
A posteriori error estimation for unilateral contact with
matching and non-matching meshes

Patrice Coorevits a,*, Patrick Hild b, Jean-Pierre Pelle a

a Laboratoire de M�ecanique et Technologie, ENS de Cachan/CNRS/UPMC 61 avenue du Pr�esident Wilson, 94235 Cachan Cedex, France
b Laboratoire de Math�ematiques, Universit�e de Savoie, Domaine Scienti®que, 73376 Le Bourget du Lac Cedex, France

Received 18 December 1998

Abstract

In this paper, we consider the unilateral contact problem between elastic bodies. We propose an error estimator based on the

concept of error in the constitutive relation in order to evaluate the ®nite element approximation involving matching and non-matching

meshes on the contact zone. The determination of the a posteriori error estimate is linked to the building of kinematically-admissible

stress ®elds and statically-admissible stress ®elds. We then propose a ®nite element method for approximating the unilateral contact

problem taking into account matching and non-matching meshes on the contact zone; then, we describe the construction of admissible

®elds. Lastly, we present optimized computations by using both the error estimates and a convenient mesh adaptivity proce-

dure. Ó 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

The numerical simulation of contact problems is more often carried out by ®nite element methods. For
the user, one important aspect is obviously to evaluate the discretization errors due to the use of this type of
approximation. From the point of view of mathematics, a unilateral contact problem corresponds to a
variational inequality [1±3]. The convergence of the associated ®nite element methods has been studied by
numerous authors on the basis of a priori error estimators. In particular, the case of two elastic bodies has
been developed in [4] for matching meshes and in [5±8] for non-matching meshes. However, these a priori
error estimations do not allow us to quantify the discretization errors. This quanti®cation requires the
de®nition of a posteriori error estimations. For linear problems, various research e�orts have been per-
formed: estimators based on the residual of the equilibrium equations [9], estimators using the smoothing of
®nite element stresses [10] and estimators based on the concept of error in the constitutive relation [11,12].
For non-linear problems, and especially for the non-linearity of contact, the work available is much less
abundant. We can however cite Ref. [13] which, based on a penalty method, transforms the variational
inequality into a variational equality that allows, within the classical framework, building an estimator
based on the residuals. Nevertheless, this estimator explicitly uses the penalty parameter, which does
represent a major drawback.

The aim of this paper is to propose, for unilateral contact problems without friction between elastic
bodies under small perturbations, an error measure based on the concept of error in the constitutive
relation. This error measure can be used for the classical numerical techniques for local treatment of the
non-interpenetration condition, yet is particularly well-adapted to the global treatment of the non-inter-
penetration condition proposed in [8].
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The basis of the method is presented in Section 2. In particular, the development of an error measure in
the constitutive relation relies on a classi®cation of the kinematic conditions, equilibrium equations and
constitutive relations. In the case of contact, in order to establish this classi®cation, we consider as in [14]
the contact zone as a mechanical entity with its own variables and its own constitutive relations.

The building of the error measure is the purpose of Section 3. The quality of an approximate admissible
solution which, by de®nition, satis®es the kinematic conditions and equilibrium equations is evaluated by
the manner in which the constitutive relations are satis®ed. A link between the error measure in the con-
stitutive relation and the classical errors in the solution is established. For these types of problems, such an
approach can be considered as an extension of Prager±Synge's theorem [15] in elasticity.

The discretization of the problem by ®nite elements and the application of the proposed error measure
are developed in Sections 4 and 5. In particular, the technique which allows building an approximate
admissible solution from the ®nite element solution is detailed.

In Section 6 examples of the use of the error estimator as well as examples of adaptive computations are
shown.

2. Problem set-up

2.1. General notations

We consider the bidimensional unilateral contact problem between two elastic bodies, denoted by X1 and
X2 (Fig. 1), respectively. We assume that the boundary oX` of X`, ` � 1; 2 is divided into three parts:
· On the ®rst part, denoted by o1X

`, we suppose that the displacement ®eld is given:

U `

o1X
`j � U `

d; ` � 1; 2: �1�

For the sake of simplicity, we suppose in the following that: U `
d � 0; ` � 1; 2:

· On the second part, denoted by o2X
`, a surfacic density of forces F `

d is given.
· The complementary part, denoted by oCX` � oX` ÿ �o1X

` [ o2X
`�, is the candidate contact zone.

We suppose that oCX1 � oCX2, which we denote by CC. The body X` is submitted to a density of volumic
forces f `

d . We assume that the strain tensor e��� is linearized and we denote K` by the elasticity operator
associated with X`. The notation n` stands for the unit outward normal on the boundary of X`.

2.2. Formulation of the contact

In order to clearly express the error in the constitutive relation, we represent, as in [14], the contact zone
CC � oCX1 � oCX2 as a mechanical entity equipped with its constitutive relation. We choose the orientation
of CC by setting nC � n1. We then introduce on the interface CC the functions W 1;W 2;R1;R2 and RC,

Fig. 1. The unilateral contact problem between two elastic bodies.
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representing two displacement ®elds W 1and W 2 (on each side of the interface), two ®elds of surfacic
densities of forces R1 and R2 (stresses transmitted to X1 and X2) and an ``interior ®eld'' of a surfacic density
of forces RC.

The equilibrium of the interface is represented by:

RC � R1 and RC � ÿR2 on CC: �2�
Let us de®ne the jump in the displacement which, for the interface, plays a similar role as a strain:

W C � W 1 ÿ W 2: �3�
For all of vector Z, set:

Zn � ZTnC and Zt � Z ÿ ZnnC; �4�
where the notation T represents transposition.

Coulomb's constitutive law, in the frictionless case, can be formulated as follows [1]:

W C
n 6 0; �5�

RC
n 6 0; �6�

RC
n W C

n � 0; �7�

RC
t � 0: �8�

The inequality in (5) expresses the non_interpenetration of the two bodies; either contact or separation is
allowed. The inequality in (6) states the sign condition on the normal constraint and (7) represents the
complementary condition. Lastly, (8) states the nullity of the tangential component of the stress vector,
which re¯ects the absence of friction.

Let us now introduce the conjugate convex potentials u and u� [16]:

u�V � � 0 if Vn P 0
�1 otherwise

�
and u��Z� � 0 if Zn6 0 and Zt � 0;

�1 otherwise:

�
�9�

then, we have: u�V � � u��Z� ÿ ZT V P 0 8V ; 8Z.
The constitutive relation can be written in the three following equivalent forms:

ÿ W C 2 ou��RC�;
RC 2 ou�ÿW C�;
u�ÿW C� � u��RC� � RCT

W C � 0:

�10�

2.3. Problem set-up

The problem of unilateral contact without friction can be formulated as follows:
Find (U 1; r1) de®ned in X1, (U 2; r2), de®ned in X2 and [(W 1;W 2), (R1;R2;RC)], de®ned on CC such that:

· �U `;W `�; ` � 1; 2 satisfy the kinematic conditions:

U ` � 0 on o1X
` and U ` � W ` on CC: �11�

· �r`;R`;RC�; ` � 1; 2 satisfy the equilibrium equations:

ÿ
Z

X`

Tr r`e�V `�� �
dX�

Z
X`

f `
T

d V ` dX�
Z

o2X
`

F `T

d V ` dS �
Z

CC

R`T

V ` dS � 0 8V ` 2 U `
0

� U ` defined and enough regular on X` such that U `
� � 0 on o1X

`
	 �12�

and: RC � R1 and RC � ÿR2 on CC.
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· �U `;W `; r`;RC�; ` � 1; 2 satisfy the constitutive relations:

r` � K`e�U `�;

u�ÿW C� � u��RC� � RCT

W C � 0:
�13�

3. Error in the constitutive relation

The concept of error in the constitutive relation is based on the classi®cation of the equations in ki-
nematic, equilibrium and constitutive relations.

3.1. Admissible ®elds

De®nition. A pair ŝ � �û; ĉ�, û � �Û 1; Û 2; Ŵ 1; Ŵ 2), ĉ � �r̂1; r̂2; R̂1; R̂2; R̂C� is said to be admissible if the
kinematic relations (11) and the equilibrium equations (12) are satis®ed.

3.2. Measure of the error in the constitutive relation

For all admissible ŝ, let's set:

e�ŝ� �
X2

`�1

r̂`
"
ÿ K`e�Û `�

2

r;X`
� 2

Z
CC

u�
�
ÿ Ŵ C� � u��R̂C� � R̂CT

Ŵ C

�
dS

#1=2

; �14�

where krk2
r;X` � RX` Tr rKÿ1r� �dX.

By de®nition, the quantity e�ŝ� is the measure of the error in the constitutive law corresponding to the
admissible pair ŝ.

Property. For ŝ � �û; ĉ� admissible, we have: e�ŝ� equal to zero if and only if ŝ is the exact solution to the
reference problem.

With the error in the constitutive law, we associate the relative error denoted e and de®ned as follows:

e �
P2

`�1 r̂` ÿ K`e�Û `�
 2

r;X`
� 2

R
CC

u�ÿŴ C� � u��R̂C� � R̂CT

Ŵ C

� �
dSP2

`�1 kr̂` � K`e�Û `�k2
r;X`

2664
3775

1=2

: �15�

Therefore, e is a global error which allows evaluating the quality of the admissible pair ŝ. Let E be a part
of X`. Then, we de®ne the local contribution eE of E to the error (15) as follows:

eE �
r̂` ÿ K`e�Û `�
 2

r;E
� 2

R
CC\E u�ÿŴ C� � u��R̂C� � R̂CT

Ŵ C
� �

dSP2
`�1 kr̂` � K`e�Û `�k2

r;X`

264
375

1=2

: �16�

where krk2
r;E �

R
E Tr�rKÿ1r�dX.

In practical situations, E is an element of the mesh's discretization. The local contributions enable
obtaining information concerning the errors located on the structure. By construction, one has:

e2 �
X

E

e2
E: �17�
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When CC � ;, the de®nitions (14), (15) and (16) are already known and correspond to the case of elasticity
[12].

3.3. Relation with the other errors

Proposition. Let �U 1; U 2; r1; r2;W 1; W 2;R1; R2; RC) be a solution to the contact problem (11)±(13). For all
ŝ � �Û 1; Û 2; r̂1; r̂2; Ŵ 1; Ŵ 2; R̂1; R̂2; R̂C� admissible, one has:

e2�ŝ� ÿ
X2

`�1

U `
� ÿ Û `

2

u;X`
� r`
 ÿ r̂`

2

r;X`

�
P 0; �18�

where kUk2
u;X` � RX` Tr�e�U�Ke�U��dX.

Therefore������������������������������������X2

`�1

U ` ÿ Û `
 2

u;X`

vuut 6 e�ŝ� and

���������������������������������X2

`�1

r` ÿ r̂`
 2

r;X`

vuut 6 e�ŝ�: �19�

This property is an extension of Prager±Synge's theorem in elasticity to the more general unilateral contact
case.

Proof. For ` � 1; 2, one has:

r̂`
 ÿ K`e�Û `�

2

r;X`
� r̂`
 ÿ r` � K`e�U ` ÿ Û `�

2

r;X`

� r̂`
 ÿ r`

2

r;X`
� U `
 ÿ Û `

2

u;X`
� 2

Z
X`

Tr �r̂`
h
ÿ r`�e�U ` ÿ Û `�

i
dX: �20�

Since r` and r̂` satisfy (12) and U ` and Û ` satisfy (11), we can write:

r̂`
 ÿ K`e�Û `�

2

r;X`
� r̂`
 ÿ r`

2

r;X`
� U `
 ÿ Û `

2

u;X`
� 2

Z
CC

�R̂` ÿ R`�
T

�W ` ÿ Ŵ `�dS: �21�

Then

X2

`�1

r̂`
 ÿ K`e�Û `�

2

r;X`
�
X2

`�1

r̂`
 ÿ r`

2

r;X`
�
X2

`�1

U `
 ÿ Û `

2

u;X`
� 2

Z
CC

�R̂1
h

ÿ R1�T�W 1 ÿ Ŵ 1�

� �R̂2 ÿ R2�T�W 2 ÿ Ŵ 2�
i
dS: �22�

By using (12) and RC
t � 0, we deduce:

e2�ŝ� �
X2

`�1

r̂`
 ÿ r`

2

r;X`
�
X2

`�1

U `
 ÿ Û `

2

u;X`
� 2

Z
CC

R̂CT

W C dS � 2

Z
CC

RC
n Ŵ C

n dS: �23�

De®nition (14) is only valid when ŝ is such that u�ÿŴ C� and u��R̂C� are ®nite. Otherwise, the error e�ŝ� is
equal to in®nity and relation (18) is obviously satis®ed. If u�ÿŴ C� � 0 and u��R̂C� � 0, property (18) is
established by observing that:Z

CC

R̂CT

W C dS �
Z

CC

RCT

Ŵ C dS �
Z

CC

R̂C
n W C

n dS �
Z

CC

RC
n Ŵ C

n dS P 0: �24�

This concludes the proof. �
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When initially non-contact points can come into contact after deformation, we must take into account
the initial gap between the bodies. The unilateral contact conditions (5)±(8) on CC can then be written:

W C
n 6Gn; �25�

RC
n 6 0; �26�

RC
n �W C

n ÿ Gn� � 0; �27�

RC
t � 0; �28�

where Gn is the non-negative function expressing the distance between the two bodies. It thus becomes
possible to de®ne the error in the constitutive relation in the case of an initial gap.

e�ŝ� �
X2

`�1

r̂`


"
ÿ K`e�Û `�


2

r;X`

� 2

Z
CC

u�
�
ÿ Ŵ C � G� � u��R̂C� � R̂CT�Ŵ C ÿ G�

�
dS
i1=2

; �29�

where G � GnnC.

4. The continuous and discrete variational formulations for the unilateral contact problem

4.1. The continuous case: the variational inequality and the mixed formulation

Let U0 � U1
0 �U2

0, where U1
0 and U2

0 have been introduced in (12). We set, for all U � �U 1;U 2� and
V � �V 1; V 2� in U0

a�U ; V � �
X2

`�1

Z
X`

Tr e U `
ÿ �

K`e V `
ÿ �� �

dX: �30�

a(.,.) is the bilinear symmetrical form in elasticity. We also set, for all V in U0

L�V � �
X2

`�1

Z
X`

f `
T

d V ` dX

�
�
Z

o2X
`

F `T

d V ` dS
�
: �31�

The linear form L�:� takes into account the external loads f `d and F `
d . We then de®ne the convex of ad-

missible displacements denoted Uad comprising the non-interpenetration condition between the bodies

Uad � V
n
� �V 1; V 2� 2 U0; V 1T

n1 � V 2T

n26 0 on CC

o
: �32�

The variational formulation associated with problem (11)±(13) is then [1,4,3]: ®ndU such that:

U 2 Uad; a�U ; V ÿ U�P L�V ÿ U� 8V 2 Uad: �33�

This problem is well-posed and admits a unique solution in the case where o1X
1 and o1X

2 are positive. If
not, su�cient conditions that state the existence and uniqueness for well-oriented loads [4] are also
available.

Next, we introduce the mixed variational formulation of the unilateral contact problem which consists of
®nding �U ; k� 2 U0 � N�CC� that satis®es:
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a�U ; V � ÿ
Z

CC

k V 1T

n1
�

� V 2T

n2
�

dS � L�V � 8V 2 U0;Z
CC

�lÿ k� U 1T

n1
�

� U 2T

n2
�

dS P 0 8l 2 N�CC�;
�34�

where N�CC� is the convex cone of negative functions de®ned on CC in some dual sense (for a detailed
study, see [4]).

When o1X
1 and o1X

2 are positive, it is clear that problem (34) has a unique solution �U ; k� where U is the
solution to (33) and k � RC

n (7).

4.2. Finite element discretization for matching and non-matching meshes

We now consider the general case of non-matching meshes on the contact zone. A detailed study of
contact problems with non-matching meshes on the contact zone can be found in [8]. In the present case,
both polygonally-shaped bodies X1 and X2 are discretized independently, thereby leading to nodes which do
not coincide on the contact zone.

We will denote the ®nite element translation of the space U`
0 by U`

0;h and write U0;h � U1
0;h �U2

0;h. The
functions V `

h 2 U`
0;h, both of whose components are continuous on X` and polynomial of degree one on each

triangle, satisfy the embedding conditions on o1X
`. Let us denote the discretization parameter associated

with X` by h` and set h� (h1; h2) (see Fig. 2).
Next, we introduce the approximation convex cone, denoted by Uad;h and de®ned as follows:

Uad;h � Vh

�
� �V 1

h ; V
2

h � 2 U0;h;

Z
CC

V 1T

h n1
�

� V 2T

h n2
�
vh dS P 0 8vh 2 N 1

h �CC�
�
; �35�

where N 1
h (CC) is the closed convex cone of non-positive continuous functions, piecewise linear on the mesh

of X1 on CC.
The discretized mixed variational formulation then becomes: ®nd Uh 2 U0;h and kh 2 N 1

h �CC) such that:

a�Uh; Vh� ÿ
Z

CC

kh V 1T

h n1
�

� V 2T

h n2
�

dS � L�Vh� 8Vh 2 U0;h;Z
CC

�lh ÿ kh� U 1T

h n1
�

� U 2T

h n2
�

dS P 0 8lh 2 N 1
h �CC�:

�36�

It is simple to show that problem (36) admits a unique solution, denoted by (Uh, kh). It is also simply
shown that Uh belongs to the convex de®ned in (35) and that the pair (Uh, kh) tends towards (U, RC

n ) if the
discretization parameter h� (h1; h2) tends towards 0. These convergence results and the a priori error es-
timates can be found in [5,8].

Fig. 2. Non-matching meshes.
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Remark. The mixed problem (36) is equivalent to finding the saddle point on U0;h � N 1
h �CC) associated with the

following Lagragian:

L�Vh; lh� �
1

2
a�Vh; Vh� ÿ

Z
CC

lh V 1T

h n1
�

� V 2T

h n2
�

dS ÿ L�Vh�: �37�

In the general case of nonmatching meshes, we choose the mesh of X1 when defining the Lagrangian multipliers
in N 1

h �CC�. In the case of matching meshes, there is obviously no choice in defining the set of the multipliers.

4.3. The matrix formulation

In order to provide the matrix formulation of the previous mixed problem, we hold ®xed h. Thus, we
consider a discretization comprising N` nodes belonging to X`, ` � 1; 2; let N � N1 � N2. For the sake of
simplicity, we assume the absence of embedding conditions. Let m be the number of nodes on CC belonging
to the mesh of X1, and let numbers 1 through m correspond to these nodes. We denote the number of nodes
on CC belonging to the mesh of X2 by n, and let the numbers between N1 � 1 and N1 � 1� n correspond to
these nodes. Let wk; 16 k6m and uk; 16 k6 n be the scalar basis functions on the mesh of X1 and X2,
respectively, on CC.

The matrix formulation of Eq. (36) then becomes:

K1 0

0 K2

 !
q1

q2

� �
ÿ

M1

0

C2;1

0

0BBB@
1CCCAK � F 1

F 2

� �
�38�

or, with obvious notations:

Kqÿ AK � F in RN ; �39�
where q1 is the vector of components U 1

h �i�; 16 i6N1; q2 the vector of components U 2
h �i�; N1 � 16 i6N ;

K the vector of components kh�i�; 16 i6m; K1 (resp. K2) the N1-by-N1 (resp. N2-by-N2) sti�ness matrix
corresponding to X1 (resp. X2); M1 the m-by-m matrix of coef®cients m1

j;k �
R

CC
wkwj dS; 16 j; k6m; C2;1

the n-by-m rectangular matrix of coef®cients cj;k �
R

CC
wkuj dS; N1 � 16 j6N1 � n� 1; 16 k6m, and

F 1and F 2 the vectors representing the external loads.
The inequality in (36) yields the remaining conditions. Denoting the vector corresponding to the normal

displacements of the nodes of X` on CC by q`N , we deduce the matrix formulation corresponding to (36) as
follows:

Find q 2 RN and K 2 Rm satisfying:

Kqÿ AK � F in RN ;

M1q1
N �t C2;1q2

N 6 0 in Rm;

K 6 0 in Rm;

�M1q1
N �t C2;1q2

N �TK � 0 in R:

�40�

In the current case, the integral condition in (35) can be written: M1q1
N � tC2;1q2

N 6 0. Let us note that M1

represents the symmetrical mass matrix on the mesh of X1 on CC. We denote the coupling matrix between
the two meshes on the contact zone as C2;1.

Remark.

1. When the nodes of both bodies fit together on the contact zone, M1 � C2;1 and the previous condition
becomes M1�q1

N � q2
N �6 0; this does not represent the node-on-node condition which is q1

N � q2
N 6 0. The

condition M1�q1
N � q2

N�6 0 allows some slight interpenetration of the bodies.
2. The multiplier K expressing the contact pressure on the contact zone satisfies the non-positiveness condition

on CC.
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Let Vh � �V 1
h ; V

2
h � 2 U0;h and lh 2 N 1

h (CC). Denoting the vector of components V 1
h �i�; 16 i6N1 by ~q1, the

vector of components V 2
h �i�;N1 � 16 i6N by ~q2 and the vector of components lh�i�; 16 i6m by ~K and in

applying the Remark from Section 4.2, it becomes straightforward that the matrix formulation in (40) can
also be written as:

max
~K6 0

min
~q

1

2
~qTK~q

�
ÿ ~qTF ÿ AT~q

� �T
~K

�
; where ~qT � ~q1

~q2

 !
: �41�

Using the property Kqÿ AK � F (see (39)) implies that (41) becomes a minimization problem of a qua-
dratic function with convex constraints:

min
~K6 0

1

2
~KTATKÿ1A~K

�
� ~KTATKÿ1F � 1

2
F TKÿ1F

�
: �42�

The problem in (42) is a classical minimization problem and is solved by using an iterative Frank and Wolfe
algorithm. With the values of K now available, we can obtain q by simply computing Kÿ1�F ÿ AK�.

5. Construction of admissible ®elds

The aim of this section is to describe the construction of the admissible ®elds by applying the properties
of the ®nite element solution [12].

5.1. Building of the kinematically-admissible displacement ®eld

If both domains are discretized with matching or non-matching meshes on the contact zone, the only
di�culty lies in building the displacement ®elds Û 1 and Û 2 which satisfy the non-interpenetration condition
in the case where the integral conditions in (35) have been adopted. The ®eld Uh� (U 1

h ;U
2
h ) given by the

algorithm does not satisfy the non-interpenetration condition (see Remark 1, Section 4.3). We thus set:

Û 1T

n1 � Ŵ 1T

n1 � U 1T

h n1 ÿ E2

E1 � E2

max U 1T

h n1
��

� U 2T

h n2
�
; 0
�
;

Û 2T

n2 � Ŵ 2T

n2 � U 2T

h n2 ÿ E1

E1 � E2

max U 1T

h n1
��

� U 2T

h n2
�
; 0
�
;

�43�

where E1 (resp. E2) denotes the Young's modulus of X1 (resp. X2). With respect to the tangential dis-
placements, we can write:

Û 1
t � Ŵ 1

t � U 1
ht and Û 2

t � Ŵ 2
t � U 2

ht: �44�
For the nodes i which are not located on CC, we set:

Û 1�i� � U 1
h �i� and Û 2�i� � U 2

h �i� �45�
and Û 1 (resp. Û 2) is built on X1 (resp. X2) in a piecewise linear fashion on each element by using the
previous values.

5.2. Building of the statically-admissible stress ®eld

The algorithm used to solve problem (42) yields a normal contact pressure K which is the vector in-
troduced in (39) corresponding to the nodal values of kh (36). We recall that kh is continuous, non-positive
and piecewise linear on the mesh of X1 on CC.

We set R̂1 � khn1; R̂2 � khn2 and R̂C � R̂1 so that the equilibrium of the interface (2) is satis®ed. One then

obtain: R̂C
n � R̂CT

nC � kh6 0 and R̂C
t � R̂C ÿ R̂C

n nC � 0; conditions (6) and (8) are thus ful®lled. The ®rst
equation in (36) becomes:
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Z
X1

Tr e�U 1
h �K1e�V 1

h �
� �

dX �
Z

X1

f 1T

d V 1
h dX�

Z
o2X

1

F 1T

d V 1
h dS �

Z
CC

R̂CT

V 1
h dS 8V 1

h 2 U 1
0;h;Z

X2

Tr e�U 2
h �K2e�V 2

h �
� �

dX �
Z

X2

f 2T

d V 2
h dX�

Z
o2X

2

F 2T

d V 2
h dS �

Z
CC

R̂CT

V 2
h dS 8V 2

h 2 U 2
0;h:

�46�

Denoting r1
h � K1e�U 1

h �, it becomes obvious that �U 1
h ; r

1
h� is the ®nite element solution to a linear elas-

ticity problem on X1 without unilateral contact conditions and with given loads f 1
d , F 1

d and R̂C. Supposing
that the volume loads f 1

d are constant (on each triangle) and that the surface loads F 1
d are piecewise linear

on the mesh of o2X
1, the construction of the statically-admissible stress ®eld r̂1 on X1 is then classical [12].

Denoting r2
h � K2e�U 2

h �, it is also clear that �U 2
h ;r

2
h� is the ®nite element solution to a linear elasticity

problem on X2 with given loads f 2
d , F 2

d and R̂C.

In the case of matching meshes on the contact zone, the construction of the statically-admissible stress
®eld r̂2 on X2 is also classical.

When considering the construction of the statically-admissible stress ®eld r̂2 in the general case of non-
matching meshes, the situation is more complicated than for the construction of r̂1. As a matter of fact, R̂C

n
is piecewise linear on CC on the mesh of X1 but, in the general case, not on the mesh of X2.

Remark.
1. If the mesh of X2 on CC is strictly finer than the mesh of X1 on CC, then the construction is also classical.
2. If the mesh of X1 is strictly finer than the mesh of X2 on CC, it is possible to provide a symmetrical definition

of the closed convex cone N 1
h (CC) of the Lagrangian multipliers in (35) and then to apply multipliers, which

are non-positive and piecewise linear on the mesh of X2 on CC.

If we wish to reconstruct the admissible ®eld r̂2 in the most general case of non-matching meshes, then
we must take into account that R̂C

n is only continuous and piecewise linear on each edge of E2, a boundary
element of X2 (see Fig. 3).

The theoretical construction of r̂2 by using the classical method then becomes possible by dividing the
triangles into subtriangles. In practical cases, this is only feasible when the number of subtriangles is small
and the triangles are not very ¯at (Fig. 4 represents the kinds of subtriangles that lead to di�culties).

5.3. Practical constructions

We have observed in the previous sections that the theoretical construction of an admissible
ŝ � �Û 1; Û 2; r̂1; r̂2; Ŵ 1; Ŵ 2; R̂1; R̂2; R̂C) satisfying u� �R̂C� � 0 and u�Ŵ 2 ÿ Ŵ 1� � 0 is always possible by
applying the appropriate properties of the ®nite element solution (36). In order to ``simplify'' the numerical
implementation, we now propose two reasonable alternatives which will be tested and then compared to the
analytical construction. The latter is considered ®rst.

Fig. 3. The given contact pressure on the triangle E2.
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5.3.1. Analytical construction of a strictly-admissible stress ®eld
This building process is classically carried out in two steps:

· during the ®rst step, densities of forces F̂ are constructed on the edge of each element; these densities are
in equilibrium with the body forces f `d , and

· during the second step, the strictly statically-admissible ®eld r̂` is constructed element-by-element, using
the densities as boundary conditions.
This construction is easy to accomplish when there are matching meshes on the contact zone or if one

mesh is a submesh of the other. Otherwise, the theoretical construction is practically possible when the
subdivision of the triangles does not lead to overly-¯at triangles.

The other case (leading to practical di�culties) appears when some nodes of X1 and X2 are very close in
comparison with the discretization parameters h1 and h2; in this case, very ¯at triangles cannot be avoided.

Next, we propose two alternatives for treating the latter case.

5.3.2. Numerical construction by use of higher-degree polynomials
The chosen technique consists of searching the stress ®eld r̂` on the element E of X` in the following form

[17]:

r̂`jE � K`e�VE�; �47�

where VE is a displacement ®eld de®ned on E, a polynomial of degree p � k with p being the degree of the
element used to carry out the ®nite element analysis and k being a strictly positive integer.

More precisely, VE is the solution to the following ®nite element problem on a single element E: ®nd VE, a
polynomial of degree p � k on E, such that:

8V � displacement field of degree p � k on E;Z
E

Tr K`e�VE�e�V ��
� �

dE �
Z

E
f `d V � dE �

Z
oE

F̂joEV � dS: �48�

This problem can be solved, apart from one displacement ®eld of a solid, on account of the equilibrium of
the densities F̂ with the body forces f `d .

On each element E of the mesh, a small linear system must be solved:

Kp�kU � Fp�k; �49�

where Kp�k denotes the classical rigidity matrix constructed with the interpolation polynomials up�k
i of

degree p � k and Fp�k denotes the vector of generalized forces.
Thus, we obtain an approximate ®eld which is no longer strictly admissible, yet which leads to e�cient

error estimators as shown in [17].

Fig. 4. Flat subtriangles.
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5.3.3. Approximation of the construction by applying the speci®c properties of the ®nite element solution in
(36)

This technique consists of building ŝ� (Û 1; Û 2; r̂1; r̂2; Ŵ 1; Ŵ 2; R̂1; R̂2; R̂C) that satis®es (11),
u� �R̂C� � 0, u�Ŵ 2 ÿ Ŵ 1� � 0, (12) with a weak interpretation of condition (2) which will be speci®ed later.

The construction of Û 1; Û 2; Ŵ 1; Ŵ 2 represents the theoretical construction proposed in (43)±(45). Next,
we set R̂1 � khn1 (with kh corresponding to the solution of (42)), R̂C � R̂1 and R̂2 � k2

hn2, where k2
h is the

continuous, piecewise linear function on the mesh of X2 on CC satisfying:Z
CC

kh

ÿ ÿ k2
h

�
v2

h dS � 0 �50�

for all v2
h which is continuous and piecewise linear on the mesh of X2 on CC.

The ®rst equation of (36) then becomes:Z
X1

Tr e�U 1
h �K1e�V 1

h �
� �

dX �
Z

X1

f 1T

d V 1
h dX�

Z
o2X

1

F 1T

d V 1
h dS �

Z
CC

R̂CT

V 1
h dS 8V 1

h 2 U 1
0;h;Z

X2

Tr e�U 2
h �K2e�V 2

h �
� �

dX �
Z

X2

f 2T

d V 2
h dX�

Z
o2X

2

F 2T

d V 2
h dS �

Z
CC

R̂2T

V 2
h dS 8V 2

h 2 U 2
0;h:

�51�

The last equality results from the construction of R̂2, whose components are piecewise linear on the mesh of
X2 on CC. The construction of r̂1 and r̂2 is then classical. This technique consists of approximating the
theoretical construction with ®elds R̂1; R̂2 and R̂C, which satisfy, albeit weakly (see (50)), Eq. (2).

6. Numerical studies

6.1. Example

In the ®rst example, we consider the problem of two elastic bodies initially in contact. The upper body is
submitted to a uniform load (see Fig. 5). In this problem, we have adopted symmetry conditions in order to
avoid a greater number of singularities. The material characteristics are: E� 200 GPa, t� 0.3.

Due to the lack of an analytical solution for such a problem, we use a reference solution, denoted Uref ,
which is a ®nite element solution associated with a very re®ned mesh. Then, the exact error eex can be
de®ned as follows:

eex �
P2

`�1 Uref ÿ Uhk k2
u;X`P2

`�1 Uref � Uhk k2
u;X`

" #1=2

: �52�

Fig. 5. Problem set-up.
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By subcutting the initial mesh (see Fig. 6), the trend in the errors can be studied. In Fig. 7, the convergence
rates of the exact error eex and the computed error e de®ned in (15) are compared as a function of the
number of elements on the contact zone. We compare the two errors e estimated with strictly-admissible
stress ®elds (see Section 5.3.1) and ep�3 with numerical constructions (see Section 5.3.2).

We can observe that the convergence rate of the exact error is the same as the convergence rate of the
errors in the constitutive relation in the case of matching meshes.

Moreover, the lower bound and the upper bound of the e�ectivity index c � e=eex are 1.28 and 1.40,
respectively (see Fig. 8), whereas for numerical constructions, the bounds of cp�3 � ep�3=eex are 1.26 and
1.36, respectively.

In Fig. 10, the convergence rates are compared in the case of non-matching meshes (see Fig. 9). The mesh
of X2 is a submesh of X1 on the contact zone that allows us to build strictly-admissible ®elds.

Moreover, the lower and the upper bound of the e�ectivity index c are 1.17 and 1.47, respectively (see
Fig. 11), whereas the bounds of cp�3 are 1.16 and 1.42, respectively.

6.2. Mesh adaptivity

6.2.1. Algorithm
The goal of a mesh adaptation procedure is to guarantee to the ®nite element user a certain level

of precision by minimizing the computation costs. We will use the h-generation, which is the most

Fig. 6. Initial matching mesh and map of contributions eE to the error.

Fig. 7. Convergence of the error estimators as a function of the number of elements on the contact zone with matching meshes.
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Fig. 8. E�ectivity of the error estimators as a function of the number of elements on the contact zone with matching meshes.

Fig. 9. Initial non-matching mesh and map of contributions eE to the error.

Fig. 10. Convergence of the error estimators as a function of the number of elements of X1 on the contact zone with non-matching

meshes.
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frequently-employed procedure: the size and topology of the elements are changed while the type of ®nite
element functions on the di�erent meshes remains the same. A mesh T� is said to be optimal [11] for an
error measure e if:

e � e0; the accuracy prescribed by the user;
N � is minimized �element number of mesh T��: �53�

In order to solve the problem in (53), we adopt the following technique [18]:
· computation on a coarse mesh T;
· computation of both the global relative error e and the local contributions eE;
· determination of the optimized mesh T� and
· second computation on the new mesh T�.

6.2.2. Examples
For the ®rst example, we once again take the problem of two elastic bodies initially in contact (see Fig. 5).

The problem is optimized for a desired error of 5%.
The initial mesh comprises 640 three-node triangles and this yields a computed error e of 7.64% (see

Fig. 12). The de¯ection is shown in Fig. 13. The optimized mesh comprises 514 triangles for a computed
error of 4.42% (see Fig. 14).

For the second example, we take the case of a cork (see Fig. 15). The initial mesh comprises 112 triangles
and this yields an error of 32.39% (see Fig. 16). The desired error is set at 10%. The map of contributions eE

to the error is shown in Fig. 17.

Fig. 12. Initial mesh: 640 3-node elements, 370 nodes, e� 7.64%, eex � 6:12%, e0 � 5%.

Fig. 11. E�ectivity of the error estimators as a function of the number of elements of X1 on the contact zone with non-matching

meshes.
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Fig. 14. Optimized mesh: 514 3-node elements, 303 nodes, e � 4:42%, eex � 4:08%.

Fig. 13. De¯ection.

Fig. 15. Problem set-up.
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Fig. 16. Initial mesh: 112 3-node elements, 87 nodes, e � 32:39%, eex � 22:3%, e0� 10%.

Fig. 17. Map of contributions eE to the error.

Fig. 18. Optimized mesh with matching mesh: 696 3-node elements, 411 nodes, e � 11:78%, eex � 9:27%.
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Fig. 19. De¯ection.

Fig. 20. Map of Von Mises stresses.

Fig. 21. Optimized mesh with non-matching mesh: 709 3-node elements, 414 nodes, eex � 8:96%.
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By using a technique of mesh automation [19], in three steps we obtain an optimized mesh with 696
elements, a computed error of 11.78% and an exact error of 9.27% (see Fig. 18) in the case of matching
meshes. The de¯ection and the map of Von Mises stresses are shown in Figs. 19 and 20.

In two steps, in the case of non-matching meshes, we obtain an optimized mesh with 709 elements and an
exact error of 8.96% (see Fig. 21). The computed error is 11.22% using the method presented in Section
5.3.2 and 11.42% with the method in Section 5.3.3.

These various examples show that optimized meshes for the level of accuracy prescribed by the user, as
well as e�cient e�ectivity indexes, can be obtained.
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