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We prove that any finite abelian group is the ideal class group of the ring of
S-integers of some global field of given characteristic. � 1999 Academic Press

Nous prouvons que tout groupe abe� lien fini est groupe des classes d'ide� aux de l'an-
neau des S-entiers d'un corps global de caracte� ristique donne� . � 1999 Academic Press

I. INTRODUCTION

The following is a classical question in number theory [7, p. 540]:

Ideal Class Group Problem. Given a finite abelian group G, does there
exist a number field K having G as ideal class group ClK ?

At this time, the following is known:

Theorem. Let G be a finite abelian group. Then,

(1) (Cornell, 1979 [4]) There exists a number field K1 such that G is
a quotient of ClK1

.

(2) (Yahagi, 1978 [16]) If G is an l-group for some prime number l,
then there exists another field K2 such that G is the l-Sylow subgroup of ClK2

.

Note that a theorem of Claborn states (in [3]) that all (not necessary
finite) abelian groups arise as the ideal class group of a Krull domain. The
aim of this paper is twofold. First, we prove in Section II a weak form of
the problem:

Theorem 1. Let G be a finite abelian group. Then there exist a number
field K and a finite set S of places containing the archimedian one, such that
G is equal to the ideal class group Cl(OK, S) of the ring of S-integers OS of K.
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Then, after discussing some possible analogous questions in the global
fields of finite characteristic setting, we will prove in Section III that the
closest analogous problem has an affirmative answer:

Theorem 2. Let Fq be a finite field and let T be an indeterminate over
Fq . Let G be a finite abelian group. Then there exist infinitely many finite
separable extensions K�Fq(T ) such that Fq is the exact constants field of K,
the g.c.d. of the degrees of the places of K above 1�T is one, and the integral
closure OK in K of the polynomial ring Fq[T] has ideal class group
Cl(OK)&G.

For G=[1], this says that there are infinitely many finite separable func-
tion field extensions K�Fq (T ), such that GK is principal. This is far from the
analogue of Gauss conjecture, which states that there must be infinitely many
quadratic separable function field extensions K�Fq (T ), in which 1�T splits
totally, such that GK is principal.

The geometric interpretation of the g.c.d. condition will be explained in
Section III. Both proofs of Theorems 1 and 2 follows from a common
lemma, which will be stated and proved in Section II. Finally, we will make
in Section IV some remarks and ask some open problems raised by
Theorem 2.

II. CLASS GROUP PROBLEM FOR NUMBER FIELDS:
PROOF OF THEOREM 1

We will use the following lemma, valid for global fields of any charac-
teristic. If S is a set of places (containing the archimedian one if there are)
of a global field K (of any characteristic), we denote by KHilb

S the S-Hilbert
class field of K. This is the maximal unramified abelian extension of K, in
which all places of S split totally. By class field theory, the ideal class group
Cl(OK, S) of the ring of S-integers of K is canonically isomorphic, via the
Artin map sending an unramified finite place P of K to the Frobenius ele-
ment (P; K Hilb

S �K ), to the Galois group Gal(K Hilb
S �K ).

Reduction Lemma. Let K be a global field of any characteristic, S a
finite set of places of K (containing the archimedian one if there are), and L
be an intermediate field K/L/K Hilb

S . Then, there exists a finite set S$ of
places of K such that L=K Hilb

S _ S$ . Moreover, S$ can be chosen with car-
dinality >S$�r(Gal(K Hilb

S �L)).

In this statement, the rank r(G) of an abelian group G is the number of
factors in its canonical decomposition as a product of cyclic groups. This
is also its minimal number of generators.

Proof. Suppose first that Gal(K Hilb
S �L)=(_) is cyclic. Denote by
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( } ; M�K) the Artin symbol under some unramified Galois extension M
of K. By the Tchebotarev density theorem, there exists a finite place
P of K, such that the corresponding Frobenius element (P; K Hilb

S �K)=
_ # Gal(K Hilb

S �K ),

K Hilb
S

} (_)

L

}
K.

(i) L is an abelian unramified extension of K where the places of S
split totally, because K Hilb

S does.

(ii) P splits totally in L, because

(P; L�K)=(P; K Hilb
S �K) |L

=_ |L

is the identity on L.

(iii) If M is any intermediate field between L and K Hilb
S , distinct to L,

then P doesn't split in M, since

(P; M�K)=_ |M

is not the identity on M.
These three points say that L is a maximal unramified abelian extension

of K, in which S _ [P] splits totally, so that L=K Hilb
S _ [P] . The general case

follows from this one by induction on the rank of Gal(K Hilb
S �L), which com-

pletes the proof of the reduction lemma.

Proof of Theorem 1. Now, Theorem 1 follows easily from Cornell's
theorem stated in the Introduction and the reduction lemma.

III. THE IDEAL CLASS GROUP PROBLEM FOR
GLOBAL FUNCTION FIELDS

These are several analogous questions in the global fields of finite charac-
teristic setting. The most naive of them is the divisor class-group of degree
zero problem. Unfortunately,

Theorem (Stichtenoth, 1979 [11]). Let G be a finite abelian group of
exponent n. If >G�n2(48n�e)4

, then there does not exist any smooth projective
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irreducible algebraic curve X, defined over any finite field, having G as its
divisor class group of degree zero Div0(X )�P(X ).

A simple argument, proving a Stichtenoth-type theorem, will be given in
Subsection IV.5. Now, let us consider a second analogous problem:

Let G be a finite abelian group and Fq be a finite field. Do there exist a
smooth projective irreducible algebraic curve X defined over Fq and a non-
empty finite set S of closed points of X (whose degrees are greater than 1),
such that G&Cl(OX, S)?

Recall that in this situation, the ring OX, S=�P � S OP of regular functions
outside S is a Dedekind domain, whose ideal class group Cl(OX, S) is finite.
Please note that by the Tchebotarev density theorem, there always exists a
non-empty set S, such that Cl(OX, S)=Div0(X )�P(X ).

Although the answer to this question is ``yes'' (which will follow from
Theorem 2), this is not the best question. Indeed, following [8], this ideal
class group Cl(OX, S) can be interpreted, by class field theory, as the Galois
group of the maximal unramified abelian covering X Hilb

S of X, where the
points of S split totally. For instance, if X is the projective line P1

F2
over the

finite field with 2 elements, and S is the set reduced to the unique point of
X of degree 2, then X Hilb

S is the projective line P1
F4

over the finite field with
4 elements (where the point of S splits into two points of degree 1). In the
general case, there is an exact sequence (described in [8])

JX (Fq) � Cl(OX, S) � Z�$Z � 1,

where $ is the g.c.d. of the degrees of the points of S. Thus, if Cl(OX, S)geom

denotes the quotient of JX (Fq) by the kernel of the first map, one has an
exact sequence

1 � Cl(OX, S)geom � Cl(OX, S) � Z�$Z � 1 (1)

which breaks the group Cl(OX, S) into two pieces, namely its geometric part
Cl(OX, S)geom , and its constant field extension part Z�$Z.

This leads us to the final question, which we state as a theorem asserting
that any G can be achieved as a fully geometric ideal class group, that is,
without cheated constant field extension part.

Theorem 3.1 (Geometric Form). Let G be a finite abelian group and Fq

be a finite field. Then there exist infinitely many smooth projective irreducible
algebraic curves X defined over Fq and non-empty finite sets S of closed
points of X such that G&Cl(OX, S)geom=Cl(OX, S).
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Note that this theorem is equivalent to the following one:

Theorem 3.2 (Arithmetic Form). Let Fq be a finite field and let T be an
indeterminate over Fq . Let G be a finite abelian group. Then there exist
infinitely many finite separable extensions K�Fq(T ) such that Fq is the exact
constants field of K, the g.c.d. of the degrees of the places of K above 1�T is
one, and the integral closure OK in K of the polynomial ring Fq[T] has ideal
class group Cl(OK)&G.

The proof of the theorem relies on the fact, proved by Angles in [1],
that Cornell's theorem also holds in this setting. He gave two proofs, which
we omit here, the first one working as Cornell's original one, and the
second working as Washington's one given in [13]. Both make an inten-
sive use of the cyclotomic fields Q(`n): the given group G appears as a
quotient of the Galois group of the Hilbert class field of a cyclotomic field.
These proofs work in the function field case, if one uses Hayes cyclotomic
function fields Fq(T )(4M) (for M # Fq[T], introduced in [5]) instead of
classical ones. Let us state under the geometric setting the Angles theorem,
originally stated under the arithmetic one. Note that in its proof, all places
of S have degree one, so that the geometric condition is fulfilled.

Theorem (Angles, 1997 [1]). Let G be a finite abelian group and Fq be
a finite field. Then there exist infinitely many smooth projective irreducible
algebraic curves X defined over Fq , finite non-empty sets S of closed points
of degree 1 of X, and geometric unramified coverings Y of X where S splits
totally, having G as a Galois group. This means that G appears as a quotient
of Cl(OX, S) as the Galois group of a geometric covering of X.

Proof of Theorems 3.1 and 3.2. Of course, the Angles theorem, together
with the reduction lemma, implies Theorem 3.1. Now, both forms of
Theorem 3 are equivalent. First, let K�Fq(T ) be a field extension as in the
arithmetic form statement. Then K appears as the rational function field of
an (unique) algebraic projective irreducible curve X defined over Fq , in
such a way that O=OX, S for the set S of primes lying over 1�T. Con-
versely, let (X, S) be a pair as in the geometric form theorem. If g denotes
the genus of X, and S=[P1 , ..., Pk] where Pi is a closed point of degree
di , let n be a positive integer, such that (n&1)(�k

i=1 di)�2g&1. If
H=L(nP1+ } } } +nPk) and Hi=L(nP1+ } } } +nP i&1+(n&1) Pi+ } } } +
nPk), then the Riemann�Roch theorem gives dim H=n(�k

i=1 di)+1&g,
and dim Hi=n(�k

i=1 di)&ndi+1&g=dim H&ndi , hence the codimen-
sion of Hi is H and is proportional to n. It implies that H is not the union
of its subspaces Hi for sufficiently large n. Let f # H, f � �k

i=1 Hi . This is a
rational function on X having exactly S as support of the divisor of poles.
This yields a covering f : X � P1

Fq
, where the ramification indexes of the
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points P1 , ..., Pk above � all equal n. If n is chosen prime to p, this
corresponds to a separable field extension of the rational functions fields
Fq(P1)=Fq(T )/K=Fq(X ), under which the integral closure of Fq[T] is
nothing else than OX, S . Finally, both conditions Cl(OX, S)geom=Cl(OX, S)
and $=1 are equivalent from the exact sequence (1).

Note that a Yahagi theorem in this setting follows easily in the same way
from the Angles theorem and the reduction lemma. This was also proved
by Angles in [1], but the proof, using a previous work [2] of the author,
is more complicated.

IV. SOME REMARKS AND QUESTIONS

If X is an algebraic smooth projective irreducible curve defined over Fq

whose Jacobian is denoted by JX , let ClX, S=Cl(OX, S) and ClX, S, geom=
Cl(OX, S)geom if S{<, and ClX, <=ClX, <, geom=Div0(X )�P(X )=JX (Fq).

If G is a finite abelian group, it can be interesting to investigate the mini-
mal genus of a curve, and the minimal cardinality of a set S, such that G&
ClX, S=ClX, S, geom . In this order, let us define

gq(G)=Inf[ g(X ) | X genus g curve over Fq ; _S; G&ClX, S=ClX, S, geom]

and

sq(G)=Inf[>S | _X curve of genus gq(G) over Fq ; _S;

G&ClX, S=ClX, S, geom].

1. Note that the theorem says that gq(G) and sq(G) are defined.
Moreover, one has always gq(G)�1 (provided G{[1]) since the projec-
tive line has no geometric unramified covering. Papers [9, 10, 12] are
devoted to the determination of group G, for which sq(G)=0 and
gq(G)=1.

2. It follows from the reduction lemma that if H is a subgroup of
G, then

{gq(H )�gq(G),
sq(H )�sq(G)+r(G�H ).

3. If p denotes the characteristic of Fq , let Gp be the p-Sylow sub-
group of G. Then

gq(G)�gq(G)exp.=Max \r(Gp),
r(G�Gp)

2 +.
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How far from this expected value gq(G)exp. can the number gq(G) be? For
instance, is it true that given an odd prime number p and an integer r, then
gp((Z�2Z)r)=r�2 if r is even, and (r+1)�2 if r is odd? On the other side,
given a prime number p, is it true that gp((Z�pZ)2)=2? Note that a
theorem of Waterhouse in [14] implies that gp(Z�pZ)=1.

4. The Weil inequality implies sq(G)�1, provided that >G�
(- q&1)2 (for instance, sq(Z�4Z)=0 only if q�9). Lachaud and Martin-
Deschamps established in [6] a better lower bound for the number of
rational points of the Jacobian of a curve. It implies that sq(G)�1 whether

>G�
q gq(G)&1(q&1)2

(q+1)( gq(G)+1)
.

5. A simple argument proves the following claim, easier than
Stichtenoth's theorem stated above:

Claim. Let Fq be a finite field and l be a prime number, prime to q. Sup-
pose that l<- q&1. Then an elementary abelian l-group G (of any rank)
cannot be isomorphic to the divisor class group of degree zero Div0(X )�P(X )
of any smooth projective irreducible algebraic curve X, defined over Fq .

For instance, an elementary abelian 2-group can be the divisor class
group of degree zero only on the finite fields with less than 9 elements.
What Stichtenoth's theorem says is that it is possible only perhaps for
elementary 2-groups of rank�3, 111, 265.

Indeed, suppose that such a curve does exist. Then G would be
isomorphic to the group JX (Fq) of Fq-rational points of the jacobian JX of
X. But one knows, from the Weil theorem (see [15]), that this group has
order >2g

i=1 (1&:i), where g is the genus of X, and the :i are the inverse
roots of the characteristic polynomial of the Frobenius endomorphism
acting on the Tate module Tl (JX). These numbers having modulus - q,
one deduces the Weil inequality:

(- q&1)2g�>G.

Now, G=(Z�lZ)r=JX (Fq) is equal to its own l-Sylow, which is a sub-
group of the l-Sylow of JX (F� q)=(Z�lZ)2g, so that r�2g. Thus, the Weil
inequality implies (- q&1)2g�>G=lr�l2g. Hence - q&1�l, which is a
contradiction.

6. Is it true that sq(G)=0 or 1 for any G, q?

7. Of course, one can compute the genus of the curves constructed
by Angles. But these are very large in regard to the real values of gq(G).
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For instance, if G=Z�2Z and q is odd, one finds a curve of genus
5
2 (q&1)2, whereas the real value of gq(Z�2Z) is 1, as indicated in the
following table.

8. Here is a table for small groups G.

G gq(G) sq(G)

Z�2Z 1 {1
0

if q�7
if q�5

Z�3Z 1 {1
0

if q�8
if q�7

Z�4Z 1 {1
0

if q�9
if q�8

(Z�2Z)_(Z�2Z) {1
�2

if q odd
if 2 | q {

1
0
??

if q�11, q odd,
if q�9, q odd,
if q even

Z�5Z 1 {1
0

if q�11
if q�9

The proof uses parts of the Waterhouse [14], Schoof [10], and Ruck
and Voloch ([9, 12] for non-cyclic G 's) theorems, and the reduction
lemma.

Proof in Case G=Z�4Z. Recall that from Remark 4, one has
sq(Z�4Z)�1 whenever q�11. Suppose first that q is even, greater than 4.
Then by the Waterhouse theorem��which states that given a rational
integer &2 - q�t�2 - q, prime to q, there exists an elliptic curve E
defined over Fq , having exactly q+1&t rational points��applied with
t=1, one gets E with q rational points. Now, by the Voloch Lemma
(stated as ``Lemma 1'' in [12])��asserting that if there exists an elliptic
curve E having N rational points and if N�1 mod q, then there exists
another elliptic curve E$, such that E$(Fq)=Z�NZ��there is an E$ (defined
over Fq) such that E$(Fq)=Z�qZ. This proves the assertion by the reduc-
tion lemma. For q=2, the same argument with t=&1 gives E$ such that
E$(F2)=Z�4Z.

Suppose now q#1 mod 4. The same argument for t=2 gives E$ over Fq

having E$(Fq)=Z�(q&1) Z, which proves the assertion using the reduc-
tion lemma if q{9, for which it remains to prove that s9(Z�4Z){0. If it
were false, then there should exist an elliptic curve E over F9 having
4=9+1&6 rational points, that is, with t=6. But this is impossible by
the Schoof theorem��which lists all possibilities for the number of rational
points of an elliptic curve over Fq .
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Finally, suppose q#3 mod 4. The above argument with t=4 gives the
result for q{3. For q=3, then t=0 works by the Schoof theorem.

9. Of course, one can also study analogous numbers g$q(G) and
s$q(G) without any geometric restriction.
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