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1. INTRODUCTION

In this paper we construct several examples (series of examples) of real algebraic
and real pseudoholomorphic curves in RP? in which we tried to maximize different
characteristics among curves of a given degree. In §2, this is the number of non-
empty ovals; in §4, the number of ovals of the maximal depth; in §5, the number
n such that the curve has an A,, singularity. In the pseudoholomorphic case, the
questions of §4 and §5 are equivalent to the same problem about braids, which is
studied in §3. In §6.1, we construct a real algebraic M-curve of degree 4d + 1 with
four nests of depth d (which shows that the congruence mod 8 proven in a joint
paper with Viro is “non-empty”). In §6.2, we generalize this construction. In §7,
we construct real algebraic M-curves of degree 9 with a single exterior oval and we
classify such curves up to isotopy.

Let o = limsup(a,,/m?) where a,, is twice the maximal number n such that
there exists an algebraic curve in CP? of degree m with an A,, singularity. Similarly,
let B = limsup(Bk/k?) where B, = maxly_2(A) where l_o(A) is the number of
ovals of A of depth £ —1 and the maximum is taken over all real algebraic curves in
RP? of degree 2k. Let apn and Bpn be the same numbers for pseudoholomorphic
curves. In the following table we summarize all known estimates for these numbers
(LB/UB stand for lower/upper bound).

1 Evident LB for o, 3, aph, Bpn

15/14,8 —4y/3 LB for « from [14], [4]

9/8 LB for 3 proved in §3.3

7/6 LB for a proved in §4

4/3 LB for apy, and By proved in §2-4

3/2 UB for «a, 8, aph, Bpn coming from signature estimates
2 Evident UB for «, 8, aph, Bpn

Typeset by ApS-TEX
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2. ITERATION OF WIMAN’S CONSTRUCTION

Wiman [35] proposed a method to construct real algebraic M-curves in RP?
which have many nests. Here we use Wiman’s construction to obtain curves with
many non-empty ovals. As is shown in [16], the number I; of isotopy types realizable
by real algebraic curves of degree d in RP? has the asymptotics log I; = C'd? +o(d?)
for some positive constant C', and the only known upper bounds for C' come from
the fact that C < limsup f(Lg/d?) where f is a certain effectively computable
monotone function and Ly is the maximal number of non-empty ovals that a curve
of degree d may have. All known upper bounds for L, are of the form d?/4 + O(d).
Here we construct real algebraic and real pseudoholomorphic curves, in particular
M-curves, with as many non-empty ovals as we can do. The best asymptotic that
we can achieve for pseudoholomorphic curves is only d?/6 + o(d?). In the algebraic
case, the obtained asymptotics are yet worse.

Let us recall Wiman’s construction. We start with an M-curve C of even degree
d given by an equation F' = 0. We double C and then perturb it, i.e., consider a
curve C' = {F? — eG = 0}, |¢| < 1, where G is some polynomial of degree 2d.
Suppose that the curve G = 0 meets C' transversally. Then each arc of C' where
G > 0 provides an oval of C’ (obtained by doubling the arc and joining the ends).
In the same way, each oval of C' where G > 0 provides a pair of nested ovals of
C'. If we are lucky to find G such that it has 2d? zeros on one oval of C' and is
positive on all other ovals, then we obtain an M-curve which has O(d?) nested pairs
of ovals. This can be attained, for example, if we start with an M-curve C one of
whose ovals maximally intersect a line.

When speaking of Wiman’s construction, the divisor of G on C will be called
the branching divisor.

If we work with real pseudoholomorphic curves, then we need not bother if it is
possible or not to place correctly the branching divisor. Perturbing if necessarily the
almost complex structure, we may place it wherever we want. The only restriction
is the total degree and the parity of the number of points at each branch of C.

We say that an arrangement of embedded circles on RP? is realizable by a real
pseudoholomorphic curve if there exists a real pseudoholomorphic curve in CP?
whose set of real points is isotopic to the given arrangement.

Recall that a nest of depth d is a union of d ovals V3 U---UV; such that V1 is
surrounded by V;, 7 =1,...,n — 1. We say that a nest N of a curve C is simple if
there exists an embedded disk D ¢ RP? such that N = DN C.

We shall use the encoding of isotopy types of smooth embedded curves in RP?
proposed by Viro. Namely, n denotes n ovals outside each other; A LI B denotes a
union of two curves encoded by A and B respectively if there exist disjoint embedded
disks containing them; 1(A) denotes an oval surrounding a curve encoded by A;
n(A) = 1{(A)U---U1(A) (n times).

We extend this encoding as follows. Let 1((d)) denote a simple nest of depth d
and let n{(d)) = 1((d)) LU+ --U1{({(d)) (n times). Also, if S encodes the isotopy type
of a curve A and A’ is obtained from A by replacing each component by k parallel
copies, then we denote the isotopy type of A’ by (S)* or just by S* in the case
when S is of the form n(S7). For, example, 2((3)) = (2)3 = 2((1)?) = 2(1(1)) =
1(1(1)) U 1(1(1)) denotes :
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Proposition 2.1. a). For any positive integers m and k there exists a real pseu-
doholomorphic M -curve Cy, 1, in RP? of degree d = 2¥m realizing the isotopy type

MM A2 ok 1 ( || @ - 1)<<2’f—j>>) U 4E L2, (1)

2 ;
j=1

The number of non-empty ovals of this curve is ¢ (4% — 1)m? — 3(2" — I)m + k =
$(d?* = m?) = 3(d—m) + k. So, for each series {Cpy 1 }x>0 with a fived m, these
numbers have the asymptotics %dz + O(d)

b). If k < 3 then, for any m, the M-curve C,,  can be realized algebraically.
The number of non-empty ovals of Cp, 5 is 3L (m? —m) + 3 = J2d? + O(d).

c). For any k > 1 there exists an algebraic curve Céyk of degree d = 2F*1 realizing

the isotopy type

3((2F 1) <|;| —2972) 2k—j>)> LI 4%, (2)

The number of ovals of Cy, is Td? — (g — 1)d, i.e., it is an (M — r)-curve for
r=(k—4)28242= O(dlogd).
The number of non-empty ovals of Cs ;. is %dQ - %d + % = %dQ + O(dlogd).

Proof. All these curves are obtained by iterating Wiman’s construction.

(a). We start with Harnack’s curve C,, ¢ of degree m and apply k times Wiman’s
construction to it. At each step, we place the branching divisor on one empty
exterior oval (see Figures 1.0 — 1.2) except the first step when we place it on the
non-empty oval (for even m) or on the odd branch (for odd m).

O A O

FIGURE 1.0. The curve Cy FIGURE 1.1. The curve Cy

(b). The first three steps of this construction can be performed algebraically if
the initial curve is arranged with respect to some three lines as in Figure 1.0. It
means that there are three disjoint arcs on the non-empty oval (on the odd branch
for odd m) meeting three lines at m points which lie on the arcs in the same order
as on the lines. By classical terminology, such arcs are called bases.
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FIGURE 1.2. The curve Cy o FIGURE 1.3. A part of 0573

(¢). To continue iterations of Wiman’s construction, we need more bases. By
Mikhalkin’s theorem [18], an M-curve of degree d > 3 cannot have more than three
bases. So, we start with d = 2. Choose a conic C’é}o, disjoint arcs aq,...,qr on
it, and lines L1, ..., L; such that L; cuts «; at two points. Let Cé,k-i—l be obtained
from C , by Wiman’s construction using the line L. It happens, however, that it
is not eflough to have many bases on the initial curve. The construction produces
M-curves for k < 3 because the line L meets only one oval of C’é’k_l, k=1,2,3.
Unfortunately, starting with k& = 4, the line L) meets more than one oval (see
Figure 1.3 where we depicted L4 and the part of Cj 5 obtained from that oval of
C., which meets Ls). Easy to see that Ly meets 2873 ovals for k > 3. Using this
fact, the result can be easily proven by induction. [

Lemma 2.2. Let A be a real pseudoholomorphic curve of degree d = 2k. Suppose
that an empty oval V' of A has a tangency of order d with a line L. Let S be the
isotopy type of A\V. Then there exists a pseudoholomorphic curve A’ of degree 2d
one of whose empty ovals has a tangency of order 2d with L, and the isotopy type
of A’ is S? U d?, in particular, if A is an M-curve, then A’ is an M -curve also.

>~ . — \AAnS > eee o

O O O O

FIGURE 2

Proof. Let p be the tangency point, We apply Wiman’s construction in two steps.
First, we perturb A so that the perturbed curve A” has a tangency with A at p of
order d and has d? —d more intersection points, all lying on V. We may assume that
AU A” is holomorphic in some neighbourhood of p and is defined by the equation
(y — az?)(y — bxr?) =0, 0 < a < b. Then we perturb A U A” by gluing at p the
chart (y — P(z))y + e22? where roots of P are real negative (see Figure 2). [
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Corollary 2.3. For any d there exists a real pseudoholomorphic M -curve Ag on
RP? of degree d which has at least Ly = td®> — Z(3d)*/3 + O(d) non-empty ovals.

Proof. Let k = [31og,(3d)] and d = 2*m +r, 0 < r < 2*. Let C = Cj, ;; be as in
Proposition 2.1. By Lemma 2.2, we may suppose that C' has a maximal tangency
with some line. So, let A be obtained from C by applying r times Harnack’s
construction. Then A is an M-curve and the number of its nonempty ovals is at
least Lq = ¢(d? —m?) — 3(dy — m) + k where d; = 2°m = deg C. Note that (z,r),
x = 2F, satisfies

(3d)Y/3 <2x<2-(3d)'/3,  0<r<z-1, (3)

and Ly = § f(28,r) + k where f(z,7) = (d—7)*(1—272) = 9(d—r)(1 —z71). It is
an easy calculus exercise to find the minimum of f under the constraints (3). O

Remark. Tt seems that the term O(d*/3) in Corollary 2.3 is not optimal. Maybe,
using a more careful construction (like in Section 3) it can be replaced by O(d).

In contrary, it is not clear at all how to construct real algebraic curves of any
degree d with 1d? 4 o(d*) non-empty ovals. Proposition 2.1(c) gives an example
with this asymptotics for the sequence of degrees dj, = 2¥, but is it possible to do
the same for, say, d = 2% — 1?7

3. WHEN THE BRAID o; "V A™ IS QUASIPOSITIVE

The purpose of this section is, for given n and k, to find N as large as possible
such that the braid oy N A7 is quasipositive (see §3.1 for definitions and see §4
and §5 for motivations). We propose here a recursive construction based on the
binary decomposition of k. The best value of N obtained by this construction is
presented in Theorem 3.13 (see also Corollary 3.15) in §3.6. We cannot prove that
the obtained value of N is optimal.

3.1. Quasipositive braids.

Let B, be the group of braids with n strings (n-braids). It is generated by
O1,...,0n—1, subject to relations o;0; = oj0; for j —i > 1 and 0,050, = 0,0;0;
for j —i =1. We suppose that {1} = By C By C B3 C ... by identifying o; of By
with o; of B,,. We set By, = J,,, Bn. Let A, be the Garside element of B,,. It is
defined by

AOZAl :1, An_|_1 20'10'2...O'nAn. (4)

Let @,, be the submonoid of B,, generated by {a"1o;a|a € B,,1 <i <n}. The
elements of @, are called quasipositive braids (this term was introduced by Lee
Rudolph in [25]). Theorem 3.1 in §3.3 shows that Q41 N Bx = Qk, i.e., the notion
of quasipositivity is compatible with the convention that By C Bjy1.

We introduce a partial order on B, by setting a < b if ab™' € Q,. Then
Qn ={x € B, |z > 1}. Since @Q,, is invariant under conjugation, this order is left
and right invariant, i.e. & < b implies ab’'c < abc. Indeed, if b'b~! € @, then
(ab'c)(abc)™t = a(V'b)a™t € Q..

We write a ~ b if a and b are conjugate. Note that a ~ b > ¢ does not imply
a > c. Indeed, for n = 3 we have oy ~ 01 > 0102_1 but the assertion oo > 0102_1
is wrong because oa(0105 )" = 0307t € QP (see, e.g., [20] or [23]). However,
bleQ Zngb4Z"'Nan ZldOGSimplybl 21
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3.2. Shifts and cablings.
Let sy, ¢ @ Boo — Bso be the group homomorphisms of m-shift and m-cabling
defined respectively by s,,(0;) = 0j+m and

Cm(gi> = (Umiami+1 e Umi+m—1)(gmi—1 s Umi—|—m—2> s (Umi—m—|—1 e Umi)-

(see the left hand side of Fig. 4). We set ¢ = ¢y (Fig. 3), ¢? = cy¢ and s% = s4a.
Then

Cd =CcoO---0C (d times), C(O’i) = 02;{02;—102{4+102;-
GRS
W ﬁ%ﬁ
—— = ==

-
—_—

FiGURE 3. Example of 2-cabling: 0(030203_1020103)

///

NS\

FIGURE 4. cx(01) > A Ag (k=5)
Let T'm B,, — B, be the index reversing homomorphism: 7,,(0;) = op,—;.
Let A, = s,(A;,). Then we have
bA,, = Ay (b), b€ By rm(Am) = Ay,
ApAoi = Aoy Ay, ApAoi = Ao Ay,
Apcr(o1) = ei(01) Ak, Ager(o1) = ex(o) Ay,
ski(Ax) sk1(Ak) = ski(Ak) ski(Ak),
Ao, = ApAg cp(01) = Ay e(01) Ay
The last identity is the specialization for a = 2 of

22 [T sie(A0) (10)
5=0

D

N /N /N /N
oo
~— — ~— ~— “—

All these identities easily follow, e.g., from the characterization of Ay in [9].
Combining (6)—(9), we obtain

A%y, = ARAT ex(0?), (11)
We have ¢, (01) > A Ay (see Figure 4). Combining this with (6), we obtain
cr(oy) > A AL for any a, b such that a + b = 2. (12)

@ a—1 Al—a Fig.4 a—1 A Al—a _ AaA2—a
Indeed, cx(01) = AY “cp(o1)Ag > AT (ARAR)ALTY = ALATY
Combining (12) and (9) we obtain also
Agk = Akck<0'1)Ak Z Ai (13)
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3.3. Quasipositivity and stabilizations.
In this section we show that the quasipositivity is stable under two kinds of
stabilizations: the inclusion B,, C B, and positive Markov moves.

Theorem 3.1. Q11N B, =Q,.
This is a specialization for k = 1 of the following fact.

Theorem 3.2. Let a € By, b € B,, and ¢ = s,(a)b € B,ik. Suppose that
c € Qnik- Thena € Qr and b € Q.

Proof. Let D be the unit disk in C. By Rudolph’s theorem [25], a braid is quasi-
positive if and only if it is cut on (D) x C by an algebraic curve in D x C which
has no vertical asymptote.

Let L,, Ly, and L. be the links in 3-sphere represented by a, b, and c. Let
A, be the algebraic curve bounded by L.. The fact that ¢ = s,(a)b means that
L. = L,U L, and the sublinks L,, L; are separated by an embedded sphere. Then,
by Eroshkin’s theorem [10], A, is a disjoint union of curves A, and A, bounded by
L, and Ly respectively. Hence, a and b are quasipositive. [

This proof of Theorem 3.2 relies on analytic methods (the filling disk techniques
is the main tool in [10]). However, Theorem 3.1 has a purely combinatorial proof
based on Dehornoy’s results [8] completed by Burckel-Laver’s theorem [3,17].

Say that a braid b € B,, is Dehornoy i-positive,' i = 1,...,n — 1, if there exist
braids bo,...,by € Bn_s, k > 1, such that b = b []:_q(0n—ib;). Say that b is
Dehornoy positive if it is i-positive for some ¢ = 1,...,n — 1. Let P; be the set of
(n 4 1 — i)-positive braids and P; = Uj=1 Pj-

In this notation, Dehornoy’s theorem [8] (see also [11] for another proof) states
that (i) B, is a disjoint union {1}UP,UP;; (i1) P, is a disjoint union PyU- - -UP,;
(iii) P; and P;, 2 < i < n, are subsemigroups of B,. Burckel-Laver’s theorem [3,
17] (see also [20] or [34] for another proof) states that (iv) Q, C P,.

Combinatorial proof of Theorem 3.1. The inclusion @, C Q41 N B, is evident.
Let us show that Q,+1 N B, C Q. Let b € Q41 N B,,. Then b = z;...xx, each
z; being a conjugate of o1 in Bni1. By (iv), we have z; € Ppy1, j = 1,... k.
If x; € P,y for some j, then b € P,y by definition of i-positivity. By (i), this
contradicts b € B,,. Hence, each z; is in P,.

Thus, it remains to show that if x is a conjugate of o7 in B, 41, then z is a
conjugate of o1 in B,,. This follows from the fact that any conjugate of o1 can
be presented in a unique way as x = ca; ;¢ ', i < j, where a; ; is so-called band-
generator (i.e., a;; = acia” ! for a = 0j—10j—2...0;41) and c is in the kernel of
the pure braid group homomorphism of forgetting the i-th string. The latter fact
can be easily proved using the braid combing theory. [

Stability under positive Markov mowves.
Theorem 3.3. Letb e B,,. Then b € Q,, if and only if bo,, € Qpy1.

This fact is reduced in [21] to Gromov’s theorem on pseudoholomorphic curves.
The reduction given in [21] is rather cumbersome, but Michel Boileau observed
that it can be considerably simplified using the arguments from our joint paper [2]

LOur definitions differ from those in [8] only by the reversing of the string numbering.
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(unfortunately, this observation was done when [2] had already been published).
Indeed, it is proved (though not stated explicitly) in [2] that if L is the boundary
link of an analytic curve in B* C C2, and L is transversally isotopic® to a closed
braid b, then b is quasipositive. To deduce Theorem 3.3 from this fact, we note that
bo, bounds an analytic curve (by Rudolph’s theorem [25]), and b is transversally
isotopic to bo,, (an easy exercise; see, e.g., [24; Lemma 1]).

FIGURE 5. The braids b’ (on the left) and b” (on the right)

Corollary 3.4. Let b € B, and k < n. Then bt/ = bs,_(A%) is quasipositive if
and only if " = bsp_r(ck(01)) is quasipositive (see Figure ).

/
SN / /
NN\ NN\ SN\
NN\ NN\ N\ NN\
NN\ N\ NN\ N\ NN\ NS
NN\ NN\ NN\ N\
NS SN\ NN\
/ / /

Mm
FIGURE 6. Ck+1<0'1) — = (O'k .. .0'20'1) . 81(6k<0'1)) . (0'10'2 .. .O'k)
Proof. We say that b1by is obtained from by by a positive Markov move (and we
write bg M—T>n b1bs) if by,by € B,, and by = byo,b2. By Theorem 3.3, it is enough to

prove that b” My My qp g = 0, this is trivial. Suppose that this statement is
proved for k. Then

Mm

ckt1(01) = (o ...01)s1(ck(o1)) (01...0%) (see Figure 6)
My (0k...01)51(A2) (01...0%) (by the induction hypothesis)
4
:rk+1(0'1~-~0'k:Ai0'k-~-0'1)(:)Ai_i_y O

3.4. Subgroup A, of B.

For and integer d > 1, let Xg = {sp94(Aga) |k > 0,k € Z} and let A4 be the
subgroup of B,, generated by Xy. It is a free abelian group freely generated by
X 4. For example, A; is the subgroup of B, generated by o1, 03,05, . ...

Let Ay be the subgroup of B, generated by |J Xy, i.e., the product of all the
subgroups A;. This product is semidirect in the sense that A; ... Ay is a normal

2In the sense of the contact geometry
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subgroup of A, and for any d, e, the subgroup A, is a normal in A, Ay if e < d.
In the latter case, the action of A; on A, by conjugation is very easy to describe.
Let z € X, y € Xg, e < d. Let P, (resp. P,) be the set of strings permuted by z
(resp. by y). Only two cases are possible: either P, and P, are disjoint and then
x and y commute, or P, C P, and then y acts on x as in (5).

In particular, each element x of A; ... Ay can be uniquely presented in the form

T=2x1...24, Te € A,

Let x4 : Aq — Z be the homomorphism which takes each element of Xy to 1,
and let A7 = x;'(m). Since A, is a semidirect product of A,’s, the characters
X4 extend in a unique way to a homomorphism yx : Ao, — @, Z such that
X(x1...xq) = (xa(z1),.. ., xa(xq)) if . € A, for e =1,...,d (here and below, we
truncate the tail of zeros).

The above discussion implies also the following two easy facts:

Lemma 3.5. Let0 < r < 2% and m = 2%q+r. Then AN B,, is the direct product
of its subgroups Ao N Bpy—y and Sp—r(Aso N B,). O

Lemma 3.6. Let B = Bya, B = s4(B). Letx € AocNByasr andn = (ny,...,ng) =

x(x). Then, for any decomposition n = n' +n" +n' + n", there exist 2’,2"” € B
"’//

and ¥, " € B such that x(z') =n', x(z') = n", x(&') =7/, x(&") =", and
RAZE a3 AL (14)
Proof. (hope that the notation is self-explained)
xAgf}fll = abcﬂﬁ@ASf}j’f = aﬂAggilvwgé ~ waEfLAgﬂ]le;. O
3.5. The case when the number of strings is a power of 2.
For any d > 0, we set
Sqg=1+4+4% ... 4471 = (4% -1)/3.
So, (So, S1,...) =(0,1,5,21,85,341,1365,...). We have the recurrences:
Sy—4S41=1,  Sgq—5S4_1 +4Ss_o=0. (15)

Lemma 3.7. Let © € Ay N Bya, x(z) = (n1,...,nq). If d =1, we suppose only
that ny > 0. If d > 2, we suppose that

d
> (neSe—r —ee) >0, k=0,....d—1, (16)
e=k+1
where
3 4 (—1)nd 5— (—1)n
g1 =1, 5d:u’ 5624, l<e<d, (17)
2 2
i€, Mg > Edy DNg+Nag—1 > €4+ Ed—1y---, Sang + -+ +dna+ny > g+ +e1.

Then x is quasipositive.
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Proof. Induction by d. If d = 1, then the statement is trivial because in this case
x = o1*. So, let us assume that the statement is true for d — 1 and let us prove it

for d.

Let A = Agd—1, A = Agd—l = Sd_l(A), (Sk = S(k_l)gd—2(A2d—2), OA'k = Cd_Q(Uk).

The notation 0, is an abbreviation for 5%/6§_a/ when the value of @’ is not important

for us. In this notation, (6) — (9) and (12) specialize to

ADga = Aga A, 5HHA = A8y,  63A = Ady, (6)
0:0 = 06;,  AA=AA, (8"
A =616100 A =650504, (9)
Va€Z, &1 > 616 (12')
Combining (12") and (9) we obtain
P SCPCN () R 0
0109 Z 0'1(52 = A51 52 :A512 (18)
Iat G At (G
] 2NV ] I\ —
— " _ L
e A2
A >\/ A j\/
FIGURE 7.1. ACA73A2, = FIGURE 7.2
2L
1877 o
-2
—a S\l
- 6 H /
GH s
1820 A i//\
FIGURE 7.3. FIGURE 7.4. --- = 0,26, %65
Let us show that .
ATCATBAZ, > 6726, %69 (19)

(this is the heart of the proof). Indeed (see Figures 7.1 — 7.4),

ASA3AZ, W ASA3(A2A% ) (02) = A AT (6,
(12) _ ]
> A1IAT165(627969)5362646160 2 A~1AL

616362)°

~

P AP 2-a
(626365)03610705 “G9

~ (12)
= AT AT620062610005 %6y > ATATI62(85057)62616505 6y

R - —124~ ca —as2-b. 9 — —4 ca —a$2—b~
D A-1A1546,0010527052 b5, D (5,8,) 1 (658,) 109+ 52252 15,
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and we obtain (19) by setting a = 1, b = —2. We have also
Aoa > 6169A%57, (20)
Indeed,
Age L A1 (01)A = Abdai16552A S Adain (82)(5305H)A

Q) 5161026261030 A L 51605165A L 6165(A6710;1)58A L 5,6,A264,.
Weset ng = 2n+1+r,r € {0,1}. Let mg_1 = ng—1+10n+4r, myg_o = ng_o—8n,

”21—1 =Mg_1+3= ng_1+5Mg—1—2 =ng_1+5ng—€cq4—1,

Ny o=mgo+4d=ngo—4ng+4r +8=mng o —4ng + 4eq + 4,

and n, = n, for e = 1,...,d — 3. In the following computation we assume that
Y1,Y2, 2,8 € Ao N Boa-r and x(y1) = x(y2) = (n1,...,na—2,ma-1), x(2) =
(1, .-, na—3,Mag—2,mq-1), xX(@') = (nh,...,ny_y). Let » = x1Al¢ with z; €

(Ay...A4-1) N Bya. So, we have
(13) )
T=ay g g AN > my o mg AT AL O ATI A AZEA AT

- (19)
=y (ATBATCAZ) A AT > 072 G A AT

= 107 2GR AT AT ~ ya b G Aga AT @ Yob 1L G Nga b MO
~n 0 B0 4 N2am coaa a2 I g /
~ 205 00a0] " > 205010201500 " = 26102015A7 > 207,A° =,
It remains to check that the induction conditions are satisfied for z’ and d — 1.
If d =2, then nf =nj +5ns —ea — 1 = (1151 — 1) + (N2S2 — e2) > 0 and we are
done.
Suppose that d > 2. Let (16") and (17) refer to the formulas (16), (17) where

d—1, n, and €/, replace d, n., and e.. So, we define €,...,¢/,_; by (17") and we
have to check the inequalities (16') for k = 0,...,d — 2. Indeed, we have n/ = n,
fore <d—2;nl, o —ng_o=—-8n+41iseven, and n/, ; —ng_1 =10n+4r 43 is

odd. Hence, €, = ¢, for e < 2, and
&1 =@+ (—1)"-1)/2= (3= (=1)"1)/2=(5— (1)) /2 —1=¢4_; — 1
and we obtain for any £k =0,...,d — 2

d d—1
g Ee — E el =¢eq_1+eq—¢€) 1 =€q+1.
e=k+1 e=k+1

Since n, = n, for e < d — 2, and Sy = 0, we have for any k =d —p < d —2

d d—1

Z nese—k - Z n/eSe—k: — (nd—Q - n/d_Q)Sp—Q + (nd—l - ni{_l)Sp—l + ndSp
e=k-+1 e=k-+1

= (4nd —4eg — 4)Sp_2 + (—Snd + 4+ 1)Sp_1 + ndSp

15
= (Sp — 5Sp_1 + 4Sp_2)nd + (Sp_l — 4Sp_2>(€d + 1) (:) eq+ 1.

Thus, (16") is equivalent to (16). O

Let us emphasize some particular cases of Lemma 3.7:
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Corollary 3.8. Let x € Ao N Bya, d > 2, x(x) = (n1,...,nq), and let 1,...,e4
be as in (17).

(a). If ng > 0, ne >0 fore=2,....,d—1, and (16) holds for k = 0, i.e.,
Y o(neSe —ee) >0, then x is quasipositive,

(b). In particular, if no, ..., ng are even and non-negative, nq is positive, and
ny + dng +21ng+ -+ Sgng > 2d — 1, (21)

then x 1s quasipositive.

Proof. (a). It is enough to check (16) for k =1,...,d — 1. First, note that (16) for
k=d —1 is just nqg > €4 which is equivalent to ng > 0. So, let 1 <k < d — 2. For
any m > 1 we have 3(m —1) < S,,, — 1. Hence, ex41+---+e4-1 <3+---4+3=
3(d —k— 1) < Sd—k -1 < nd(Sd_k — 1). Thus,

d d—1 d—1
Z (NeSe—k — €e) = (nd(Sd_k —1)— Z 66) + (ng —eq) + Z Se_rne > 0.
e=k+1 e=k+1 e=k+1

(b). Immediate from (a). O

Corollary 3.9. For positive integers d,n, if N < (44 —1)n/3—2d+ (3—(=1)")/2,
then o7 N AZ, > 0.

Proof. X(al_NAgd) = (—=N,0,...,0,n), so we may apply Corollary 3.8. O

Remark. Corollary 3.8 combined with arguments similar to those in the proof of
Corollary 2.3 allows to show that for any £, the braid o; N A} is quasipositive for
N = 1/3k* + O(k*3). However, in the next subsection we give a better estimate
for N of the form 1/3 k% + O(k).

3.6. The general case.

Lemma 3.10. Let p,d > 0, m' = 2%, m = m/ + 2971 = (2p + 1)2¢971, and
x € Ao N By, Then xA,, > 2/ Ay, for some ' € Ao N By such that xg—1(2') =
Xd—l(x) + 1: Xd(x/) = Xd(x) +p7 and Xe(xl) = Xe(x) fOT € ¢ {d - 17d}

XA
— XN A,
PN

FIGURE 8. Illustration to the proof of Lemma 3.10 (p = 3)

Proof. By Lemma 3.5, we may write x = yy with y € Ao N By, and § € Ao N
Sm'(Baa-1). Let 0p = Spa-1(3—1)(Aga-1), A = Ay, We denote here ¢~ !(a) by &
for any braid a.

Let 2 = A, § A and w = A, 2 A 7. Then, by (5), we have z,w € Ao, N By
and x(w) = x(z) = x(y). In the following computation, the “wild character” §¢
stands for any product of the form 67" ... 05" (n0 dgp41 !) with a1 4+ +ag = a
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when the explicit values of a;’s are not important for us. In other words, §* stands
for any element of XJ, , N B;,/. Similarly, A® stands for any element of X354 N By
So, we have (see Figure 8)

- 10)  « 5 N
A = Yyl = yApz (:) yA2p+152p52p+12 (:) y51A2p+152p2
4 R R ~ 10 ~ ~
@ Y0107 .. .ngA2p52pz (19 yo1(o1 .. .ng)Am/(SO z

(12)
1ia ¢24 ¢2 A 2 2p4+14 A A
> y5 (0’1620'3(54...0'2p_152p)Am/Z: y5 Pt 0103...02p_1wAm/

© y Ot APwA,,,. O

Lemma 3.11. Let k > 2. Consider the binary decomposition

d
k=Y a2,  a;€{0,1}, aq=1. (22)
=0

Let x € Aoo N By. Then there exists y € Aso N Boa such that Ay, >y and

d
Xi(y) = xi(@) =a;i+a;1 Y a2 di=1,....d (23)

j=i

Proof. Induction by v(k) — the number of ones in the binary decomposition of k. If

v=1,thenk =2%and ay = --- = ag_1 = 0, hence, (23) holds for y = 2A = xAsa.
Assume that the statement is proved for all k' with v(k’') < v(k) and let us prove
it for k. Let 2°~! be the maximal power of 2 which divides k, i.e., (ag,...,aq) =

0,...,0,1,ac,...,aq). Let k¥ =k —2°"1. Then k' = Y a}2" where (af,...,a};) =
(0,...,0,0,ae,...,aq). By Lemma 3.10, there exists &’ € A, N By such that
xAr > 2’Ap and x(2') — x(x) = (n1,...,nq) = (0,...,0,1,p,0,...,0) where
p=FK/2¢= E;l:e a;j297¢ ne_qy =1, and n. = p.

Since v(k') = v(k) — 1, there exists y € Ao N Boa such that ©’Ay > y and (23)
holds with = and a; replaced by ' and a}. Hence,

d
Xi(y) = xi(@) = (xi(@) = xi (@) + (i (W) — xa (@) =ni +af +aj_, »_aj2l™
j=t
0+4a; +a;_1(a; +2a;41 +---+29%y), i>e+1,
o p+1+07 i:e,
) 140+0, i=e—1,
0+0+40, 1<e—2.

This is equal to the right hand side of (23) in all the four cases. [
We define arithmetic functions f(k), g(k) via the binary decomposition (22):

f(k) = Zai + Z aiaj2j_i_1, g(k) =aq-1 — 1+ Zai(l —a;—1). (24)
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Corollary 3.12. Let k be as Lemma 3.11. Then there exists y € As N Baa,
X(y) = (n1,...,nq4), such that Ay, >y and

(1—(—1)"1')/2:@1(1—@1_1), izl,...,d,
Siny+ -+ Sana = (K — f(k))/3.

Proof. By (23) we have n; = a; +a;—1(a; +2a;41+...) =a;(1 —a;—1) mod 2 and

d d
3 Z SzXz(y) = 2(41 - 1) (CLZ +a;_1 Z CLJQJ_Z)
1=1 i=1 =
d d ’ d
= Zaz(4l - 1) + 2(41 — 1)&1_1 ZCL 27—t
1=0 i=1 =i
d d ’
= 2%47’ - Zai + Z aa; (4T —1)2071
=0 i=0 0<i<j<d

d
= a4 +2 > a2 — f(k) =k = f(k). D

0<i<j<d

s
Il
=

Theorem 3.13. Let k > 2, n > 1. Let f and g be as in (22), (24). We set

e=(1—(=1)")/2, d = [logyn]. Then oy NA? is quasipositive for

n(k? — f(k))
3

N = —2d+1—eg(k) + [ 2| max (0, f(k) — g(2K) — 24— 1).

4

Proof. Let E = f(k)—g(2k)—2d—1. If E <0, then the result follows immediately
from Corollaries 3.8 and 3.12. Consider the case E > 0. Let ¢ = [n/4], r = n — 4q.
We set © = o] VAT y = 07 V2 Agg, and 2 = 07 V2 A} where Ny = r(k? — f(k))/3 —
2d+1—eg(k) and Ny = ((2k)* — f(2k)) /3 —2d — 1 — g(2k). By Corollaries 3.8 and
3.12, we have z > 1 and y > 1. Combining y > 1 with Corollary 3.4, we obtain
z > 1. Since f(2k) = f(k), we have N = Ny + gNy. Thus, o7 Y =229 >1. O

Proposition 3.14. a). We have 1 < f(k) < k for any k. Moreover, f(k) = k iff
k=241 —1 and f(k) =1 iff k = 2% for some d > 0.

b). We have k— f(k)—3g(2k) > 0. The equality is attained iff either k = 29+2—1
or k=243 24 _1 for some d > 0.

Proof. a).

d

k1) =, (27-1- jz_:laizj—i—l) >, (2 -1- jizﬂ””) —0

d
7=0 =0 7=0 =0
and we have the equality iff k = 2¢ — 1. Tt is evident that f(k) = 1 iff k = 2¢.
b). Exercise. [
Corollary 3.15. a). If N < 2(k*—Fk)—2[log, k] +1, then o1 N A? is quasipositive.
b). If N < 3k* — 1k — 2[log, k] — 1, then o7 N Aoy is quasipositive. [
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4. CURVES WITH A DEEP NEST AND WITH MANY INNERMOST OVALS

4.1. Real pseudoholomorphic curves.

Let A be a real curve on RP?. We say that the depth of an oval of RA is ¢
if it is surrounded by ¢ ovals. Degtyarev, Itenberg, and Kharlamov [7] ask: how
many ovals of the depth k — 2 a curve of degree 2k may have? Note, that k — 2 is
the maximal possible depth of ovals of a non-hyperbolic curve (a curve of degree
2k is called hyperbolic if it has k nested ovals and hence, by Bezout’s theorem, it
cannot have more ovals). This question appears from the study of the number of
components of an intersection of three real quadrics in higher dimensional spaces
(see details in [7]).

Let us denote the number of ovals of depth ¢ of a curve A by [, = [,(A). The
improved Petrovsky inequality implies [x_o < %k‘z + O(k). On the other hand,
Hilbert’s construction provides curves with lx_o > k? + O(k). We improve this
lower bound up to 9/8 k2 for algebraic curves (see Proposition 4.3). The results
of §3 (see Theorem 3.13 and Corollary 3.15(b)) provide a lower bound of the form
4/3 k* + O(k) for real pseudoholomorphic curves because of the following fact.

Proposition 4.1. The braid O'l_NAgk 1s quasipositive if and only if there exists a
real pseudoholomorphic curve A in RP? of degree 2k such that ly_o(A) = N.

Proof. According to [22; §2.3], the fiberwise arrangement [D; o) ~! ;] is realizable
by a real pseudoholomorphic curve of degree 2k if and only if the braid = o, N Agy,

is quasipositive. Thus, the quasipositivity of  implies the existence of a curve with
lp_o=N.

FiGUuRrE 9.1 FIGURE 9.2 FIiGURE 9.3

Suppose that there exists a pseudoholomorphic curve A of degree 2k with lp_o =
N. Let vq,...,ux be the innermost ovals (i.e., the ovals of depth k& — 2). If some
arrangement of embedded circles in RP? is realizable by a real pseudoholomorphic
curve and we erase an empty oval, then the new arrangement is also realizable by
a real pseudoholomorphic curve. Thus, without loss of generality we may assume
that A realizes the isotopy type 1(...1(N)...). The arguments from [28] based on
auxiliary conics through five innermost ovals prove that vy,..., vy are in a convex
position. Thus, choosing a pencil of lines centered at vy, we see that va,...,vn
form a single chain (see Figure 9.1), hence they can be replaced by a single branch
B which has N — 2 double points (see Figure 9.2). Choosing a pencil of lines as
in Figure 9.2, we attach B to v; as in Figure 9.3. The braid corresponding to the
arrangement of the obtained curve with respect to the pencil of lines centered at p
(see Figure 9.3) is a conjugate of o7 N Agy. O
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Corollary 4.2. For any integer k > 2, there exists a real pseudoholomorphic curve
A on RP? of degree 2k such that lj,_o(A) > (4k* — f(k))/3 — 2[log, k] — 1 — g(2k)
where f,g are as in (24), in particular, ly_2(A) > 4/3k* —1/3k—2[log, k] —1. O

4.2. Real algebraic curves.

Proposition 4.3. For any k = 4p there exists a real algebraic curve of degree 2k
in RP? such that l,_o = 18p> — 2p = 9/8k? — 1/2k.

E;
FIiGUuRrE 10.1 FI1GURE 10.2 FIGURE 10.3
o . ; o
C / .
2y =
FIGURE 10.4 FiGure 10.5 FIGURE 10.6

Proof. We fix an affine chart R? on RP?. Let S be the unit circle and let o, . . ., ap
be disjoint arcs of S. Let E1, ..., E, be ellipses such that F; is arranged on R? with
respect to S and «; as in Figure 10.1. Then F; U---U E, can be perturbed into
a curve E of degree 2p consisting of a single nest of the depth p (i.e., a hyperbolic
curve), and the innermost oval V' of E intersects S in k points which lye on S in the
same order as on V' (see Figure 10.2). Let S, 1,...,S,p, ¥ =1,...,4, be concentric
copies of S of increasing radii (11,1 < -+ <7r1p <rg1 < --- < To9p < Tz < ...)
each of whom intersects V' at k points. Let

vp
Co=1, C,=EC, 1+e [[Si v=1,..,4 0<]al< - <|a|l<1
i=1

(see Figure 10.3 — 10.6; we use the same notation for a curve and its defining
polynomial). Then C} is the required curve. O
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5. ON Ay SINGULARITY OF A PLANE CURVE OF A GIVEN DEGREE

Easy to see that the existence of a pseudoholomorphic curve of degree m which
has a singular point of the type A, is equivalent to the quasipositivity of the braid
oy " A2  Thus, Theorem 3.13 admits also the following interpretation.

Proposition 5.1. For any m, there exists a pseudoholomorphic curve C,, in CP?
of degree m with a singularity of the type A, with n = 2/3(m? —m) — 2[log, k].
Thus, lim,, o, 2n/m? = 4/3. O

The question what is the maximal n = N(m) such that there exists an algebraic
curve of degree m with an A,, singularity was studied by several authors. Let
a = limsup 2N (m)/m?. Signature estimates for the double covering yield o < 3/2
(see [14]). An evident example (y + 2%)? — y2¥ = 0 yields m = 2k and n = 2k? — 1,
so, a > 1.

In a generic family of curves, the condition to have an A,, singularity defines a
stratum of codimension n. Thus the so-called expected dimension of the variety of
curves of degree m with a singularity A4, is equal to m?/2 —n+0O(m), i.e., a > 1 is
“unexpected” from this point of view. Nevertheless, this is so. A series of examples
providing o > 15/14 was constructed by Gusein-Zade and Nekhoroshev in [14].
Cassou-Nogues and Luengo [4] improved this estimate up to o > 8 — 4v/3. Here we
show that a > 7/6. This follows from the following evident observation.

Proposition 5.2. Let F(X,Y) be a polynomial whose Newton polygon is contained
in the triangle with vertices (0,0), (ac,0), and (0,bc). Suppose that F' = 0 has a
singularity Ai_1 at the origin, and ordg F'(0,Y) = 2. Then, for any p > b/a, the
curve F(XP?, YP? + X) = 0 has a singularity A, for n = abkp® — 1 and its degree
is m = abep and hence, a > limy_, oo (2n/m?) = 2k /(abc?).

Proof. Indeed, F1(X,Y) = F(XP*)Y), F5(X,Y) = Fi(X,Y + X), and F3(X,Y) =
F>(X,YP?) have singularities Appp—1, Apkp—1, and Agprp2_1 respectively. [

If we apply Proposition 5.2 to a sextic curve in P? which has an A9 singularity
(a=b=1, ¢c=06, k=20) then we obtain o > 10/9. The existence of such a curve
follows from the theory of K3 surfaces (see, e.g., [36]); an explicit equation is given
in [1, §5].

If we apply Proposition 5.2 to a = 2, b = 1, ¢ = 4, k = 18, then we obtain
a > 9/8. The existence of polynomials realizing this case can be proven using K3
surfaces (Alexander Degtyarev; private communication). Also, they can be written
down explicitely:

2
(m?’ + 452t +y — 27872%y + 60192y2>
+ 12(;1;8 4 (1 872)a%y — (42 — 29432)a%y? + (288 — 36288z )ay® + 66816y4>
or (CL’B +y— 5x2y)2 — 4(2m8 + 225y + 9zy? + 3z + y4) (the latter polynomial
was found by Ignacio Luengo), To determine the singularity type at the origin, it

is enough to compute the multiplicity at £ = 0 of the discriminant with respect to
y. Here is the corresponding maple code for the second polynomial:
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f o= (x73+y-5*x"2%y) "2 - 4% (2%kx"8+2%x"Bky+9%x"4xy " 2+3%x*y " 3+y~4) ;
factor(discrim(f,y));

Finally, if we apply Proposition 5.2 to the case a = 3, b = ¢ = 2, k = 14, then we
obtain a > 7/6. This case is realizable by the polynomial (also found by Ignacio
Luengo)

(xQ — 5323 +y — 60zy — Lfon)Q
+ % (5x6 + 8zty + 322y + 4123y? + 272y + %G y4).
6. ODD DEGREE CURVES WITH MANY NESTS

6.1. Construction of real algebraic M-curves of degree 4d+1 with 4 nests
of depth d.

Let C be a nonsingular real pseudoholomorphic curve of an odd degree m = 2k+1
in RP?. We say that an oval of C' is even (resp. odd) if it is surrounded by an even
(resp. odd) number of other ovals. Let us denote the number of even (resp. odd)
ovals by p (resp. by n). In a joint note with Oleg Viro [32] we proved the following
result.

Theorem 6.1. If k =2d (i.e., m =4d+ 1) and C has 4 disjoint nests of depth d,
then:

(i) If C is an M -curve, then p—n = k*+k mod 8 (Gudkov-Rohlin congruence);
(i1) If C is an (M — 1)-curve, then p —n + 1 = k? + k mod 8 (Kharlamov-
Gudkov-Krakhnov congruence);
(iii) If C is an (M — 2)-curve and p —n +4 = k?> +k mod 8, then C is of the
type I (Kharlamov congruence);
(iv) If C is of the type I, then p —n = k* + k mod 4 (Arnold congruence).

This is the first result of this kind for curves of odd degree. If d = 1, it is trivial.
If d = 2, it was conjectured by Korchagin because he constructed M-curves of
degree 9 with 4 nests and observed the congruence mod 8. However, starting with
d = 3, curves satisfying the hypothesis of Theorem 6.1 have not been known.

In this section we show the "non-emptiness” of Theorem 6.1 for any d for real
algebraic curves.

Proposition 6.2. For any integer d > 1, there exist a real algebraic M -curve of
degree m = 4d + 1 which has 4 disjoint nests of depth d. This curve realizes the
1sotopy type

J U (4d% + 6d — 8) U3((d)) L 1(... 1(1(1(1(1) U8) LU 16) - -- LU (8d — 16)).  (25)

N————
d—1

The notation 3((d)) is explained in §1.

Proof. The result immediately follows from the following statement (H4) which we
shall prove by induction:

(Hq). If d > 1, then for any n > 0 there exists a mutual arrangement of an M-
quartic @), an M-curve Cy of degree m = 4d + 1, and n lines L, ..., L, satisfying
the following conditions:

(i) the curve Cy belongs to the isotopy type (25);
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(i) each oval of Q (we denote them by Vj,...,Vs) surrounds a nest of Cy of
depth d; the nests surrounded by Vi, Vs, V3 are simple;

(7i7) one exterior empty oval of Cy (let us denote it by v) intersects Vy at 4m
distinct points which all lye on Vj in the same order as on v; so, (Int Vp) \
(Intv) is a disjoint union of 2m open disks (digons) which we denote by
Dl, ceny ng;

(iv) CqND; =@ fori > 1 and CyN Dy has the isotopy type (8d — 8) U Sy where
Sq stands for the final part of the expression (25) starting with “1(...7;

(v) all the other exterior empty ovals are outside of all the ovals of Q;

(vi) there exist arcs oy C -+ C oy C Vo N Dyyyq such that for any i =1,...,n,
the line L; intersects @) at 4 distinct points which lye on «; \ «;—1, two points
on each connected component of «; \ «;_1 (here we assume that oy = @);

Given a line L, we shall denote by LF(g) a union of k generic lines depending
on a real parameter € such that each line tends to L as ¢ — 0. We shall use the
same notation for a curve and a polynomial which defines it. A notation 0 < --- <
€9 K €1 < 1 means that we choose a small parameter €1, then we choose €5 which
is small with respect to €1, and so on.

Let us prove (H1). Let E be a conic and let p1,q1,p2,92,- -, Pnt3, nts be
points lying on FE in this cyclic order. Let L; be the line (p;q;) and let us set
Q = E?+e3L% 5(e1) and Cy = QLyyo4e4 L] (e3) where 0 € 64 < - < g1 < L.
Then @, C1, and Ly, ..., L, satisfy (i)—(vi)q=1 for a suitable choice of signs of the
equations (see Figure 11).

E

Ln+2

FIGURE 11

Now let us assume that (H4) is true and let us prove (Hgy1). Let Q, Cy,
and Ly, ..., Ly, satisfy (i)—(vi) with n + 1 instead of n and let us set Cyy1 =
QCq + 5Lfffi5(5) with 0 < § < ¢ < 1 (see Figure 12). O

Remark. For the curve in Proposition 6.2, it is easy to check that p —n = k? + k.
Indeed, one sees in Figure 12 that pgy1 = ng+4d?+14d+6 and ngyq = pg—4d?+2d,
hence (pgi1 — ngs1) = —(pa — ng) + 8d% + 12d + 6, i.e. the quantities pg — ng and
k? + k = (2d)? + 2d satisfy the same recurrent relation. This gives another proof
that the right hand side of the congruences in Theorem 6.1 is correctly computed (it
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(4d?*— 2d —1)

Induction step: 1(8d — 8 U Sy) = Sat1;
(4d® —2d — 1)+ (8d +2) = 4(d+ 1) —2(d +1) — 1.

FIGURE 12

was computed in [32] via Brown-van der Blij invariant of Viro-Kharlamov quadratic

form defined in [33]).

6.2. On M -curves of degree 2td + 1.

Let A be a real algebraic (or real pseudoholomorphic) curve on RP? of degree
m = 2k + 1 and k = td. Recall that the depth of an oval is the number of ovals
which surround it. Let V' be an oval of A. We say that V is a d-oval of A if the
depth of V' is a multiple of d (maybe, zero) and V is the outermost oval of a nest
of depth at least d (i.e., there is at least d — 1 nested ovals inside V). We say that
A is an Mg-curve if it is an M-curve of degree m and the number of its d-ovals is
at least 2t2 — 3t + 2.

For example, the curves discussed in §6.1 are My-curves of degree 4d + 1 (i.e.,
t=2).

Proposition 6.3. (a). For any integerst > 2 and d > 1 there exist real pseudo-
holomorphic Mi-curves of degree m = 2td + 1.

(b). For any integer t > 2 there exist real algebraic Ma-curves of degree 4t + 1.
In particular:

(c). For any integer t > 2 there exists a real algebraic M -curve of degree m =
4t + 1 realizing the isotopy type J U gog (1) U 1(t — 1) LI (442 + 3t — 2) where goy =
(t—1)(2t—1) is the genus of a curve of degree 2t. So, this curve has as many nests
as the number of ovals of an M -curve of degree 2t.

Proof. (a). Let B be a real algebraic M-curve of degree 2t and a line L satisfying
the following conditions:

(i) an oval V' of B has 2t intersections with L placed on V in the same order
as on L;

(ii) B\'V C E where E is the component of RP?\ (V U L) whose closure is
non-orientable.

Such curve can be easily obtained by Harnack’s method (see also the proof of (b)).
We construct curves C, of degrees m, = 2te + 1, e = 0,1,2,... recursively (see
Figure 13). We set Cyp = L and we define C.41 as a small perturbation of C. U B
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FIGURE 13

such that C.41 meets B at 2tm,. points all lying on an arc of B bounding a digon
between B and C..

(b). For some curves B, the second step of the above construction can be realized
in the class of algebraic curves. Suppose that B and L satisfy the conditions (¢)—(i7)
and, moreover, V and L are arranged with respect to another line L’ as it is shown

in Figure 14. Then we obtain the isotopy type
JU(a+t—1)ul{t—1)u8?

where a = 2t(2t + 1) — 1 and S is the isotopy type of B\ V (see Figure 14).

LV

LUnL. A\
<

B D :
V L

C)

FIGURE 14

To construct the required arrangement of B, L, and L', we can start with a
Harnack curve of degree 2t — 2 and proceed as it is shown in Figure 15. Here

gi=(t—1)(t—2)/2 and g,y = (t - 2)(t - 3)/2.

(&)

L (&)
NN
v NS L S
(&) T (e T (&
> >

FiGURE 15
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The construction of (B, L, L") can be interpreted as Viro patchworking according
to the Haas’ zone decomposition (see [15]) of the triangle OXY into two triangles
and one quadrangle OPY, XY @, and X PYQ (see Figure 16.1) where O = (0,0),
X =(2t,0), Y = (0,2t), P = (1,0), and @ = (1,1). This means that we choose
any primitive triangulation which contains the edges X @, QY, Y P and we define
the sign distribution § : (OXY) N Z? — {+1},

(_1)(w+1)(y+1), y >0,

S(e) = {

-1, y =0,
Y Y
R
O P X O P X
FIGURE 16.1 FIGURE 16.2

(c) Let B be the M-curve of degree 2t patchworked according to the Haas’ zone
decomposition of OXY obtained by cutting it along the segment PR where O,
X, Y, P are as above and R = (2t — 2,2) (see Figure 16.2). This means that we
choose any primitive triangulation which contains the edge PR and we define the
sign distribution § : (OXY)NZ? — {£1},

5 [ (=D, (z.y) € OPRY, ie., (2t —3)y > 2(x — 1)
@)= { (-1)EDY (2. y) € XPR, ie., (2t —3)y < 2(z — 1),

Then B has an oval V' which is arranged with respect to the lines L and L’ (the
axes Ox and Oy respectively) as in Figure 14, but all other ovals of B are empty.
Moreover, (t — 1)(t — 2)/2 empty ovals are in the domain D and the other empty
ovals are in the domain E. The rest of the construction is shown in Figure 14. O

Remarks. 1. Let p and n be the number of positive and negative ovals of a curve
Cy constructed in the proof of Proposition 6.3(a). It is easy to prove by induction
that

2t(£my £t ms £ -t mg_1), d is even,
P = ottt mo £ mat - tmas) +ps —np —2, dis odd
where m, = 2te + 1, pp (resp. npg) is the number of positive (resp. negative) ovals

of B, and the choice of the signs is illustrated in Figure 13. Thus it follows from
Gudkov-Rohlin congruence that for any choice of B satisfying (i) and (i), we have

k% + k mod 8. ift=d=0 mod 2,
_ K24+ k+t—2 mod8, ift=d+1=0 mod?2,
p=n= k2 +k mod 4, ift+1=d=0 mod 2,

E>2+k+t—2 mod4, ift=d=1 mod?2
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where k = td (so, deg Cy = 2k +1). All values of p — n satisfying these congruences
are attained for pseudoholomorphic curves.

2. The algebraic curves constructed in the proof of Proposition 6.3(b,c) satisfy
the congruence p —n = k% + k mod 8. The first pseudoholomorphic curve con-
structed in Proposition 6.3(a) which does not satisfy this congruence is the curve
of degree 13 (t = 3, d = 2) of the isotopy type J U 1 U 1(44) L 8(1) LI 1(1(1(1)))
(the curve C; ™ in Figure 13 if Harnack’s sextic is chosen for B). It is interesting
to study if this curve is algebraically realizable.

7. M-CURVES OF DEGREE 9 WITH A SINGLE EXTERIOR OVAL

Theorem 7.1. (a). There exist real algebraic curves of degree 9 realizing the
1s0topy types
JU1(2a 1 1(26 — 2a)), 2<a<l1l (26)

(b). The isotopy type J U 1(24 LU 1(2)) is unrealizable by real pseudoholomorphic
(in particular, by real algebraic) curves of degree 9.

Combined with the result of S. Fiedler-LeTouzé [12], Theorem 7.1 implies that
among the isotopy types of the form J L 1(bL 1(26 — b)), only the isotopy types in
list (26) are realizable by curves of degree 9.

Following [12; Definition 1], we say that a curve of degree 9 has an O;-jump if
it has six ovals arranged with respect to some line as in Figure 17. Theorem 7.1(b)
follows immediately from [12; Theorem 2(2)] combined with the following fact:

FIGURE 17. O;-jump

Theorem 7.2. Let A be an M-curve of degree 9 which realizes the isotopy type
JUL(BUIL(y)) with 4+ v =26. Then A has an O1-jump.

Theorem 7.1(a) is proven in §7.1; Theorem 7.2 is proven in §7.2.

Recall that an oval of a real algebraic plane curve is called exterior if it is not
surrounded by another oval. We say that A is a one exterior oval curve (OEO
curve) if it has exactly one exterior oval. Note that OEO M-curves of degree
greater than three have not been known. It is evident that OEO M-curves do not
exist in degree 4 and 5. Petrovsky inequality excludes OEO M-curves of degree 6.
Viro [28] (resp. Shustin [26]) excluded OEO M-curves of degree 7 (resp. 8). Using
theta-characteristics (the idea applied later in [7]), Kharlamov excluded OEO M-
curves of odd degree of a very special form J U 1(n) (unfortunately, his proof still
is not written). However, OEO M-curves of degree 9 do exist by Theorem 7.1(a).

It seems that OEO M-curves of even degree greater that 2 do not exist. Note,
that Hilbert’s construction provides OEO (M — r)-curves of any even degree > 6
for any r > 1.
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(a)

FIGURE 18. «a € {4,8,12,16,20}

7.1. Construction.

Lemma 7.3. For any o € {4,8,12,16,20} and for any distinct real numbers
A1, A2, Az, there exists a polynomial g(x,y) = Zz’+9jg27 gi;x'y’ such that the affine
curve g(x,y) = 0 is as in Figure 18 and g* = (y — M\ 2?)(y — Xo?) (y — A32°) where
g' denotes the truncation of g to the edge I’ = [(27,0), (0, 3)] of the Newton polygon,
ie. gt = D itoj—2t 9ii "y’

Proof. Follows easily from the results of [29]. O

Proof of Theorem 7.1(a). All curves (26) are realizable as perturbations of the
singular curve F3(F3 + cF3) = 0 where F3 = 0 is an M-cubic and F» = 0 is a conic
which has the maximal tangency with F3 = 0 at a point p lying on the oval O3 of
the curve F3 = 0.

Let Fh(X,Y) =Y — X2, F3(X,Y) = (Y — XQ)(l +3Y) +2Y3, Fg = F§ + cF3,
0 <c<x 1, and Fy = FgF3. Let Ck be the curve F, =0, k = 2,3,6,9. Then Cj
has the tangency of order 6 at the origin with C5 and the mutual arrangement of
Cy and Cs on R? is as in Figure 19.1. Hence the arrangement of Cy on RP? is as in
Figure 19.2. The curve Cy has three smooth real local branches at the origin (two
branches of Cg and one of C5) with pairwise tangencies of order 9.

FIGURE 19.1 FIGURE 19.2

We introduce local coordinates (z,y) at the origin X =z, Y =y +y(x), v(x) =
22 — 225 4+ 628. Let fu(z,y) = Fp(z,y +v(2)), k= 2,3,6,9, i.e., fi is F} rewritten
in the coordinates (z,y). Then fo has the form -, o507 a;jz'y’ and f§ = y(y* —
8cx18) where fi is the truncation of fo to T, i.e., fo = Ei+9j227 a;;x'y’. Here is
the Mathematica code that checks it:
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F2=Y-X"2; F3=F2(1+3Y)+2Y"3; F6=F3"2+c*F2"3; F9=F3%F6;
su={X->x,Y->y+x"2-2x"6+6x"8}; f9=Expand[F9//.su];
Table[Series[Coefficient[f9,y,j],{x,0,27-9j}],{j,0,3}]

We perturb the singularity of Cg at the origin using the straightforward approach
from [5]. Let g(x,y) be as in Lemma 7.3 where we set g* = f3. We have gi51 =
a18,1 = —8c # 0, hence shifting if necessarily the z-coordinate, we may assume that
gi7,1 = 0.

Let F(X,Y) = > itj<o B;jX'Y7 be a polynomial with indeterminate coeffi-
cients. We set f(z,y) = F(z,y + v(z)) = dig bi;z'y’. Then b;;’s are linear
functions of B;;’s. Let ¢(i,7) = 27 —i — 9j. Solving a system of linear equations,
we find B;; = B;;(t) such that

bij = gi;t?®)  for i4+95 <27, (i,7) # (17,1).

Substituting the solution into b171 we see that bi71 = O(t?):

ff=Expand [Sum[Sum[B[i,jlX"i Y~j,{i,0,9-j}1,{j,0,9}1//.sul;

Do[Do[b[i,jl=Coefficient[Coefficient[ff,x,il,y,j],
{1,0,26-93}1,{j,0,2}]1;

var=eq={}; Do[Do[AppendTo[var,B[i,j]],{i,0,9-j}1,{j,0,9}];

Do [Do[1f [Not [i==17&&j==1],AppendToleq,b[i,jl==g[i,jlt"~ (27-9j-1)11,
{i,0,26-93}1,{j,0,2}1;

so=Solveleq,var] [[1]]; Factor[b[17,1]//.so]

Recall that g171 = 0. Thus, for any (i,j) such that i + 95 < 27, we have
bij = gi;t?H9) + O(t#)+1). Therefore, the curve Fo(X,Y) + F;(X,Y) = 0 for
0 < t < c is obtained from Cy by Viro’s patchworking by gluing the pattern in
Figure 18 into the singular point of Cy. We obtain in this way the isotopy types
(26) with a = 2,4,6,8,10. Replacing g(z,y) with g(x, —y), we obtain those with
a=3,57911. O

7.2. Restrictions. The main tool used in the proof of Theorem 7.2 is the analog
of Murasugi-Tristram inequality for colored signatures obtained in [13, 6]. Given
a pi-colored oriented link, i.e., an oriented link L in S with a fixed decomposi-
tion L = L, U---U L, into a disjoint union of sublinks, and a p-tuple of complex
numbers w = (wq,...,wy), |wi| = 1, w; # 1, V. Florens [13] defined the isotopy
invariants w-signature o,,(L) and w-nullity n,(L). In [6], D. Cimasoni and V. Flo-
rens gave an efficient algorithm for the computation of ¢, and n,, via a generalized
(colored) Seifert surface of L. This algorithm was used for the computations in the
proof of Theorem 7.2. When p = 1, these invariants specialize to the usual Tris-
tram signature and nullity. They satisfy the following analog of Murasugi-Tristram
inequality.

Weset T: ={2€C;|z|=1,z#1} and T¥ = TL x --- x T (u times).
Theorem 7.4. (See [6, 13]). Let Fy, ..., F, be disjoint embedded oriented surfaces
in the 4-ball B* transversal to the boundary S® = OB*. Let F = FyU---UF,. We
constider the colored link L = Ly U---U L, where Ly = 0F;, 1t =1,..., . Then, for

any w € T4, we have
Nw(L) > |ow(L)| 4+ x(F) (27)

where x(F) is the Euler characteristic of F. [
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Remark. In [30, 31], Oleg Viro proposed another approach to define 7, o, and to
prove Theorem 7.4. This approach is based on [27].

To reduce the computations, we use the following fact whose proof is very similar
to that of [22; Proposition 3.3].

Proposition 7.5. Let p,q be integers such that 0 < p < q and let Ly and Lo,
be two p-colored links represented by braids by and bag = boafq respectively. Let
1 and 2 be the colors of the first two strings in the part afq of the braid by,. Let
t = (t1,...,t,) € T4 be such that tity = exp(2mip/q). Let t; = exp(2mib;),
0<0;, <1, j=1,2 and 0 = 01 + 6. Then n(Lag) = n(Lo) and o¢(Lag) =

ot(Lo) + (¢ — 2p)sign(1 —6). O

Corollary 7.6. Let p,q be integers such that 0 < p < q. Let {Loyn}nez be a family
of p-colored links such that Lo, is represented by the braid bs, = ala,%”agae_%ag
with some fixed braids ay, as, asz. Let 7 and k be the colors of the h-th and the
(h + 1)-th strings of the part o2 of ba,. Suppose that the unordered pair of the
colors of the £-th and the (£+1)-th strings of the part o, °" of bay, is also {j, k} (we
do not claim that j # k). Let t = (t1,...,t,) € T be such that t;t;, = exp(2wip/q).
Then n¢(Lag) = n:(Lo) and o¢(Lag) = o¢(Lo).

Proof. If j = k, the statement follows from [22; Proposition 3.3]. If j # k, it follows
from Proposition 7.5. [

Proof of Theorem 7.2. Suppose that A has no O;-jump. Then, applying [22; Corol-
lary 2.3] to a pencil of lines centered at a point inside an empty oval of depth 1, we
may replace the group of the v innermost ovals by a singular branch with v—1 dou-
ble points as shown in Figure 20. It follows from [12; proof of Theorem 2(2)] that if
we choose p as in Figure 20, then the fiberwise arrangement of the obtained curve
with respect to £, (the pencil of lines through p) is [><g_2 Do ogl ng 053 og‘l Cr Xg]
for some odd f1, ..., B4 such that B + -+ + B4 = B; see [22; §2.2] for the notation
of fiberwise arrangements.

FIGURE 20

Let b be the braid corresponding to (RA, £,). To fix the notation, we reproduce
the definition of b from [19]. Let 7, : CP?\ p — CP' be the linear projection from
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p. We fix complex orientations on RA and RP'. Let A\ RA = A, LU A_ and
CP! \RIPl = (CIP’L LICP! be the corresponding partitions. Let H, be a closed disk
in (CIP’i containing all nonreal critical values of m,|4. We define b as the closed
braid corresponding to the braid monodromy of the curve A along the loop 0H .
We set also F' = 7rp_1(H+) NA, Fp = FNAy, L =0F, and Ly = OFL. Then L
is the braid closure of b in the 3-sphere d(m, ' (Hy) \ Up) where U, is a small ball
centered at p. We have (see [22; §2.3])

—~—1 _ _
b=o0, " Ta305 s A A ﬂ476,708 L Ag (28))
—1 —1

where 7, ; = T;il = (0;41---0; )oi...05-1) for i < j. It follows from [12] that
the complex orientation of RA is as in Figure 20. Hence, in the braid (28), the
strings 1, 8, 9 represent L, and the strings 2,...,7 represent L_.

To make the notation coherent with Theorem 7.4, we set Ly = L., Ly = L_,
Fy = Fy, F; = F_. Riemann-Hurwitz formula for the projection m,|p : F' — H
yields x(F) = 9 — e(b) where e : By — Z is the abelianization homomorphism,
i.e., e(b) is the number of branch points of the mapping m,|r. So, we have x(F) =
9—-10=—1.

The result follows from the fact that for any choice of four odd numbers Sy, ..., 84
with 81 + -+ + B4 < 24, there exist t = (t1,t2) € T? such that the inequality (27)
fails. To reduce the computations, we apply Corollary 7.6. Indeed, suppose that for
some E(O) = (6%0), cee io)) we find ¢t such that Argt; + Argty = 27 p/q mod 27
and (27) fails. Then, for any 5 = (f1,...,84) such that E = 5(0) mod 2¢q, the
inequality (27) also fails for the same .

1 —P2 —pP3 -
7-3,60-6 T6’30'3 7—3,60'6

By chance, it happens that for any § there exists ¢ = (t1,t2) with t1t9 = —1,
so, ¢ = 2. Thus, it is enough to make the computations, for example, only when
each of B1,...,84 is equal to 1 or 3. In all these 16 cases, the parameter choice
t1 = —1/ts = exp(2miby), 01 €]1/6,7/40] provides n(L) = 1, |o¢(L)| = 4, which
contradicts (27). When v = 2 mod 4 (this is enough for Theorem 7.1), one can
chose a larger interval |1/6,3/16] for 6. Note that the extremal value ¢; = 1/6
yields n:(L) = 2, |o+(L)| = 3 which does not contradict (27). O
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