines AC and
BD are parallel (see Figure 3).
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Figure 3: Case where Ω is a trapezoid

We now determine a the field u = (ux, uy) satisfying (2.1)–(2.6) and grazing con-
tact. Since u = −ϕ on ΓC it can be written

ux =−αyc(x − 1) + δy,

uy = γy,

with δ and γ in R. Since α 6= 0 we see that u 6≡ 0 on ΓC and div σ(u) = 0 in
Ω. Inserting this expression in the constitutive law (3.2) and according to (3.6) and
(3.7), we deduce that

σn(u) =
E

3 − xc

(

γ
1 + xc

xc

− α(1 − xc)

√

1 − xc

1 + xc

)

,

σt(u) =
δE

xc − 3
,

on ΓC . Since σn(u) = σt(u) = 0 (grazing contact), we deduce

δ = 0, γ = αxc

(

1 − xc

1 + xc

) 3

2

.

The displacement field U = (Ux, Uy) incorporated in the Dirichlet condition on ΓD

becomes

Ux =−αxc

√

1 − xc

1 + xc

(x − 1), (3.10)

Uy = αxc

(

1 − xc

1 + xc

) 3

2

y. (3.11)
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The densities of surface forces σ(u)n = F = (Fx, Fy) on the boundary part ΓN with
n = (−

√

(1 − xc)/2,
√

(1 + xc)/2) are then

Fx =
2Eαxc(1 − xc)

√
2

(1 + xc)3/2(3 − xc)
, (3.12)

Fy = 0. (3.13)

In the case where Ω is a trapezoid, it suffices to consider also the second part of
ΓN which is precisely the straight line segment BD depicted in Figure 3 with n =
(
√

(1 − xc)/2,−
√

(1 + xc)/2).
Having determined a field u which solves the friction problem (in fact (2.1)–(2.6)

is satisfied for any µ ≥ 0), the next step consists of adding u + ϕ = ū and to check
that the conditions of Proposition 2.2 are fulfilled. Clearly ū satisfies the equations
in (2.7). Since σn(ū) = σn(u)+σn(ϕ) = σn(ϕ) on ΓC and according to (3.9) we need

α < 0.

Moreover the condition |σt(ū)| ≤ −µσn(ū) on ΓC reduces to

µ ≥
√

1 + xc

1 − xc

.

We finally remark that the displacement field u moves points A, B and C to the new
positions given by A, B and C respectively.

A =

(

αxc

√

1 − xc

1 + xc

, 0

)

,

B = B = (1, 0) ,

C =

(

xc

(

1 + α

√

1 − xc

1 + xc

(1 − xc)

)

, xc

√

1 − xc

1 + xc

(

1 + αxc

(

1 − xc

1 + xc

) 3

2

))

.

The field ū does not change the positions of A and B whereas C moves to C after
deformation.

Proposition 3.2 Let be given the triangle Ω of vertexes A = (0, 0), B = (1, 0) and
C = (xc, yc) with yc > 0. Set ΓD =]B,C[, ΓN =]A,C[, ΓC =]A,B[ and let E > 0,
α < 0. Assume that the pair (xc, yc) satisfies:

xc ∈]0, 1[, yc = xc

√

1 − xc

1 + xc

.

Set

ν =
1 − xc

2
,
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and f = 0. Let the densities of surface forces F = (Fx, Fy) on ΓN be given by
(3.12)–(3.13) and let U = (Ux, Uy) on ΓD be as in (3.10)–(3.11).

For any µ ≥
√

1+xc

1−xc
there exist at least two solutions of the Coulomb frictional

contact problem (2.1)–(2.6). The first solution is given by the field u = (ux, uy)
satisfying grazing contact with slip: its expression is in (3.10)–(3.11) for all (x, y) ∈ Ω.
The second solution corresponds to stick: it is ū = (ūx, ūy) such that:

ūx = α(1 − xc)y,

ūy = αxc

(

1 − xc

1 + xc

) 3

2

y,

for all (x, y) in Ω.

The same result holds when considering the trapezoid as in Remark 3.1. Note that
one could add an additional (and not restrictive) smallness assumption on |α| which
is not linked to the equations (2.1)–(2.6) but rather to the small strain hypothesis.

3.2. Case where u satisfies separation

In fact the class of multiple solutions involving grazing contact we obtained in
section 3.1 can be seen as a limiting case of the following result proved in [9] which
we recall hereafter.

Proposition 3.3 Let be given the triangle Ω of vertexes A = (0, 0), B = (1, 0) and
C = (xc, yc) with yc > 0. Set ΓD =]B,C[, ΓN =]A,C[, ΓC =]A,B[ and let E > 0,
β > 0. Assume that the pair (xc, yc) satisfies:

xc ∈]0, 1[,

√

1

4
+ xc − x2

c −
1

2
< yc < xc

√

1 − xc

1 + xc

. (3.14)

Set

ν =
(y2

c − xc + x2
c)

2

((xc − 1)2 + y2
c )(x

2
c + y2

c )
,

and f = 0. Let the densities of surface forces F = (Fx, Fy) on ΓN be given by

F =







−Eβyc(x
2
c − 2xc + y2

c )(y
2
c + (xc − 1)2)2(x2

c + y2
c )

3/2

(2(x2
c − xc + y2

c )
2 + y2

c )(x
3
c − x2

c + xcy2
c + y2

c )

0






.

Set U = (Ux, Uy) on ΓD as follows:

Ux = βyc

(

(x2
c − 2xc + y2

c )yc

x3
c − x2

c + y2
cxc + y2

c

(x − 1) + y

)

, (3.15)

Uy =−βyc

(

(x − 1) +

(

(y2
c − xc + x2

c)
2(x2

c − 2xc + y2
c )

yc(x3
c − x2

c + xcy2
c + y2

c )

)

y

)

. (3.16)
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Then for any µ ≥ xc/yc there exist at least two solutions of the Coulomb frictional
contact problem (2.1)–(2.6). The first solution corresponding to strict separation is
given by the field u = (ux, uy) whose expression is in (3.15)–(3.16) for all (x, y) ∈ Ω.
The second solution satisfies stick: it is ū = (ūx, ūy) such that:

ūx =
2βxcyc((xc − 1)2 + y2

c )

x3
c − x2

c + xcy2
c + y2

c

y,

ūy =
−β((xc − 1)2 + y2

c )(y
2
c + yc − xc + x2

c)(y
2
c − yc − xc + x2

c)

x3
c − x2

c + xcy2
c + y2

c

y.

Proof. See [9].
The same result holds when considering the trapezoid as in Remark 3.1. The

admissible domain Σ in which are located the pairs (xc, yc) satisfying (3.14) is depicted
in Figure 4.

-

6

0 xc

yc

Σ

1

0.25

Figure 4: The open admissible region Σ for point C = (xc, yc).

We remark that the displacement field u in Proposition 3.3 moves points A and
C to the new positions

A′ =

(

−β
(x2

c − 2xc + y2
c )y

2
c

x3
c − x2

c + y2
cxc + y2

c

, βyc

)

and

C ′ =

(

xc + β
2y2

cxc((xc − 1)2 + y2
c )

x3
c − x2

c + xcy2
c + y2

c

,

yc − β
yc((xc − 1)2 + y2

c )(y
2
c + yc − xc + x2

c)(y
2
c − yc − xc + x2

c)

x3
c − x2

c + xcy2
c + y2

c

)

, (3.17)

respectively whereas position of point B remains unchanged. From the coordinates
of A′ we see that this field corresponds to a complete separation of ΓC from the rigid
foundation.
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When considering the field ū in Proposition 3.3, the points A and B are stuck on
the rigid foundation and point C admits after deformation the new coordinates given
by C ′ in (3.17). This field corresponds to a sticking solution.

As in the previous study one could add an additional (and non restrictive) smallness
assumption on β which is not linked to the equations (2.1)–(2.6) but rather to the
small strain hypothesis.

Example 3.4 We give an example satisfying the assumptions of Proposition 3.3 in
which the geometry is a trapezoid (as in Remark 3.1) with θ = 1/2 (hence B =
(1/2, 0)). Set xc = 3/4, yc = 1/4 (so (xc, yc) satisfies (3.14)), ν = 1/5, E = 1, β =
2/5. Set f = 0 in Ω, F = (Fx, Fy) = (−7

√
10/96, 0) on ]A,C[, F = (Fx, Fy) =

(7
√

10/96, 0) on ]B,D[, U = (Ux, Uy) = (−3y/5,−3y/40) on ]C,D[. If the friction
coefficient µ is such that µ ≥ 3 then both displacement fields u = (ux, uy) and ū =
(ūx, ūy) defined by

ux = (7x + y − 7)/10, uy = (−4x − 7y + 4)/40,

and

ūx =−3y/5, ūy = −3y/40,

are solutions of the Coulomb frictional contact problem (2.1)–(2.6). Figure 5 depicts
the initial configuration Ω = ABDC (solid line) and the first deformed configuration
corresponding to u: Ω′ = A′B′D′C ′ (dotted line). The second deformed configuration
represents ū: it is Ω” = ABD′C ′ (not depicted). Note that one could choose a smaller
β to stay in the small strains range.
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Figure 5: Initial configuration Ω = ABDC (solid line) and the first deformed configu-
ration corresponding to separation Ω′ = A′B′D′C ′ (dotted line). The second deformed
configuration corresponding to stick is Ω” = ABD′C ′.

4. The finite element case

4.1. The mixed finite element approximation
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The aim of this section is to translate in the finite dimensional case the discussion
from the continuous context. In the forthcoming we use mixed finite elements with
two multipliers representing the normal and the tangential constraints.

First of all, we have to introduce the mixed variational formulation for the contin-
uous problems (2.1)–(2.6) and (2.7). Set

a(u,v) =

∫

Ω

(Cε(u)) : ε(v) dΩ, L(v) =

∫

Ω

f · v dΩ +

∫

ΓN

F · v dΓ,

for any u and v in the Sobolev space (H1(Ω))n (see [1]). In these definitions the
notations · and : represent the canonical inner products in R

n and Sn respectively.
We define the sets of admissible displacement fields:

V =
{

v ∈ (H1(Ω))n; v = 0 on ΓD

}

, Uad =
{

v ∈ (H1(Ω))n; v = U on ΓD

}

.

The weak formulation of problem (2.1)–(2.6) is to find (u, λn,λt) ∈ Uad × Mn ×
Mt(−µλn) = Uad × M(−µλn) verifying:















a(u,v) −
∫

ΓC

λnvn dΓ −
∫

ΓC

λt · vt dΓ = L(v), ∀v ∈ V,
∫

ΓC

(νn − λn)un dΓ +

∫

ΓC

(νt − λt) · ut dΓ≥ 0, ∀(νn,νt) ∈ M(−µλn),
(4.1)

where M(−µλn) = Mn × Mt(−µλn) with Mn = {ν ∈ H− 1

2 (ΓC); ν ≤ 0 on ΓC} and,
for any g ∈ −Mn, Mt(g) = {ν ∈ (H− 1

2 (ΓC))n−1; |ν| ≤ g on ΓC}. The notation
H− 1

2 (ΓC) stands for the dual space of H
1

2 (ΓC) (see [1]) so that the inequality con-
ditions incorporated in the definitions of Mn and Mt(g) must be understood in the
dual sense. When (u, λn,λt) solves (4.1), it is straightforward that λn = σn(u) and
λt = σt(u).

We set
U0

ad =
{

v ∈ Uad; v = 0 on ΓC

}

.

The weak formulation of problem (2.7) is to find (ū, θn,θt) ∈ U0
ad × H− 1

2 (ΓC) ×
(H− 1

2 (ΓC))n−1 verifying:

a(ū,v) −
∫

ΓC

θnvn dΓ −
∫

ΓC

θt · vt dΓ = L(v), ∀v ∈ V. (4.2)

As above mentioned, we note that θn = σn(ū) and θt = σt(ū) when (ū, θn,θt) stands
for the unique solution of (4.2).

The body Ω is discretized by using a family of triangulations (Th)h made of finite
elements of degree k ≥ 1 where h > 0 is the discretization parameter representing
the greatest diameter of an element in Th. The set approximating V becomes:

Vh =
{

vh ∈ (C(Ω))n; vh|T ∈ (Pk(T ))n ∀T ∈ Th, vh = 0 on ΓD

}

,
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where C(Ω) stands for the space of continuous functions on Ω and Pk(T ) represents the
space of polynomial functions of degree ≤ k on T . We mention that any discussion
concerning the convergence of the finite element problems towards the continuous
models is out of the scope of this paper. Moreover we choose k = 1 in the forthcoming
numerical experiments.

Let the notation Uh stand for a convenient approximation of U on ΓD. We set

Uad,h =
{

vh ∈ Vh; vh = Uh on ΓD

}

.

On the boundary of Ω, we keep the notation vh = vhnn+vht for any vh ∈ Vh and we
denote by (Th)h the family of (n − 1)-dimensional meshes on ΓC inherited by (Th)h.
Set

Wh =
{

ν = vh|ΓC
.n; vh ∈ Vh

}

,

which is included in the space of continuous functions on ΓC which are piecewise of
degree k on (Th)h and coincides with the latter space when ΓC ∩ ΓN = ∅.

We denote by p the dimension of Wh and by ψi, 1 ≤ i ≤ p the corresponding
canonical finite element basis functions of degree k. For all ν ∈ Wh we shall denote
by F (ν) = (Fi(ν))1≤i≤p the generalized loads at the nodes of ΓC :

Fi(ν) =

∫

ΓC

νψi, ∀ 1 ≤ i ≤ p.

We define the sets of Lagrange multipliers: Mhn = {ν ∈ Wh; Fi(ν) ≤ 0, ∀1 ≤ i ≤ p}
and, for any g ∈ −Mhn , Mht(g) = {ν ∈ (Wh)

n−1; |Fi(ν)| ≤ Fi(g), ∀ 1 ≤ i ≤ p}.
Note that in the definition of Mht(g) we make a slight abuse of notation when writing
Fi(ν). This means in particular that Fi(ν) lies in R

n−1.
Hence, the discrete problem issued from (4.1) becomes: find (uh, λhn,λht) ∈

Uad,h × Mhn × Mht(−µλhn) = Uad,h × Mh(−µλhn) such that






















a(uh,vh) −
∫

ΓC

λhnvhn dΓ −
∫

ΓC

λht · vht dΓ = L(vh), ∀vh ∈ Vh,
∫

ΓC

(νhn − λhn)uhn dΓ +

∫

ΓC

(νht − λht) · uht dΓ ≥ 0,

∀(νhn ,νht) ∈ Mh(−µλhn).

(4.3)

We set
U0

ad,h =
{

vh ∈ Uad,h; vh = 0 on ΓC

}

.

The discrete formulation of problem (4.2) is to find (ūh, θhn,θht) ∈ U0
ad,h × Wh ×

(Wh)
n−1 verifying:

a(ūh,vh) −
∫

ΓC

θhnvhn dΓ −
∫

ΓC

θht · vht dΓ = L(vh), ∀vh ∈ Vh. (4.4)

It has been proven in [3], Proposition 3.2 that there exists at least a solution
to Coulomb’s discrete frictional contact problem (4.3) when n = 2. Besides it is
straightforward that there is a unique solution to the problem (4.4). The following
result is the discrete version of Proposition 2.2.
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Proposition 4.1 Let (uh, λhn,λht) be a solution of the problem (4.3) such that uh 6≡
0 on ΓC. Let (ūh, θhn,θht) be the solution of problem (4.4). If µ > 0 and |Fi(θht)| ≤
−µFi(θhn), 1 ≤ i ≤ p then (ūh, θhn,θht) is another solution of (4.3).

Proof. Straightforward

Remark 4.2 The result in the proposition leads to two different solutions to the fric-
tional contact problem, one of them corresponding to stick. Another problem consid-
ered in [7] consists of searching sufficient conditions leading to an infinity of slipping
solutions, located on a continuous branch for precise (eigen)values of the friction co-
efficient.

4.2. Finite element computations

This section is concerned with numerical experiments illustrating the previous
discussions. There are four examples: the first three ones correspond to multiplicity
with strict separation and stick and the last one deals with multiplicity involving
grazing contact and stick.

In the first test we choose the trapezoidal geometry considered in Example 3.4
and we examine the convergence of the finite element method (4.3)–(4.4). We keep
in mind that we have at our disposal in this case some solutions of the continuous
problem (2.1)–(2.6). In the second experiment we keep the same geometry and we
change the Poisson ratio and the loads in order to handle results where no solution
to the continuous problem is available. In the third example we consider again a
family of problems whose exact solutions are not known. We study the influence of
the geometry and we exhibit numerical examples of non-uniqueness for small friction
coefficients (such results are not available in the continuous case where the known
non-uniqueness examples involve friction coefficients greater than 1). Finally in the
fourth example we illustrate numerically Proposition 3.2.

As in section 3 we consider Hooke’s constitutive law corresponding to homogeneous
isotropic materials in (2.2):

σij(u) =
Eν

(1 − 2ν)(1 + ν)
δijεkk(u) +

E

(1 + ν)
εij(u) in Ω,

where E > 0 and 0 ≤ ν < 1/2 stand for Young’s modulus and Poisson’s ratio,
respectively. The implementation of problems (4.3) and (4.4) is achieved using the
finite element code CAST3M developed at the Commissariat à l’Energie Atomique
CEA - DEN/DM2S/SEMT.

4.2.1. First example: case where u satisfies separation; numerical comparison with
results of the continuous problem

We consider the trapezoid Ω = ABDC introduced in Example 3.4. We recall the
data: A = (0, 0), B = (1/2, 0), C = (3/4, 1/4), D = (7/8, 1/8), ν = 1/5, E = 1,f = 0

in Ω, F = (Fx, Fy) = (−7
√

10/96, 0) on ]A,C[, F = (Fx, Fy) = (7
√

10/96, 0) on
]B,D[, U = (Ux, Uy) = (−3y/5,−3y/40) on ]C,D[.
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An example of initial and deformed mesh is shown in Figure 6. Obviously one
could choose some smaller F and U (the choice was made for a better graphical
representation) to stay in the small strains range. We observe that the computed
solution shows a complete separation of the body from the rigid foundation so that
the solution does not depend on the friction coefficient (in fact the solution solves
problem (4.3) for any µ ≥ 0).

Figure 6: Initial and deformed mesh corresponding to uh for problem (4.3)

Keeping the same mesh as in Figure 6, we solve the elasticity problem (4.4).
In order to apply to result of Proposition 4.1 we need to check that |Fi(θht)| ≤
−µFi(θhn), 1 ≤ i ≤ p (in this case p = 26). We observe that Fi(θhn) < 0 for any
1 ≤ i ≤ 26. Moreover 3 − 3.8 10−13 ≤ −|Fi(θht)|/Fi(θhn) ≤ 3 + 2.6 10−13, for any
1 ≤ i ≤ 26. Consequently we deduce that uh and ūh solve problem (4.3) when µ ≥ 3.
Note that this value is the ”exact” one determined in Example 3.4. The initial mesh
and both solutions (separation and stick) are shown in Figure 7.

Figure 7: Initial mesh and both solutions uh and ūh for problem (4.3)

Next we determine the ”minimal friction coefficient for multiplicity with separation
and stick” defined by:

max
1≤i≤p

−|Fi(θht)|/Fi(θhn)

using different mesh sizes and we observe no variations of this minimal friction coef-
ficient which ranges between 3 and 3 + 10−12. We end this example by noting that
the computed stress fields are always uniform and the displacement fields are linear.

4.2.2. Second example: influence of Poisson’s ratio and of the loads
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We consider again the geometry of the first example and we perform the numerical
experiments using 3-node triangles.

In the first discussion we keep the same data F,f ,U as in the previous experiment
and we change only Poisson’s ratio. We compute the range of −|Fi(θht)|/Fi(θhn) when
1 ≤ i ≤ p and we report the results in Table 1. When ν = 0 and the mesh is coarse
the solutions of (4.3) depend on the friction coefficient µ (this is not the case when
ν = 0.1, 0.2, 0.3, 0.4, 0.45 where the entire body separates from the rigid foundation).
So we need to compute solutions using various friction coefficients and we observe
numerically that the assumptions of Proposition 4.1 are never fulfilled. When ν = 0
and the mesh is refined the solution separates strictly from the foundation but some
forces Fi(θhn) become positive. We observe that the displacement fields uh and ūh are
not linear when ν 6= 0.2. In particular the Von-Mises stress fields of uh and ūh increase
near C (resp. D) if the Poisson’s ratio is lower (resp. greater) than 0.2. Moreover
the coefficient max1≤i≤p −|Fi(θht)|/Fi(θhn) seems to attain its minimum value when
ν = 0.2 (if p is large enough). We also remark that min1≤i≤p −|Fi(θht)|/Fi(θhn)
attains its maximal value when ν = 0.2.

Number of elements on ΓC 1 10 100

ν = 0 − − −
ν = 0.1 [2.9228 , 2.9354] [2.8650 , 3.5597] [2.8766 , 13.254]

ν = 0.2 [3.0000 , 3.0000] [3.0000 , 3.0000] [3.0000 , 3.0000]

ν = 0.3 [3.0118 , 3.0689] [2.5284 , 3.1406] [1.0505 , 3.1194]

ν = 0.4 [2.8357 , 3.1276] [2.0666 , 3.3071] [0.38794 , 3.2397]

ν = 0.45 [2.4375 , 3.1484] [1.7637 , 3.4310] [1.7687 , 3.3033]

Table 1: Range of −|Fi(θht)|/Fi(θhn), 1 ≤ i ≤ p

In the second discussion we modify the loads F and we keep the values of ν,f

and U as in the first example. We choose p = 26. When F is replaced with λF

the assumptions of the Proposition 4.1 remain true when λ ∈ [0.77, 3.02]. When
λ decreases towards 0.77, a contact is established and we recover the phenomenon
observed in the previous discussion with ν = 0 and with coarse meshes. On the
contrary if λ reaches 3.02 the solution uh remains separated from the foundation but
max1≤i≤p −|Fi(θht)|/Fi(θhn) tends to infinity. When λ > 3.02 some forces Fi(θhn)
become positive. Finally let us mention that if we replace simultaneously F and U

by λF and λU with λ > 0 we have −|Fi(θht)|/Fi(θhn) = 3 for any 1 ≤ i ≤ 26.

4.2.3. Third example: influence of the geometry

We consider the parallelogram Ω = ABDC with A = (0, 0), B = (1, 0), C = (1, H)
and D = (2, H), (H > 0). The material characteristics are E = 10000 and ν = 0.25.

The boundary ΓD =]C,D[ is clamped: U = (0, 0) and no densities of body forces
in Ω nor surface forces are applied on ]A,C[. A load F = (−1,−4H/5) is applied on
the remaining part ]B,D[ of ΓN . Therefore we obtain a family of problems depending
on H. We observe numerically that for any choice of H (e.g., H = 2, 5, 10, 50, 100)
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and for any choice of an uniform quadrangular mesh (e.g., with 5, 10, 20, 50 elements
on the contact zone) the computed solution of (4.3) shows a strict separation (and
moves to the left). So it solves the friction problem for any µ ≥ 0.

The solution of problem (4.4) is computed and we observe that the assumptions
of Proposition 4.1 are always fulfilled when the friction coefficient is large enough.
The values of the minimal friction coefficient are reported in Table 2 (the symbol
”...” means that the matrix sizes are too important for the computations). We
first observe that for a given geometry the minimal friction coefficient converges well
when the meshsize decreases. Moreover when H increases there are examples of non-
uniqueness for small friction coefficients (lower than 0.5). From these examples which
converge when the mesh size vanishes we can reasonably think that they become
non-uniqueness examples for the continuous model (examples of non-unique solutions
when µ ≤ 1 had not been obtained for the continuous model).

Number of elements on ΓC 5 10 20 50

H = 2 1.6212 1.6261 1.6295 1.6307

H = 5 0.52609 0.52505 0.52371 0.52284

H = 10 0.39721 0.40068 0.40160 0.40196

H = 20 0.36031 0.37255 0.37814 0.38035

H = 50 0.33471 0.35319 0.36234 ...

H = 100 0.32551 0.34624 ... ...

Table 2: Value of max1≤i≤p −|Fi(θht)|/Fi(θhn)

4.2.4. Fourth example: case where u satisfies grazing contact; numerical comparison
with results of the continuous problem

This example deals with solutions involving grazing contact (i.e., when uhn =
λhn = 0 on ΓC) illustrating Propositions 3.2 and 4.1. So we consider the trapezoid
Ω = ABDC with A = (0, 0), B = (1/2, 0), C = (5/13, 10/39) D = (9/13, 5/39). The
material characteristics are E = 10000 and ν = 4/13. The boundary ΓD =]C,D[
is submitted to a prescribed displacement of U = (10(x − 1)/39,−40y/351), the
boundaries ]B,D[ (resp. ]A,C[) are acted on by densities of surface forces: F =
(−20E

√
13/459, 0) (resp. F = (20E

√
13/459, 0)). No body forces are applied.

Figure 8 depicts an example of initial and deformed mesh. As previously we
could choose some smaller F and U (the choice was made for a better graphical
representation) to stay in the small strains range. We observe that the computed
solution of (4.3) satisfies grazing contact. Consequently this solution solves problem
(4.3) for any µ ≥ 0. Keeping the same mesh as in Figure 8, we solve the elasticity
problem (4.4). In order to apply to result of Proposition 4.1 we need to check that
|Fi(θht)| ≤ −µFi(θhn), 1 ≤ i ≤ 26. We observe that Fi(θhn) < 0 for any 1 ≤ i ≤
26 and 1.5 − 2.1 10−14 ≤ −|Fi(θht)|/Fi(θhn) ≤ 1.5 + 7 10−14, for any 1 ≤ i ≤ 26.
Consequently we deduce that uh and ūh solve problem (4.3) when µ ≥ 1.5. Note
that this value is the ”exact” one according to Proposition 3.2. The initial mesh and
both solutions (grazing contact and stick) are shown in Figure 9. We end this example
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by noting that for any mesh size we obtain the value 1.5 and that the displacement
fields are linear.

Figure 8: Initial and deformed mesh corresponding to uh for problem (4.3)

Figure 9: Initial mesh and both solutions uh and ūh for problem (4.3)

5. Concluding remarks

This paper considers a particular phenomenon (dealing with isolated stick solutions
and solution multiplicity in the Coulomb friction problem) in the continuum and finite
element contexts. We prove that the phenomenon occurs in the continuous case where
two solutions with grazing contact and stick may solve the friction problem. Besides,
from the good convergence of the computations (see example 3) we can reasonably
deduce that such multiple solutions exist for the continuous model in the case of small
friction coefficients.

Of course this work is a only a partial step in the complete classification process
of all the pathologies in the unilateral contact model with Coulomb friction which
is widely used in the engineering area. After a more complete understanding of the
Coulomb friction model the main aim of these studies would be to furnish to the finite
element code user a complete set of solutions at each time step and maybe also to
propose a physically relevant solution among them, keeping in mind that the latter
discussion is also non trivial.

Acknowledgments: The author is thankful to the referee for the remarks and sug-
gestions which have led to several significant improvements in this paper.
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