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Abstract: This paper is concerned with the frictionless unilateral contact problem (i.e.,
a Signorini problem with the elasticity operator). We consider a mixed finite element
method in which the unknowns are the displacement field and the contact pressure. The
particularity of the method is that it furnishes a normal displacement field and a contact
pressure verifying the sign conditions of the continuous problem. The a priori error analysis
of the method is closely linked with the study of a specific positivity preserving operator of
averaging type which differs from the one of Chen and Nochetto. We show that this method
is convergent and satisfies the same a priori error estimates as the standard approach in
which the approximated contact pressure satisfies only a weak sign condition. Finally we
perform some computations to illustrate and compare the sign preserving method with the
standard approach.
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1 Introduction

Finite element methods are efficient and widespread tools in computational contact
and impact mechanics (see [17, 18, 28, 29, 33]) and the mixed formulations involving
a displacement field u in the bodies and the contact pressure σn(u) on the contact
zone are commonly used. A particularity of the contact problem lies in the so-called
unilateral conditions linking, on the contact zone ΓC , the normal displacement field
un and the Lagrange multiplier λ = −σn(u):

un ≤ 0, λ ≥ 0, λ un = 0 on ΓC .

The mixed finite element method we consider, introduced in [22], furnishes an ap-
proximated normal displacement field uhn and an approximated multiplier λh which
satisfy

uhn ≤ 0, λh ≥ 0 on ΓC ,

λh uhn = 0 at the nodes of ΓC .
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Such a method shows three interesting aspects in comparison with the standard
approach in which the multiplier is only nonnegative in a weak sense (see, e.g.,
[3, 11, 25]):

• the nonnegative multiplier is more relevant from a mechanical point of view,

• this multiplier vanishes where the body separates (the multiplier of the standard
approach may show some artificial oscillations on the separation zone),

• it allows to define a simple a posteriori error estimator whose numerical analy-
sis gives better bounds than for the error estimator arising from the standard
approach (see [22]).

Let us mention that there exist other mixed formulations leading to a priori error
estimates with nonnegative multipliers and normal displacement fields which do not
satisfy the nonpositivity condition (see [4, 3, 18]).

The paper is organized as follows. In Section 2 we introduce the equations mod-
elling the frictionless unilateral contact problem between an elastic body and a rigid
foundation. We write the problem using a formulation where the unknowns are the
displacement field in the body and the pressure on the contact area. In the third
section, we choose a discretization involving continuous finite elements of degree one
for the displacements and continuous piecewise affine multipliers on the contact zone.
The main particularity of this approach is that both the normal displacement and
the multiplier solution to the discrete problem satisfy the same sign conditions as
the normal displacement and the multiplier solving the continuous problem. More
precisely the displacement field of the sign preserving method coincides with the one
in the standard approach and the multipliers are linked by a linear operator which
transforms the functions satisfying some ”weak” nonnegativity conditions into non-
negative functions. In Section 4, we study and discuss the main basic properties of the
positivity preserving averaging operator which requires minimal regularity. Section 5
is concerned with the a priori error analysis of the sign preserving method. We prove
that the method is convergent when using convenient regularity assumptions on the
solution to the continuous problem and we obtain in Theorem 5.5 and Corollary 5.8
similar a priori error estimates as for the standard approach. In section 6 we imple-
ment both methods and we compare them on several examples. As expected the sign
preserving method furnishes more relevant multipliers and no loss of convergence is
observed in comparison with the standard approach. Finally we mention that the re-
sults in this paper obviously hold for the simpler Signorini problem with the Laplace
operator.

As usual, we denote by (Hs(.))d, s ∈ R, d = 1, 2 the Sobolev spaces in one and
two space dimensions (see [1]). The usual norm of (Hs(D))d (dual norm if s < 0) is
denoted by ‖ · ‖s,D and we keep the same notation when d = 1 or d = 2.
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2 The unilateral contact problem in linear elastic-

ity

We consider an elastic body Ω in R
2 where plane strain assumptions are made. The

boundary ∂Ω of Ω is polygonal and we suppose that ∂Ω consists in three nonoverlap-
ping parts ΓD, ΓN and ΓC with meas(ΓD) > 0 and meas(ΓC) > 0. The normal unit
outward vector on ∂Ω is denoted n = (n1, n2) and we choose as unit tangential vector
t = (−n2, n1). In its initial stage, the body is in contact on ΓC which is supposed
to be a straight line segment and we suppose that the unknown final contact zone
after deformation will be included in ΓC . The body is clamped on ΓD for the sake
of simplicity. It is subjected to volume forces f = (f1, f2) ∈ (L2(Ω))2 and to surface
loads g = (g1, g2) ∈ (L2(ΓN))2.

The unilateral contact problem in linear elasticity consists in finding the displace-
ment field u : Ω → R

2 verifying the equations and conditions (1)–(6):

div σ(u) + f = 0 in Ω,(1)

where σ = (σij), 1 ≤ i, j ≤ 2, stands for the stress tensor field and div denotes the
divergence operator of tensor valued functions. The stress tensor field is obtained
from the displacement field by the constitutive law of linear elasticity:

σ(u) = Aε(u) in Ω,(2)

where A is a fourth order symmetric and elliptic tensor whose coefficients lie in C1(Ω)
and ε(v) = (∇v +t∇v)/2 represents the linearized strain tensor field. On ΓD and
ΓN , the conditions are as follows:

u = 0 on ΓD,(3)

σ(u)n = g on ΓN .(4)

For any displacement field v and for any density of surface forces σ(v)n defined on
∂Ω we adopt the following notation

v = vnn + vtt and σ(v)n = σn(v)n + σt(v)t.

The three conditions describing unilateral contact on ΓC are (see, e.g., [12, 13, 14, 15]):

un ≤ 0, σn(u) ≤ 0, σn(u) un = 0.(5)

Finally the equality

σt(u) = 0(6)

on ΓC means that friction is omitted.

The mixed variational formulation of (1)–(6) uses the Hilbert space

V =
{

v ∈
(

H1(Ω)
)2

: v = 0 on ΓD

}

.
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The Lagrange multiplier space M is the dual of the normal trace space N of V
restricted to ΓC . If the end points of ΓC belong to ΓN (resp. ΓD) then N = H

1

2 (ΓC)

(resp. H
1

2

00(ΓC)). We next define the following convex cone of multipliers on ΓC :

M+ =
{

µ ∈M :
〈

µ, ψ
〉

ΓC
≥ 0 for all ψ ∈ N,ψ ≥ 0 a.e. on ΓC

}

,

where the notation 〈., .〉ΓC
represents the duality pairing between M and N . Define

a(u,v) =

∫

Ω

σ(u) : ε(v) dΩ, b(µ,v) =
〈

µ, vn

〉

ΓC
,

L(v) =

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓ,

for any u and v in V and µ in M .

The mixed formulation of the unilateral contact problem without friction (1)–(6)
consists then in finding u ∈ V and λ ∈M+ such that

(7)

{

a(u,v) + b(λ,v) = L(v), ∀v ∈ V,

b(µ− λ,u) ≤ 0, ∀µ ∈M+.

An equivalent formulation of (7) consists in finding (λ,u) ∈M+ ×V satisfying

L(µ,u) ≤ L(λ,u) ≤ L(λ,v), ∀v ∈ V, ∀µ ∈M+,

where L(µ,v) = 1
2
a(v,v) − L(v) + b(µ,v). Another classical weak formulation of

problem (1)–(6) is a variational inequality: find u such that

(8) u ∈ K, a(u,v − u) ≥ L(v − u), ∀v ∈ K,

where K denotes the closed convex cone of admissible displacement fields satisfying
the non-penetration conditions:

K =
{

v ∈ V : vn ≤ 0 on ΓC

}

.

The existence and uniqueness of solution (λ,u) to (7) has been stated in [18]. More-
over, the first argument u solution to (7) is also the unique solution of problem (8)
and λ = −σn(u).

3 Finite element approximation

A regular family of triangulations denoted Th is associated with the body Ω (see [7, 9]).
The closed triangles K ∈ Th are of diameter hK and we set h = maxK∈Th

hK . In order
to use inverse inequalities on the contact area, we suppose that the monodimensional
mesh inherited on ΓC is uniformly regular and we denote by hC a parameter repre-
senting the size of the elements on the contact zone (if the entire mesh is uniformly
regular as it will be the case in the computations we can merely choose hC = h).
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The finite dimensional space involving continuous affine finite elements is

Vh =
{

vh ∈ (C(Ω))2 : ∀κ ∈ Th, vh|κ
∈ (P1(κ))

2, vh|ΓD

= 0
}

.

The normal trace space on the contact zone is defined as

Wh =
{

µh ∈ C(ΓC) : ∃vh ∈ Vh s.t. vh · n = µh on ΓC

}

,

and the nonnegative functions of Wh become

W+
h = {µh ∈Wh : µh ≥ 0} .

The discrete problem approximating (7) is: find uh ∈ Vh and λh ∈W+
h such that

(9)















a(uh,vh) +

∫

ΓC

Ih(λhvhn) dΓ = L(vh), ∀vh ∈ Vh,
∫

ΓC

Ih((µh − λh)uhn) dΓ ≤ 0, ∀µh ∈W+
h ,

where Ih stands for the standard Lagrange interpolation operator of degree one defined
at the nodes of ΓC : ∀v ∈ C(ΓC) : Ihv ∈ C(ΓC), Ihv(x) = v(x) for any node x in ΓC

and Ihv is an affine function between two nodes. The following proposition proves the
existence of a unique solution to problem (9). It gives also some elementary properties
of the solution and describes the links with a standard variational inequality.

Proposition 3.1 (i) Problem (9) admits a unique solution (λh,uh) ∈W+
h × Vh.

(ii) One has uhn ≤ 0, λh ≥ 0 on ΓC ;λh uhn = 0 at the nodes of ΓC.
(iii) The displacement field uh solving (9) is the unique solution to problem: find
uh ∈ Kh = {vh ∈ Vh : vhn ≤ 0 on ΓC} such that

(10) a(uh,vh − uh) ≥ L(vh − uh), ∀vh ∈ Kh.

Proof: (i) Since we are in the finite dimensional case we only need to check (see [18],
Theorem 3.9 and Example 3.8) that

sup
vh∈Vh,vh 6=0

∫

ΓC

Ih(µhvhn) dΓ

‖vh‖1,Ω

is a norm on Wh. So we have to verify that

{

µh ∈Wh :

∫

ΓC

Ih(µhvhn) dΓ = 0, ∀vh ∈ Vh

}

= {0},

which is satisfied according to the definition of Wh. So Problem (9) admits a unique
solution (λh,uh) ∈W+

h ×Vh.
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(ii) Set

c(µh,vh) =

∫

ΓC

Ih(µhvhn) dΓ, ∀µh ∈Wh, ∀vh ∈ Vh.

Taking µh = 0 and µh = 2λh in (9) leads to

c(λh,uh) = 0 and c(µh,uh) ≤ 0, ∀µh ∈W+
h .

Taking µh = ψx ∈W+
h in the previous inequality where ψx is the scalar basis function

of Wh (defined on ΓC) at node x ∈ ΓC verifying ψx(x
′) = δx,x′ for any node x′ ∈ ΓC ,

we deduce that uhn(x) ≤ 0. Hence uhn ≤ 0 on ΓC .
From λhuhn ≤ 0 on ΓC and since c(λh,uh) = 0 we come to the conclusion that

Ih(λhuhn) = 0 on ΓC . That proves point (ii).

(iii) From the equation in (9) and c(λh,uh) = 0 we get

a(uh,uh) = L(uh)(11)

and for any vh ∈ Kh, we obtain

a(uh,vh) − L(vh) = −
∫

ΓC

Ih(λhvhn) dΓ ≥ 0.(12)

Putting together (11) and (12) implies that uh is solution of the variational in-
equality (10) which admits a unique solution according to Stampacchia’s theorem.

The standard approach (see, e.g., [3, 11, 25]) consists of solving the following
discrete problem (using the same arguments as in the previous proposition, it admits
a unique solution): find wh ∈ Vh and θh ∈M+

h such that

(13)

{

a(wh,vh) + b(θh,vh) = L(vh), ∀vh ∈ Vh,

b(µh − θh,wh) ≤ 0, ∀µh ∈M+
h ,

where

(14) M+
h =

{

µh ∈ Wh :

∫

ΓC

µhψh dΓ ≥ 0, ∀ψh ∈W+
h

}

.

Remark 3.2 We have W+
h ⊂M+ and W+

h ⊂M+
h 6⊂M+.

The next proposition establishes the link between the solutions of Problems (9)
and (13).

Proposition 3.3 The solutions (λh,uh) and (θh,wh) of Problems (9) and (13) sat-
isfy:
(i) uh = wh,
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(ii) λh = πhθh where πh : L1(ΓC) 7→Wh is the quasi-interpolation operator defined for
any function v in L1(ΓC) by:

πhv =
∑

x∈Nh

αx(v)ψx,

where Nh represents the set of nodes of ΓC, ψx is the scalar basis function of Wh

(defined on ΓC) at node x verifying ψx(x
′) = δx,x′ for all x′ ∈ Nh and

αx(v) =

(
∫

ΓC

vψx dΓ

)(
∫

ΓC

ψx dΓ

)−1

.

Proof: (i) The same discussion as in points (ii) and (iii) of Proposition 3.1 and some
polarity arguments (see, e.g., [20, 22]) which we describe hereafter prove that wh is
also the unique solution of the variational inequality (10). Let us briefly summarize
the result: choosing µh = 0 and µh = 2θh in (13) implies b(θh,wh) = 0 and b(µh,wh) =
∫

ΓC
µhwhn dΓ ≤ 0, ∀µh ∈ M+

h . Consequently whn ∈ −(M+
h )∗ (the notation X∗

stands for the positive polar cone of X for the inner product on Wh induced by b(., .),
see [23], p. 119). We have (M+

h )∗ = ((W+
h )∗)∗ = W+

h since W+
h is a closed convex

cone. Hence whn ∈ −W+
h and wh ∈ Kh. Besides (13) and b(θh,wh) = 0 lead to

a(wh,wh) = L(wh) and for any vh ∈ Kh, we get

a(wh,vh) − L(vh) = −
∫

ΓC

θhvhn dΓ ≥ 0,

since θh ∈ M+
h = (W+

h )∗ and vhn ∈ −W+
h . Hence wh is the unique solution of the

variational inequality (10) and point (iii) of Proposition 3.1 establishes the result.

(ii) From (i), and the equalities in (9) and (13) we deduce that

(15)

∫

ΓC

θhvhn dΓ =

∫

ΓC

Ih(λhvhn) dΓ, ∀vh ∈ Vh.

We choose vh such that vhn = ψx where ψx is the scalar basis function of Wh at node
x ∈ ΓC . As a consequence

∫

ΓC

θhψx dΓ = λh(x)

∫

ΓC

ψx dΓ.

This proves that λh = πhθh where πh is the linear operator defined above.

4 The positivity preserving averaging operator: ba-

sic properties

Now, we intend to study the basic properties of the operator πh defined in Proposition
3.3, (ii). It is obvious that πh is a linear averaging operator (see [6, 8, 10, 19, 30, 31]
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for other averaging operators) and that it preserves not only the nonnegative func-
tions but satisfies also πh(M

+
h ) = W+

h which means that it transforms finite element
type functions with a weak nonnegativity condition into nonnegative functions (such
a property is also satisfied by the operator in [8]; for a detailed discussion concern-
ing positivity preserving finite element approximation, we refer the reader to [27]).
Obviously πhvh 6= vh in the general case when vh ∈ Wh. Moreover it is easy to see
that πh(Wh) = Wh. Finally it is straightforward to check that any locally constant
function is reproduced locally by πh (this is not the case for locally affine functions,
since the meshes on ΓC have not the same length), and that

∫

ΓC

v − πhv dΓ = 0,(16)

for any v ∈ L1(ΓC) which means that the operator preserves globally the average (note
that a local average preserving property does not hold). In the following proofs we
denote by C a positive generic constant independent of the discretization parameter
h. Now we show the L2-stability property of πh.

Lemma 4.1 There is a positive constant C independent of h such that for any v ∈
L2(ΓC) and any E ∈ EC

h (EC
h denotes the set of closed edges lying in ΓC):

‖πhv‖0,E ≤ C‖v‖0,γE
,

where γE = ∪{F∈EC
h : F∩E 6=∅}F .

Proof: Let γx be the support of the basis function ψx in ΓC . Using the definition of
αx(v) in Proposition 3.3, Cauchy-Schwarz inequality, and the uniform regularity, we
get

|αx(v)| ≤ ‖v‖0,γx‖ψx‖0,γx‖ψx‖−1
L1(γx) ≤ Ch

− 1

2

C ‖v‖0,γx.

Denoting by Nh the set of nodes of ΓC , we obtain by a triangular inequality

‖πhv‖0,E =

∥

∥

∥

∥

∥

∑

x∈Nh∩E

αx(v)ψx

∥

∥

∥

∥

∥

0,E

≤ C‖v‖0,γE
.

The next lemma is concerned with the L2-approximation properties of πh.

Lemma 4.2 There is a positive constant C independent of h such that for any v ∈
Hη(ΓC), 0 ≤ η ≤ 1, and any E ∈ EC

h (EC
h denotes the set of closed edges lying in

ΓC):

‖v − πhv‖0,E ≤ Chη‖v‖η,γE
,

where γE = ∪{F∈EC
h : F∩E 6=∅}F .
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Proof: When η = 0 the bound results from the previous lemma. Note that πh

preserves the constant functions on ΓC . Let be given an arbitrary constant function
c(x) = c, ∀x ∈ ΓC . From the definition of πh, we may write for any v ∈ Hη(ΓC):

v − πhv = v − c− πh(v − c).

Therefore by Lemma 4.1 we get

‖v − πhv‖0,E ≤ C (‖v − c‖0,E + ‖v − c‖0,γE
) ≤ C‖v − c‖0,γE

, ∀c ∈ R.(17)

We then choose c =
∫

γE
v(x) dx/|γE| in (17) where |γE| denotes the length of γE .

Then if x ∈ γE and 0 < η < 1 we have

v(x) − c = |γE|−1

∫

γE

v(x) − v(y)dy

= |γE|−1

∫

γE

v(x) − v(y)

|x− y| 1+2η
2

|x− y| 1+2η
2 dy.

Using Cauchy-Schwarz inequality we deduce

∫

γE

(v(x) − c)2dx = |γE|−2

∫

γE

(

∫

γE

v(x) − v(y)

|x− y| 1+2η
2

|x− y| 1+2η
2 dy

)2

dx

≤ |γE|−2

∫

γE

(
∫

γE

(v(x) − v(y))2

|x− y|1+2η
dy

∫

γE

|x− y|1+2ηdy

)

dx

≤ |γE|2η

∫

γE

∫

γE

(v(x) − v(y))2

|x− y|1+2η
dydx

≤ Ch2η‖v‖2
η,γE

.

Hence the result.
If x ∈ γE and η = 1 we have

v(x) − c = |γE|−1

∫

γE

v(x) − v(y)dy = |γE|−1

∫

γE

∫ x

y

v′(t) dtdy,

where the notation v′ stands for the derivative of v. Hence

|v(x) − c| ≤ |γE|
1

2‖v′‖0,γE
.

The result is then straightforward.

A open question is concerned with the optimal approximation properties of πh

in dual Sobolev spaces (typically H− 1

2 (ΓC)). It is straightforward that the L2(ΓC)-
projection operator onto continuous and piecewise affine functions as well as the
L2(ΓC)-projection operator onto piecewise constant functions satisfy such properties.
On the contrary it can be shown that the Lagrange interpolation operator as well as
the L2(ΓC)-projection operator applied to nonnegative functions and mapping onto
W+

h do not fulfill such properties. Unfortunately the counter examples for the last
two operators use the fact that the average of the function is not preserved and this
is not the case for πh (see (16)).
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5 A priori error estimates

Now we intend to analyze the convergence of the finite element problem (9). In the

forthcoming error analysis we suppose that u ∈ (H
3

2
+η(Ω))2 with 0 < η ≤ 1/2 which

implies that un is continuous on ΓC (which is a straight line segment). Set

γc = {x ∈ ΓC : un(x) = 0} ,
γs = ΓC \ γc.

In order to obtain an optimal convergence rate we need to use the assumption:

(18) the number of points in
◦
γc ∩ γs is finite.

The case where (18) is not assumed is considered in Corollary 5.8. Let us first recall
the recent result established in [25].

Lemma 5.1 [25] Let (λ,u) be the solution of (7) and let (θh,uh) be the solution of

(13). Assume that (18) holds. Let the regularity assumption u ∈ (H
3

2
+η(Ω))2 with

0 < η ≤ 1/2 hold. Then, there exists a positive constant C independent of h satisfying

‖u− uh‖1,Ω + ‖λ− θh‖− 1

2
,ΓC

≤ Ch
1

2
+η‖u‖ 3

2
+η,Ω.

This result and a triangular inequality imply the bound in the next lemma.

Lemma 5.2 Let (λ,u) be the solution of (7), let (λh,uh) be the solution of (9) and let
(θh,uh) be the solution of (13). Assume that (18) holds. Let the regularity assumption

u ∈ (H
3

2
+η(Ω))2 with 0 < η ≤ 1/2 hold. Then, there exists a positive constant C

independent of h satisfying

‖u− uh‖1,Ω + ‖λ− λh‖− 1

2
,ΓC

≤ Ch
1

2
+η‖u‖ 3

2
+η,Ω + ‖λh − θh‖− 1

2
,ΓC
.

Now we need to estimate the term ‖λh−θh‖− 1

2
,ΓC

. A first bound is given hereafter.

Lemma 5.3 Assume that the hypotheses of Lemma 5.2 hold. Then there exists a
positive constant C independent of h satisfying

‖λh − θh‖− 1

2
,ΓC

≤ C
(

h
1

2
+η‖u‖ 3

2
+η,Ω + h

1

2

C‖λh − θh‖0,ΓC

)

.

Proof: From the discrete inf-sup condition (see, e.g., [11])

0 < C ≤ inf
µh∈Wh

sup
vh∈Vh

b(µh,vh)

‖µh‖− 1

2
,ΓC

‖vh‖1,Ω

and (15), we get

‖λh − θh‖− 1

2
,ΓC

≤ C sup
vh∈Vh

b(λh − θh,vh)

‖vh‖1,Ω

= C sup
vh∈Vh

∫

ΓC

λhvhn − Ih(λhvhn) dΓ

‖vh‖1,Ω
.(19)

10



Besides we have
∫

ΓC

λhvhn − Ih(λhvhn) dΓ =
∑

E∈EC
h

∫

E

λhvhn − Ih(λhvhn) dΓ,

where EC
h denotes the set of closed edges (of triangles) lying in ΓC . From numerical

integration (trapezoidal formula), and Cauchy-Schwarz inequality we get

∫

E

λhvhn − Ih(λhvhn) dΓ ≤ Ch3
E|(λhvhn)

′′
|
E
|

≤ Ch3
E|(λ′hv′hn)|E |

≤ Ch2
E‖λ′h‖0,E‖v′hn‖0,E

= Ch2
E‖(λh − λ̄)′‖0,E‖v′hn‖0,E

where hE denotes the length of the edge E, λ̄ = (
∫

E
λ dΓ)/hE and v′, v′′ denote the

derivatives of first and second order of v. An inverse inequality implies
∫

E

λhvhn − Ih(λhvhn) dΓ ≤ ChE‖λh − λ̄‖0,E‖v′hn‖0,E .

Writing vh = (vhx, vhy), we can suppose without loss of generality that ΓC is parallel
to the horizontal x−axis (the y−axis is vertical). Using the scaled trace theorem (see,
e.g., [16]):

‖v‖0,E ≤ C
(

h
− 1

2

E ‖v‖0,K + h
1

2

E‖∇v‖0,K

)

, ∀E ∈ EK , ∀v ∈ H1(K),

(EK represents the set of the three edges belonging to the triangle K) we deduce that

‖v′hn‖0,E =

∥

∥

∥

∥

∂vhy

∂x

∥

∥

∥

∥

0,E

≤ Ch
− 1

2

E

∥

∥

∥

∥

∂vhy

∂x

∥

∥

∥

∥

0,K

≤ Ch
− 1

2

E ‖vhy‖1,K ≤ Ch
− 1

2

E ‖vh‖1,K .

Hence
∫

E

λhvhn − Ih(λhvhn) dΓ ≤ Ch
1

2

E‖λh − λ̄‖0,E‖vh‖1,K .

Therefore denoting again by λ̄ the piecewise constant function defined on ΓC such
that λ̄|

E
= (
∫

E
λ dΓ)/hE , we obtain by addition

∫

ΓC

λhvhn − Ih(λhvhn) dΓ ≤ Ch
1

2

C‖λ̄− λh‖0,ΓC
‖vh‖1,Ω.

According to (19) we deduce

‖λh − θh‖− 1

2
,ΓC

≤ Ch
1

2

C‖λ̄− λh‖0,ΓC

≤ Ch
1

2

C

(

‖λ− θh‖0,ΓC
+ ‖θh − λh‖0,ΓC

+ ‖λ− λ̄‖0,ΓC

)

.
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Then we use the standard estimate ‖λ − λ̄‖0,ΓC
≤ Chη‖λ‖η,ΓC

(the latter result is
obtained in the proof of Lemma 4.2) together with the trace theorem (the coefficients
in the elasticity operator are supposed to lie in C1(Ω)). The term ‖λ − θh‖0,ΓC

is
estimated by using an inverse inequality, Lemma 5.1 and the optimal approximation
properties in H− 1

2 (ΓC) of the L2(ΓC)-projection operator ph mapping onto Wh. We
recall that ph is defined for any v ∈ L2(ΓC) by:

(20) phv ∈Wh,

∫

ΓC

(v − phv)ψh dΓ = 0, ∀ψh ∈Wh.

More precisely we have

‖λ− θh‖0,ΓC
≤ ‖λ− phλ‖0,ΓC

+ ‖phλ− θh‖0,ΓC

≤ C
(

hη‖λ‖η,ΓC
+ h

− 1

2

C ‖phλ− θh‖− 1

2
,ΓC

)

≤ C
(

hη‖u‖ 3

2
+η,Ω + h

− 1

2

C ‖phλ− λ‖− 1

2
,ΓC

+ h
− 1

2

C ‖λ− θh‖− 1

2
,ΓC

)

and

h
1

2

C‖λ− θh‖0,ΓC
≤ Ch

1

2
+η‖u‖ 3

2
+η,Ω.(21)

Finally

‖λh − θh‖− 1

2
,ΓC

≤ C
(

h
1

2
+η‖u‖ 3

2
+η,Ω + h

1

2

C‖λh − θh‖0,ΓC

)

.

Lemma 5.4 Assume that the hypotheses of Lemma 5.2 hold. Then there exists a
positive constant C independent of h satisfying

h
1

2

C‖λh − θh‖0,ΓC
≤ Ch

1

2
+η‖u‖ 3

2
+η,Ω.

Proof: We write

‖λh − θh‖0,ΓC
= ‖θh − πhθh‖0,ΓC

≤ ‖(θh − λ) − πh(θh − λ)‖0,ΓC
+ ‖λ− πhλ‖0,ΓC

.

Using Lemma 4.2 when adding the local estimates gives

‖λh − θh‖0,ΓC
≤ C (‖λ− θh‖0,ΓC

+ hη‖λ‖η,ΓC
) ,

and bound (21) yields

h
1

2

C‖λh − θh‖0,ΓC
≤ Ch

1

2
+η‖u‖ 3

2
+η,Ω.

We finally obtain the optimal a priori error estimate for the sign preserving method.
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Theorem 5.5 Let (λ,u) be the solution of (7) and let (λh,uh) be the solution of

(9). Assume that (18) holds. Let the regularity assumption u ∈ (H
3

2
+η(Ω))2 with

0 < η ≤ 1/2 hold. Then, there exists a positive constant C independent of h satisfying

‖u− uh‖1,Ω + ‖λ− λh‖− 1

2
,ΓC

≤ Ch
1

2
+η‖u‖ 3

2
+η,Ω.

Proof: It suffices to put together the results of Lemmas 5.2, 5.3 and 5.4.

Remark 5.6 If one supposes that the operator πh satisfies optimal approximation
properties in dual Sobolev spaces (as H− 1

2 (ΓC)) then the proof of Theorem 5.5 would
be straightforward (in this case one could avoid Lemma 5.3) since it suffices to write
‖λh − θh‖− 1

2
,ΓC

= ‖θh − πhθh‖− 1

2
,ΓC

≤ ‖(λ− θh)− πh(λ− θh)‖− 1

2
,ΓC

+ ‖λ− πhλ‖− 1

2
,ΓC

and these properties (together with some inverse estimates) would end the proof. Un-
fortunately such properties are not available (see also the discussion at the end of
Section 4).

Remark 5.7 A deeper insight into the estimates shows that the direct error analysis
of the finite element method (9) by circumventing the standard approximation (13)
would be not trivial (at least not shorter than the present analysis).

The assumption (18) is concerned with the finite number of transition points
between contact and separation zones. Actually we can not prove that such an as-
sumption is satisfied in practice. Without this hypothesis we can obtain a convergence
result for the finite element method (9). This is achieved in the next corollary.

Corollary 5.8 Let (λ,u) be the solution of (7) and let (λh,uh) be the solution of

(9). Assume that u ∈ (H
3

2
+η(Ω))2 with 0 < η ≤ 1/2. Then, there exists a positive

constant C independent of h satisfying

‖u− uh‖1,Ω + ‖λ− λh‖− 1

2
,ΓC

≤ Ch
1+η
2 ‖u‖ 3

2
+η,Ω.

Proof: The result is straightforward by noting that the solution (θh,uh) of (13)

satisfies under the (H
3

2
+η(Ω))2 regularity hypothesis (see, e.g., [2]):

‖u− uh‖1,Ω + ‖λ− θh‖− 1

2
,ΓC

≤ Ch
1+η
2 ‖u‖ 3

2
+η,Ω,

and that the proofs of Lemmas 5.2–5.4 remain the same when removing assumption
(18).

Remark 5.9 Using the same techniques as in (21), it becomes possible to obtain
the same bounds as in Theorem 5.5 and Corollary 5.8 for the error with a weighted

L2-norm on the multipliers: ‖u − uh‖1,Ω + h
1

2

C‖λ− λh‖0,ΓC
.
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6 Numerical experiments

This section is concerned with the numerical implementation of the finite element
method (9) and its comparison with the standard approach (13). We suppose that
the contacting bodies are homogeneous isotropic so that Hooke’s law (2) becomes

σ(v) =
Eν

(1 − 2ν)(1 + ν)
tr(ε(v))I +

E

1 + ν
ε(v)

where I represents the identity matrix, tr is the trace operator, E and ν denote
Young’s modulus and Poisson’s ratio, respectively with E > 0 and 0 ≤ ν < 1/2.
Hereafter we denote by NC the number of elements on the contact area ΓC .

In the first test we compute the values of the standard and nonstandard multipliers
θh and λh and we discuss the convergence rate of ‖λh − θh‖0,ΓC

. The second example
deals with Hertzian contact where the exact multiplier λ is known: this allows us to
compare the accuracy of both discrete multipliers. A case with two contacting bodies
and nonmatching meshes on the contact area is considered in the third example. We
show how the sign preserving approach can be extended to this framework, at least
numerically.

6.1 A first example with slow variation of the contact pres-

sure

We study a realistic physical example also considered in [22] (see Figure 1). We
choose the domain Ω =]0, 1[×]0, 1[ and we suppose that the body is an iron square of
1m2 whose material characteristics are E = 2.1 1011Pa, ν = 0.3 and ρ = 7800kg.m−3.
The body is clamped on its right side, it is initially in contact on its left side and
no forces are applied on the upper and lower boundary parts of Ω. Moreover the
body is acted on by its own weight only (with g = 9.81m.s−2). We consider quasi-
uniform unstructured meshes. A first configuration with 51 nodes on the contact area
is depicted in Figure 2. We see that ΓC is divided into two parts: an upper part where
the body remains in contact with the axis x = 0 and the lower part of ΓC where it
separates from this axis.

The nodes on ΓC are numbered from 1 (up) to 51 (bottom) and uhn = 0 at
nodes 1 to 16 whereas uhn < 0 at the other nodes. The corresponding standard
(resp. nonstandard) multipliers θh (resp. λh) are reported in Table 1. As expected
we observe that θh is sometimes negative and that it shows some artificial (from a
mechanical point of view) oscillations on the separation part (nodes 16 to 51). These
oscillations weaken when moving away from the transition point (node 16).
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Figure 1: The geometry of the body Ω

Node λh θh Node λh θh

1 1.20010E + 05 1.26478E + 05 27 0 − 6.82686E − 03
2 1.09245E + 05 1.07075E + 05 28 0 1.82925E − 03
3 1.00097E + 05 1.00693E + 05 29 0 − 4.90147E − 04
4 9.10860E + 04 9.07382E + 04 30 0 1.31334E − 04
5 8.29212E + 04 8.28702E + 04 31 0 − 3.51910E − 05
6 7.53913E + 04 7.53082E + 04 32 0 9.42939E − 06
7 6.83133E + 04 6.82448E + 04 33 0 − 2.52660E − 06
8 6.16557E + 04 6.15925E + 04 34 0 6.77000E − 07
9 5.53683E + 04 5.53196E + 04 35 0 − 1.81401E − 07
10 4.93761E + 04 4.93389E + 04 36 0 4.86064E − 08
11 4.36050E + 04 4.35813E + 04 37 0 − 1.30240E − 08
12 3.79678E + 04 3.79658E + 04 38 0 3.48978E − 09
13 3.23468E + 04 3.23622E + 04 39 0 − 9.35084E − 10
14 2.65571E + 04 2.66665E + 04 40 0 2.50555E − 10
15 2.02133E + 04 2.03146E + 04 41 0 − 6.71360E − 11
16 1.16927E + 04 1.33550E + 04 42 0 1.79890E − 11
17 0 − 3.57846E + 03 43 0 − 4.82015E − 12
18 0 9.58847E + 02 44 0 1.29155E − 12
19 0 − 2.56922E + 02 45 0 − 3.46071E − 13
20 0 6.88421E + 01 46 0 9.27297E − 14
21 0 − 1.84462E + 01 47 0 − 2.48474E − 14
22 0 4.94264E + 00 48 0 6.66014E − 15
23 0 − 1.32438E + 00 49 0 − 1.79311E − 15
24 0 3.54866E − 01 50 0 5.12319E − 16
25 0 − 9.50859E − 02 51 0 − 2.56159E − 16
26 0 2.54782E − 02

Table 1: Behavior of the nonstandard and standard multipliers λh and θh.

We then compute the convergence rate of ‖λh − θh‖0,ΓC
in order to illustrate

Lemma 5.4. The results are reported in Table 2 where this expression is computed
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Figure 2: Initial and deformed configuration with NC = 50 (deformation is amplified
by a factor 2. 105).

from NC = 1 to NC = 128. The average convergence rate (between NC = 8 and
NC = 128) is 1.25 and a limit rate near 1.24 is observed. In this example we avoid
computing the convergence rates of ‖λ− λh‖0,ΓC

and ‖λ− θh‖0,ΓC
since problem (7)

does not admit an explicit solution (λ,u) in this case and the choice of a reference
multiplier would require to choose one of both methods (9) or (13). This study will be
performed in the next example where the exact expression of the multiplier λ is known.
Of course such a phenomenon does not occur for the reference displacement since they
coincide for both finite element methods (9) and (13) according to Proposition 3.3. So
we compute a reference displacement denoted by uref corresponding to a mesh which
is as fine as possible. The most refined mesh corresponds to 129 nodes on the contact
area and it furnishes the reference solution uref which is the chosen approximation
for u.

‖λh − θh‖0,ΓC
(a(uref − uh, uref − uh))1/2

NC = 1 17063 0.12778
NC = 2 17299 9.72400 10−2

NC = 4 13355 7.01423 10−2

NC = 8 6181.4 4.40570 10−2

NC = 16 2789 2.54805 10−2

NC = 32 1121 1.40710 10−2

NC = 64 453.27 −
NC = 128 191.29 −
Limit rate 1.24 0.86

Table 2: Difference between the multipliers and error on the displacements
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Since the limit convergence rate of (a(uref − uh,uref − uh))
1/2 (which is a norm

equivalent to ‖uref−uh‖1,Ω) is near 0.86 one could merely believe that the convergence
rate of ‖λh − θh‖0,ΓC

would be around 0.36. In fact the computed rate (of 1.25) is
much higher, a phenomenon that we cannot explain.

From this example we conclude as expected, that the multiplier λh is more relevant
from a mechanical point of view than θh.

6.2 Example of Hertzian contact

The next example is concerned with the Hertzian contact problem of an elastic ball
with an infinite half plane. The material characteristics of the ball of radius r = 1mm
are chosen as in [25]: ν = 0.3, E = 7000 MPa and a force of (0,−f) with f = 100 N
is applied at the top of the ball. Since the analytical expression of the contact pressure
is

λ(x) =
2f

πb2

√
b2 − x2, −b ≤ x ≤ b, b = 2

√

fr(1 − ν2)

Eπ
,(22)

we have at our disposal a useful analytical solution for a comparison of λh and θh.
Here b ≈ 0.1286mm and λ(x) ≈ 494.8

√

1 − (x/b)2 N/mm,−b ≤ x ≤ b. In our
computations we choose quasi-uniform unstructured meshes (we do not symmetrize
the problem and the mesh is not symmetric). The results are reported in Table 3.

Nodes on ∂Ω ‖λ − λh‖0,ΓC
‖λ − θh‖0,ΓC

(maxΓC
λh,minΓC

λh) (maxΓC
θh,minΓC

θh)

24 47.080 100.23 (381.97, 0) (663.98,−178.76)
48 54.651 80.604 (511.47, 0) (769.27,−3.0305)
96 23.704 30.822 (503.82, 0) (535.93,−19.902)
192 8.9620 15.223 (498.20, 0) (501.49,−40.091)
384 1.8805 9.8732 (496.93, 0) (498.27,−59.165)
768 1.2057 4.4893 (496.43, 0) (496.77,−45.345)

Average rate 1.057 0.896 − −

Table 3: Errors and comparison of the multipliers

We first observe that the convergence rates of ‖λ− λh‖0,ΓC
and ‖λ − θh‖0,ΓC

are
not constant when h decreases: the average rates are 1.057 and 0.896, respectively,
so that the terms ‖λ− λh‖0,ΓC

remain smaller than ‖λ− θh‖0,ΓC
as h vanishes. From

the expression (22), we see that (maxΓC
λ,minΓC

λ) is approximately (494.8, 0). The
first argument is reached by the two approaches but the value 0 is not obtained in a
satisfactory way by θh.

From this example we conclude that the sign preserving approach involving the
nonnegative multiplier λh is more accurate than the standard method.

6.3 An example with two contacting bodies and nonmatch-

ing meshes

As third example we choose a problem of two contacting bodies Ω1 and Ω2 with
nonmatching meshes on the common contact zone ΓC = Ω1 ∩ Ω2. The dimensions of
Ω1 and Ω2 are 1mm × 0.05mm. A Poisson’s ratio ν = 0.2 for both solids, Young’s
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modulus E1 = 13000 Mpa for the upper body and E2 = 30000 Mpa for the lower
body are assumed. There are two applied boundary loads on Ω1, of value 100 N/mm
(see Figure 3) : g1 (on the upper half of the left side) and g2 (on the right half of
the upper side). Symmetry conditions are applied on the lower and right parts of
the structure. The mesh of Ω1 (resp. Ω2) divides ΓC into 119 (resp. 120) identical

Ω
Ω

1

2
Γ

C

g
1

g
2

Figure 3: Setting of the problem.

segments.
In order to handle with nonmatching meshes we consider a global contact condition

of mortar type. For error estimates dealing with mortar methods for contact problems
we refer the reader to e.g., [2, 11, 20, 24, 25, 32]. Such a contact condition furnishes
a multiplier denoted θ1

h which does not satisfy the nonnegativity condition. Our aim
is to extend, at least numerically, the range of applicability of the sign preserving
method to a configuration with nonmatching meshes.

We denote by V1
h and V2

h the finite element spaces associated with Ω1 and Ω2

and by M1+
h the positive polar cone of W 1+

h (see the definition in (14)). Note that
the set W 1+

h involves functions defined on ΓC which are continuous, nonnegative
and piecewise of degree one on the mesh of Ω1. Of course one could also choose a
symmetrical definition (e.g., M2+

h ) using the mesh of Ω2. The standard approach is
to find uh = (u1

h,u
2
h) ∈ V1

h × V2
h and θ1

h ∈M1+
h satisfying (see [11, 25]):















a(uh,vh) +

∫

ΓC

θ1
h(v

1
hn + v2

hn) dΓ = L(vh), ∀vh ∈ V1
h × V2

h,
∫

ΓC

(µ1
h − θ1

h)(u
1
hn + u2

hn) dΓ ≤ 0, ∀µ1
h ∈M1+

h ,

where a(., .) and L(.) denote the bilinear and linear forms involving both bodies Ω1

and Ω2. The sign preserving approach is to find uh = (u1
h,u

2
h) ∈ V1

h × V2
h and

λ1
h ∈W 1+

h satisfying














a(uh,vh) +

∫

ΓC

I1
h(λ1

h(v
1
hn + p1

h(v
2
hn))) dΓ = L(vh), ∀vh ∈ V1

h ×V2
h,

∫

ΓC

I1
h((µ1

h − λ1
h)(u

1
hn + p1

h(u
2
hn))) dΓ ≤ 0, ∀µ1

h ∈W 1+
h ,

where I1
h denotes the Lagrange interpolation operator of degree one at the nodes of

Ω1 on ΓC and p1
h stands for the L2(ΓC)-projection operator onto W 1

h (see (20)).
As expected the deformed configuration shows a separation area on the left part

of ΓC and a contact area on the right part of ΓC (see Figure 4). The multiplier
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θ1
h, representing the contact pressure is depicted in Figure 5; as already noticed the

multiplier is not always nonnegative and it shows some artificial oscillations near the
transition point from contact to separation. Besides the multiplier λ1

h is represented in
Figure 6 and we observe that it is more relevant from a mechanical point of view. We
observe that the multiplier value is close to 100 on the contact zone which corresponds
to the value of g2. Finally the difference θ1

h − λ1
h is depicted in Figure 7 and we see

that θ1
h and λ1

h differ in a significant way near the transition point. Again we conclude
that the new approach involving λ1

h seems to be more accurate than the standard one
when handling with nonmatching meshes.

Figure 4: Deformed configuration.

7 Conclusion

In this work we consider a mixed finite element method which furnishes primal and
dual variables with a good sign in opposition to the already known mixed methods
for contact problems (in particular the classical approach). The study of the method
uses an averaging positivity preserving operator which is analyzed and discussed. The
convergence analysis in this paper leads to the same error estimates as the standard
approach. The numerical experiments obtained with the new method seem to be more
relevant and efficient in comparison with the standard method. Finally, the friction
(see e.g., [21]) or the crack problems (see e.g., [5, 26]) are some possible applications
of the method.
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[13] C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems. Variational Methods and
Existence Theorems, CRC Press, 2005.

[14] G. Fichera, Problemi elastici con vincoli unilaterali il problema di Signorini con ambigue con-
dizioni al contorno, Mem. Accad. Naz. Lincei., 8 (1964), 91–140.

[15] G. Fichera, Existence theorems in elasticity, in Handbuch der Physik, Band VIa/2 Springer,
1972, 347–389.

[16] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, 1985.

[17] W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity,
American Mathematical Society, 2002.
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