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1. Introduction

In this paper we construct several examples (series of examples) of real algebraic
and real pseudoholomorphic curves in RP

2 in which we tried to maximize different
characteristics among curves of a given degree. In §2, this is the number of non-
empty ovals; in §4, the number of ovals of the maximal depth; in §5, the number
n such that the curve has an An singularity. In the pseudoholomorphic case, the
questions of §4 and §5 are equivalent to the same problem about braids, which is
studied in §3. In §6.1, we construct a real algebraic M -curve of degree 4d+ 1 with
four nests of depth d (which shows that the congruence mod 8 proven in a joint
paper with Viro is “non-empty”). In §6.2, we generalize this construction. In §7,
we construct real algebraic M -curves of degree 9 with a single exterior oval and we
classify such curves up to isotopy.

Let α = lim sup(αm/m2) where αm is twice the maximal number n such that
there exists an algebraic curve in CP

2 of degree m with an An singularity. Similarly,
let β = lim sup(βk/k

2) where βk = max lk−2(A) where lk−2(A) is the number of
ovals of A of depth k−1 and the maximum is taken over all real algebraic curves in
RP

2 of degree 2k. Let αph and βph be the same numbers for pseudoholomorphic
curves. In the following table we summarize all known estimates for these numbers
(LB/UB stand for lower/upper bound).

1 Evident LB for α, β, αph, βph

15/14, 8− 4
√
3 LB for α from [14], [4]

9/8 LB for β proved in §3.3
7/6 LB for α proved in §4
4/3 LB for αph and βph proved in §2–4
3/2 UB for α, β, αph, βph coming from signature estimates

2 Evident UB for α, β, αph, βph
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2. Iteration of Wiman’s construction

Wiman [35] proposed a method to construct real algebraic M -curves in RP
2

which have many nests. Here we use Wiman’s construction to obtain curves with
many non-empty ovals. As is shown in [16], the number Id of isotopy types realizable
by real algebraic curves of degree d in RP

2 has the asymptotics log Id = Cd2+o(d2)
for some positive constant C, and the only known upper bounds for C come from
the fact that C ≤ lim sup f(Ld/d

2) where f is a certain effectively computable
monotone function and Ld is the maximal number of non-empty ovals that a curve
of degree d may have. All known upper bounds for Ld are of the form d2/4+O(d).
Here we construct real algebraic and real pseudoholomorphic curves, in particular
M -curves, with as many non-empty ovals as we can do. The best asymptotic that
we can achieve for pseudoholomorphic curves is only d2/6+ o(d2). In the algebraic
case, the obtained asymptotics are yet worse.

Let us recall Wiman’s construction. We start with an M -curve C of even degree
d given by an equation F = 0. We double C and then perturb it, i.e., consider a
curve C′ = {F 2 − εG = 0}, |ε| ≪ 1, where G is some polynomial of degree 2d.
Suppose that the curve G = 0 meets C transversally. Then each arc of C where
G > 0 provides an oval of C′ (obtained by doubling the arc and joining the ends).
In the same way, each oval of C where G > 0 provides a pair of nested ovals of
C′. If we are lucky to find G such that it has 2d2 zeros on one oval of C and is
positive on all other ovals, then we obtain an M -curve which has O(d2) nested pairs
of ovals. This can be attained, for example, if we start with an M -curve C one of
whose ovals maximally intersect a line.

When speaking of Wiman’s construction, the divisor of G on C will be called
the branching divisor.

If we work with real pseudoholomorphic curves, then we need not bother if it is
possible or not to place correctly the branching divisor. Perturbing if necessarily the
almost complex structure, we may place it wherever we want. The only restriction
is the total degree and the parity of the number of points at each branch of C.

We say that an arrangement of embedded circles on RP
2 is realizable by a real

pseudoholomorphic curve if there exists a real pseudoholomorphic curve in CP
2

whose set of real points is isotopic to the given arrangement.

Recall that a nest of depth d is a union of d ovals V1 ∪ · · · ∪ Vd such that Vi+1 is
surrounded by Vi, i = 1, . . . , n− 1. We say that a nest N of a curve C is simple if
there exists an embedded disk D ⊂ RP

2 such that N = D ∩ C.

We shall use the encoding of isotopy types of smooth embedded curves in RP
2

proposed by Viro. Namely, n denotes n ovals outside each other; A ⊔B denotes a
union of two curves encoded by A and B respectively if there exist disjoint embedded
disks containing them; 1〈A〉 denotes an oval surrounding a curve encoded by A;
n〈A〉 = 1〈A〉 ⊔ · · · ⊔ 1〈A〉 (n times).

We extend this encoding as follows. Let 1〈〈d〉〉 denote a simple nest of depth d
and let n〈〈d〉〉 = 1〈〈d〉〉 ⊔ · · · ⊔ 1〈〈d〉〉 (n times). Also, if S encodes the isotopy type
of a curve A and A′ is obtained from A by replacing each component by k parallel
copies, then we denote the isotopy type of A′ by 〈S〉k or just by Sk in the case
when S is of the form n〈S1〉. For, example, 2〈〈3〉〉 = 〈2〉3 = 2〈 〈1〉2 〉 = 2〈1〈1〉〉 =
1〈1〈1〉〉 ⊔ 1〈1〈1〉〉 denotes .



SOME EXAMPLES OF REAL CURVES 3

Proposition 2.1. a). For any positive integers m and k there exists a real pseu-
doholomorphic M -curve Cm,k in RP

2 of degree d = 2km realizing the isotopy type

m2 − 3m+ 2

2
〈〈2k〉〉 ⊔

(
k−1⊔

j=1

(4j−1m2 − 1)〈〈2k−j〉〉
)

⊔ 4k−1m2. (1)

The number of non-empty ovals of this curve is 1
6 (4

k − 1)m2 − 3
2 (2

k − 1)m + k =
1
6
(d2 − m2) − 3

2
(d − m) + k. So, for each series {Cm,k}k≥0 with a fixed m, these

numbers have the asymptotics 1
6d

2 +O(d)

b). If k ≤ 3 then, for any m, the M -curve Cm,k can be realized algebraically.
The number of non-empty ovals of Cm,3 is 21

2 (m2 −m) + 3 = 21
128d

2 +O(d).

c). For any k > 1 there exists an algebraic curve C′
2,k of degree d = 2k+1 realizing

the isotopy type

3〈〈2k−1〉〉 ⊔
(

k−1⊔

j=2

(4j − 2j−2)〈〈2k−j〉〉
)

⊔ 4k. (2)

The number of ovals of C′
2,k is 1

2d
2 − (k8 − 1)d, i.e., it is an (M − r)-curve for

r = (k − 4)2k−2 + 2 = O(d log d).

The number of non-empty ovals of C′
2,k is 1

6
d2 − k+7

8
d+ 4

3
= 1

6
d2 +O(d log d).

Proof. All these curves are obtained by iterating Wiman’s construction.

(a). We start with Harnack’s curve Cm,0 of degree m and apply k times Wiman’s
construction to it. At each step, we place the branching divisor on one empty
exterior oval (see Figures 1.0 – 1.2) except the first step when we place it on the
non-empty oval (for even m) or on the odd branch (for odd m).

Figure 1.0. The curve C4,0 Figure 1.1. The curve C4,1

(b). The first three steps of this construction can be performed algebraically if
the initial curve is arranged with respect to some three lines as in Figure 1.0. It
means that there are three disjoint arcs on the non-empty oval (on the odd branch
for odd m) meeting three lines at m points which lie on the arcs in the same order
as on the lines. By classical terminology, such arcs are called bases.
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Figure 1.2. The curve C4,2

. . .
. . .

. . .
. . .

Figure 1.3. A part of C′
2,3

(c). To continue iterations of Wiman’s construction, we need more bases. By
Mikhalkin’s theorem [18], an M -curve of degree d ≥ 3 cannot have more than three
bases. So, we start with d = 2. Choose a conic C′

2,0, disjoint arcs α1, . . . , αk on
it, and lines L1, . . . , Lk such that Li cuts αi at two points. Let C′

2,k+1 be obtained

from C′
2,k by Wiman’s construction using the line Lk. It happens, however, that it

is not enough to have many bases on the initial curve. The construction produces
M -curves for k ≤ 3 because the line Lk meets only one oval of C′

2,k−1, k = 1, 2, 3.

Unfortunately, starting with k = 4, the line Lk meets more than one oval (see
Figure 1.3 where we depicted L4 and the part of C′

2,3 obtained from that oval of

C′
2,2 which meets L3). Easy to see that Lk meets 2k−3 ovals for k ≥ 3. Using this

fact, the result can be easily proven by induction. �

Lemma 2.2. Let A be a real pseudoholomorphic curve of degree d = 2k. Suppose
that an empty oval V of A has a tangency of order d with a line L. Let S be the
isotopy type of A \V . Then there exists a pseudoholomorphic curve A′ of degree 2d
one of whose empty ovals has a tangency of order 2d with L, and the isotopy type
of A′ is S2 ⊔ d2, in particular, if A is an M -curve, then A′ is an M -curve also.

Figure 2

Proof. Let p be the tangency point, We apply Wiman’s construction in two steps.
First, we perturb A so that the perturbed curve A′′ has a tangency with A at p of
order d and has d2−d more intersection points, all lying on V . We may assume that
A ∪ A′′ is holomorphic in some neighbourhood of p and is defined by the equation
(y − axd)(y − bxd) = 0, 0 < a < b. Then we perturb A ∪ A′′ by gluing at p the
chart (y − P (x))y + εx2d where roots of P are real negative (see Figure 2). �
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Corollary 2.3. For any d there exists a real pseudoholomorphic M -curve Ad on
RP

2 of degree d which has at least Ld = 1
6d

2 − 7
54(3d)

4/3 +O(d) non-empty ovals.

Proof. Let k = [ 13 log2(3d)] and d = 2km + r, 0 ≤ r < 2k. Let C = Cm,k be as in
Proposition 2.1. By Lemma 2.2, we may suppose that C has a maximal tangency
with some line. So, let A be obtained from C by applying r times Harnack’s
construction. Then A is an M -curve and the number of its nonempty ovals is at
least Ld = 1

6(d
2
1 −m2)− 3

2 (d1 −m) + k where d1 = 2km = degC. Note that (x, r),

x = 2k, satisfies

(3d)1/3 ≤ 2x ≤ 2 · (3d)1/3, 0 ≤ r ≤ x− 1, (3)

and Ld = 1
6f(2

k, r)+ k where f(x, r) = (d− r)2(1− x−2)− 9(d− r)(1− x−1). It is
an easy calculus exercise to find the minimum of f under the constraints (3). �

Remark. It seems that the term O(d4/3) in Corollary 2.3 is not optimal. Maybe,
using a more careful construction (like in Section 3) it can be replaced by O(d).

In contrary, it is not clear at all how to construct real algebraic curves of any
degree d with 1

6d
2 + o(d2) non-empty ovals. Proposition 2.1(c) gives an example

with this asymptotics for the sequence of degrees dk = 2k, but is it possible to do
the same for, say, dk = 2k − 1?

3. When the braid σ−N
1 ∆n is quasipositive

The purpose of this section is, for given n and k, to find N as large as possible
such that the braid σ−N

1 ∆n
k is quasipositive (see §3.1 for definitions and see §4

and §5 for motivations). We propose here a recursive construction based on the
binary decomposition of k. The best value of N obtained by this construction is
presented in Theorem 3.13 (see also Corollary 3.15) in §3.6. We cannot prove that
the obtained value of N is optimal.

3.1. Quasipositive braids.

Let Bn be the group of braids with n strings (n-braids). It is generated by
σ1, . . . , σn−1, subject to relations σiσj = σjσi for j − i > 1 and σiσjσi = σjσiσj

for j − i = 1. We suppose that {1} = B1 ⊂ B2 ⊂ B3 ⊂ . . . by identifying σi of Bk

with σi of Bn. We set B∞ =
⋃

m Bn. Let ∆n be the Garside element of Bn. It is
defined by

∆0 = ∆1 = 1, ∆n+1 = σ1σ2 . . . σn ∆n. (4)

Let Qn be the submonoid of Bn generated by {a−1σia | a ∈ Bn, 1 ≤ i < n}. The
elements of Qn are called quasipositive braids (this term was introduced by Lee
Rudolph in [25]). Theorem 3.1 in §3.3 shows that Qk+1 ∩Bk = Qk, i.e., the notion
of quasipositivity is compatible with the convention that Bk ⊂ Bk+1.

We introduce a partial order on Bn by setting a ≤ b if ab−1 ∈ Qn. Then
Qn = {x ∈ Bn | x ≥ 1}. Since Qn is invariant under conjugation, this order is left
and right invariant, i.e. b′ ≤ b implies ab′c ≤ abc. Indeed, if b′b−1 ∈ Qn, then
(ab′c)(abc)−1 = a(b′b−1)a−1 ∈ Qn.

We write a ∼ b if a and b are conjugate. Note that a ∼ b ≥ c does not imply
a ≥ c. Indeed, for n = 3 we have σ2 ∼ σ1 ≥ σ1σ

−1
2 but the assertion σ2 ≥ σ1σ

−1
2

is wrong because σ2(σ1σ
−1
2 )−1 = σ2

2σ
−1
1 6∈ QP3 (see, e.g., [20] or [23]). However,

b1 ∼ b2 ≥ b3 ∼ b4 ≥ · · · ∼ b2n ≥ 1 does imply b1 ≥ 1.
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3.2. Shifts and cablings.

Let sm, cm : B∞ → B∞ be the group homomorphisms of m-shift and m-cabling
defined respectively by sm(σi) = σi+m and

cm(σi) = (σmiσmi+1 . . . σmi+m−1)(σmi−1 . . . σmi+m−2) . . . (σmi−m+1 . . . σmi).

(see the left hand side of Fig. 4). We set c = c2 (Fig. 3), cd = c2d and sd = s2d .
Then

cd = c ◦ · · · ◦ c (d times), c(σi) = σ2iσ2i−1σ2i+1σ2i.

Figure 3. Example of 2-cabling: c(σ3σ2σ
−1
3 σ2σ1σ3)

Figure 4. ck(σ1) ≥ ∆k ∆̃k (k = 5)

Let rm : Bm → Bm be the index reversing homomorphism: rm(σj) = σm−j .

Let ∆̃n = sn(∆n). Then we have

b∆m = ∆mrm(b), b ∈ Bm; rm(∆m) = ∆m (5)

∆̃k∆2k = ∆2k ∆k, ∆k∆2k = ∆2k ∆̃k, (6)

∆̃kck(σ1) = ck(σ1)∆k, ∆kck(σ1) = ck(σ1) ∆̃k, (7)

ski(∆k) skl(∆k) = skl(∆k) ski(∆k), (8)

∆2k = ∆k∆̃k ck(σ1) = ∆k ck(σ1)∆k. (9)

The last identity is the specialization for a = 2 of

∆ak = ck(∆a)

a−1∏

j=0

sjk(∆k). (10)

All these identities easily follow, e.g., from the characterization of ∆k in [9].
Combining (6)–(9), we obtain

∆2
2k = ∆̃2

k∆
2
k ck(σ

2
1), (11)

We have ck(σ1) ≥ ∆k ∆̃k (see Figure 4). Combining this with (6), we obtain

ck(σ1) ≥ ∆a
k ∆̃

b
k for any a, b such that a+ b = 2. (12)

Indeed, ck(σ1)
(6)
= ∆a−1

k ck(σ1)∆̃
1−a
k

Fig. 4

≥ ∆a−1
k (∆k∆̃k)∆̃

1−a
k = ∆a

k∆̃
2−a
k .

Combining (12) and (9) we obtain also

∆2k = ∆kck(σ1)∆k ≥ ∆4
k (13)
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3.3. Quasipositivity and stabilizations.

In this section we show that the quasipositivity is stable under two kinds of
stabilizations: the inclusion Bn ⊂ Bn+1 and positive Markov moves.

Theorem 3.1. Qn+1 ∩Bn = Qn.

This is a specialization for k = 1 of the following fact.

Theorem 3.2. Let a ∈ Bk, b ∈ Bn, and c = sn(a)b ∈ Bn+k. Suppose that
c ∈ Qn+k. Then a ∈ Qk and b ∈ Qn.

Proof. Let D be the unit disk in C. By Rudolph’s theorem [25], a braid is quasi-
positive if and only if it is cut on (∂D)× C by an algebraic curve in D × C which
has no vertical asymptote.

Let La, Lb, and Lc be the links in 3-sphere represented by a, b, and c. Let
Ac be the algebraic curve bounded by Lc. The fact that c = sn(a)b means that
Lc = La∪Lb and the sublinks La, Lb are separated by an embedded sphere. Then,
by Eroshkin’s theorem [10], Ac is a disjoint union of curves Aa and Ab bounded by
La and Lb respectively. Hence, a and b are quasipositive. �

This proof of Theorem 3.2 relies on analytic methods (the filling disk techniques
is the main tool in [10]). However, Theorem 3.1 has a purely combinatorial proof
based on Dehornoy’s results [8] completed by Burckel-Laver’s theorem [3,17].

Say that a braid b ∈ Bn is Dehornoy i-positive,1 i = 1, . . . , n − 1, if there exist

braids b0, . . . , bk ∈ Bn−i, k ≥ 1, such that b = b0
∏k

j=0(σn−ibj). Say that b is
Dehornoy positive if it is i-positive for some i = 1, . . . , n − 1. Let Pi be the set of

(n+ 1− i)-positive braids and P̄i =
⋃i

j=1 Pj .

In this notation, Dehornoy’s theorem [8] (see also [11] for another proof) states
that (i) Bn is a disjoint union {1}∪P̄n∪P̄−1

n ; (ii) P̄n is a disjoint union P2∪· · ·∪Pn;
(iii) Pi and P̄i, 2 ≤ i ≤ n, are subsemigroups of Bn. Burckel-Laver’s theorem [3,
17] (see also [20] or [34] for another proof) states that (iv) Qn ⊂ P̄n.

Combinatorial proof of Theorem 3.1. The inclusion Qn ⊂ Qn+1 ∩ Bn is evident.
Let us show that Qn+1 ∩ Bn ⊂ Qn. Let b ∈ Qn+1 ∩ Bn. Then b = x1 . . . xk, each
xj being a conjugate of σ1 in Bn+1. By (iv), we have xj ∈ P̄n+1, j = 1, . . . , k.
If xj ∈ Pn+1 for some j, then b ∈ Pn+1 by definition of i-positivity. By (ii), this
contradicts b ∈ Bn. Hence, each xj is in Pn.

Thus, it remains to show that if x is a conjugate of σ1 in Bn+1, then x is a
conjugate of σ1 in Bn. This follows from the fact that any conjugate of σ1 can
be presented in a unique way as x = cai,jc

−1, i < j, where ai,j is so-called band-
generator (i.e., ai,j = aσia

−1 for a = σj−1σj−2 . . . σi+1) and c is in the kernel of
the pure braid group homomorphism of forgetting the i-th string. The latter fact
can be easily proved using the braid combing theory. �

Stability under positive Markov moves.

Theorem 3.3. Let b ∈ Bn. Then b ∈ Qn if and only if bσn ∈ Qn+1.

This fact is reduced in [21] to Gromov’s theorem on pseudoholomorphic curves.
The reduction given in [21] is rather cumbersome, but Michel Boileau observed
that it can be considerably simplified using the arguments from our joint paper [2]

1Our definitions differ from those in [8] only by the reversing of the string numbering.
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(unfortunately, this observation was done when [2] had already been published).
Indeed, it is proved (though not stated explicitly) in [2] that if L is the boundary
link of an analytic curve in B4 ⊂ C

2, and L is transversally isotopic2 to a closed
braid b, then b is quasipositive. To deduce Theorem 3.3 from this fact, we note that
bσn bounds an analytic curve (by Rudolph’s theorem [25]), and b is transversally
isotopic to bσn (an easy exercise; see, e.g., [24; Lemma 1]).

∆2

 b  b

Figure 5. The braids b′ (on the left) and b′′ (on the right)

Corollary 3.4. Let b ∈ Bn and k ≤ n. Then b′ = b sn−k(∆
2
k) is quasipositive if

and only if b′′ = b sn−k(ck(σ1)) is quasipositive (see Figure 5).

Figure 6. ck+1(σ1)
Mm→ · · · = (σk . . . σ2σ1) · s1(ck(σ1)) · (σ1σ2 . . . σk)

Proof. We say that b1b2 is obtained from b0 by a positive Markov move (and we

write b0
Mm→ b1b2) if b1, b2 ∈ Bn and b0 = b1σnb2. By Theorem 3.3, it is enough to

prove that b′′
Mm→ . . .

Mm→ b′. If k = 0, this is trivial. Suppose that this statement is
proved for k. Then

ck+1(σ1)
Mm→ (σk . . . σ1) s1(ck(σ1)) (σ1 . . . σk) (see Figure 6)

Mm→ (σk . . . σ1) s1(∆
2
k) (σ1 . . . σk) (by the induction hypothesis)

= rk+1(σ1 . . . σk∆
2
kσk . . . σ1)

(4)
= ∆2

k+1. �

3.4. Subgroup A∞ of B∞.

For and integer d ≥ 1, let Xd = {sk2d(∆2d) | k ≥ 0, k ∈ Z} and let Ad be the
subgroup of B∞ generated by Xd. It is a free abelian group freely generated by
Xd. For example, A1 is the subgroup of B∞ generated by σ1, σ3, σ5, . . . .

Let A∞ be the subgroup of B∞ generated by
⋃
Xd, i.e., the product of all the

subgroups Ad. This product is semidirect in the sense that A1 . . . Ad is a normal

2In the sense of the contact geometry
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subgroup of A∞, and for any d, e, the subgroup Ae is a normal in AeAd if e ≤ d.
In the latter case, the action of Ad on Ae by conjugation is very easy to describe.
Let x ∈ Xe, y ∈ Xd, e ≤ d. Let Px (resp. Py) be the set of strings permuted by x
(resp. by y). Only two cases are possible: either Px and Py are disjoint and then
x and y commute, or Px ⊂ Py and then y acts on x as in (5).

In particular, each element x of A1 . . . Ad can be uniquely presented in the form

x = x1 . . . xd, xe ∈ Ae

Let χd : Ad → Z be the homomorphism which takes each element of Xd to 1,
and let Am

d = χ−1
d (m). Since A∞ is a semidirect product of Ad’s, the characters

χd extend in a unique way to a homomorphism χ : A∞ →
⊕∞

d=1 Z such that
χ(x1 . . . xd) = (χ1(x1), . . . , χd(xd)) if xe ∈ Ae for e = 1, . . . , d (here and below, we
truncate the tail of zeros).

The above discussion implies also the following two easy facts:

Lemma 3.5. Let 0 < r < 2d and m = 2dq+r. Then A∞∩Bm is the direct product
of its subgroups A∞ ∩Bm−r and sm−r(A∞ ∩Br). �

Lemma 3.6. Let B = B2d , B̃ = sd(B). Let x ∈ A∞∩B2d+1 and n = (n1, . . . , nd) =
χ(x). Then, for any decomposition n = n′ + n′′ + ñ′ + ñ′′, there exist x′, x′′ ∈ B

and x̃′, x̃′′ ∈ B̃ such that χ(x′) = n′, χ(x′′) = n′′, χ(x̃′) = ñ′, χ(x̃′′) = ñ′′, and

x∆2n+1
2d+1 ∼ x′x̃′∆2n+1

2d+1 x
′′x̃′′. (14)

Proof. (hope that the notation is self-explained)

x∆2n+1
2d+1 = abcũṽw̃∆2n+1

2d+1 = aũ∆2n+1
2d+1 vwb̃c̃ ∼ wac̃ũ∆2n+1

2d+1 vb̃. �

3.5. The case when the number of strings is a power of 2.

For any d ≥ 0, we set

Sd = 1 + 4 + 42 + · · ·+ 4d−1 = (4d − 1)/3.

So, (S0, S1, . . . ) = (0, 1, 5, 21, 85, 341, 1365, . . .). We have the recurrences:

Sd − 4Sd−1 = 1, Sd − 5Sd−1 + 4Sd−2 = 0. (15)

Lemma 3.7. Let x ∈ A∞ ∩ B2d , χ(x) = (n1, . . . , nd). If d = 1, we suppose only
that n1 ≥ 0. If d ≥ 2, we suppose that

d∑

e=k+1

(neSe−k − εe) ≥ 0, k = 0, . . . , d− 1, (16)

where

ε1 = 1, εd =
3 + (−1)nd

2
, εe =

5− (−1)ne

2
, 1 < e < d, (17)

i.e., nd ≥ εd, 5nd + nd−1 ≥ εd + εd−1, . . . , Sdnd + · · ·+ 5n2 + n1 ≥ εd + · · ·+ ε1.

Then x is quasipositive.
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Proof. Induction by d. If d = 1, then the statement is trivial because in this case
x = σn1

1 . So, let us assume that the statement is true for d− 1 and let us prove it
for d.

Let ∆ = ∆2d−1 , ∆̃ = ∆̃2d−1 = sd−1(∆), δk = s(k−1)2d−2(∆2d−2), σ̂k = cd−2(σk).

The notation δa12 is an abbreviation for δa
′

1 δa−a′

2 when the value of a′ is not important
for us. In this notation, (6) – (9) and (12) specialize to

∆∆2d = ∆2d∆̃, δ1∆ = ∆δ2, δ3∆̃ = ∆̃δ4, (6′)

σ̂iδi = δi+1σ̂i, σ̂iδi+1 = δiσ̂i, σ̂iδk = δkσ̂i, k 6∈ {i, i+ 1}. (7′)

δiδl = δlδi, ∆∆̃ = ∆̃∆, (8′)

∆ = σ̂1δ1δ2 ∆̃ = σ̂3δ3δ4, (9′)

∀ a ∈ Z, σ̂k ≥ δakδ
2−a
k+1 (12′)

Combining (12′) and (9) we obtain

σ̂1σ̂2

(12)

≥ σ̂1δ
2
2

(9)
= ∆δ−1

1 δ2 = ∆δ012 (18)

∆ 1

4∆ 4

∆ 1

∆

Figure 7.1. ∆̃−6∆−3∆2
2d = . . . Figure 7.2

∆ 1

∆ 2

∆ 1

∆ 2

δ 2

δ 2
δ 2

δ 1

δ

δ 2
δ 2

δ 2

δ 1

δ

Figure 7.3. Figure 7.4. · · · = δ−2
1 δ−4

4 σ̂2

Let us show that
∆̃−6∆−3∆2

2d ≥ δ−2
1 δ−4

4 σ̂2 (19)

(this is the heart of the proof). Indeed (see Figures 7.1 – 7.4),

∆̃−6∆−3∆2
2d

(11)
= ∆̃−6∆−3(∆2∆̃2cd−1(σ2

1)) = ∆̃−4∆−1(σ̂2σ̂1σ̂3σ̂2)
2

(12)

≥ ∆̃−4∆−1σ̂2(δ
2−a
1 δa2 )σ̂3σ̂

2
2σ̂3σ̂1σ̂2

(7)
= ∆̃−4∆−1(σ̂2σ̂3σ̂

2
2)σ̂3σ̂1δ

a
1δ

2−a
2 σ̂2

= ∆̃−4∆−1σ̂2
3σ2σ̂

2
3 σ̂1δ

a
1 δ

2−a
2 σ̂2

(12)

≥ ∆̃−4∆−1σ̂2
3(δ

b
2δ

2−b
3 )σ̂2

3σ̂1δ
a
1δ

2−a
2 σ̂2

(7)
= ∆̃−4∆−1σ̂4

3σ̂1δ
a+b
1 δ2−a

2 δ2−b
3 σ̂2

(9)
= (δ1δ2)

−1(δ3δ4)
−4δa+b

1 δ2−a
2 δ2−b

3 σ̂2
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and we obtain (19) by setting a = 1, b = −2. We have also

∆2d ≥ σ̂1σ̂2∆
2δ412 (20)

Indeed,

∆2d

(9)
= ∆cd−1(σ1)∆ = ∆σ̂2σ̂1σ̂3σ̂2∆

(12)

≥ ∆σ̂2σ̂1(δ
2
3)(δ

5
2δ

−3
3 )∆

(9)
= σ̂1δ1δ2σ̂2σ̂1δ

5
2δ

−1
3 ∆

(7)
= σ̂1σ̂2σ̂1δ

6
2∆

(9)
= σ̂1σ̂2(∆δ−1

1 δ−1
2 )δ62∆

(9)
= σ̂1σ̂2∆

2δ412.

We set nd = 2n+1+r, r ∈ {0, 1}. Letmd−1 = nd−1+10n+4r, md−2 = nd−2−8n,

n′
d−1 = md−1 + 3 = nd−1 + 5nd − r − 2 = nd−1 + 5nd − εd − 1,

n′
d−2 = md−2 + 4 = nd−2 − 4nd + 4r + 8 = nd−2 − 4nd + 4εd + 4,

and n′
e = ne for e = 1, . . . , d − 3. In the following computation we assume that

y1, y2, z, x
′ ∈ A∞ ∩ B2d−1 and χ(y1) = χ(y2) = (n1, . . . , nd−2, md−1), χ(z) =

(n1, . . . , nd−3, md−2, md−1), χ(x′) = (n′
1, . . . , n

′
d−1). Let x = x1∆

nd

2d with x1 ∈
(A1 . . . Ad−1) ∩B2d . So, we have

x = x1 . . . xd−1∆
nd

2d

(13)

≥ x1 . . . xd−1∆
4r∆2n+1

2d

(14)∼ y1∆
−3n∆̃−6n∆2n

2d∆2d∆−n

= y1(∆
−3∆̃−6∆2

2d)
n∆2d∆−n

(19)

≥ y1δ
−2n
1 δ−4n

4 σ̂n
2∆2d∆−n

= y1δ
−2n
1 σ̂n

2∆2dδ−4n
1 ∆−n ∼ y2δ

−6n
12 σ̂n

2∆2d∆−n (9)
= y2δ

−6n
12 σ̂n

2∆2d σ̂−n
1 δ−2n

12

∼ z σ̂n
2∆2d σ̂−n

1

(20)

≥ z σ̂n
2 σ̂1σ̂2δ

4
12∆

2σ̂−n
1 = z σ̂1σ̂2δ

4
12∆

2
(18)

≥ zδ412∆
3 = x′.

It remains to check that the induction conditions are satisfied for x′ and d− 1.
If d = 2, then n′

1 = n1 + 5n2 − ε2 − 1 = (n1S1 − ε1) + (n2S2 − ε2) ≥ 0 and we are
done.

Suppose that d > 2. Let (16′) and (17′) refer to the formulas (16), (17) where
d− 1, n′

e, and ε′e replace d, ne, and εe. So, we define ε′1, . . . , ε
′
d−1 by (17′) and we

have to check the inequalities (16′) for k = 0, . . . , d− 2. Indeed, we have n′
e = ne

for e < d− 2; n′
d−2 − nd−2 = −8n + 4 is even, and n′

d−1 − nd−1 = 10n+ 4r + 3 is
odd. Hence, ε′e = εe for e ≤ 2, and

ε′d−1 = (3 + (−1)n
′

d−1)/2 = (3− (−1)nd−1)/2 = (5− (−1)nd−1)/2− 1 = εd−1 − 1

and we obtain for any k = 0, . . . , d− 2

d∑

e=k+1

εe −
d−1∑

e=k+1

ε′e = εd−1 + εd − ε′d−1 = εd + 1.

Since n′
e = ne for e < d− 2, and S0 = 0, we have for any k = d− p ≤ d− 2

d∑

e=k+1

neSe−k −
d−1∑

e=k+1

n′
eSe−k = (nd−2 − n′

d−2)Sp−2 + (nd−1 − n′
d−1)Sp−1 + ndSp

= (4nd − 4εd − 4)Sp−2 + (−5nd + εd + 1)Sp−1 + ndSp

= (Sp − 5Sp−1 + 4Sp−2)nd + (Sp−1 − 4Sp−2)(εd + 1)
(15)
= εd + 1.

Thus, (16′) is equivalent to (16). �

Let us emphasize some particular cases of Lemma 3.7:
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Corollary 3.8. Let x ∈ A∞ ∩ B2d , d ≥ 2, χ(x) = (n1, . . . , nd), and let ε1, . . . , εd
be as in (17).

(a). If nd > 0, ne ≥ 0 for e = 2, . . . , d − 1, and (16) holds for k = 0, i.e.,
∑

e(neSe − εe) ≥ 0, then x is quasipositive,

(b). In particular, if n2, . . . , nd are even and non-negative, nd is positive, and

n1 + 5n2 + 21n3 + · · ·+ Sdnd ≥ 2d− 1, (21)

then x is quasipositive.

Proof. (a). It is enough to check (16) for k = 1, . . . , d− 1. First, note that (16) for
k = d− 1 is just nd ≥ εd which is equivalent to nd > 0. So, let 1 ≤ k ≤ d− 2. For
any m ≥ 1 we have 3(m − 1) ≤ Sm − 1. Hence, εk+1 + · · ·+ εd−1 ≤ 3 + · · ·+ 3 =
3(d− k − 1) ≤ Sd−k − 1 ≤ nd(Sd−k − 1). Thus,

d∑

e=k+1

(neSe−k − εe) =
(

nd(Sd−k − 1)−
d−1∑

e=k+1

εe

)

+ (nd − εd) +
d−1∑

e=k+1

Se−kne ≥ 0.

(b). Immediate from (a). �

Corollary 3.9. For positive integers d, n, if N ≤ (4d−1)n/3−2d+(3−(−1)n)/2,

then σ−N
1 ∆n

2d ≥ 0.

Proof. χ(σ−N
1 ∆n

2d) = (−N, 0, . . . , 0, n), so we may apply Corollary 3.8. �

Remark. Corollary 3.8 combined with arguments similar to those in the proof of
Corollary 2.3 allows to show that for any k, the braid σ−N

1 ∆k is quasipositive for

N = 1/3 k2 + O(k4/3). However, in the next subsection we give a better estimate
for N of the form 1/3 k2 +O(k).

3.6. The general case.

Lemma 3.10. Let p, d > 0, m′ = 2dp, m = m′ + 2d−1 = (2p + 1)2d−1, and
x ∈ A∞ ∩Bm. Then x∆m ≥ x′∆m′ for some x′ ∈ A∞ ∩Bm′ such that χd−1(x

′) =
χd−1(x) + 1, χd(x

′) = χd(x) + p, and χe(x
′) = χe(x) for e 6∈ {d− 1, d}.

2p∆2p∆

Figure 8. Illustration to the proof of Lemma 3.10 (p = 3)

Proof. By Lemma 3.5, we may write x = yỹ with y ∈ A∞ ∩ Bm′ , and ỹ ∈ A∞ ∩
sm′(B2d−1). Let δk = s2d−1(k−1)(∆2d−1), ∆ = ∆2k , We denote here cd−1(α) by α̂
for any braid α.

Let z = ∆m ỹ∆−1
m and w = ∆m′ z∆−1

m′ . Then, by (5), we have z, w ∈ A∞ ∩Bm′

and χ(w) = χ(z) = χ(y). In the following computation, the “wild character” δa

stands for any product of the form δa1

1 . . . δ
a2p

2p (no δ2p+1 !) with a1 + · · ·+ a2p = a
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when the explicit values of aj ’s are not important for us. In other words, δa stands
for any element of Xa

2d−1 ∩Bm′ . Similarly, ∆a stands for any element of Xa
2d ∩Bm′ .

So, we have (see Figure 8)

x∆m = yỹ∆m = y∆mz
(10)
= y ∆̂2p+1δ

2pδ2p+1z
(5)
= y δ1∆̂2p+1δ

2pz

(4)
= y δ1σ̂1 . . . σ̂2p∆̂2pδ

2pz
(10)
= y δ1(σ̂1 . . . σ̂2p)∆m′δ0 z

(12)

≥ y δ1(σ̂1δ
2
2 σ̂3δ

2
4 . . . σ̂2p−1δ

2
2p)∆m′ z = y δ2p+1σ̂1σ̂3 . . . σ̂2p−1w∆m′

(9)
= y δ1∆pw∆m′ . �

Lemma 3.11. Let k ≥ 2. Consider the binary decomposition

k =

d∑

i=0

ai2
i, ai ∈ {0, 1}, ad = 1. (22)

Let x ∈ A∞ ∩Bk. Then there exists y ∈ A∞ ∩B2d such that x∆k ≥ y and

χi(y)− χi(x) = ai + ai−1

d∑

j=i

aj2
j−i, i = 1, . . . , d. (23)

Proof. Induction by ν(k) – the number of ones in the binary decomposition of k. If
ν = 1, then k = 2d and a0 = · · · = ad−1 = 0, hence, (23) holds for y = x∆k = x∆2d .

Assume that the statement is proved for all k′ with ν(k′) < ν(k) and let us prove
it for k. Let 2e−1 be the maximal power of 2 which divides k, i.e., (a0, . . . , ad) =
(0, . . . , 0, 1, ae, . . . , ad). Let k′ = k − 2e−1. Then k′ =

∑
a′i2

i where (a′0, . . . , a
′
d) =

(0, . . . , 0, 0, ae, . . . , ad). By Lemma 3.10, there exists x′ ∈ A∞ ∩ Bk′ such that
x∆k ≥ x′∆k′ and χ(x′) − χ(x) = (n1, . . . , nd) = (0, . . . , 0, 1, p, 0, . . . , 0) where

p = k′/2e =
∑d

j=e aj2
j−e, ne−1 = 1, and ne = p.

Since ν(k′) = ν(k) − 1, there exists y ∈ A∞ ∩B2d such that x′∆k ≥ y and (23)
holds with x and ai replaced by x′ and a′i. Hence,

χi(y)− χi(x) =
(
χi(x

′)− χi(x)
)
+
(
χi(y)− χi(x

′)
)
= ni + a′i + a′i−1

d∑

j=i

a′j2
j−i

=







0 + ai + ai−1(ai + 2ai+1 + · · ·+ 2d−iad), i ≥ e+ 1,

p+ 1 + 0, i = e,

1 + 0 + 0, i = e− 1,

0 + 0 + 0, i ≤ e− 2.

This is equal to the right hand side of (23) in all the four cases. �

We define arithmetic functions f(k), g(k) via the binary decomposition (22):

f(k) =

d∑

i=0

ai +
∑

0≤i<j≤d

aiaj2
j−i−1, g(k) = ad−1 − 1 +

d−1∑

i=2

ai(1− ai−1). (24)
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Corollary 3.12. Let k be as Lemma 3.11. Then there exists y ∈ A∞ ∩ B2d ,
χ(y) = (n1, . . . , nd), such that ∆k ≥ y and

(1− (−1)ni)/2 = ai(1− ai−1), i = 1, . . . , d,

S1n1 + · · ·+ Sdnd = (k2 − f(k))/3.

Proof. By (23) we have ni = ai+ai−1(ai+2ai+1+ . . . ) ≡ ai(1−ai−1) mod 2 and

3
d∑

i=1

Siχi(y) =
d∑

i=1

(4i − 1)
(

ai + ai−1

d∑

j=i

aj2
j−i
)

=
d∑

i=0

ai(4
i − 1) +

d∑

i=1

(4i − 1)ai−1

d∑

j=i

aj2
j−i

=

d∑

i=0

ai4
i −

d∑

i=0

ai +
∑

0≤i<j≤d

aiaj(4
i+1 − 1)2j−i−1

=
d∑

i=0

a2i 4
i + 2

∑

0≤i<j≤d

aiaj2
i+j − f(k) = k2 − f(k). �

Theorem 3.13. Let k ≥ 2, n ≥ 1. Let f and g be as in (22), (24). We set

ε = (1− (−1)n)/2, d = [log2 n]. Then σ−N
1 ∆n

k is quasipositive for

N =
n(k2 − f(k))

3
− 2d+ 1− εg(k) +

[n

4

]

max
(

0, f(k)− g(2k)− 2d− 1
)

.

Proof. Let E = f(k)−g(2k)−2d−1. If E ≤ 0, then the result follows immediately
from Corollaries 3.8 and 3.12. Consider the case E > 0. Let q = [n/4], r = n− 4q.

We set x = σ−N1

1 ∆r
k, y = σ−N2

1 ∆2k, and z = σ−N2

1 ∆4
k where N1 = r(k2−f(k))/3−

2d+1− εg(k) and N2 =
(
(2k)2−f(2k)

)
/3−2d−1− g(2k). By Corollaries 3.8 and

3.12, we have x ≥ 1 and y ≥ 1. Combining y ≥ 1 with Corollary 3.4, we obtain
z ≥ 1. Since f(2k) = f(k), we have N = N1 + qN2. Thus, σ

−N
1 = xzq ≥ 1. �

Proposition 3.14. a). We have 1 ≤ f(k) ≤ k for any k. Moreover, f(k) = k iff
k = 2d+1 − 1 and f(k) = 1 iff k = 2d for some d ≥ 0.

b). We have k−f(k)−3g(2k) ≥ 0. The equality is attained iff either k = 2d+2−1
or k = 2d+3 − 2d − 1 for some d ≥ 0.

Proof. a).

k − f(k) =

d∑

j=0

aj

(

2j − 1−
j−1
∑

i=0

ai2
j−i−1

)

≥
d∑

j=0

aj

(

2j − 1−
j−1
∑

i=0

2j−i−1
)

= 0

and we have the equality iff k = 2d − 1. It is evident that f(k) = 1 iff k = 2d.

b). Exercise. �

Corollary 3.15. a). If N ≤ 2
3 (k

2−k)−2[log2 k]+1, then σ−N
1 ∆2

k is quasipositive.

b). If N ≤ 4
3k

2 − 1
3k − 2[log2 k]− 1, then σ−N

1 ∆2k is quasipositive. �
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4. Curves with a deep nest and with many innermost ovals

4.1. Real pseudoholomorphic curves.

Let A be a real curve on RP
2. We say that the depth of an oval of RA is q

if it is surrounded by q ovals. Degtyarev, Itenberg, and Kharlamov [7] ask: how
many ovals of the depth k − 2 a curve of degree 2k may have? Note, that k − 2 is
the maximal possible depth of ovals of a non-hyperbolic curve (a curve of degree
2k is called hyperbolic if it has k nested ovals and hence, by Bezout’s theorem, it
cannot have more ovals). This question appears from the study of the number of
components of an intersection of three real quadrics in higher dimensional spaces
(see details in [7]).

Let us denote the number of ovals of depth q of a curve A by lq = lq(A). The
improved Petrovsky inequality implies lk−2 ≤ 3

2
k2 + O(k). On the other hand,

Hilbert’s construction provides curves with lk−2 ≥ k2 + O(k). We improve this
lower bound up to 9/8 k2 for algebraic curves (see Proposition 4.3). The results
of §3 (see Theorem 3.13 and Corollary 3.15(b)) provide a lower bound of the form
4/3 k2 +O(k) for real pseudoholomorphic curves because of the following fact.

Proposition 4.1. The braid σ−N
1 ∆2k is quasipositive if and only if there exists a

real pseudoholomorphic curve A in RP
2 of degree 2k such that lk−2(A) = N .

Proof. According to [22; §2.3], the fiberwise arrangement [⊃1 o
N−1
1 ⊂1] is realizable

by a real pseudoholomorphic curve of degree 2k if and only if the braid x = σ−N
1 ∆2k

is quasipositive. Thus, the quasipositivity of x implies the existence of a curve with
lk−2 = N .

. . .

. . .

. . .

. . .

. . .

. . .

p

Figure 9.1 Figure 9.2 Figure 9.3

Suppose that there exists a pseudoholomorphic curve A of degree 2k with lk−2 =
N . Let v1, . . . , vN be the innermost ovals (i.e., the ovals of depth k − 2). If some
arrangement of embedded circles in RP

2 is realizable by a real pseudoholomorphic
curve and we erase an empty oval, then the new arrangement is also realizable by
a real pseudoholomorphic curve. Thus, without loss of generality we may assume
that A realizes the isotopy type 1〈. . . 1〈N〉 . . . 〉. The arguments from [28] based on
auxiliary conics through five innermost ovals prove that v1, . . . , vN are in a convex
position. Thus, choosing a pencil of lines centered at v1, we see that v2, . . . , vN
form a single chain (see Figure 9.1), hence they can be replaced by a single branch
B which has N − 2 double points (see Figure 9.2). Choosing a pencil of lines as
in Figure 9.2, we attach B to v1 as in Figure 9.3. The braid corresponding to the
arrangement of the obtained curve with respect to the pencil of lines centered at p
(see Figure 9.3) is a conjugate of σ−N

1 ∆2k. �
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Corollary 4.2. For any integer k ≥ 2, there exists a real pseudoholomorphic curve
A on RP

2 of degree 2k such that lk−2(A) ≥ (4k2 − f(k))/3− 2[log2 k] − 1− g(2k)
where f, g are as in (24), in particular, lk−2(A) ≥ 4/3 k2−1/3 k−2[log2 k]−1. �

4.2. Real algebraic curves.

Proposition 4.3. For any k = 4p there exists a real algebraic curve of degree 2k
in RP

2 such that lk−2 = 18p2 − 2p = 9/8 k2 − 1/2 k.

iE

α i

S

E
C1 V

Figure 10.1 Figure 10.2 Figure 10.3

2C
V

C3
C4

V

Figure 10.4 Figure 10.5 Figure 10.6

Proof. We fix an affine chart R2 on RP
2. Let S be the unit circle and let α1, . . . , αp

be disjoint arcs of S. Let E1, . . . , Ep be ellipses such that Ei is arranged on R2 with
respect to S and αi as in Figure 10.1. Then E1 ∪ · · · ∪ Ep can be perturbed into
a curve E of degree 2p consisting of a single nest of the depth p (i.e., a hyperbolic
curve), and the innermost oval V of E intersects S in k points which lye on S in the
same order as on V (see Figure 10.2). Let Sν,1, . . . , Sν,νp, ν = 1, . . . , 4, be concentric
copies of S of increasing radii (r1,1 < · · · < r1,p < r2,1 < · · · < r2,2p < r3,1 < . . . )
each of whom intersects V at k points. Let

C0 = 1, Cν = ECν−1 + εν

νp
∏

i=1

Sν,i, ν = 1, . . . , 4, 0 < |ε4| ≪ · · · ≪ |ε1| ≪ 1

(see Figure 10.3 – 10.6; we use the same notation for a curve and its defining
polynomial). Then C4 is the required curve. �
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5. On AN singularity of a plane curve of a given degree

Easy to see that the existence of a pseudoholomorphic curve of degree m which
has a singular point of the type An is equivalent to the quasipositivity of the braid

σ
−(n+1)
1 ∆2

m. Thus, Theorem 3.13 admits also the following interpretation.

Proposition 5.1. For any m, there exists a pseudoholomorphic curve Cm in CP
2

of degree m with a singularity of the type An with n = 2/3(m2 − m) − 2[log2 k].
Thus, limm→∞ 2n/m2 = 4/3. �

The question what is the maximal n = N(m) such that there exists an algebraic
curve of degree m with an An singularity was studied by several authors. Let
α = lim sup 2N(m)/m2. Signature estimates for the double covering yield α ≤ 3/2
(see [14]). An evident example (y+ xk)2 − y2k = 0 yields m = 2k and n = 2k2 − 1,
so, α ≥ 1.

In a generic family of curves, the condition to have an An singularity defines a
stratum of codimension n. Thus the so-called expected dimension of the variety of
curves of degree m with a singularity An is equal to m2/2−n+O(m), i.e., α > 1 is
“unexpected” from this point of view. Nevertheless, this is so. A series of examples
providing α ≥ 15/14 was constructed by Gusein-Zade and Nekhoroshev in [14].

Cassou-Nogues and Luengo [4] improved this estimate up to α ≥ 8− 4
√
3. Here we

show that α ≥ 7/6. This follows from the following evident observation.

Proposition 5.2. Let F (X, Y ) be a polynomial whose Newton polygon is contained
in the triangle with vertices (0, 0), (ac, 0), and (0, bc). Suppose that F = 0 has a
singularity Ak−1 at the origin, and ord0 F (0, Y ) = 2. Then, for any p ≥ b/a, the
curve F (Xpb, Y pa +X) = 0 has a singularity An for n = abkp2 − 1 and its degree
is m = abcp and hence, α ≥ limp→∞(2n/m2) = 2k/(abc2).

Proof. Indeed, F1(X, Y ) = F (Xpb, Y ), F2(X, Y ) = F1(X, Y +X), and F3(X, Y ) =
F2(X, Y pa) have singularities Abkp−1, Abkp−1, and Aabkp2−1 respectively. �

If we apply Proposition 5.2 to a sextic curve in P
2 which has an A19 singularity

(a = b = 1, c = 6, k = 20) then we obtain α ≥ 10/9. The existence of such a curve
follows from the theory of K3 surfaces (see, e.g., [36]); an explicit equation is given
in [1, §5].

If we apply Proposition 5.2 to a = 2, b = 1, c = 4, k = 18, then we obtain
α ≥ 9/8. The existence of polynomials realizing this case can be proven using K3
surfaces (Alexander Degtyarev; private communication). Also, they can be written
down explicitely:

(

x3 + 45x4 + y − 2787x2y + 60192y2
)2

+ 12
(

x8 + (1− 87x)x5y − (42− 2943x)x3y2 + (288− 36288x)xy3 + 66816y4
)

or
(
x3 + y − 5x2y

)2 − 4
(
2x8 + 2x5y + 9x4y2 + 3xy3 + y4

)
(the latter polynomial

was found by Ignacio Luengo), To determine the singularity type at the origin, it
is enough to compute the multiplicity at x = 0 of the discriminant with respect to
y. Here is the corresponding maple code for the second polynomial:
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f := (x^3+y-5*x^2*y)^2 - 4*(2*x^8+2*x^5*y+9*x^4*y^2+3*x*y^3+y^4);

factor(discrim(f,y));

Finally, if we apply Proposition 5.2 to the case a = 3, b = c = 2, k = 14, then we
obtain α ≥ 7/6. This case is realizable by the polynomial (also found by Ignacio
Luengo)
(
x2 − 53x3 + y − 60xy − 2160

7
y2
)2

+ 4
7

(
5x6 + 8x4y + 3x2y2 + 41x3y2 + 27xy3 + 486

7
y4
)
.

6. Odd degree curves with many nests

6.1. Construction of real algebraic M-curves of degree 4d+1 with 4 nests

of depth d.
Let C be a nonsingular real pseudoholomorphic curve of an odd degreem = 2k+1

in RP
2. We say that an oval of C is even (resp. odd) if it is surrounded by an even

(resp. odd) number of other ovals. Let us denote the number of even (resp. odd)
ovals by p (resp. by n). In a joint note with Oleg Viro [32] we proved the following
result.

Theorem 6.1. If k = 2d (i.e., m = 4d+ 1) and C has 4 disjoint nests of depth d,
then:

(i) If C is an M -curve, then p−n ≡ k2+k mod 8 (Gudkov-Rohlin congruence);
(ii) If C is an (M − 1)-curve, then p − n ± 1 ≡ k2 + k mod 8 (Kharlamov-

Gudkov-Krakhnov congruence);
(iii) If C is an (M − 2)-curve and p− n + 4 ≡ k2 + k mod 8, then C is of the

type I (Kharlamov congruence);
(iv) If C is of the type I, then p− n ≡ k2 + k mod 4 (Arnold congruence).

This is the first result of this kind for curves of odd degree. If d = 1, it is trivial.
If d = 2, it was conjectured by Korchagin because he constructed M -curves of
degree 9 with 4 nests and observed the congruence mod 8. However, starting with
d = 3, curves satisfying the hypothesis of Theorem 6.1 have not been known.

In this section we show the ”non-emptiness” of Theorem 6.1 for any d for real
algebraic curves.

Proposition 6.2. For any integer d ≥ 1, there exist a real algebraic M -curve of
degree m = 4d + 1 which has 4 disjoint nests of depth d. This curve realizes the
isotopy type

J ⊔ (4d2 + 6d− 8) ⊔ 3〈〈d〉〉 ⊔ 1〈. . . 1〈1〈1〈1〈
︸ ︷︷ ︸

d−1

1〉 ⊔ 8〉 ⊔ 16〉 · · · ⊔ (8d− 16)〉. (25)

The notation 3〈〈d〉〉 is explained in §1.
Proof. The result immediately follows from the following statement (Hd) which we
shall prove by induction:

(Hd). If d ≥ 1, then for any n > 0 there exists a mutual arrangement of an M -
quartic Q, an M -curve Cd of degree m = 4d+ 1, and n lines L1, . . . , Ln satisfying
the following conditions:

(i) the curve Cd belongs to the isotopy type (25);
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(ii) each oval of Q (we denote them by V0, . . . , V3) surrounds a nest of Cd of
depth d; the nests surrounded by V1, V2, V3 are simple;

(iii) one exterior empty oval of Cd (let us denote it by v) intersects V0 at 4m
distinct points which all lye on V0 in the same order as on v; so, (IntV0) \
(Int v) is a disjoint union of 2m open disks (digons) which we denote by
D1, . . . , D2m;

(iv) Cd ∩Di = ∅ for i > 1 and Cd ∩D1 has the isotopy type (8d−8)⊔Sd where
Sd stands for the final part of the expression (25) starting with “1〈. . .”;

(v) all the other exterior empty ovals are outside of all the ovals of Q;
(vi) there exist arcs α1 ⊂ · · · ⊂ αn ⊂ V0 ∩Dm+1 such that for any i = 1, . . . , n,

the line Li intersects Q at 4 distinct points which lye on αi\αi−1, two points
on each connected component of αi \ αi−1 (here we assume that α0 = ∅);

Given a line L, we shall denote by Lk(ε) a union of k generic lines depending
on a real parameter ε such that each line tends to L as ε → 0. We shall use the
same notation for a curve and a polynomial which defines it. A notation 0 ≪ · · · ≪
ε2 ≪ ε1 ≪ 1 means that we choose a small parameter ε1, then we choose ε2 which
is small with respect to ε1, and so on.

Let us prove (H1). Let E be a conic and let p1, q1, p2, q2, . . . , pn+3, qn+3 be
points lying on E in this cyclic order. Let Li be the line (piqi) and let us set
Q = E2+ε2L

4
n+3(ε1) and C1 = QLn+2+ε4L

5
n+1(ε3) where 0 ≪ ε4 ≪ · · · ≪ ε1 ≪ 1.

Then Q, C1, and L1, . . . , Ln satisfy (i)–(vi)d=1 for a suitable choice of signs of the
equations (see Figure 11).

Ln

Ln+1

L

L

1

Ln

E

. .
 .

L2

n+2

+3

Ln

Ln+1

L

L

1

Q

. .
 .

L2

n+2

L2

Ln

L1

. .
 .

C1

Figure 11

Now let us assume that (Hd) is true and let us prove (Hd+1). Let Q, Cd,
and L1, . . . , Ln+1 satisfy (i)–(vi) with n + 1 instead of n and let us set Cd+1 =

QCd + δL4d+5
n+1 (ε) with 0 ≪ δ ≪ ε ≪ 1 (see Figure 12). �

Remark. For the curve in Proposition 6.2, it is easy to check that p− n = k2 + k.
Indeed, one sees in Figure 12 that pd+1 = nd+4d2+14d+6 and nd+1 = pd−4d2+2d,
hence (pd+1 − nd+1) = −(pd − nd) + 8d2 + 12d+ 6, i.e. the quantities pd − nd and
k2 + k = (2d)2 + 2d satisfy the same recurrent relation. This gives another proof
that the right hand side of the congruences in Theorem 6.1 is correctly computed (it
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...

...

...

+1d4+1d4

d2 d4 2 1

...

...

...

α n+1

α nα n
d2 d4 2 1

8d 8

...

dS

... ... ...

... ...

d4 4d...
8d 8

...

dS

Induction step: 1〈8d− 8 ⊔ Sd〉 = Sd+1;
(4d2 − 2d− 1) + (8d+ 2) = 4(d+ 1)2 − 2(d+ 1)− 1.

Figure 12

was computed in [32] via Brown-van der Blij invariant of Viro-Kharlamov quadratic
form defined in [33]).

6.2. On Md-curves of degree 2td+ 1.
Let A be a real algebraic (or real pseudoholomorphic) curve on RP

2 of degree
m = 2k + 1 and k = td. Recall that the depth of an oval is the number of ovals
which surround it. Let V be an oval of A. We say that V is a d-oval of A if the
depth of V is a multiple of d (maybe, zero) and V is the outermost oval of a nest
of depth at least d (i.e., there is at least d− 1 nested ovals inside V ). We say that
A is an Md-curve if it is an M -curve of degree m and the number of its d-ovals is
at least 2t2 − 3t+ 2.

For example, the curves discussed in §6.1 are Md-curves of degree 4d + 1 (i.e.,
t = 2).

Proposition 6.3. (a). For any integers t ≥ 2 and d ≥ 1 there exist real pseudo-
holomorphic Md-curves of degree m = 2td+ 1.

(b). For any integer t ≥ 2 there exist real algebraic M2-curves of degree 4t+ 1.
In particular:

(c). For any integer t ≥ 2 there exists a real algebraic M -curve of degree m =
4t + 1 realizing the isotopy type J ⊔ g2t〈1〉 ⊔ 1〈t − 1〉 ⊔ (4t2 + 3t − 2) where g2t =
(t−1)(2t−1) is the genus of a curve of degree 2t. So, this curve has as many nests
as the number of ovals of an M -curve of degree 2t.

Proof. (a). Let B be a real algebraic M -curve of degree 2t and a line L satisfying
the following conditions:

(i) an oval V of B has 2t intersections with L placed on V in the same order
as on L;

(ii) B \ V ⊂ E where E is the component of RP2 \ (V ∪ L) whose closure is
non-orientable.

Such curve can be easily obtained by Harnack’s method (see also the proof of (b)).
We construct curves Ce of degrees me = 2te + 1, e = 0, 1, 2, . . . recursively (see
Figure 13). We set C0 = L and we define Ce+1 as a small perturbation of Ce ∪ B
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. . .
. . .

C1
C1

C2
C2 C2

C0

Figure 13

such that Ce+1 meets B at 2tme points all lying on an arc of B bounding a digon
between B and Ce.

(b). For some curves B, the second step of the above construction can be realized
in the class of algebraic curves. Suppose that B and L satisfy the conditions (i)–(ii)
and, moreover, V and L are arranged with respect to another line L′ as it is shown
in Figure 14. Then we obtain the isotopy type

J ⊔ (a+ t− 1) ⊔ 1〈t− 1〉 ⊔ S2

where a = 2t(2t+ 1)− 1 and S is the isotopy type of B \ V (see Figure 14).

a

. . . . . .

. . .

. . .

. . .

. . .

. . .

1

1t

t

L
L

. . .

V
D

E

Figure 14

To construct the required arrangement of B, L, and L′, we can start with a
Harnack curve of degree 2t − 2 and proceed as it is shown in Figure 15. Here
gt = (t− 1)(t− 2)/2 and gt−1 = (t− 2)(t− 3)/2.

1tg

gt

gt

L

gt

. . .

. . .

. . .

L

gt
1tg

gt
gt

. . .

. . .. . .

1tg

gt

gt

gt

. . .. . .

. . .
. . .

Figure 15
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The construction of (B,L, L′) can be interpreted as Viro patchworking according
to the Haas’ zone decomposition (see [15]) of the triangle OXY into two triangles
and one quadrangle OPY , XYQ, and XPYQ (see Figure 16.1) where O = (0, 0),
X = (2t, 0), Y = (0, 2t), P = (1, 0), and Q = (1, 1). This means that we choose
any primitive triangulation which contains the edges XQ, QY , Y P and we define
the sign distribution δ : (OXY ) ∩ Z2 → {±1},

δ(x, y) =

{
(−1)(x+1)(y+1), y > 0,

−1, y = 0,

O P X

Y

R

O P X

Q

Y

Figure 16.1 Figure 16.2

(c) Let B be the M -curve of degree 2t patchworked according to the Haas’ zone
decomposition of OXY obtained by cutting it along the segment PR where O,
X , Y , P are as above and R = (2t − 2, 2) (see Figure 16.2). This means that we
choose any primitive triangulation which contains the edge PR and we define the
sign distribution δ : (OXY ) ∩ Z

2 → {±1},

δ(x, y) =

{
(−1)xy, (x.y) ∈ OPRY , i.e., (2t− 3)y ≥ 2(x− 1)

(−1)(x+1)y, (x, y) ∈ XPR, i.e., (2t− 3)y ≤ 2(x− 1),

Then B has an oval V which is arranged with respect to the lines L and L′ (the
axes Ox and Oy respectively) as in Figure 14, but all other ovals of B are empty.
Moreover, (t − 1)(t− 2)/2 empty ovals are in the domain D and the other empty
ovals are in the domain E. The rest of the construction is shown in Figure 14. �

Remarks. 1. Let p and n be the number of positive and negative ovals of a curve
Cd constructed in the proof of Proposition 6.3(a). It is easy to prove by induction
that

p− n =

{
2t(±m1 ±m3 ± · · · ±md−1), d is even,

2t(1±m2 ±m4 ± · · · ±md−1) + pB − nB − 2, d is odd

where me = 2te+ 1, pB (resp. nB) is the number of positive (resp. negative) ovals
of B, and the choice of the signs is illustrated in Figure 13. Thus it follows from
Gudkov-Rohlin congruence that for any choice of B satisfying (i) and (ii), we have

p− n ≡







k2 + k mod 8. if t ≡ d ≡ 0 mod 2,

k2 + k + t− 2 mod 8, if t ≡ d+ 1 ≡ 0 mod 2,

k2 + k mod 4, if t+ 1 ≡ d ≡ 0 mod 2,

k2 + k + t− 2 mod 4, if t ≡ d ≡ 1 mod 2
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where k = td (so, degCd = 2k+1). All values of p−n satisfying these congruences
are attained for pseudoholomorphic curves.

2. The algebraic curves constructed in the proof of Proposition 6.3(b,c) satisfy
the congruence p − n ≡ k2 + k mod 8. The first pseudoholomorphic curve con-
structed in Proposition 6.3(a) which does not satisfy this congruence is the curve
of degree 13 (t = 3, d = 2) of the isotopy type J ⊔ 1 ⊔ 1〈44〉 ⊔ 8〈1〉 ⊔ 1〈1〈1〈1〉〉〉
(the curve C−+

2 in Figure 13 if Harnack’s sextic is chosen for B). It is interesting
to study if this curve is algebraically realizable.

7. M -curves of degree 9 with a single exterior oval

Theorem 7.1. (a). There exist real algebraic curves of degree 9 realizing the
isotopy types

J ⊔ 1〈2a ⊔ 1〈26− 2a〉〉, 2 ≤ a ≤ 11. (26)

(b). The isotopy type J ⊔ 1〈24 ⊔ 1〈2〉〉 is unrealizable by real pseudoholomorphic
(in particular, by real algebraic) curves of degree 9.

Combined with the result of S. Fiedler-LeTouzé [12], Theorem 7.1 implies that
among the isotopy types of the form J ⊔ 1〈b ⊔ 1〈26− b〉〉, only the isotopy types in
list (26) are realizable by curves of degree 9.

Following [12; Definition 1], we say that a curve of degree 9 has an O1-jump if
it has six ovals arranged with respect to some line as in Figure 17. Theorem 7.1(b)
follows immediately from [12; Theorem 2(2)] combined with the following fact:

Figure 17. O1-jump

Theorem 7.2. Let A be an M -curve of degree 9 which realizes the isotopy type
J ⊔ 1〈β ⊔ 1〈γ〉〉 with β + γ = 26. Then A has an O1-jump.

Theorem 7.1(a) is proven in §7.1; Theorem 7.2 is proven in §7.2.
Recall that an oval of a real algebraic plane curve is called exterior if it is not

surrounded by another oval. We say that A is a one exterior oval curve (OEO
curve) if it has exactly one exterior oval. Note that OEO M -curves of degree
greater than three have not been known. It is evident that OEO M -curves do not
exist in degree 4 and 5. Petrovsky inequality excludes OEO M -curves of degree 6.
Viro [28] (resp. Shustin [26]) excluded OEO M -curves of degree 7 (resp. 8). Using
theta-characteristics (the idea applied later in [7]), Kharlamov excluded OEO M -
curves of odd degree of a very special form J ⊔ 1〈n〉 (unfortunately, his proof still
is not written). However, OEO M -curves of degree 9 do exist by Theorem 7.1(a).

It seems that OEO M -curves of even degree greater that 2 do not exist. Note,
that Hilbert’s construction provides OEO (M − r)-curves of any even degree ≥ 6
for any r ≥ 1.
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α

25 α

Figure 18. α ∈ {4, 8, 12, 16, 20}

7.1. Construction.

Lemma 7.3. For any α ∈ {4, 8, 12, 16, 20} and for any distinct real numbers
λ1, λ2, λ3, there exists a polynomial g(x, y) =

∑

i+9j≤27 gijx
iyj such that the affine

curve g(x, y) = 0 is as in Figure 18 and gΓ = (y−λ1x
9)(y−λ2x

9)(y−λ3x
9) where

gΓ denotes the truncation of g to the edge Γ = [(27, 0), (0, 3)] of the Newton polygon,
i.e. gΓ =

∑

i+9j=27 gijx
iyj

Proof. Follows easily from the results of [29]. �

Proof of Theorem 7.1(a). All curves (26) are realizable as perturbations of the
singular curve F3(F

2
3 + cF 3

2 ) = 0 where F3 = 0 is an M -cubic and F2 = 0 is a conic
which has the maximal tangency with F3 = 0 at a point p lying on the oval O3 of
the curve F3 = 0.

Let F2(X, Y ) = Y −X2, F3(X, Y ) = (Y −X2)
(
1 + 3Y

)
+ 2Y 3, F6 = F 2

3 + cF 3
2 ,

0 < c ≪ 1, and F9 = F6F3. Let Ck be the curve Fk = 0, k = 2, 3, 6, 9. Then C2

has the tangency of order 6 at the origin with C3 and the mutual arrangement of
C2 and C3 on R2 is as in Figure 19.1. Hence the arrangement of C9 on RP

2 is as in
Figure 19.2. The curve C9 has three smooth real local branches at the origin (two
branches of C6 and one of C3) with pairwise tangencies of order 9.

X

Y

C2

C3
C6

(0:0:1)

Figure 19.1 Figure 19.2

We introduce local coordinates (x, y) at the origin X = x, Y = y+ γ(x), γ(x) =
x2 − 2x6 +6x8. Let fk(x, y) = Fk(x, y+ γ(x)), k = 2, 3, 6, 9, i.e., fk is Fk rewritten
in the coordinates (x, y). Then f9 has the form

∑

i+9j≥27 aijx
iyj and fΓ

9 = y(y2 −
8cx18) where fΓ

9 is the truncation of f9 to Γ, i.e., fΓ
9 =

∑

i+9j=27 aijx
iyj. Here is

the Mathematica code that checks it:
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F2=Y-X^2; F3=F2(1+3Y)+2Y^3; F6=F3^2+c*F2^3; F9=F3*F6;

su={X->x,Y->y+x^2-2x^6+6x^8}; f9=Expand[F9//.su];

Table[Series[Coefficient[f9,y,j],{x,0,27-9j}],{j,0,3}]

We perturb the singularity of C9 at the origin using the straightforward approach
from [5]. Let g(x, y) be as in Lemma 7.3 where we set gΓ = fΓ

9 . We have g18,1 =
a18,1 = −8c 6= 0, hence shifting if necessarily the x-coordinate, we may assume that
g17,1 = 0.

Let F̃ (X, Y ) =
∑

i+j≤9 BijX
iY j be a polynomial with indeterminate coeffi-

cients. We set f̃(x, y) = F̃ (x, y + γ(x)) =
∑

i,j bijx
iyj. Then bij ’s are linear

functions of Bij’s. Let ϕ(i, j) = 27− i − 9j. Solving a system of linear equations,
we find Bij = Bij(t) such that

bij = gijt
ϕ(i,j) for i+ 9j < 27, (i, j) 6= (17, 1).

Substituting the solution into b17,1 we see that b17,1 = O(t2):

ff=Expand[Sum[Sum[B[i,j]X^i Y^j,{i,0,9-j}],{j,0,9}]//.su];

Do[Do[b[i,j]=Coefficient[Coefficient[ff,x,i],y,j],

{i,0,26-9j}],{j,0,2}];

var=eq={}; Do[Do[AppendTo[var,B[i,j]],{i,0,9-j}],{j,0,9}];

Do[Do[If[Not[i==17&&j==1],AppendTo[eq,b[i,j]==g[i,j]t^(27-9j-i)]],

{i,0,26-9j}],{j,0,2}];

so=Solve[eq,var][[1]]; Factor[b[17,1]//.so]

Recall that g17,1 = 0. Thus, for any (i, j) such that i + 9j < 27, we have

bij = gijt
ϕ(i,j) + O(tϕ(i,j)+1). Therefore, the curve F9(X, Y ) + F̃t(X, Y ) = 0 for

0 < t ≪ c is obtained from C9 by Viro’s patchworking by gluing the pattern in
Figure 18 into the singular point of C9. We obtain in this way the isotopy types
(26) with a = 2, 4, 6, 8, 10. Replacing g(x, y) with g(x,−y), we obtain those with
a = 3, 5, 7, 9, 11. �

7.2. Restrictions. The main tool used in the proof of Theorem 7.2 is the analog
of Murasugi-Tristram inequality for colored signatures obtained in [13, 6]. Given
a µ-colored oriented link, i.e., an oriented link L in S3 with a fixed decomposi-
tion L = L1 ⊔ · · · ⊔ Lµ into a disjoint union of sublinks, and a µ-tuple of complex
numbers ω = (ω1, . . . , ωµ), |ωi| = 1, ωi 6= 1, V. Florens [13] defined the isotopy
invariants ω-signature σω(L) and ω-nullity ηω(L). In [6], D. Cimasoni and V. Flo-
rens gave an efficient algorithm for the computation of σω and nω via a generalized
(colored) Seifert surface of L. This algorithm was used for the computations in the
proof of Theorem 7.2. When µ = 1, these invariants specialize to the usual Tris-
tram signature and nullity. They satisfy the following analog of Murasugi-Tristram
inequality.

We set T1
∗ = {z ∈ C ; |z| = 1, z 6= 1} and T

µ
∗ = T1

∗ × · · · × T1
∗ (µ times).

Theorem 7.4. (See [6, 13]). Let F1, . . . , Fµ be disjoint embedded oriented surfaces
in the 4-ball B4 transversal to the boundary S3 = ∂B4. Let F = F1 ∪ · · · ∪ Fµ. We
consider the colored link L = L1 ⊔ · · · ⊔Lµ where Li = ∂Fi, i = 1, . . . , µ. Then, for
any ω ∈ T

µ
∗ , we have

ηω(L) ≥ |σω(L)|+ χ(F ) (27)

where χ(F ) is the Euler characteristic of F . �
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Remark. In [30, 31], Oleg Viro proposed another approach to define ηω , σω and to
prove Theorem 7.4. This approach is based on [27].

To reduce the computations, we use the following fact whose proof is very similar
to that of [22; Proposition 3.3].

Proposition 7.5. Let p, q be integers such that 0 < p < q and let L0 and L2q

be two µ-colored links represented by braids b0 and b2q = b0σ
2q
1 respectively. Let

1 and 2 be the colors of the first two strings in the part σ2q
1 of the braid b2q. Let

t = (t1, . . . , tµ) ∈ T
µ
∗ be such that t1t2 = exp(2πi p/q). Let tj = exp(2πiθj),

0 < θj < 1, j = 1, 2, and θ = θ1 + θ2. Then ηt(L2q) = ηt(L0) and σt(L2q) =
σt(L0) + (q − 2p) sign(1− θ). �

Corollary 7.6. Let p, q be integers such that 0 < p < q. Let {L2n}n∈Z be a family
of µ-colored links such that L2n is represented by the braid b2n = a1σ

2n
h a2σ

−2n
ℓ a3

with some fixed braids a1, a2, a3. Let j and k be the colors of the h-th and the
(h + 1)-th strings of the part σ2n

h of b2n. Suppose that the unordered pair of the

colors of the ℓ-th and the (ℓ+1)-th strings of the part σ−2n
ℓ of b2n is also {j, k} (we

do not claim that j 6= k). Let t = (t1, . . . , tµ) ∈ T
µ
∗ be such that tjtk = exp(2πi p/q).

Then ηt(L2q) = ηt(L0) and σt(L2q) = σt(L0).

Proof. If j = k, the statement follows from [22; Proposition 3.3]. If j 6= k, it follows
from Proposition 7.5. �

Proof of Theorem 7.2. Suppose that A has no O1-jump. Then, applying [22; Corol-
lary 2.3] to a pencil of lines centered at a point inside an empty oval of depth 1, we
may replace the group of the γ innermost ovals by a singular branch with γ−1 dou-
ble points as shown in Figure 20. It follows from [12; proof of Theorem 2(2)] that if
we choose p as in Figure 20, then the fiberwise arrangement of the obtained curve

with respect to Lp (the pencil of lines through p) is [×γ−2
2 ⊃2 o

β1

3 oβ2

6 oβ3

3 oβ4

6 ⊂7 ×8]
for some odd β1, . . . , β4 such that β1 + · · ·+ β4 = β; see [22; §2.2] for the notation
of fiberwise arrangements.

β1

β3

β2
β4

. . .

. . .
. . 

.

. . .

. . 
.

p

Figure 20

Let b be the braid corresponding to (RA,Lp). To fix the notation, we reproduce

the definition of b from [19]. Let πp : CP2 \ p → CP
1 be the linear projection from
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p. We fix complex orientations on RA and RP
1. Let A \ RA = A+ ⊔ A− and

CP
1 \RP1 = CP

1
+ ⊔CP

1
− be the corresponding partitions. Let H+ be a closed disk

in CP
1
+ containing all nonreal critical values of πp|A. We define b as the closed

braid corresponding to the braid monodromy of the curve A along the loop ∂H+.
We set also F = π−1

p (H+) ∩ A, F± = F ∩ A±, L = ∂F , and L± = ∂F±. Then L

is the braid closure of b in the 3-sphere ∂(π−1
p (H+) \ Up) where Up is a small ball

centered at p. We have (see [22; §2.3])

b = σ−γ−1
2 τ2,3σ

−β1

3 τ3,6σ
−β2

6 τ6,3σ
−β3

3 τ3,6σ
−β4

6 τ6,7σ
−1
8 ∆9 (28))

where τi,j = τ−1
j,i = (σ−1

i+1 . . . σ
−1
j )(σi . . . σj−1) for i < j. It follows from [12] that

the complex orientation of RA is as in Figure 20. Hence, in the braid (28), the
strings 1, 8, 9 represent L+ and the strings 2, . . . , 7 represent L−.

To make the notation coherent with Theorem 7.4, we set L1 = L+, L2 = L−,
F1 = F+, F2 = F−. Riemann-Hurwitz formula for the projection πp|F : F → H+

yields χ(F ) = 9 − e(b) where e : B9 → Z is the abelianization homomorphism,
i.e., e(b) is the number of branch points of the mapping πp|F . So, we have χ(F ) =
9− 10 = −1.

The result follows from the fact that for any choice of four odd numbers β1, . . . , β4
with β1 + · · ·+ β4 ≤ 24, there exist t = (t1, t2) ∈ T2

∗ such that the inequality (27)
fails. To reduce the computations, we apply Corollary 7.6. Indeed, suppose that for

some ~β(0) = (β
(0)
1 , . . . , β

(0)
4 ) we find t such that Arg t1 + Arg t2 ≡ 2π p/q mod 2π

and (27) fails. Then, for any ~β = (β1, . . . , β4) such that ~β ≡ ~β(0) mod 2q, the
inequality (27) also fails for the same t.

By chance, it happens that for any ~β there exists t = (t1, t2) with t1t2 = −1,
so, q = 2. Thus, it is enough to make the computations, for example, only when
each of β1, . . . , β4 is equal to 1 or 3. In all these 16 cases, the parameter choice
t1 = −1/t2 = exp(2πiθ1), θ1 ∈]1/6, 7/40] provides ηt(L) = 1, |σt(L)| = 4, which
contradicts (27). When γ ≡ 2 mod 4 (this is enough for Theorem 7.1), one can
chose a larger interval ]1/6, 3/16] for θ1. Note that the extremal value θ1 = 1/6
yields ηt(L) = 2, |σt(L)| = 3 which does not contradict (27). �
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Viro)”, CIRM, Luminy, November 17–21, 2008.

31. O. Viro, Twisted acyclicity of a circle and signatures of a link, J. Knot Theory and Ramifi-
cations 6 (2009), 729–755.

32. O. Ya. Viro, S. Yu. Orevkov, Congruence modulo 8 for real algebraic curves of degree 9,

Uspekhi Mat. Nauk 56:4 (2001), 137–138 (Russian); English transl., Russian Math. Surv. 56
(2001), 770–771.

33. O. Ya. Viro, S. Yu. Orevkov, Congruence modulo 8 for real algebraic curves of degree 9,

Extended version. Available on http://picard.ups-tlse.fr/̃ orevkov.
34. B. Wiest, Dehornoy’s ordering of the braid groups extends the subword ordering, Pacific J.

Math. 191 (1999), 183–188.
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