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The present paper is concerned with the frictionless unilateral contact prob-
lem between two elastic bodies in a bidimensional context. We consider a
mixed formulation in which the unknowns are the displacement field and the
contact pressure. We introduce a finite element method using quadratic el-
ements and continuous piecewise quadratic multipliers on the contact zone.
The discrete unilateral non-interpenetration condition is either an exact
non-interpenetration condition or only a nodal condition. In both cases,
we study the convergence of the finite element solutions and a priori error
estimates are given. Finally, we perform the numerical comparison of the
quadratic approach with linear finite elements.
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1. Introduction

The numerical approximation of contact and impact problems occurring in solid
mechanics is generally accomplished using finite elements (see [12, 17, 22]). In the
engineering context, such simulations involve an increasing number of difficulties due
to a more precise modelling of complex phenomena so that the choice of improved
and accurate finite element methods is often investigated. The present paper is con-
cerned with quadratic finite element methods for unilateral contact problems (i.e.
the Signorini problem in elasticity). Our aim is to study if such methods should be
chosen for a more precise approximation of contact problems formulated through a
variational inequality or an equivalent mixed formulation.

The first convergence analysis of a finite element method for the unilateral contact
problem written as a variational inequality was achieved by Haslinger and Hlaváček
in [11] (see also [12]) in the case of linear finite elements. More recently, Ben Bel-
gacem completes the previous studies by considering in [2] a wider class of regularity
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assumptions and Coorevits, Hild, Lhalouani and Sassi obtain in [7] a first error esti-
mate in the L2-norm for the displacements. In reference [13], Haslinger and Lovǐsek
accomplish the initial error analysis for a mixed method using linear finite elements
for the displacement field and discontinuous piecewise constant multipliers approxi-
mating the pressure on the contact zone (see also [12]). In [7], a mixed method using
continuous and piecewise linear multipliers (on the same mesh as the displacements)
is analyzed. In fact, the latter choice of multipliers allows to prove a uniform inf-sup
condition.

Using second order finite elements for variational inequality problems has already
been achieved by Brezzi, Hager and Raviart for the obstacle problem in [4, 5]. In
these references, the authors obtain optimal convergence rates for both the variational
inequality approximation and a mixed formulation. For unilateral contact problems,
Kikuchi and Song used a penalized finite element approach in [18] (see also [17]) to
perform the analysis of a second order method as well as some numerical experiments.

Let us mention that there are significant differences in the finite element error
analyses of the variational inequalities. Although the basic tool is always an adap-
tation of Falk’s lemma [9], the handling of the approximation terms involves specific
techniques leading generally to different error bounds (see [10]). A particularity of
the unilateral contact model (in which the test functions lie in a convex set and not in
a space) comes from the location of the inequality condition holding only on (a part
of) the boundary and not on the entire domain. That leads to investigate positivity
preserving approximation properties in trace spaces. Since the usual positivity pre-
serving approximation operators do not satisfy optimal approximation properties in
such spaces (see [14]), the error analysis using linear finite elements leads to a conver-
gence rate of only h

3
4 in the H1-norm under H2 regularity assumptions (h stands for

the mesh size and Hm denotes the standard Sobolev space, see [11, 12]). An optimal
error estimate of order h is recovered under supplementary hypotheses on the exact
solution, in particular the finiteness of the set of points where the change from contact
to separation occurs (see [4, 11, 12]).

When considering quadratic finite elements, the error analysis of the variational
inequality or the mixed formulation issued from unilateral contact shows error terms
and difficulties which disappear in the case of linear finite elements. Let us briefly
describe them. If one chooses a (classic) discrete non-interpenetration condition hold-
ing at the nodes only, then some interpenetration can occur and it must be estimated
in the error analysis. Another possibility consists in choosing a (non-classic) discrete
non-interpenetration condition which holds everywhere on the contact part. In such
a case the classical interpolation operator of degree two becomes inefficient in the
analysis because it does not preserve positivity. Our aim in the error analysis is to
overcome these difficulties specific to the quadratic case.

An outline of the paper is as follows. Section 2 deals with the continuous setting
of the unilateral contact problem. In section 3, we define two mixed finite element
methods using quadratic finite elements with multipliers which are continuous and
piecewise of degree two on the contact part. The difference between both approaches



P. Hild and P. Laborde / Quadratic finite elements for unilateral contact 3

is that the non-interpenetration conditions are either of linear type (i.e. hold at the
discretization nodes of the method) or of quadratic type (i.e. hold everywhere on
the contact part). The link of the mixed methods with the corresponding variational
inequality formulation is given. Section 4 is concerned with the convergence study of
the methods for which we prove identical convergence rates under various regularity
hypotheses. Finally, in section 5, we carry out numerical experiments where quadratic
finite elements and linear finite elements are compared.

Preliminaries and notations. We begin with introducing some useful notation
and several functional spaces. In what follows, bold letters like u,v, indicate vector
valued quantities, while the capital ones (e.g. V,K, . . .) represent functional sets
involving vector fields.

Let Ω be an open bounded subset of R
2 whose generic point is denoted x = (x1, x2)

and denote by L2(Ω) the Hilbert space of square integrable functions endowed with
the inner product

(ϕ, ψ) =

∫

Ω

ϕ(x)ψ(x) dΩ.

Given m ∈ N, introduce the Sobolev space

Hm(Ω) =
{

ψ ∈ L2(Ω), Dαψ ∈ L2(Ω), |α| ≤ m
}

,

where α = (α1, α2) represents a multi–index in N
2 and |α| = α1 + α2. The notation

Dα denotes a partial derivative and the convention H0(Ω) = L2(Ω) is adopted. The
spaces Hm(Ω) are equipped with the norm

‖ψ‖Hm(Ω) =
(

∑

|α|≤m

‖Dαψ‖2
L2(Ω)

)
1
2
.

The Sobolev space of fractional order Hτ (Ω), τ ∈ R+ \N is then defined by the norm
(see [1]):

‖ψ‖Hτ (Ω) =

(

‖ψ‖2
Hm(Ω) +

∑

|α|=m

∫

Ω

∫

Ω

(Dαψ(x) −Dαψ(y))2

|x − y|2+2θ
dΩ dΩ

)
1
2

,

where m is the integer part of τ and θ its decimal part. Let γ be a connected portion
of the boundary of Ω. For any τ ∈ R+ \ N, the Hilbert space Hτ (γ) is assigned with
the norm

‖ψ‖Hτ (γ) =

(

‖ψ‖2
Hm(γ) +

∫

γ

∫

γ

(Dmψ(x) −Dmψ(y))2

|x − y|1+2θ
dγdγ

)
1
2

.

In the previous integral, Dmψ stands for the m–order derivative of ψ along γ and dγ
denotes the linear measure on γ. The norm on the topological dual space of H

1
2 (γ) is

‖ψ‖
H−

1
2 (γ)

= sup
ϕ∈H

1
2 (γ)

〈

ψ, ϕ
〉

− 1
2
, 1
2
,γ

‖ϕ‖
H

1
2 (γ)

,
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where the notation
〈

,
〉

− 1
2
, 1
2
,γ

represents the duality pairing between H− 1
2 (γ) and

H
1
2 (γ). We will also make use of norm ‖ψ‖L∞(γ) = ess supx∈γ |ψ(x)| as well as the

Hölder spaces C
m,ν(γ), m = 0, 1, 0 < ν ≤ 1 defined by the norm

‖ψ‖C m,ν(γ) =

(

max
α≤m

sup
x∈γ

|Dαψ(x)| + max
α≤m

sup
x,y∈γ

|Dαψ(x) −Dαψ(y)|

|x − y|ν

)

.

2. The Signorini problem in elasticity

Let Ωℓ, ℓ = 1, 2 denote two elastic bodies in R
2. The boundary ∂Ωℓ is supposed

to be “regular” and it consists of three nonoverlapping parts Γℓ
D, Γℓ

N and Γℓ
C with

meas(Γℓ
D) > 0. The normal unit outward vector on ∂Ωℓ is denoted nℓ = (nℓ

1, n
ℓ
2). In

the initial stage, the bodies are in contact on their common boundary part Γ1
C = Γ2

C

which we shall denote by ΓC and we suppose that the unknown final contact zone
after deformation will be included in ΓC . The bodies, clamped on Γℓ

D, are subjected
to volume forces f ℓ = (f ℓ

1 , f
ℓ
2) ∈ (L2(Ωℓ))2 and to surface forces gℓ = (gℓ

1, g
ℓ
2) ∈

(L2(Γℓ
N))2.

The Signorini problem in elasticity (or unilateral contact problem) consists of
finding the displacement fields u = (u1,u2) (where the notation uℓ stands for u|Ωℓ)
with uℓ = (uℓ

1, u
ℓ
2), 1 ≤ ℓ ≤ 2 verifying the following equations (2.1)-(2.7):

div σℓ + f ℓ = 0 in Ωℓ, (2.1)

where div denotes the divergence operator of tensor valued functions and σℓ =
(σℓ

ij), 1 ≤ i, j ≤ 2, 1 ≤ ℓ ≤ 2 stands for the stress tensor field. The latter is obtained
from the displacement field by the constitutive law of linear elasticity

σℓ =Aℓε(uℓ) in Ωℓ, (2.2)

where Aℓ is a fourth order symmetric and elliptic tensor and ε(v) = 1
2
(∇v +t∇v)

represents the linearized strain tensor field. On Γℓ
D and Γℓ

N , the conditions are as
follows:

uℓ = 0 on Γℓ
D, (2.3)

σℓnℓ = gℓ on Γℓ
N . (2.4)

It remains to specify the conditions modelling unilateral contact on ΓC :

(σ1n1).n1 = (σ2n2).n2 = σn, (2.5)

[u.n] ≤ 0, σn ≤ 0, σn[u.n] = 0, (2.6)

σ1
t = σ2

t = 0, (2.7)

where σn denotes the normal constraint (or contact pressure), [u.n] = u1.n1 +u2.n2

stands for the jump of the relative normal displacement across ΓC and σℓ
t = σℓnℓ −

σnnℓ represents the tangential constraints equal to zero because friction is omitted.
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In order to derive the variational formulation of (2.1)-(2.7), we consider the Hilbert
space V = V(Ω1) × V(Ω2) where

V(Ωℓ) =
{

vℓ ∈
(

H1(Ωℓ)
)2

, vℓ = 0 on Γℓ
D

}

,

endowed with the broken norm

‖v‖ =
(

2
∑

ℓ=1

‖vℓ‖2
(H1(Ωℓ))2

)
1
2
, ∀v = (v1,v2) ∈ V.

The forthcoming mixed variational formulation uses the following convex cone of
multipliers on ΓC

M =
{

µ ∈ H− 1
2 (ΓC),

〈

µ, ψ
〉

− 1
2
, 1
2
,ΓC

≥ 0 for all ψ ∈ H
1
2 (ΓC), ψ ≥ 0 a.e. on ΓC

}

.

Define

a(u,v) =
2
∑

ℓ=1

∫

Ωℓ

Aℓε(uℓ) ε(vℓ) dΩℓ, b(v, µ) =
〈

µ, [v.n]
〉

− 1
2
, 1
2
,ΓC

,

L(v) =
2
∑

ℓ=1

(

∫

Ωℓ

f ℓ.vℓ dΩℓ +

∫

Γℓ
N

gℓ.vℓ dΓℓ
)

,

for any u = (u1,u2) and v = (v1,v2) in V and µ in H− 1
2 (ΓC). We recall that the

notation [v.n] stands for v1.n1 + v2.n2.

The mixed formulation of the unilateral contact problem without friction consists
then of finding u ∈ V and λ ∈M such that (see [12]):

{

a(u,v) + b(v, λ) = L(v), ∀v ∈ V,

b(u, µ− λ) ≤ 0, ∀µ ∈M,
(2.8)

and it can be easily verified that (2.1)-(2.7) implies (2.8). An equivalent formulation
of (2.8) consists of finding (u, λ) ∈ V ×M satisfying

L (u, µ) ≤ L (u, λ) ≤ L (v, λ), ∀v ∈ V, ∀µ ∈M,

where L (v, µ) = 1
2
a(v,v)− L(v) + b(v, µ). Another classical formulation of problem

(2.1)-(2.7) is a variational inequality (see [8, 19]): find u such that

u ∈ K, a(u,v − u) ≥ L(v − u), ∀v ∈ K, (2.9)

where K denotes the closed convex cone of admissible displacement fields satisfying
the non-interpenetration conditions

K =
{

v = (v1,v2) ∈ V, [v.n] ≤ 0 on ΓC

}

.
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The existence and uniqueness of (u, λ) solution to (2.8) has been stated in [12].
Moreover, the first argument u solution to (2.8) is also the unique solution of problem
(2.9) and λ = −σn.

3. Approximation with quadratic finite elements

We suppose that the subdomains Ω1 and Ω2 are polygons and that ΓC is a straight
line segment for the sake of simplicity. Moreover, we assume afterwards that ΓC∩Γℓ

D =
∅, (ℓ = 1, 2).

With each subdomain Ωℓ, we then associate a regular family of triangulations (the
extension to quadrangular finite elements is straightforward) T

ℓ
h made of quadratic

elements denoted κ such that Ωℓ =
⋃

κ∈T ℓ
h
κ. The index h = max(h1, h2) is defined

from the discretization parameter hℓ on Ωℓ which is given by hℓ = maxκ∈T ℓ
h
hκ where

hκ denotes the diameter of the triangle κ. We suppose that the end points c1 and
c2 of the contact zone ΓC are common nodes of the triangulations T

1
h and T

2
h and

that the monodimensional traces of triangulations of T
1

h and T
2

h on ΓC are uniformly
regular. The set of nodes on ΓC belonging to triangulation T

ℓ
h is denoted ξℓ

h and
generally one has ξ1

h 6= ξ2
h so that our study takes also into account nonmatching

meshes on ΓC (see [3, 15, 7]). For any integer q ≥ 0, the notation Pq(κ) denotes the
space of the polynomials defined on κ whose degree is lower or equal to q.

The finite element space on Ωℓ is then defined as (see [6]):

Vh(Ω
ℓ) =

{

vℓ
h ∈ (C (Ωℓ))2, vℓ

h|κ ∈ (P2(κ))
2, ∀κ ∈ T

ℓ
h , vℓ

h|Γℓ
D

= 0
}

,

and the following approximation space of V is written

Vh = Vh(Ω
1) × Vh(Ω

2).

Next, we define the space W ℓ
h(ΓC) of continuous functions which are piecewise of

degree two on the mesh of Ωℓ on ΓC .

W ℓ
h(ΓC) =

{

ψh ∈ C (ΓC), ∃vℓ
h ∈ Vh(Ω

ℓ) such that vℓ
h.n

ℓ = ψh on ΓC

}

.

Let us now approximate the closed convex cone M by a subset of W ℓ
h(ΓC). It is

straightforward that the key point lies in the translation of the nonnegativity condi-
tion. We first introduce the set Qℓ

h where nonnegativity holds everywhere on ΓC :

Qℓ
h =

{

µh ∈ W ℓ
h(ΓC), µh ≥ 0 on ΓC

}

,

which corresponds to convex constraints of quadratic type. We then define another set
denoted Lℓ

h where nonnegativity holds only at the nodes of the finite element method
(i.e. the nodes of the mesh and the midpoints) that lead to convex constraints of
linear type:

Lℓ
h =

{

µh ∈W ℓ
h(ΓC), µh(a) ≥ 0, ∀a ∈ ξℓ

h

}

.
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Note that the difference between Qℓ
h and Lℓ

h would disappear if piecewise affine in-
stead of piecewise quadratic functions had been used in the definition of W ℓ

h(ΓC)
since nonnegativity on ΓC is then equivalent to nonnegativity at the nodes of the
triangulation.

Next, we define the positive polar cones (see [16], p. 119) Qℓ,∗
h and Lℓ,∗

h of Qℓ
h and

Lℓ
h respectively:

Q
ℓ,∗
h =

{

µh ∈ W ℓ
h(ΓC),

∫

ΓC

µhψh dΓ ≥ 0, ∀ψh ∈ Qℓ
h

}

,

L
ℓ,∗
h =

{

µh ∈W ℓ
h(ΓC),

∫

ΓC

µhψh dΓ ≥ 0, ∀ψh ∈ Lℓ
h

}

.

From the inclusion Qℓ
h ⊂ Lℓ

h, one immediately gets by polarity Lℓ,∗
h ⊂ Q

ℓ,∗
h .

We then choose a discretized mixed formulation which uses either Qℓ,∗
h or Lℓ,∗

h as
approximation of M . The discrete problem is: find uh ∈ Vh and λh ∈Mh satisfying:

{

a(uh,vh) + b(vh, λh) = L(vh), ∀vh ∈ Vh,

b(uh, µh − λh) ≤ 0, ∀µh ∈Mh,
(3.1)

where Mh = Q
ℓ,∗
h or Mh = L

ℓ,∗
h with ℓ = 1 or 2.

From the obvious relation
{

µh ∈ W ℓ
h(ΓC), b(vh, µh) = 0, ∀vh ∈ Vh

}

= {0} (3.2)

and the Vh-ellipticity of a(., .), we immediately get the following proposition.

Proposition 3.1 Let Mh = Q
ℓ,∗
h or Mh = L

ℓ,∗
h with ℓ = 1 or 2. Then problem (3.1)

admits a unique solution (uh, λh) ∈ Vh ×Mh.

Remark 3.2 It can be easily checked that the compatibility relation (3.2) implies the
existence of a constant βh such that

inf
µh∈W ℓ

h
(ΓC)

sup
vh∈Vh

b(vh, µh)

‖µh‖
H−

1
2 (ΓC)

‖vh‖
≥ βh > 0.

In fact, the constant βh does not depend on h (see Proposition 3.5 hereafter).

The next result gives the link between the mixed problem (3.1) and a discretized
variational inequality issued from (2.9) when Mh = Q

ℓ,∗
h or Mh = L

ℓ,∗
h . To get it, we

need to introduce the projection operator on W ℓ
h(ΓC), denoted πℓ

h, and defined for
any function ϕ ∈ L2(ΓC) as follows:

πℓ
hϕ ∈ W ℓ

h(ΓC),

∫

ΓC

(πℓ
hϕ− ϕ)µh dΓ = 0, ∀µh ∈ W ℓ

h(ΓC). (3.3)
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Proposition 3.3 Let Mh = Q
ℓ,∗
h or Mh = L

ℓ,∗
h with ℓ = 1 or 2 and let (uh, λh) ∈

Vh×Mh be the solution of (3.1). Then uh is also solution of the variational inequality:

uh ∈ Kh, a(uh,vh − uh) ≥ L(vh − uh), ∀vh ∈ Kh, (3.4)

where Kh = K
Q
h if Mh = Q

ℓ,∗
h , Kh = KL

h if Mh = L
ℓ,∗
h with

K
Q
h =

{

vh = (v1
h,v

2
h) ∈ Vh, πℓ

h[vh.n] ≤ 0 on ΓC

}

, (3.5)

KL
h =

{

vh = (v1
h,v

2
h) ∈ Vh, (πℓ

h[vh.n])(a) ≤ 0 ∀a ∈ ξℓ
h

}

. (3.6)

Proof. Let us first notice that K
Q
h and KL

h depend on ℓ which has been omitted to
lighten the notations. Taking µh = 0 and µh = 2λh in (3.1) leads to b(uh, λh) = 0
and to

b(uh, µh) =

∫

ΓC

µh[uh.n] dΓ =

∫

ΓC

µh π
ℓ
h[uh.n] dΓ ≤ 0, ∀µh ∈Mh,

where the definition (3.3) of πℓ
h has been used. The latter inequality implies by

polarity that πℓ
h[uh.n] ∈ −M∗

h (the notation X∗ stands for the positive polar cone of
X).

- If Mh = Q
ℓ,∗
h then M∗

h = (Qℓ,∗
h )∗ = Qℓ

h since Qℓ
h is a closed convex cone. Hence

πℓ
h[uh.n] ∈ −Qℓ

h and uh ∈ K
Q
h . Consequently (3.1) and b(uh, λh) = 0 lead to

a(uh,uh) = L(uh) (3.7)

and for any vh ∈ K
Q
h , we get

a(uh,vh) − L(vh) = −b(vh, λh) =−

∫

ΓC

λh[vh.n] dΓ

=−

∫

ΓC

λh π
ℓ
h[vh.n] dΓ ≥ 0, (3.8)

owing to λh ∈ Q
ℓ,∗
h .

Putting together (3.7) and (3.8) implies that uh is solution to the variational
inequality (3.4) (with Kh = K

Q
h ) which admits a unique solution according to Stam-

pacchia’s theorem.

- The case Mh = L
ℓ,∗
h is treated similarly to the previous one.

Remark 3.4 1. The projection operator πℓ
h comes from the presence of nonmatching

meshes and the projection operator reduces to identity when matching meshes are used.
As a matter of fact, suppose that the meshes fit together on the contact zone which
means that ξ1

h = ξ2
h or equivalently W 1

h (ΓC) = W 2
h (ΓC). The choice of the multipliers

set Qℓ,∗
h leads then to the quadratic sign condition on the displacements [vh.n] ≤ 0

on ΓC in (3.5). The other choice of Lℓ,∗
h corresponds to the linear node-on-node sign

condition on the displacements [vh.n](a) ≤ 0 ∀a ∈ ξℓ
h in (3.6). Note that the latter

condition is commonly used in engineering computations.
2. In the definitions of KL

h and K
Q
h one can also write vℓ

h.n
ℓ + πℓ

h(v
3−ℓ
h .n3−ℓ)

instead of πℓ
h[vh.n].
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We are now interested in obtaining a uniform inf-sup condition for b(., .) over
Vh × W ℓ

h(ΓC). The result is given in the following proposition. The proof of the
proposition is the same as in the case of linear finite elements with continuous linear
multipliers (see [7], Proposition 3.3) and consists essentially of proving the stability
of the projection operator πℓ

h in the H
1
2 (ΓC)-norm.

Proposition 3.5 Suppose that ΓC ∩ Γℓ
D = ∅ for ℓ = 1, 2. The following inf-sup

condition holds

inf
µh∈W ℓ

h
(ΓC)

sup
vh∈Vh

b(vh, µh)

‖µh‖
H−

1
2 (ΓC)

‖vh‖
≥ β > 0, (3.9)

where β does not depend on h.

Remark 3.6 The choice of the mixed continuous and discrete formulations (2.8) and
(3.1) will allow us to obtain more information compared to the variational inequality
approach (2.9) and (3.4). In particular, the forthcoming error estimates of the two
mixed methods hold also for the variational inequality problem according to Proposition
3.3.

4. Error estimates

Now we intend to analyze the convergence of both quadratic finite element ap-
proaches: discrete non-interpenetration condition of quadratic type (3.5) or of linear
type (3.6). Before considering separately both methods, we begin with a common
result.

4.1. An abstract lemma

Proposition 4.1 Let (u, λ) be the solution of (2.8) and let (uh, λh) ∈ Vh × Mh

(where Mh = Q
ℓ,∗
h or Mh = L

ℓ,∗
h with ℓ = 1 or 2) be the solution of (3.1). Then, there

exists a positive constant C independent of h satisfying:

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤C

{

inf
vh∈Vh

‖u − vh‖ + inf
µh∈W ℓ

h
(ΓC)

‖λ− µh‖
H−

1
2 (ΓC)

+
(

max(b(u, λh), 0)
)

1
2

+
(

max(b(uh, λ), 0)
)

1
2

}

. (4.1)

Proof. The proof is divided into three parts. First, an upper bound of ‖u−uh‖ will
be obtained in (4.2). Then the inf-sup condition (3.9) will lead to an upper bound of
‖λ− λh‖

H−
1
2 (ΓC)

in (4.3). Both estimates will allow us to get estimate (4.1).

Let vh ∈ Vh. According to (2.8) and (3.1), we have

a(u − uh,u − uh) = a(u − uh,u − vh) + a(u,vh − uh) − a(uh,vh − uh)

= a(u − uh,u − vh) − b(vh − uh, λ) + b(vh − uh, λh)

= a(u − uh,u − vh) − b(vh − u, λ− λh) − b(u − uh, λ− λh).
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Besides, the inequality of (2.8) implies b(u, λ) = 0. Similarly, (3.1) leads to b(uh, λh) =
0. Therefore

a(u − uh,u − uh) = a(u − uh,u − vh) + b(u − vh, λ− λh) + b(uh, λ) + b(u, λh).

Denoting by α the ellipticity constant of a(., .) on V, by M the continuity constant
of a(., .) on V and using the trace theorem, we obtain

α‖u − uh‖
2 ≤M‖u − uh‖‖u − vh‖ + C‖λ− λh‖

H−
1
2 (ΓC)

‖u − vh‖

+b(uh, λ) + b(u, λh). (4.2)

Now, let us consider problem (2.8). The inclusion Vh ⊂ V implies

a(u,vh) + b(vh, λ) =L(vh), ∀vh ∈ Vh.

The latter equality together with (3.1) yields

a(u − uh,vh) + b(vh, λ− λh) = 0, ∀vh ∈ Vh.

Inserting µh ∈ W ℓ
h(ΓC), using the continuity of a(., .) as well as the trace theorem

gives

b(vh, λh − µh) = a(u − uh,vh) + b(vh, λ− µh)

≤M‖u − uh‖‖vh‖ + C‖λ− µh‖
H−

1
2 (ΓC)

‖vh‖,

∀µh ∈ W ℓ
h(ΓC),∀vh ∈ Vh.

This estimate and condition (3.9) allow us to write

β‖λh − µh‖
H−

1
2 (ΓC)

≤ sup
vh∈Vh

b(vh, λh − µh)

‖vh‖
≤M‖u − uh‖ + C‖λ− µh‖

H−
1
2 (ΓC)

,

for any µh ∈ W ℓ
h(ΓC). Since

‖λ− λh‖
H−

1
2 (ΓC)

≤ ‖λ− µh‖
H−

1
2 (ΓC)

+ ‖µh − λh‖
H−

1
2 (ΓC)

, ∀µh ∈W ℓ
h(ΓC),

we finally come to the conclusion that there exists C > 0 such that

‖λ− λh‖
H−

1
2 (ΓC)

≤ C
(

‖u − uh‖ + inf
µh∈W ℓ

h
(ΓC)

‖λ− µh‖
H−

1
2 (ΓC)

)

. (4.3)

Putting together (4.3) and (4.2), we obtain for any vh ∈ Vh

‖u − uh‖
2 ≤C

{

‖u − uh‖‖u − vh‖ + inf
µh∈W ℓ

h
(ΓC)

‖λ− µh‖
H−

1
2 (ΓC)

‖u − vh‖

+b(uh, λ) + b(u, λh)

}

.
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Using estimate ab ≤ γa2 +
1

4γ
b2 (with γ > 0) leads to the bound

‖u − uh‖
2 ≤C

{

inf
vh∈Vh

‖u − vh‖
2 + inf

µh∈W ℓ
h
(ΓC)

‖λ− µh‖
2

H−
1
2 (ΓC)

+b(uh, λ) + b(u, λh)

}

.

Taking the square root of this inequality which is then combined with (4.3) terminates
the proof of (4.1).

As a consequence the convergence error ‖u−uh‖+‖λ−λh‖
H−

1
2 (ΓC)

can be divided

into four quantities. The first two parts are the classical approximation terms mea-
suring the “quality” of the space Vh approximating V and of W ℓ

h(ΓC) approximating

H− 1
2 (ΓC). The term

(

max(b(uh, λ), 0)
)

1
2 takes into account the interpenetration of

the bodies (i.e. when [uh.n] > 0) which is possible if Mh = L
ℓ,∗
h or if Mh = Q

ℓ,∗
h and

nonmatching meshes are used. Finally, the term
(

max(b(u, λh), 0)
)

1
2 measures the

possible negativity of λh coming from the properties Lℓ,∗
h 6⊂M and Qℓ,∗

h 6⊂M .
Next, we consider separately both finite element approaches. Our purpose is to

prove error estimates under Hs regularity hypotheses on the displacements (with
3
2
< s < 5

2
). First of all, we recall some useful basic error estimates issued from

[6]. Let Iℓ
h be the Lagrange interpolation operator with values in Vh(Ω

ℓ) and let
1 < r ≤ 3. Then

∀vℓ ∈ (Hr(Ωℓ))2, ‖vℓ − Iℓ
hv

ℓ‖(H1(Ωℓ))2 ≤ C hr−1
ℓ ‖vℓ‖(Hr(Ωℓ))2 . (4.4)

The projection operator πℓ
h defined in (3.3) satisfies the following estimates for any

0 ≤ r ≤ 3:

∀ϕ ∈ Hr(ΓC), h
− 1

2
ℓ ‖ϕ− πℓ

hϕ‖H−
1
2 (ΓC)

+ ‖ϕ− πℓ
hϕ‖L2(ΓC) ≤ C hr

ℓ ‖ϕ‖Hr(ΓC). (4.5)

We suppose that the elasticity coefficients incorporated in the operator Aℓ in (2.2)
are regular enough so that the trace theorem implies for any r > 3

2

‖λ‖
Hr− 3

2 (ΓC)
≤ C‖uℓ‖(Hr(Ωℓ))2 , ℓ = 1, 2.

4.2. The quadratic discrete non-interpenetration conditions

Theorem 4.2 Set Mh = Q
ℓ,∗
h with ℓ = 1 or 2 and let (uh, λh) be the solution of (3.1).

(i) Let 0 < ν < 1. Suppose that the solution (u, λ) of (2.8) satisfies the regularity
assumption u1 ∈ (H

3
2
+ν(Ω1))2, u2 ∈ (H

3
2
+ν(Ω2))2. Then

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤ C(u)h
1
2
+ ν

2 , (4.6)

where the constant C(u) depends linearly on ‖u1‖
(H

3
2+ν(Ω1))2

and ‖u2‖
(H

3
2+ν(Ω2))2

.
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(ii) Let 1
2
< ν < 1. Suppose that the solution (u, λ) of (2.8) satisfies the regularity

assumption u1 ∈ (H
3
2
+ν(Ω1))2, u2 ∈ (H

3
2
+ν(Ω2))2. Assume that the set of points of

ΓC where the change from [u.n] < 0 to [u.n] = 0 occurs is finite. Then

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤ C(u)h
1
2
+ν , (4.7)

where the constant C(u) depends linearly on ‖u1‖
(H

3
2+ν(Ω1))2

and ‖u2‖
(H

3
2+ν(Ω2))2

.

Remark 4.3 Estimate (4.7) is optimal under the considered assumptions. The reg-
ularity H

5
2 can not generally be passed beyond for problems governed by variational

inequalities (see [20], [10] and the references quoted therein). The assumption on the
finite set of points where the change from contact to separation occurs is needed to
recover optimality (as in the case of linear finite elements, see [12]). From an engi-
neering point of view, the latter hypothesis is not restrictive when considering realistic
frictionless contact problems.

Proof of the theorem. Hereafter, the notation C(u) represents a generic constant
which depends linearly on ‖uℓ‖

(H
3
2+ν(Ωℓ))2

, ℓ = 1, 2. Let us choose vh = Ihu =

(I1
hu1, I2

hu2) and µh = πℓ
hλ in (4.1). Using (4.4) and (4.5) yields

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤ C
{

C(u)h
1
2
+ν +

(

max(b(u, λh), 0)
)

1
2

+
(

max(b(uh, λ), 0)
)

1
2

}

. (4.8)

It remains then to estimate both terms b(u, λh) and b(uh, λ).

Step 1. Estimation of b(u, λh).
Let us denote by jℓ

h the Lagrange interpolation operator of order one on the mesh
of Ωℓ on ΓC . Such an operator satisfies for any 1

2
< r ≤ 2:

∀ϕ ∈ Hr(ΓC), ‖ϕ− jℓ
hϕ‖L2(ΓC) + h

1
2
ℓ ‖ϕ− jℓ

hϕ‖H
1
2 (ΓC)

≤ C hr
ℓ ‖ϕ‖Hr(ΓC). (4.9)

We write

b(u, λh) =

∫

ΓC

λh[u.n]dΓ

=

∫

ΓC

λh([u.n] − jℓ
h[u.n])dΓ +

∫

ΓC

λh j
ℓ
h[u.n]dΓ.

Obviously jℓ
h[u.n] ≤ 0 on ΓC . From λh ∈ Q

ℓ,∗
h , −jℓ

h[u.n] ∈ Qℓ
h and (4.9), we deduce

b(u, λh)≤

∫

ΓC

λh([u.n] − jℓ
h[u.n])dΓ

≤

∫

ΓC

λ([u.n] − jℓ
h[u.n])dΓ + ‖λh − λ‖

H−
1
2 (ΓC)

‖[u.n] − jℓ
h[u.n]‖

H
1
2 (ΓC)

≤

∫

ΓC

λ([u.n] − jℓ
h[u.n])dΓ + Ch

1
2
+ν‖[u.n]‖H1+ν(ΓC)‖λ− λh‖

H−
1
2 (ΓC)

.(4.10)
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The remaining integral term is estimated using (4.9):
∫

ΓC

λ([u.n] − jℓ
h[u.n])dΓ≤‖λ‖L2(ΓC)‖[u.n] − jℓ

h[u.n]‖L2(ΓC)

≤Ch1+ν‖[u.n]‖H1+ν(ΓC)‖λ‖L2(ΓC). (4.11)

Putting (4.10) and (4.11) and using the trace theorem gives

b(u, λh)≤C(u)(h
1
2
+ν‖λ− λh‖

H−
1
2 (ΓC)

+ C(u)h1+ν). (4.12)

Consider again estimate (4.10) and suppose now that 1
2
< ν < 1. Let N(h) repre-

sent the number of (1D)-segments denoted Ti (1 ≤ i ≤ N(h)), of the triangulation of
Ωℓ on ΓC where the change from [u.n] < 0 to [u.n] = 0 occurs. We obtain

∫

ΓC

λ([u.n] − jℓ
h[u.n])dΓ =−

∫

ΓC

λ jℓ
h[u.n]dΓ

≤

N(h)
∑

i=1

∫

Ti

|λ| |jℓ
h[u.n]|dΓ

≤hℓ

N(h)
∑

i=1

‖λ‖L∞(Ti) ‖j
ℓ
h[u.n]‖L∞(Ti)

≤hℓ

N(h)
∑

i=1

‖λ‖L∞(Ti) ‖[u.n]‖L∞(Ti). (4.13)

From the definition of the segment Ti, we deduce that ‖λ‖L∞(Ti) ≤ h
ν− 1

2
ℓ ‖λ‖

C
0,ν− 1

2 (Ti)

and ‖D1[u.n]‖L∞(Ti) ≤ h
ν− 1

2
ℓ ‖D1[u.n]‖

C
0,ν− 1

2 (Ti)
≤ h

ν− 1
2

ℓ ‖[u.n]‖
C

1,ν− 1
2 (Ti)

. So

∫

ΓC

λ([u.n] − jℓ
h[u.n])dΓ≤hℓ

N(h)
∑

i=1

h
ν− 1

2
ℓ ‖λ‖

C
0,ν− 1

2 (Ti)
hℓ‖D

1[u.n]‖L∞(Ti)

≤h1+2ν
ℓ

N(h)
∑

i=1

‖λ‖
C

0,ν− 1
2 (Ti)

‖[u.n]‖
C

1,ν− 1
2 (Ti)

≤N(h)h1+2ν
ℓ ‖λ‖

C
0,ν− 1

2 (ΓC)
‖[u.n]‖

C
1,ν− 1

2 (ΓC)

≤N(h)h1+2ν
ℓ ‖λ‖Hν(ΓC) ‖[u.n]‖H1+ν(ΓC), (4.14)

where the imbedding properties of Sobolev and Hölder spaces (see [1] or [21] p.24)
have been used. If N(h) is uniformly bounded in h, we obtain thanks to the trace
theorem, (4.10) and (4.14):

b(u, λh)≤C(u)(h
1
2
+ν‖λ− λh‖

H−
1
2 (ΓC)

+ C(u)h1+2ν). (4.15)

Step 2. Estimation of b(uh, λ).
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Noting that πℓ
h[uh.n] ≤ 0 on ΓC (see Proposition 3.3), we get

b(uh, λ) =

∫

ΓC

λ[uh.n]dΓ

=

∫

ΓC

λ([uh.n] − πℓ
h[uh.n])dΓ +

∫

ΓC

λ πℓ
h[uh.n]dΓ

≤

∫

ΓC

λ([uh.n] − πℓ
h[uh.n])dΓ.

Let ℓ′ such that ℓ+ ℓ′ = 3. We can write

b(uh, λ)≤

∫

ΓC

λ(uℓ′

h .n
ℓ′ − πℓ

h(u
ℓ′

h .n
ℓ′))dΓ

=

∫

ΓC

(λ− πℓ
hλ)(uℓ′

h .n
ℓ′ − πℓ

h(u
ℓ′

h .n
ℓ′))dΓ

=

∫

ΓC

(λ− πℓ
hλ)((uℓ′

h − uℓ′).nℓ′ − πℓ
h((u

ℓ′

h − uℓ′).nℓ′))dΓ

+

∫

ΓC

(λ− πℓ
hλ)(uℓ′ .nℓ′ − πℓ

h(u
ℓ′ .nℓ′))dΓ.

Then, the approximation properties of πℓ
h in the L2(ΓC) norm and the trace theorem

yield:

b(uh, λ)≤C(u)(h
1
2
+ν‖u − uh‖ + C(u)h1+2ν). (4.16)

Step 3. End of the proof.

Let us insert results (4.12) and (4.16) into (4.8) and use estimate ab ≤ γa2 +
1

4γ
b2.

The first convergence result (4.6) of the theorem is then obtained.
Similarly, the second bound (4.7) of the theorem is proved by combining (4.15),

(4.16) and (4.8).

4.3. The linear discrete non-interpenetration conditions

The next theorem states convergence results in the case of (more classical) linear
discretized non-interpenetration conditions. Notice that the convergence rate proved
is exactly the same as in the quadratic case but the techniques used in the proof are
not identical.

Theorem 4.4 Set Mh = L
ℓ,∗
h with ℓ = 1 or 2 and let (uh, λh) be the solution of (3.1).

(i) Let 0 < ν < 1. Suppose that the solution (u, λ) of (2.8) satisfies the regularity
assumption u1 ∈ (H

3
2
+ν(Ω1))2, u2 ∈ (H

3
2
+ν(Ω2))2. Then

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤ C(u)h
1
2
+ ν

2 , (4.17)

where the constant C(u) depends linearly on ‖u1‖
(H

3
2+ν(Ω1))2

and ‖u2‖
(H

3
2+ν(Ω2))2

.
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(ii) Let 1
2
< ν < 1. Suppose that the solution (u, λ) of (2.8) satisfies the regularity

assumption u1 ∈ (H
3
2
+ν(Ω1))2, u2 ∈ (H

3
2
+ν(Ω2))2. Assume that the set of points of

ΓC where the change from [u.n] < 0 to [u.n] = 0 occurs is finite. Then

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤ C(u)h
1
2
+ν , (4.18)

where the constant C(u) depends linearly on ‖u1‖
(H

3
2+ν(Ω1))2

and ‖u2‖
(H

3
2+ν(Ω2))2

.

Proof. As in the quadratic case, it is obvious that

‖u − uh‖ + ‖λ− λh‖
H−

1
2 (ΓC)

≤ C
{

C(u)h
1
2
+ν +

(

max(b(u, λh), 0)
)

1
2

+
(

max(b(uh, λ), 0)
)

1
2

}

, (4.19)

and that the proof consists of estimating b(u, λh) and b(uh, λ). We recall that the
notation C(u) stands for a generic constant depending on ‖uℓ‖

(H
3
2+ν(Ωℓ))2

, (ℓ = 1, 2)

in a linear way.

Step 1. Estimation of b(u, λh).
The proof of Step 1 in the previous theorem is still valid so that we obtain again

estimates (4.12) and (4.15) depending on the assumptions of the theorem.

Step 2. Estimation of b(uh, λ).
Let Xℓ

h(ΓC) be the space of the piecewise continuous functions on ΓC which are
constant on the meshes of Ωℓ on ΓC . Define Πℓ

h as the projection operator for the
L2(ΓC) inner product on Xℓ

h(ΓC). Such an operator satisfies the following estimate
for any 0 ≤ r ≤ 1:

∀ϕ ∈ Hr(ΓC), ‖ϕ− Πℓ
hϕ‖L2(ΓC) ≤ C hr

ℓ ‖ϕ‖Hr(ΓC). (4.20)

According to Proposition 3.3, we have (πℓ
h[uh.n])(a) ≤ 0 for any a ∈ ξℓ

h. This implies
that

Πℓ
h(π

ℓ
h[uh.n]) ≤ 0 on ΓC .

As a consequence

b(uh, λ) =

∫

ΓC

λ[uh.n]dΓ

=

∫

ΓC

λ([uh.n] − πℓ
h[uh.n])dΓ +

∫

ΓC

λ(πℓ
h[uh.n] − Πℓ

hπ
ℓ
h[uh.n])dΓ

+

∫

ΓC

λ Πℓ
hπ

ℓ
h[uh.n]dΓ

≤

∫

ΓC

λ([uh.n] − πℓ
h[uh.n])dΓ +

∫

ΓC

λ(πℓ
h[uh.n] − Πℓ

hπ
ℓ
h[uh.n])dΓ.
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The term

∫

ΓC

λ([uh.n]−πℓ
h[uh.n])dΓ has already been estimated in step 2 of Theorem

4.2 and bounded in (4.16). The remaining term is developed as follows:
∫

ΓC

λ(πℓ
h[uh.n] − Πℓ

hπ
ℓ
h[uh.n])dΓ

=

∫

ΓC

λ((πℓ
h[uh.n] − [uh.n]) − Πℓ

h(π
ℓ
h[uh.n] − [uh.n]))dΓ

+

∫

ΓC

λ([uh.n] − Πℓ
h[uh.n])dΓ

=

∫

ΓC

(λ− Πℓ
hλ)((πℓ

h[uh.n] − [uh.n]) − Πℓ
h(π

ℓ
h[uh.n] − [uh.n]))dΓ

+

∫

ΓC

(λ− Πℓ
hλ)([uh.n] − Πℓ

h[uh.n])dΓ.

Using the (obvious) stability of Πℓ
h in the L2(ΓC)-norm and developing more the last

integral term gives
∫

ΓC

λ(πℓ
h[uh.n] − Πℓ

hπ
ℓ
h[uh.n])dΓ

≤ 2‖λ− Πℓ
hλ‖L2(ΓC)‖π

ℓ
h[uh.n] − [uh.n]‖L2(ΓC)

+

∫

ΓC

(λ− Πℓ
hλ)(([uh.n] − [u.n]) − Πℓ

h([uh.n] − [u.n]))dΓ

+

∫

ΓC

(λ− Πℓ
hλ)([u.n] − Πℓ

h[u.n])dΓ.

Now, we use the approximation properties (4.20) and (4.5) of Πℓ
h and πℓ

h in the
L2(ΓC)-norm. That gives
∫

ΓC

λ(πℓ
h[uh.n] − Πℓ

hπ
ℓ
h[uh.n])dΓ

≤ C(u)hν
(

‖πℓ
h([uh.n] − [u.n]) − ([uh.n] − [u.n])‖L2(ΓC) + ‖πℓ

h[u.n] − [u.n]‖L2(ΓC)

)

+C(u)h
1
2
+ν‖u − uh‖ +

∫

ΓC

(λ− Πℓ
hλ)([u.n] − Πℓ

h[u.n])dΓ

≤ C(u)(h
1
2
+ν‖u − uh‖ + C(u)h1+2ν) +

∫

ΓC

(λ− Πℓ
hλ)([u.n] − Πℓ

h[u.n])dΓ. (4.21)

Using again the approximation properties of Πℓ
h gives

∫

ΓC

(λ− Πℓ
hλ)([u.n] − Πℓ

h[u.n])dΓ≤‖λ− Πℓ
hλ‖L2(ΓC)‖[u.n] − Πℓ

h[u.n]‖L2(ΓC)

≤Chν‖λ‖Hν(ΓC)h‖[u.n]‖H1(ΓC).

Here, we observe a loss of optimality when approximating the function [u.n] ∈
H1+ν(ΓC) with Πℓ

h[u.n]. As a consequence

b(uh, λ)≤C(u)(h
1
2
+ν‖u − uh‖ + C(u)h1+ν). (4.22)
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Consider estimate (4.21) and suppose now that 1
2
< ν < 1. Let N(h) represent as

in the previous theorem the number of (1D)-segments denoted Ti (1 ≤ i ≤ N(h)), of
the triangulation of Ωℓ on ΓC where the change from [u.n] < 0 to [u.n] = 0 occurs.
The integral term in (4.21) is now estimated as follows:

∫

ΓC

(λ− Πℓ
hλ)([u.n] − Πℓ

h[u.n])dΓ =−

∫

ΓC

λ Πℓ
h[u.n]dΓ

≤

N(h)
∑

i=1

∫

Ti

|λ| |Πℓ
h[u.n]|dΓ

≤hℓ

N(h)
∑

i=1

‖λ‖L∞(Ti) ‖Π
ℓ
h[u.n]‖L∞(Ti)

≤hℓ

N(h)
∑

i=1

‖λ‖L∞(Ti) ‖[u.n]‖L∞(Ti).

The latter term has already been estimated in (4.13). Finally

b(uh, λ)≤C(u)(h
1
2
+ν‖u − uh‖ + C(u)h1+2ν). (4.23)

Step 3. End of the proof.
We combine (4.19) with (4.22) and estimate (4.12) which is still valid. The first

convergence result (4.17) of the theorem is then obtained. In the same way, the
second bound (4.18) is proved by putting together (4.15) which remains true, (4.23)
and (4.19).

5. Numerical experiments

In this part, we solve numerically two examples of contact problems with quadratic
finite elements. Let us mention that we only focus on the numerical convergence rates
of the finite element methods in the L2 and H1-norms. We compute these rates by
considering families of uniform meshes made of triangular or quadrilateral elements.
We skip over the study concerning optimized computations obtained with a posteriori
error estimators and mesh adaptivity procedures which is beyond the scope of this
paper.

Obviously, (uh, λh) ∈ Vh ×Mh (where Mh = Q
ℓ,∗
h or Mh = L

ℓ,∗
h with ℓ = 1 or 2) is

the solution of (3.1) if and only if (uh, λh) is a saddle-point of the Lagrangian defined
by

L (vh, µh) =
1

2
a(vh,vh) − L(vh) +

∫

ΓC

µh[vh.n]dΓ,

so that problem (3.1) consists of finding (uh, λh) ∈ Vh ×Mh satisfying

L (uh, µh) ≤ L (uh, λh) ≤ L (vh, λh), ∀vh ∈ Vh, ∀µh ∈Mh.

The solving of the saddle-point problem is achieved with the finite element code
CASTEM 2000 developed at the CEA and an SUN UltraSparc computer has been
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used. For more details concerning the algebraic formulation of the problem, we refer
the reader to [15]. In the numerical examples, we choose Hooke’s law as a constitutive
relation in (2.2):

σℓ
ij =

Eℓνℓ

(1 − 2νℓ)(1 + νℓ)
δijεkk(u

ℓ) +
Eℓ

1 + νℓ

εij(u
ℓ) in Ωℓ,

where Eℓ denotes Young’s modulus, νℓ is Poisson’s ratio and δij represents the Kro-
necker symbol.

5.1. First example

We consider the problem depicted in Figure 1. The length of the edges of Ω1 and
Ω2 is 10 mm and plane strain conditions are assumed. Let Ω1 and Ω2 be characterized
by Poisson’s ratios ν1 = 0.4, ν2 = 0.2 and Young’s modulus E1 = 20000 Mpa, E2=
15000 Mpa. Both bodies are clamped on Γℓ

D, ℓ = 1, 2. On the boundary parts Γ1
N and

Γ2
N the applied loads are of (1,−10) daN.mm−2 and (−1,−10) daN.mm−2 respectively

and body forces are absent.
Unilateral contact problems generally do not admit analytical solutions. In order

to obtain error estimates, we must compute a reference solution denoted uref corre-
sponding to a mesh which is as fine as possible. Practically, a family of nested meshes
is built from a coarse mesh by the natural subdivision of a triangle (or a quadrangle)
into four triangles (or quadrangles). The most refined mesh furnishes the reference
solution uref . To obtain the convergence curve of the error, the approximate solutions
uh are computed on the other meshes (excepted on the both most refined).

We consider here only the case of matching meshes. We compare quadratic fi-
nite elements and linear non-interpenetration conditions (i.e. Mh = L

1,∗
h = L

2,∗
h

corresponding to the theoretical results of Theorem 4.4) with linear finite elements
(and linear non-interpenetration conditions corresponding to the theoretical results
in [15, 7]). Moreover, the computations are performed on meshes made of triangular
elements or rectangular elements.

In the present example, we can numerically observe a separation of the bodies (i.e.
[uh.n] < 0) on the right part of the contact zone (see Figure 2). The relative errors
for the displacements in the H1 and in the L2-norms are reported in Tables 1 and
2. Supposing that these errors behave like Chα where h denotes the discretization
parameter and C is a constant, we can deduce the convergence rates α shown in Table
3. Finally, Figures 3,4 depict the relative errors as a function of the number of degrees
of freedom.

On this example, the convergence rates are a bit greater when quadratic finite
elements are used than for linear finite elements. Note also that for a given number
of degrees of freedom, we observe (in Figures 3 and 4) that the error in the L2 and
H1-norms when using quadratic rectangles is about the half of the error obtained with
linear rectangles. When using triangles, the error in the quadratic case is roughly the
third of the linear case.
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Figure 1: Problem set-up

Figure 2: The reference solution with quadratic triangles (deformation is amplified)

Number of elements on ΓC 1 2 4 8 16 32

6-node triangles 34 , 029 17 , 150 8 , 5397 4 , 7753 2 , 6939

8-node quadrangles 28 , 289 14 , 283 7 , 4549 4 , 2336 2 , 3959

3-node triangles 61 , 872 45 , 662 28 , 448 16 , 192 9 , 0573 4 , 9451

4-node quadrangles 56 , 307 33 , 822 19 , 086 10 , 708 6 , 0111 3 , 2980

Table 1: The relative error
‖uref−uh‖

‖uref+uh‖
(in %)
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Number of elements on ΓC 1 2 4 8 16 32

6-node triangles 23 , 178 6 , 6656 2 , 0487 0 , 72263 0 , 25569

8-node quadrangles 16 , 700 5 , 2758 1 , 7360 0 , 62892 0 , 22302

3-node triangles 55 , 966 33 , 644 16 , 594 6 , 3599 2 , 2158 0 , 73018

4-node quadrangles 43 , 848 20 , 740 7 , 4853 2 , 6125 0 , 90513 0 , 30437

Table 2: The relative error
‖uref−uh‖(L2(Ω1∪Ω2))2

‖uref+uh‖(L2(Ω1∪Ω2))2
(in %)

Norm H1 L2

6-node triangles 0 , 9147 1 , 6255

8-node quadrangles 0 , 8623 1 , 5566

3-node triangles 0 , 7290 1 , 2520

4-node quadrangles 0 , 8187 1 , 4341

Table 3: The convergence rates of the error
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5.2. Second example

The method described in the theoretical part can also be used in the more simple
case of a single deformable body in contact with a rigid foundation as suggested
in Figure 5. Note that this problem does not involve Dirichlet conditions but only
symmetry conditions in order to remove singularities coming from adjacent Dirichlet
and Neumann conditions. This implies that the problem is not V-elliptic but only
K-elliptic according to [12]. The length of an edge of the square is 10 mm and the
elastic characteristics are ν = 0.3, E = 20000 Mpa. The applied loads on both parts
of the boundary represent 1 daN.mm−2 and no body forces are assumed.

The computation shows a separation of the body on the left part of ΓC (see Fig-
ure 6). The same convergence studies as in the previous example are achieved and
reported in Tables 4-6. The convergence rates obtained are a little greater than in
the previous example and the use of quadratic finite elements remains also somewhat
more attractive than linear finite elements.
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Ω
ΓC

ΓN

Rigid foundation

Figure 5: Problem set-up

Figure 6: The reference solution with quadratic triangles (deformation is amplified)

Number of elements on ΓC 2 4 8 16 32

6-node triangles 9 , 0641 4 , 9046 2 , 5025 1 , 2076

8-node quadrangles 7 , 4772 3 , 6397 1 , 8045 0 , 8678

3-node triangles 33 , 332 19 , 021 10 , 505 5 , 7683 3 , 0515

4-node quadrangles 20 , 327 11 , 457 6 , 4669 3 , 5615 1 , 8886

Table 4: The relative error
‖uref−uh‖

‖uref+uh‖
(in %)

Number of elements on ΓC 2 4 8 16 32

6-node triangles 3 , 0676 0 , 58016 0 , 20992 0 , 038634

8-node quadrangles 2 , 9787 0 , 49349 0 , 12561 0 , 025955

3-node triangles 27 , 446 8 , 6411 2 , 4757 0 , 71111 0 , 18505

4-node quadrangles 8 , 6897 3 , 0529 0 , 72766 0 , 22282 0 , 060311

Table 5: The relative error
‖uref−uh‖(L2(Ω1∪Ω2))2

‖uref+uh‖(L2(Ω1∪Ω2))2
(in %)
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Norm H1 L2

6-node triangles 0 , 9693 2 , 104

8-node quadrangles 1 , 036 2 , 280

3-node triangles 0 , 8623 1 , 803

4-node quadrangles 0 , 8570 1 , 793

Table 6: The convergence rates of the error

6. Conclusion

This paper is a contribution to the numerical analysis and the implementation of
quadratic finite elements for unilateral contact problems. We have proposed and stud-
ied two mixed quadratic finite element methods (in which the non-interpenetration
conditions are either of linear or of quadratic type) and proved that they can lead to
optimal convergence rates under reasonable hypotheses. From the numerical exam-
ples, it seems that the quadratic finite element approach gives a little better results
than linear finite elements.
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