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Divisibility of zeta functions of curves in a covering

By

Yves Aubry and Marc Perret

Abstract. We prove, as an analogy of a conjecture of Artin, that if Y −→ X is a finite flat
morphism between two singular reduced absolutely irreducible projective algebraic curves defined
over a finite field, then the numerator of the zeta function of X divides that of Y in Z[T ]. Then, we
give some interpretations of this result in terms of semi-abelian varieties.

1. Introduction. Let ζK be the Dedekind zeta function of a number field K:

ζK(s) =
∑
I

1

N(I)s
(Re(s) > 1)

where the sum ranges over the non zero ideals I of the ring of integers OK of K and where
N(I) is the norm of the ideal I i.e. the number of elements of the residue class ring OK/I .
It is well-known that it extends to a meromorphic function on C. Emil Artin conjectured
that, for any extension of number fields L/K , the ratio

ζL(s)

ζK(s)

is entire.
We are interested here in a similar question in the following geometric context. Let X be

a projective algebraic variety defined over the finite field Fq and let X = X ×Fq Fq be the

corresponding variety over an algebraic closure Fq of Fq . The zeta function of X is defined
as

ZX(T ) = exp

( ∞∑
n=1

�X(Fqn)
T n

n

)

where �X(Fqn) is the number of Fqn -rational points of X.
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We consider the �-adic étale cohomology spaces with compact support Hi
c (X, Q�) of X

where � is a prime number distinct from the characteristic of Fq .
A crude analogy of Artin’s conjecture would state that if Y −→ X is a surjective mor-

phism between two projective algebraic varieties then the ratio ZY (T )/ZX(T ) of their zeta
functions is a polynomial in T . It turns to be false, for instance for the blowing up of the
projective plane at some rational point, where the ratio equals 1

1−qT
.

However, by Grothendieck-Lefschetz formula, the zeta function of X can be written as

ZX(T ) =
2 dim X∏

i=0

(det(1 − FT | Hi
c (X, Q�)))

(−1)i+1

where F is the map on cohomology induced by the Frobenius morphism on X. So, one could
ask whether it is true that if there is a surjective morphism Y −→ X between two projective
algebraic varieties Y and X defined over Fq , then the polynomial det(1−FT | Hi(X, Q�))

divides the polynomial det(1 − FT | Hi(Y , Q�)) in Z[T ]. This is the case for instance for
the previous example of the blowing up of the plane at a point.

More generally, the answer is yes provided that X and Y are smooth. Indeed, thanks to
the projection formula and Poincaré duality, Kleiman proved that in this case, there is a
Galois invariant injection between the cohomology spaces (see [8, prop. 1.2.4]).

Unfortunately, we cannot expect this divisibility in full generality (even for curves) since
it does not hold for the desingularization of the nodal cubic curve.

The main result of this paper is:

Theorem 1. Let Y −→ X be a flat finite morphism between two reduced absolutely
irreducible projective algebraic curves Y and X defined over a finite field. Then, the
numerator of the zeta function of X divides Y one in Z[T ].

We prove this theorem in the following section and we make some remarks in the last
one.

2. Proof of the theorem. Let C be an absolutely irreducible and reduced projective
algebraic curve defined over the finite field k = Fq with q elements. It is known that

ZC,k(T ) = det(1 − TF | Hi
c (C, Q�))

(1 − T )(1 − qT )
,

where F is the Frobenius morphism on the first group of �-adic cohomology with compact
support Hi

c (C, Q�) of C, and that the eigenvalues of the Frobenius have modulus
√

q or
1 (see [6]). In fact, the authors have shown in [1] the following result. Denote by C̃ the
normalization of C and νC : C̃ −→ C the normalization map. If P is a closed point of C,
we denote by dk(P ) = [k(P ) : k] the residual degree of P . Then, the numerator polynomial
of the zeta function of C can be writen precisely as (see [1]):

PC,k(T ) := (1 − T )(1 − qT )ZC,k(T ) = P
C̃,k

(T )
∏
P∈C

LC,P,k(T ),
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where P
C̃,k

is the numerator of the zeta function Z
C̃,k

of C̃, and for a closed point P ∈ C

LC,P,k(T ) :=

∏
P̃∈ν−1

C (P )

(1 − T dk(P̃ ))

1 − T dk(P )
∈ Z[T ].

Let us remark that if P is a non singular point on C then LC,P,k(T ) = 1. Now, consider a
finite flat morphism f from Y to X as in the theorem. By Kleiman’s theorem quoted in the
introduction, the polynomial P

X̃,k
divides P

Ỹ ,k
(alternatively see 3.4 below for a proof in

the case of curves). Thus, the theorem follows immediately from the following proposition:

Proposition 2. If P and Q are closed points respectively on X and Y with f (Q) = P ,
then LX,P,k divides LY,Q,k in Z[T ].

Let us begin by two lemmas.

Lemma 3. Proposition 2 holds if dk(Q) = dk(P ).

P r o o f. By flatness of f , the fibred product Z = Y ×X X̃ is an irreducible curve (see
[2]) and thus Ỹ −→ Z is surjective since it is not constant.

Y X

X̃Y ×X X̃

Ỹ

�

�

�

�

�
�

�
�
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�
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�
�
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�
�
�
�
�
�
�
�
�
��

This implies that, for any closed points P̃ over P in X̃, there exists a Q̃ over Q in Ỹ such
that f̃ (Q̃) = P̃ . Let

αP = �ν−1
X (P )

be the number of closed points of X̃ above P in the normalization map. By reordering the
sets ν−1

X (P ) and ν−1
Y (Q), we can suppose that for all 1 � i � αP , we have f̃ (Q̃i) = P̃i .
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Thus the residue field k(Q̃i) of Q̃i is an extension field of that of P̃i , so that dk(P̃i) divides
dk(Q̃i). Thus,

(1 − T dk(P ))LX,P,k =
αP∏
i=1

(1 − T dk(P̃i )) divides
αP∏
i=1

(1 − T dk(Q̃i ))

which divides himself
αQ∏
i=1

(1 − T dk(Q̃i )) = (1 − T dk(Q))LY,Q,k . Since we have supposed

that dk(Q) = dk(P ), we obtain the desired divisibility. �

Denoting the greatest common divisor of two integers (or two polynomials) d and d ′ by
gcd(d, d ′), we can state:

Lemma 4. If Q is closed point in f −1(P ), then we have:∑
P̃∈ν−1

X (P )

gcd(dk(P̃ ), dk(Q)) � αQ := �ν−1
Y (Q).

P r o o f. The point Q of degree d = dk(Q) over Fq is sum of d Gal(Fqd /Fq)-conjugate
points of degree 1 over Fqd :

Q = Q1 + · · · + Qd.

Working with Xd = X ×Fq Fqd over Fqd and with Q1, we have by the preceding lemma
that LYd,Q1,Fqd

is divisible by LXd,P,F
qd

in Z[T ]. But, we have on the one hand

LYd,Q1,Fqd
=

∏
Q̃1→Q1

(1 − T
dF

qd
(Q̃1)

)

1 − T
.

On the other hand, it is easy to see that a point of degree d̃ over Fq gives gcd(d̃, d) points

of degree d̃

gcd(d̃,d)
over Fqd . Thus, we have

LXd,P,F
qd

=

∏
P̃∈ν−1

Xd
(P )

(1 − T
dF

qd
(P̃ )

)

1 − T

=

∏
P̃→P

(1 − T
dFq

(P̃ )/ gcd(dFq
(P̃ ),d)

)
gcd(dFq

(P̃ ),d)

1 − T
.

The relation follows from the comparison between their (1 − T )-adic valuations. �
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We can now prove Proposition 2.
Since Ỹ → X̃ is surjective, we can reorder, as in Lemma 3, the points P̃i and Q̃i so that

dk(P̃i) divides dk(Q̃i) for 1 � i � αP . Thus, we have:

αP∏
i=1

(1 − T dk(P̃i )) divides
αP∏
i=1

(1 − T dk(Q̃i )).

If αQ � αP + 1, the divisibility of LY,Q,Fq by LX,P,Fq is obvious. Since Lemma 4
implies αP � αQ, we are left to the case αQ = αP .

By Lemma 4 again, we get gcd(dk(P̃ ), dk(Q)) = 1 for all P̃i ∈ ν−1
X (P ), in particular

for P̃1. Thus, assuming without lost of generality that dP = 1 (otherwise we can set
U = T dP ), we obtain:

(i) (1 − T dk(P̃1)) divides (1 − T dk(Q̃1)),

(ii) 1−T dk(Q)

1−T
divides (1 − T dk(Q̃1)),

(iii) gcd(1 − T dk(P̃1), 1−T dk(Q)

1−T
) = 1.

Hence

1 − T dk(Q)

1 − T
(1 − T dk(P̃1)) divides (1 − T dk(Q̃1))

which implies that LX,P,k divides LY,Q,k in Z[T ] and this concludes the proof. �

3. Remarks.

3.1. About the flatness hypothesis. The theorem is false without the flatness hypothesis.
In the case of the desingularization of the nodal cubic curve y2z = x2(x + z), one has
PX,k(T ) = T −1 and PY,k(T ) = 1. The proof fails in Lemma 3. In this case, Z = X̃×X X̃

is not irreducible: it is the disjoint union of X̃ and of two other points. Hence, the map
from Ỹ = X̃ to Z is not surjective.

3.2. The étale case. We can show easily (for simplicity in the case where all points have
degree 1) the divisibility for an étale morphism (that is an unramified and flat morphism).
Indeed, we have, for a sufficiently large base field (i.e. when all particular points are
rational),

ZX(T ) = Z
X̃
(T )

∏
P∈Sing(X)

(1 − T )αP −1,

where αP = �ν−1
X (P ). So, it suffices to prove that:

(�) αP − 1 �
∑

Q∈f −1(P )

(αQ − 1)
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for any P ∈ X. Note that the inequality αP �
∑

Q∈f −1(P )

αQ is trivial since there is a

finite morphism f̃ between Ỹ and X̃ which send the points of ν−1
Y (Q) on ν−1

X (P ) for all
Q ∈ f −1(P ). But this is not sufficient to prove (�).

The étale hypothesis gives an isomorphism

ÔX,P ⊗k(P ) k(Q) ∼= ÔY,Q

between the completions of the local rings at Q ∈ Y and P = f (Q) ∈ X. This implies
that αQ = αP for all Q ∈ f −1(P ). So, the result follows.

3.3. Inequality for the numbers of rational points. Let us remark that Theorem 1
implies the following inequality which holds whenever we have a finite flat morphism
Y −→ X between two reduced absolutely irreducible projective algebraic curves Y and X

defined over Fq (this result was proved by the authors in [2]):

|Y (Fq) − X(Fq)| � 2(gY − gX)
√

q + �Y − �X � 2(πY − πX)
√

q

where gX is the geometric genus of X, πX its arithmetic genus and �X is the difference
between the number of points of X and its normalization (same notations for Y ). This
inequality contains the Weil bound for smooth curves, its generalization for singular plane
curves proved in [9] and for general singular curves proved in [1] (see also [3]).

3.4. Covering of smooth curves. During the proof of our theorem, we used the
following proposition which is a particular case of a proposition of Kleiman quoted in
the introduction. We give here a proof in the special case of smooth curves which may be
well known to the experts.

Proposition 5. Let f : Y −→ X be a finite morphism between two reduced absolutely
irreducible smooth projective algebraic curves Y and X defined over a finite field k. Then,
the numerator of the zeta function of X divides that of Y in Z[T ].

P r o o f. For any prime number � distinct from the characteristic of Fk , consider the
Q�-vector space T�(JX)⊗Z�

Q� of dimension 2gX, where T�(JX) is the Tate module of the
Jacobian JX of X and gX is the (geometric) genus of X. The numerator PX(T ) of the zeta
function of X is the reciprocal polynomial of the characteristic polynomial of the Frobenius
endomorphism on T�(JX) ⊗Z�

Q�. The map

f ∗ : JX −→ JY

induced by f on the Jacobians has finite kernel and sends the �n-torsion points of JX on
those of JY . Then, tensorising by Q�, we get an injective morphism of Q�-vector spaces

T�(JX) ⊗Z�
Q�

f ∗⊗1−−−→T�(JY ) ⊗Z�
Q�.
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The Frobenius morphism on T�(JY ) ⊗Z�
Q� leaves fixed the subspace T�(JX) ⊗Z�

Q�.
Hence the characteristic polynomial of the latter divides the characteristic polynomial of
the former in Q�[T ], hence in Z[T ] since both PX, PY ∈ Z[T ] have constant term equals
to 1. Thus, we have that PX(T ) divides PY (T ). �

3.5. The weight-zero part. For a reduced absolutely irreducible projective algebraic
curve X over k = Fq , we have seen in Section 2 that the numerator of its zeta function can
be written as:

PX = P
X̃

× P
X/X̃

where P
X̃

= P
X̃,k

is the numerator of the zeta function of the normalization X̃ of X and
P

X/X̃
= ∏

P∈X

LX,P,k is a polynomial with roots of modulus one, i.e. of weight zero as in

the terminology of Deligne (see [6]).
But, if X is a reduced connected scheme of dimension 1 of finite type over Spec(k), we

can define the Picard scheme PicX of X which is a smooth group scheme over k. We have
a group isomorphism

PicX(k) ∼= Pic(X)

with the group Pic X of isomorphism classes of inversible sheaves on X.
Denote by JX the identity component of PicX. This a group scheme called the Jacobian

of X.
We have the following exact sequence of smooth connected commutative group schemes

over k (see [4]):

(∗) 0 −→ LX −→ JX −→ J
X̃

−→ 0

where LX is a smooth connected linear algebraic group which can be writen LX = UX ×TX

with UX a unipotent group and TX a torus. Since X̃ is smooth and proper over k, J
X̃

is an
abelian variety and thus the Jacobian JX is a semi-abelian variety i.e. an extension of an
abelian variety by a linear group.

Proposition 6. For any reduced absolutely irreducible projective algebraic curve X

defined over Fq , we have, for any � distinct from the characteristic of Fq :

PX(T ) = det(1 − TF | T�(JX) ⊗Z�
Q�)

where F is the Frobenius endomorphism.

P r o o f. We have

PX(T ) = det(1 − TF | H 1
c (X, Q�)).

But Deligne has proved in [5, p. 71] that

H 1
c (X, Z�) ∼= HomZ�

(T�(JX), Z�)

which enable us to conclude. �
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Then, we have:

Corollary 7.

P
X/X̃

(T ) = det(1 − TF | T�(TX) ⊗Z�
Q�)

where TX is the toric part of the Jacobian of X.

P r o o f. By the exact sequence (∗), we get

T�(JX) ⊗Z�
Q�

∼= (T�(JX̃
) ⊗Z�

Q�) × (T�(LX) ⊗Z�
Q�).

The contribution in the Tate module of the linear part is exclusively given by the toric part.
Then, the result follows from the identity

PX(T ) = P
X̃
(T )P

X/X̃
(T )

and the previous proposition. �

3.6. About the Jacobians. The main theorem admits the following corollary on semi-
abelian variety. Note that this corollary is false without the flatness assumption as shown
by the desingularization of the nodal cubic curve X: the Jacobian of X is the multiplicatif
group Gm and the Jacobian of X̃ is a point.

Proposition 8. If

f : Y −→ X

is a flat finite morphism between two reduced absolutely irreducible projective algebraic
curves over a finite field k, then the jacobian JX of X is k-isogenous to a semi-abelian
subvariety of the Jacobian JY of Y defined over k.

P r o o f. An extension of an abelian variety by the multiplicatif group Gm is parametrized
by a point of the dual of the abelian variety (see [10]). Over a finite field, such a point is
a torsion point, thus the extension is isogenous to the trivial extension. Hence, for an
extension JX of J

X̃
by a torus TX, there is an isogeny between JX and J

X̃
× TX which

induces a Galois-equivariant isomorphism between T�(JX) ⊗Z�
Q� and

T�(JX̃
× TX) ⊗Z�

Q�
∼= (T�(JX̃

) ⊗Z�
Q�) × (T�(TX) ⊗Z�

Q�).

Since the Frobenius endomorphism acts semi-simply on abelian varieties so as on torus,
we deduce that it acts semi-simply on semi-abelian variety too, thus on T�(JX) ⊗Z�

Q� and
T�(JY ) ⊗Z�

Q�. Furthermore, by Proposition 6, their characteristic polynomials are PX

and PY . By Theorem 1, PX divides PY , thus we deduce that T�(JX) ⊗Z�
Q� is Gal(k̄/k)-

isomorphic to a Gal(k̄/k)-subspace of T�(JY ) ⊗Z�
Q�.
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Furthermore, the theorem of Tate on abelian varieties (see [11]) remains true for
semi-abelian varieties: Jannsen in [7] has proved that for any semi-abelian variety A defined
over a finite field k, we have:

Endk(A) ⊗Z�
Q�

∼= EndGal(k̄/k)(T�(A) ⊗Z�
Q�).

Imiting the proof of Tate in [11], we get the desired result. �

A c k n o w l e d g m e n t s. The authors thank Gilles Lachaud and Daniel Bertrand for
helpful comments.
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