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Abstract

We use a non-smooth trust-region method for H∞-control of infinite-dimensional
systems. Our method applies in particular to distributed and boundary control of
partial differential equations. It is computationally attractive as it avoids the use of
system reduction or identification. For illustration the method is applied to control
a reaction-convection-diffusion system, a Van de Vusse reactor, and to a cavity flow
control problem.
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1 Introduction
Feedback control of partial differential equations and other infinite-dimensional systems
encounters limitations due to computational issues. In state-space, PDE models are overly
complex and not directly suited for controller synthesis. System reduction is required to
bring the state-space down to a size where synthesis methods are applicable. Not only is
this technically demanding, it also bears the risk of producing inaccurate or oversimplified
models, where H∞-performance can no longer be guaranteed.

Computing the system transfer function directly from the infinite dimensional model
avoids this loss of information, but encounters a second difficulty. Customary strategies
now try to fit a finite-dimensional state-space model to the infinite-dimensional transfer
function. This uses optimization-based identification techniques, which are in conflict
with the H∞-objective, as the two optimization procedures in series are no longer mean-
ingful. In addition, for unstable systems the identification often uses heuristics or ad hoc
approaches, which have no certificates.

The method we propose here avoids both pitfalls. We synthesize controllers directly
from the pre-computed frequency response, thereby avoiding system reduction and iden-
tification. Discretization for computation is performed in frequency space on a low-
dimensional object, which avoids the loss of information. Our tests demonstrate that
this works fast and reliably, once the transfer function is available. It turns out that the
success of our method hinges on the use of non-smooth optimization. We use a non-smooth
trust-region method first proposed in [5], which allows trial steps tailored to the specific
application. We prove convergence under Kiwiel’s aggregation rule, a question which had
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remained open in [5]. This given an affirmative answers to a question already posed in
[26] for the convex non-smooth trust-region method. For complementary information on
bundle methods see [27, 15, 22], a mix of bundle and trust-regions is [30].

Design of controllers in the frequency domain based on non-smooth optimization has
already been performed in [20, 21, 23, 24, 19, 9]. Structured H −∞-control for infinite-
dimensional systems is addressed in [3]. H∞-control of a heat exchange system is dis-
cussed in [29]. These approaches use either unstructured controllers, are based on matrix
inequalities, or differ with regard to the optimization technique.

The structure of the paper is as follows. In section 2 we outline our approach to
H∞-control of infinite dimensional systems. In section 3 we discuss optimization and
present our non-smooth trust-region method originally proposed in [5], on which the
present approach rests. Convergence of the non-smooth trust-region method is discussed
in section 3.2. In section 4 we point to some particularities when applying the trust-region
method to H∞-optimization. This concerns the choice of working model, trial step, and
stability barrier, as well as the approximation error between the infinite-dimensional H∞-
program and its discretization.

Numerical results for applications to infinite-dimensional control problems are pre-
sented in section 5. Subsection 5.1 shows how the method is, in general, applied to a
boundary control problem, subsection 5.2 illustrates this in boundary H∞-control of a
non-linear reaction-convection-diffusion equation, and subsection 5.3 for a non-linear Van
de Vusse reactor. Subsection 5.4 discusses a cavity flow control problem.

2 Control strategy
We consider an abstract linear time-invariant control system of the form

G :

{
ẋ = Ax+Bu
y = Cx+Du

(1)

where A is an unbounded linear operator on a Hilbert space Z generating a strongly
continuous semi-group, B a closed linear operator mapping the control input space U to
Z, C a closed linear operator mapping Z to the space Y of measured outputs, and D a
closed linear operator mapping U to Y . For practical reasons we assume that U ≃ Rp and
Y ≃ Rm, which reflects the fact that the process is assessed by a finite number of sensors
and actuators, rendering our control law physically implementable. This means that B,D
are bounded, while C is allowed to be closed unbounded. In addition, the domains of A
and C satisfy D(A) ⊂ D(C). As a consequence of the finite rank assumption on Y, U ,
the transfer function G(s) = C(sI −A)−1B +D is defined on the resolvent set ρ(A) and
meromorphic on C, with values G(s) ∈ Cp × Cm, see e.g. [16, 13].

We consider a class K ∈ K of feedback control laws which have similar state-space
realizations

K :

{
ẋK = AKxK +BKy
u = CKxK +DKy

(2)

on a Hilbert space ZK , with input space Y ≃ Rm and output space U ≃ Rp, so that we
can put G and K ∈ K in lower feedback Fℓ(G,K) as in Figure 1. Candidate controllers
K ∈ K have to stabilize Fℓ(G,K) internally in closed loop, by which we mean that
the infinitesimal generator of the closed loop system generates an exponentially stable
semi-group [16, 10].
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Figure 1: Lower feedback interconnection Fℓ(P,K) with H∞-performance channel w → z.

In H∞-control one has not only to assure stability in closed loop, but also to guarantee
good performance and robustness of the feedback system. For that purpose the system
G is embedded in a plant P with a similar state-space realization

P :

⎧
⎨

⎩

ẋ = Ax + B1w + B2u
z = C1x+D11w +D12u
y = C2x+D21w +D22u

(3)

where the channel y → u is used for control, the channel w → z for performance. Closing
the u-y-loop in (3) with (2) as in Figure 1 leaves us with the closed-loop transfer function
Twz(K) from exogenous input w to regulated output z. The H∞-control problem consists
now in minimizing the L2-L2-operator norm of Twz(K) over a suitable class K ∈ K of
admissible control laws. This operator norm is also known as the H∞-norm, given as

∥Twz(K)∥∞ = max
ω∈[0,∞]

σ (Twz(K, jω)) , (4)

where σ(M) denotes the maximum singular value of a matrix M . If candidate controllers
K ∈ K in (2) are parametrized as K(x) for a finite-dimensional vector x ∈ Rn of tunable
parameters, then this H∞-optimization program takes the form

minimize f∞(x) = max
ω∈[0,∞]

σ (Twz(K(x), jω))

subject to K(x) stabilizes G in closed-loop
x ∈ Rn

(5)

For finite-dimensional real-rational P,K(x) the objective (4) may be computed by an
iterative procedure [6, 5], but for infinite dimensional G,K(x), this is no longer possible,
and we need to approximate (4) on a finite grid Ωopt ⊂ [0,∞]. Introducing the discretized
version

∥Twz(K)∥∞,d = max
ω∈Ωopt

σ (Twz(K, jω))

of the H∞-norm on the grid Ωopt, this leads to the discretized H∞-optimization program

minimize f(x) = max
ω∈Ωopt

σ (Twz(K(x), jω))

subject to K(x) stabilizes G in closed-loop
x ∈ Rn

(6)

to which our non-smooth optimization method is applied. The overall procedure for
H∞-control is now given in algorithm 1.
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Algorithm 1. Infinite-dimensional H∞-synthesis
Parameters: Tolerance ϑ > 0.
▷ Step 1 (Steady-state). Compute steady-state and linearize infinite-dimensional

system about steady-state.
▷ Step 2 (Transfer function). Use linearized infinite-dimensional system to compute

transfer function G(jω), either formally for arbitrary ω ∈ [0,∞], or numerically at a
very high precision on a very fine grid Ωfine.

▷ Step 3 (Plant). Set up plant P which defines the H∞-performance channel w → z.
▷ Step 4 (Grid for optimization). Find initially stabilizing K(x0) for G and use it

to compute grid for optimization Ωopt such that ∥Twz(K(x0))∥∞ ≤ f(x0)+ϑ. Either
use a formal or a numerical function G(jω), or extract Ωopt from the pre-computed
high precision grid Ωfine.

▷ Step 5 (Non-smooth optimization). Use non-smooth trust-region algorithm 2 to
compute locally optimal solution K(x∗) of (6).

▷ Step 6 (Refined grid). Check whether ∥Twz(K(x∗))∥∞ ≤ ∥Twz(K(x∗))∥∞,d + ϑ. If
not then add nodes to Ωopt and go back to step 5.

Remark 1. It should be stressed that the computation of G(jω) in steps 1 and 2 of
algorithm 1 is the only moment where the full infinite-dimensional, or likewise, large-scale
finite-dimensional model is used. Since this step is performed prior to optimization, and
typically |Ωopt| ≪ |Ωfine|, optimization is speedy. Also, the process of finding the correct
P , which needs going back to step 3 of algorithm 1, is not slowed down by steps 1 and
2. In other words, once the transfer function G(jω) is available, the complexity of the
process is the same as that of a finite-dimensional structured H∞-design procedure in the
sense of [1, 8]. This will be illustrated in our experimental section.

Remark 2. Stability in closed-loop in step 4, and during optimization in step 5, uses the
well-known Nyquist stability test in tandem with the barrier approach to be addressed in
section 4.1. For the theoretical justification in the context of infinite-dimensional systems
see [3].

We now address the individual steps of algorithm 1. The central ingredient is opti-
mization, which is needed to solve (6), and which is discussed in the next sections 3 and
3.2. Generation of the grid Ωopt in step 4, and the certificate in step 6, are discussed in
section 4.

3 Non-smooth trust-region method
We work with the non-smooth trust-region method introduced in [5], which has already
been successfully used in mechanical contact problems [11], and in system theory [5]
for computing the worst-case H∞-performance of a system, its stability margin, and its
distance to instability. Here we use it for H∞-control of infinite-dimensional systems.
We also answer a question left open in [5, Remark 16], which concerns the theoretical
justification of Kiwiel’s aggregation technique [18] in non-smooth trust-regions. This
question goes back to [26] for the convex trust-region method, but had until now remained
open. An affirmative answer will be obtained in section 3.2.
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3.1 Presentation of the algorithm

We briefly recall the essentials of the non-smooth trust-region method. For the present
work it is sufficient to apply it to optimization programs of the form

min
x∈Rn

f(x), (7)

where f : Rn → R is locally Lipschitz but non-smooth and non-convex. Following [22], a
function ϕ : Rn × Rn → R is called a model of f if it satisfies the following properties:

(M1) ϕ(·,x) is convex, ϕ(x,x) = f(x), and ∂1ϕ(x,x) ⊂ ∂f(x).

(M2) If yk → x, then there exist ϵk → 0+ such that f(yk) ≤ ϕ(yk,x) + ϵk∥yk − x∥.

(M3) If xk → x,yk → y, then lim supk→∞ ϕ(yk,xk) ≤ ϕ(y,x).

We may interpret ϕ(·,x) as a substitute for the first-order Taylor expansion of f at x.
For convergence theory we need a slightly stronger type of model, which is given by the
following:

Definition 1. A first-order model ϕ of f is called strict if it satisfies the following stronger
version of axiom (M2):

(M̂2) If xk,yk → x, then there exist ϵk → 0+ such that f(yk) ≤ ϕ(yk,xk) + ϵk∥yk − xk∥.
□

The difference between (M2) and the strict version (M̂2) is analogous to the difference be-
tween differentiability and strict differentiability, hence the nomenclature. For additional
information on the model concept see [22, 4, 5].

Remark 3. A typical example of a strict model ϕ is obtained when f is a maximum
eigenvalue function f(x) = λ1 (F (x)), with F : Rn → Sm a class C1-mapping into the
space of m × m Hermitian matrices. We take ϕ(y,x) = λ1 (F (x) + F ′(x)(y − x)). See
[22, 4].

Definition 2. Let x be the current serious iterate of the trust-region algorithm, z a
trial step. Let g be a subgradient of ϕ(·,x) at z. Then the affine function mz(·,x) =
ϕ(z,x) + g⊤(· − z) is called a cutting plane of f at serious iterate x and trial step z. □

If z = x, then due to axiom (M1) a cutting plane mx(·,x) at serious iterate x and trial
step z = x is just a tangent plane to f at x. Since mx(x,x) = f(x), including mx(·,x)
in the working model ϕk(·,x) at x guarantees exactness ϕk(x,x) = f(x) of the working
model at all counters k. We cast this in the following

Definition 3. A cutting plane mx(·,x) at serious iterate x and trial step z = x is called
an exactness plane. □

As is standard in bundle and cutting plane algorithms, by storing cutting planes at
unsuccessful trial steps zk, we accumulate information, which we use to build polyhedral
models of f near x. We use the notation ϕk(·,x) for these working models of f formed
by cutting planes, where k denotes the counter of the inner loop. Note that ϕk ≤ ϕ
by construction of the cutting planes. If in addition a positive semi-definite symmetric
matrix Q(x) ⪰ 0 is available as a substitute for the Hessian of f at x, then we call
Φk(·,x) = ϕk(·,x) + 1

2
(· − x)⊤Q(x)(· − x) a second-order working model of f at serious

iterate x.
We are now ready to present the bundle trust-region algorithm. (See algorithm 2).
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Algorithm 2. Non-smooth trust-region algorithm
Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ ≤ 1, 0 < θ ≪ 1, M ≥ 1, q > 0.
▷ Step 1 (Initialize outer loop). Fix initial iterate x1 and memory trust-region

radius R♯
1 > 0. Initialize Q1 ⪰ 0 with ∥Q1∥ ≤ q. Put outer loop counter j = 1.

▷ Step 2 (Stopping test). At outer loop counter j, stop if xj is a critical point of
(7). Otherwise go to inner loop.

▷ Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize trust-
region radius as R1 = R♯

j. Build polyhedral first-order working model ϕ1(·,xj), where
at least one exactness plane at xj is included. Possibly enrich by adding recycled
planes from previous steps, or by including anticipated cutting planes. Build second-
order working model Φ1(·,xj) = ϕ1(·,xj) + 1

2
(· − xj)⊤Qj(· − xj).

▷ Step 4 (Trial step generation). At inner loop counter k compute solution yk of
trust-region tangent program

minimize Φk(y,x
j)

subject to ∥y − xj∥ ≤ Rk

Then admit any zk satisfying ∥zk − xj∥ ≤ M∥yk − xj∥ and f(xj) − Φk(z
k,xj) ≥

θ
(
f(xj)− Φk(y

k,xj)
)

as trial step.
▷ Step 5 (Acceptance test). If

ρk =
f(xj)− f(zk)

f(xj)− Φk(zk,xj)
≥ γ

put xj+1 = zk (serious step), quit inner loop and goto step 8. Otherwise (null step),
continue inner loop with step 6.

▷ Step 6 (Update working model). Generate a cutting plane mk(·,xj) of f at the
unsuccessful trial step zk and add it to the polyhedral model. Possibly taper out ϕk

by removing some of the older cuts, and build new first-order working ϕk+1(·,xj).
Then Φk+1(·,xj) = ϕk+1(·,xj)+ 1

2
(·−xj)⊤Qj(·−xj) is the new second-order working

model. Continue with step 7.
▷ Step 7 (Update trust-region radius). Compute secondary control parameter

ρ̃k =
f(xj)− ϕk+1(z

k,xj)

f(xj)− Φk(zk,xj)

and put

Rk+1 =

{
Rk if ρ̃k < γ̃
1
2
Rk if ρ̃k ≥ γ̃

Increase inner loop counter k and go back to step 4.
▷ Step 8 (Update memory radius). Store new memory trust-region radius

R♯
j+1 =

{
Rk if ρk < Γ

2Rk if ρk ≥ Γ

Update Qj → Qj+1 respecting Qj+1 ⪰ 0 and ∥Qj+1∥ ≤ q. Increase outer loop counter
j and go back to step 2.
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Remark 4. Before we discuss convergence of algorithm 2 in the next section, we recall
the form of the tangent program in step 4 from [5]. Let the first-order working model at
inner loop counter k have the form ϕk(·,xj) = maxi∈Ik ai + g⊤i (· − xj) for some finite set
Ik, and suppose the trust-region norm is the maximum norm. Then the tangent program
at serious iterate xj and inner loop instant k is the following CQP

minimize t+ 1
2
(y − xj)⊤Qj(y − xj)

subject to ai + g⊤i (y − xj) ≤ t, i ∈ Ik
−Rk ≤ yi − xj

i ≤ Rk , i = 1, . . . , n
(8)

with decision variable (t,y) ∈ R× Rn, giving rise to the solution yk in step 4.

3.2 Convergence

In this section we prove convergence of the trust-region algorithm 2 toward a Clarke
critical point. As is standard, we start by proving that the inner loop ends finitely if
0 ̸∈ ∂f(xj), where throughout ∂f denotes the Clarke subdifferential. During this part of
the proof we write x = xj and Q = Qj, as those are fixed during the inner loop at counter
j. Note that by the necessary optimality condition for the tangent program in step 4 of
algorithm 2, there exists a subgradient g∗k ∈ ∂1ϕk(y

k,x) such that g∗k+Q(yk−x)+vk = 0,
where vk is in the normal cone to the trust-region norm ball B(x, Rk) at yk.

Definition 4. We call g∗k the aggregate subgradient. The affine function m∗
k(·,x) =

ϕk(y
k,x) + g∗⊤k (· − yk) is called the aggregate plane. □

Lemma 1. There exists σ > 0 depending only on the constants θ ∈ (0, 1) and M > 0 in
algorithm 2 and on the trust-region norm ∥ · ∥, such that for every trial point zk at inner
loop instant k with corresponding solution yk of the trust-region tangent program in step
4, and for the corresponding aggregate subgradient g∗k ∈ ∂1ϕ(y

k,x), we have the estimate

f(x)− ϕk(z
k,x) ≥ σ∥g∗k +Q(yk − x)∥∥zk − x∥. (9)

Proof: This is essentially the same as [5, Lemma 1]. □

Lemma 2. Suppose the inner loop at x turns infinitely, and lim infk→∞Rk = 0. Then x
is a critical point of (7).

Proof: According to step 7 of algorithm 2 we have ρ̃k ≥ γ̃ for infinitely many k ∈ K.
Since Rk is never increased during the inner loop, that implies Rk → 0. Hence yk, zk → x
as k → ∞, where we use the trial step generation rule of step 4 of algorithm 2. We argue
that this implies ϕk(z

k,x) → f(x).
Indeed, lim supk→∞ ϕk(z

k,x) ≤ lim supk→∞ ϕ(zk,x) = limk→∞ ϕ(zk,x) = f(x) is al-
ways true due to ϕk ≤ ϕ and axiom (M1). On the other hand, ϕk includes (i.e. domi-
nates) an exactness plane m0(·,x) = f(x) + g⊤0 (· − x), hence f(x) = limk→∞m0(z

k,x) ≤
lim inf ϕk(z

k,x). The two together show ϕk(z
k,x) → f(x), and then immediately also

Φk(z
k,x) → f(x). We also readily obtain ϕk(y

k,x) → f(x) from the link between zk,yk

in step 4 of algorithm 2.
We now prove that lim infk→∞ ∥g∗k∥ = 0. Assume on the contrary that ∥g∗k∥ ≥ η > 0

for all k. Choose k large enough to have ∥g∗k + Q(yk − x)∥ ≥ 1
2
∥g∗k∥. This is possible

because the sequence g∗k is bounded away from 0 and Q(yk−x) → 0. Then by estimate (9)
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we have f(x)−ϕk(z
k,x) ≥ 1

2
ση∥zk−x∥. Therefore, for k large enough, f(x)−Φk(z

k,x) ≥
1
4
ση∥zk − x∥, as the quadratic term in Φk is of the order ∥zk − x∥2. Since zk → x, by

axiom (M̂2) there exist ϵk → 0+ such that f(zk)−ϕ(zk,x) ≤ ϵk∥zk−x∥. Now we estimate

ρ̃k = ρk +
f(zk)− ϕ(zk,x)

f(x)− Φk( zk,x)
≤ ρk +

ϵk∥zk − x∥
1
4
ση∥zk − x∥

= ρk + 4ϵk/(ση).

Since ϵk → 0 and ρk < γ, we have lim sup ρ̃k ≤ γ < γ̃, a contradiction with ρ̃k > γ̃ for the
infinitely many k ∈ K. That proves g∗k → 0 for a subsequence k ∈ N .

Next observe that by the subgradient inequality and ϕk ≤ ϕ we have

g∗⊤k h ≤ ϕk(y
k + h,x)− ϕk(y

k,x) ≤ ϕ(yk + h,x)− ϕk(y
k,x).

Since ϕk(y
k,x) → f(x) = ϕ(x,x), passing to the limit k ∈ N and using g∗k → 0, yk → x

implies
0 ≤ ϕ(x+ h,x)− ϕ(x,x).

Since h was arbitrary, we have 0 ∈ ∂1ϕ(x,x) ⊂ ∂f(x) by (M1). That proves the Lemma.
□

This result needs only the fact that ϕk ≤ ϕ, so it is not in conflict with any rule in
step 6 used to taper out ϕk → ϕk+1, as long as some exactness plane is present in ϕk at all
inner loop instants k. In the next two lemmas we examine the more involved case when
Rk is bounded away from 0. Here we require not only that an exactness plane is present
at all times, but also that the latest cutting plane is added into ϕk+1.

However, this leads to a tangent program of size growing with k, which raises the
question whether it is in principle possible to limit the number of planes included in the
working model ϕk(·,x) in step 6. For the convex bundle method this question is answered
in the affirmative by Kiwiel’s aggregation rule [18], according to which only three planes
are required, an exactness plane, the latest cut, and the aggregate plane to account for
the past. For the non-convex bundle method, an affirmative answer was first given in [22].
The aggregate plane is a convex combination of active cuts at the trial point yk, and can
be described as follows. Had we removed from the last tangent program all active planes,
and substituted instead the aggregate plane, the solution yk would have been the same.
The idea of the aggregation technique is to add the aggregate plane into the working
model after an unsuccessful trial step yk, which allows to remove the active planes for the
next sweep. Inactive planes may leave the model in any case.

Remark 5. Ruszczyński [26] stresses that the situation is more delicate for the convex
non-smooth trust region method, and asks whether convergence could be proved under
the aggregation rule, or under any other rule allowing to limit the number of planes
included in the ϕk. Here we address this question in the general non-convex case. In [5]
we had shown that the number of cuts in step 6 may at least be limited to n + 2 using
Carathéodory’s theorem, but we remarked that it would be far more attractive to have
a maximum number independent of the dimension n as in Kiwiel’s rule. In [5, Remark
16] we observed that the question whether Kiwiel’s rule could also be justified for the
trust-region method was still open. Here we shall answer this question in the affirmative
by proving convergence under the aggregation rule.

The following result justifies the use of aggregation in the first place for the special
case zk = yk. Note that the trivial choice zk = yk in step 4 is always authorized (due to
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M ≥ 1 and θ ≤ 1), but of course we want to use the additional freedom offered by zk to
improve performance of our method, so zk = yk is rather restrictive, and we will remove
it later.

Lemma 3. Suppose the inner loop at x turns infinitely and the trust-region radius Rk

stays bounded away from 0. Let Q ≻ 0 and suppose the aggregation rule is used to taper
out the models in step 6. Suppose the yk are chosen as trial steps. Then x is a critical
point of (7).

Proof: Since the trust-region radius is frozen Rk = Rk0 from some counter k0 onwards,
we write R := Rk0 . According to step 7 of the algorithm that means ρ̃k < γ̃ for k ≥ k0.
The only progress in the working model as we update ϕk → ϕk+1 is now the addition of
the cutting plane and the aggregate plane. The working models ϕk now contain at least
three planes, an exactness plane, the latest cut from the last unsuccessful trial step, and
the aggregate plane. They may contain more planes, but those will not be used in our
argument below.

We want to prove yk → x. Since Rk stays bounded away from 0, this is more involved
than in the previous Lemma. Since Q ≻ 0 is fixed, we introduce the Euclidian norm
|x|2Q = x⊤Qx. With this arrangement the objective function of the tangent program
becomes

Φk(·,x) = ϕk(·,x) + 1
2
| · −x|2Q.

We know that the cutting plane mk(·,x) at trial step yk satisfies mk(y
k,x) = ϕ(yk,x), so

it memorizes the value ϕ(yk,x), while the aggregate plane m∗
k(·,x) satisfies m∗

k(y
k,x) =

ϕk(y
k,x), so it memorizes in turn the value ϕk(y

k,x). The latter gives

Φk(y
k,x) = m∗

k(y
k,x) + 1

2
|yk − x|2Q. (10)

Now we introduce the quadratic function

Φ∗
k(·,x) = m∗

k(·,x) + 1
2
| · −x|2Q,

then from what we have just seen in (10)

Φ∗
k(y

k,x) = Φk(y
k,x). (11)

Moreover, we have
Φ∗

k(·,x) ≤ Φk+1(·,x), (12)

because according to the aggregation rule we include the aggregate plane m∗
k(·,x) in the

built of the new model ϕk+1, that is, we have m∗
k(·,x) ≤ ϕk+1(·,x), and hence (12).

Expanding the quadratic function Φ∗
k(·,x) at yk gives

Φ∗
k(·,x) = Φ∗

k(y
k,x) +∇Φ∗

k(y
k,x)⊤(· − yk) + 1

2
| · −yk|2Q,

where ∇Φ∗
k = g∗k +Q(yk − x). From the optimality condition of the tangent program at

yk we get g∗k + Q(yk − x) = −vk with vk in the normal cone to the ball B(x, R) at yk,
hence

Φ∗
k(·,x) = Φ∗

k(y
k,x)− v⊤

k (· − yk) + 1
2
| · −yk|2Q. (13)

9



Now we argue as follows:

Φk(y
k,x) = Φ∗

k(y
k,x) (by (11))

≤ Φ∗
k(y

k,x) + 1
2
|yk+1 − yk|2Q

= Φ∗
k(y

k+1,x) + v⊤
k (y

k+1 − yk) (by (13))
≤ Φ∗

k(y
k+1,x) (since v⊤

k (y
k+1 − yk) ≤ 0)

≤ Φk+1(y
k+1,x) (by (12))

≤ Φk+1(x,x) (yk+1 minimizer of Φk+1(·,x))
= ϕ(x,x) = f(x).

(14)

Therefore the sequence Φk(y
k,x) is increasing and bounded above, and converges to a

limit Φ∗ ≤ f(x). Going back with this information to the estimation chain (14) shows
1
2
|yk+1 − yk|2Q → 0 and also v⊤

k (y
k+1 − yk) → 0. Then also

1
2
|yk+1 − x|2Q − 1

2
|yk − x|2Q → 0,

because | · |Q is a Euclidian norm. In consequence

ϕk+1(y
k+1,x)− ϕk(y

k,x) = Φk+1(y
k+1,x)− Φk(y

k,x)− 1
2
|yk+1 − x|2Q + 1

2
|yk − x|2Q → 0.

Now recall that the cutting plane mk(·,x) is an affine support function of ϕk+1(·,x) at
yk. Hence by the subgradient inequality

g⊤k (· − yk) ≤ ϕk+1(·,x)− ϕk+1(y
k,x).

Since ϕk+1(y
k,x) = ϕ(yk,x), we deduce

ϕ(yk,x) + g⊤k (· − yk) ≤ ϕk+1(·,x). (15)

Now using (15) we estimate as follows:

0 ≤ ϕ(yk,x)− ϕk(y
k,x)

= ϕ(yk,x) + g⊤k (y
k+1 − yk)− ϕk(y

k,x)− g⊤k (y
k+1 − yk)

≤ ϕk+1(y
k+1,x)− ϕk(y

k,x)− g⊤k (y
k+1 − yk).

Since yk+1 − yk → 0 and the gk are bounded, we have g⊤k (yk+1 − yk) → 0, hence we
deduce ϕ(yk,x)− ϕk(y

k,x) → 0, and also Φ(yk,x)− Φk(y
k,x) → 0.

Now we claim that ϕk(y
k,x) → f(x). Since ϕk(y

k,x) ≤ Φk(y
k,x) → Φ∗ ≤ f(x),

it remains to prove lim inf ϕk(y
k,x) ≥ f(x). Suppose that this is not the case, and let

ϕk(y
k,x) → f(x)−η for a subsequence and some η > 0. Then also ϕ(yk,x) → f(x)−η for

that subsequence. (Here we use that ϕk(y
k,x)− ϕ(yk,x) → 0 proved above). Passing to

yet another subsequence, and using boundedness of the yk, we may assume 1
2
|yk −x|2Q →

ℓ ≥ 0. Choose δ > 0 such that δ < (1− γ̃)η. From what we have just seen there exists k1
such that

ϕ(yk,x)− ϕk(y
k,x) < δ

for all k ≥ k1. Now recall that ρ̃k ≤ γ̃ for every k ≥ k0, hence

γ̃
(
Φk(y

k,x)− f(x)
)
≤ ϕ(yk,x)− f(x) ≤ ϕk(y

k,x)− f(x) + δ.

10



Passing to the limit gives −γ̃η+ γ̃ℓ ≤ −η+ δ, hence (1− γ̃)η+ ℓγ̃ ≤ δ, which contradicts
the choice of δ. Hence ϕk(y

k,x) → f(x). We immediately deduce that Φk(y
k,x) → f(x)

and Φ(yk,x) → f(x).
We now argue that yk → x. This follows from the estimates

ϕk(y
k,x) ≤ Φk(y

k,x) = ϕk(y
k,x) + 1

2
|yk − x|2Q ≤ Φ∗ ≤ f(x)

because ϕk(y
k,x) → f(x) now shows that all terms go to f(x), and that implies |yk −

x|Q → 0. Since Q ≻ 0 we deduce yk → x, and this is where the proof no longer works if
only Q ⪰ 0. Note that this shows that yk is in the interior of B(x, R) from some counter
onward, so that vk = 0.

Let us now show that 0 ∈ ∂f(x). From the subgradient inequality we have

g∗⊤k (x+ h− yk) ≤ ϕk(x+ h,x)− ϕk(y
k,x) ≤ ϕ(x+ h,x)− ϕk(y

k,x).

Passing to the limit using g∗k → 0, ϕk(y
k,x) → f(x) = ϕ(x,x), we obtain

0 ≤ ϕ(x+ h,x)− ϕ(x,x),

and since h is arbitrary and ϕ(·,x) is convex, this gives 0 ∈ ∂1ϕ(x,x) ⊂ ∂f(x). □

Remark 6. For the general case Q ⪰ 0 and zk different from yk it is still not known
whether aggregation is justified, but with [5, Lemma 2] we can prove convergence if we
keep all cuts in the model, or if we use the Carathéodory type argument of that reference
to limit the number of cutting planes in the inner loop to ≤ n+ 2.

Remark 7. Note that Q ≻ 0 is not a restriction in practice, but zk = yk is. Fortunately
the aggregation technique may still be justified in the case zk ̸= yk if we proceed as
follows. In the first place we allow zk as a trial point in step 4. If acceptance fails,
then we perform step 7. However, if step 7 gives no reduction of Rk, then we are in the
difficult case. We then do the following. We fall back on yk as the trial point, i.e., we
forget about zk. When yk is not accepted, we proceed with step 6 and apply aggregation.
This is now justified because we are in the situation covered by Lemma 3. Note that the
additional work required in steps 6 and 7 is marginal, so we do not waste time by this
evasive maneuver. We could even perform this maneuver as default (i.e. checking yk if
zk fails). We have proved the following

Lemma 4. Suppose the inner loop turns infinitely. Suppose Q ≻ 0 and that the aggrega-
tion rule is used in step 6 to limit the size of ϕk to any pre-defined fixed number N ≥ 3.
Suppose we accept to fall back on yk if zk fails in step 5 with ρ̃k < γ̃ in step 7. Then
0 ∈ ∂f(x). □
Remark 8. In the classical trust-region method failure of the trial step always leads to
reduction of the trust-region radius. One occasionally sees non-smooth versions where
authors do the same. As we have already shown in [5, section 5.5], that must fail. The
example in that reference also shows that the Cauchy point fails in the non-smooth case.

We are now ready to state the main convergence result for our optimization method.
The proof may be adapted from [5] with minor changes, so we skip it here.

Theorem 1. Suppose x1 is such that the level set {x ∈ Rn : f(x) ≤ f(x1)} is bounded.
Let xj be the sequence of serious iterates generated by the bundle trust-region algorithm.
Then every accumulation point x∗ of the xj is a critical point of (7). □
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4 The case of H∞-synthesis
The general purpose algorithm 2 is readily applicable to the H∞-design problem (6), as
this is a special case of (7). Since f is the square-root of a maximum eigenvalue function,
the ideal model ϕ in algorithm 2 is chosen as in remark 3. There are, however, some
particularities in the application of algorithm 2 to (6), on which we comment in this
section.

4.1 Stability barrier

The hidden constraint of closed-loop stability may occasionally lead to unacceptable trial
points yk, but this can be avoided by complementing the objective in (6) by the following
barrier function: f(x) = max{∥Twz(K(x))∥∞,d, c∥S(K(x))∥∞,d}, where S = (I + GK)−1

is the closed-loop sensitivity function, and c > 0 a small constant. It is well-known that
∥S∥−1

∞ , also known as the modulus margin, is an indicator for the distance of the Nyquist
curve to the point −1, and since the Nyquist curve crosses −1 when iterates become
destabilizing, the term ∥S∥∞ becomes large as iterates approach the limit of the region
of stability. In other words, c∥S∥∞ has the effect of a barrier function at the boundary
of the hidden constraint. Note that the maximum of two H∞-norms is again a H∞-norm,
i.e., we may still represent the modified objective as f(x) = ∥Tw′,z′(K)∥∞,d for a modified
channel w′ → z′. Note that other closed-loop transfer function, which may contribute
a similar complementary barrier effect include GS = G(I + GK)−1, (I − KG)−1 and
K(I +KG)−1, see e.g. [8, p.36].

4.2 Exploiting freedom in steps 3 and 4

An important practical aspect of program (6) is to use an adapted initialization of the
model ϕ1(·,x) at the beginning of the inner loop, the idea being that in the vast majority
of cases the first trial step will then be successful. This is achieved by including not only
active frequencies ω from Twz(K(x), jω) at x in the model, but also branches belonging to
secondary peaks, which are susceptible to become active at the next trial step. Selecting
near active frequencies of the H∞-norm is decisive for the quality of the working models
ϕk and was already discussed in [1] and [4] in the context of the bundle method, and this
is shown schematically in Figure 2. We refer to this type of affine functions as anticipated
cutting planes, and their integration into the working models is covered by convergence
theory as long as they are affine minorants of ϕ.

Remark 9. We next exploit the freedom in step 4 of algorithm 2 in the case of program
(6). In case of failure of the solution yk of the tangent program it is attractive to use a
backtracking linesearch to generate trial steps of the form zk = x+ t(yk − x), 0 < t < 1.
By convexity, Φk(x,x)− Φk(x+ t(yk − x),x) ≥ t

(
Φk(x,x)− Φk(y

k,x)
)
, hence every zk

with t ≥ θ gives automatically a trial point in the sense of step 4, and we only have to
check acceptance ρk ≥ γ. Even for smaller steps t < θ it may still be possible to have
f(xj)− Φk(z

k,xj) ≥ θ
(
f(xj)− Φk(y

k,xj)
)
, in which case zk remains a candidate.

4.3 Performance certificate

The strategy in algorithm 1 is to perform discretization at the level of the system transfer
function G(s), and not before, avoiding system reduction or identification. To justify this

12
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Note that computing minimal norm elements φ ∈ ∂g(κ) amounts to computing mini-
mal norm elements in the LMI set (4.9) and therefore reduces to an LMI problem. Finally,
we emphasize the important fact that when singular values σ (G(κ, jω)) are simple on
Ωe(κ), which is the rule in practice, we have Zω = TrZω so that SDP (4.21) simplifies to
a much faster convex QP. A fact that can also be exploited for computing minimal norm
elements.

cut

active frequencies

extended set

ω ω

σ (Tw→z(K))σ (Tw→z(K))

Figure 4.3: Selection of frequencies: 1)lhs active only, 2)rhs active and secondary peaks.

4.3 Nonsmooth loop-shaping design

In this section we recall some key facts from the loop-shaping design technique introduced
by McFarlane and Glover [98], and we discuss how it can be merged with our nonsmooth
framework to arrive at a new practical PID loop-shaping design method.

4.3.1 Loop-shaping design

Loop-shaping design is an efficient and practical technique which has been applied success-
fully to a variety of difficult design problems, see [42, 53, 120] to cite a few. It proceeds
as presented in figure 4.4. Firstly, the open-loop plant G is altered by pre- and post-
compensators W1 and W2, respectively, to achieve desired open-loop shapes. Roughly
speaking, the shaped plant W2GW1 should have large gains at low frequencies for per-
formance and small gains at high frequencies for noise attenuation. Also, the roll-off
rate should not be too large in the mid-frequency range. Secondly, an H∞ synthesis is

Figure 2: Left: grid Ωopt based on the criterion (16). Right: selection of extended set of
frequencies around active frequencies with primary and secondary peaks (i.e., global and local
maxima of ω 7→ σ(Twz(jω)).

we have to select a discretization Ωopt for optimization (6) such that the optimal value
f(x∗) = ∥Twz(K(x∗))∥∞,d is not too far from the true infinite-dimensional value f∞(x∗) =
∥Twz(K(x∗))∥∞. This hinges on a suitable grid generation technique. This is crucial in
our approach, but we stress that this takes place in a low-dimensional space, whereas
system reduction and identification need heavy large scale linear algebra machinery, and
yet remain on the level of heuristics.

Given a continuously differentiable function ϕ : [0,∞] → R+, we want to construct a
finite grid Ωopt such that maxω∈[0,∞] |ϕ(ω)−Pϕ(ω)| ≤ ϑ for a fixed tolerance ϑ, where Pϕ is
the piecewise linear function interpolating {ϕ(ω) : ω ∈ Ωopt}. We call M [·, ·] a first-order
bound of ϕ : R → R if |ϕ′(ω)| ≤ M [ω−, ω+] for all ω− < ω+ and all ω ∈ [ω−, ω+]. We
need the following preparatory:

Lemma 5. Suppose we have constructed a grid Ω on [0,∞] such that for two consecutive
nodes ωi, ωi+1 ∈ Ω and some γ∗ ≥ max{ϕ(ωi), ϕ(ωi+1)} the inequality

M [ωi, ωi+1](ωi+1 − ωi) < 2γ∗ + 2ϑ− ϕ(ωi)− ϕ(ωi+1). (16)

is satisfied. Then ϕ(ω) < γ∗ + ϑ for every ω ∈ [ωi, ωi+1].

Proof: Suppose on the contrary that there exists ω∗ ∈ [ωi, ωi+1] such that ϕ(ω∗) ≥ γ∗+ϑ.
Then the polygon through ϕ(ωi), ϕ(ω∗), ϕ(ωi+1) has length greater than or equal to L,
where

L =
√
A2 + (ω∗ − ωi)2 +

√
B2 + (ωi+1 − ω∗)2

with A = γ∗ + ϑ− ϕ(ωi) and B = γ∗ + ϑ− ϕ(ωi+1). Now L ≥ ℓ, where

ℓ := min
ω∈[ωi,ωi+1]

√
A2 + (ω − ωi)2 +

√
B2 + (ωi+1 − ω)2 =

√
(A+B)2 + (ωi+1 − ωi)2,

the minimum being attained at ω = ωiB+ωi+1A
A+B

. On the other hand the curve {(ω, ϕ(ω)) :
ω ∈ [ωi, ωi+1]} has length L =

∫ ωi+1

ωi

√
1 + ϕ′(ω)2dω ≤

√
1 +M [ωi, ωi+1]2(ωi+1 − ωi),

and L ≥ L, so in combining the two estimates we get L ≥ ℓ, which yields the es-
timate

√
1 +M [ωi, ωi+1]2 ≥

√
(A+B)2/(ωi+1 − ωi)2 + 1. We deduce M [ωi, ωi+1] ≥

(A + B)/(ωi+1 − ωi), and since A + B = 2γ∗ + 2ϑ − ϕ(ωi) − ϕ(ωi+1), this contradicts
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(16). □

We would now like to apply this to the function ϕ(ω) = σ (Twz(K
∗, jω)), where K∗ =

K(x∗) is the optimal H∞-controller computed by algorithm 2. For that we have to prove
differentiability of ϕ. We have the following:

Lemma 6. [6, Theorem 2.3] The function ϕ has only a finite number of points of non-
smoothness, and in particular, is of class C2 in the neighborhood of all primary and
secondary peaks (all global and local maxima).

Proof: By [17, Thm. 6.1] the one-parameter family of Hermitian matrices ω 7→ T (ω) =
Twz(K

∗, jω)HTwz(K
∗, jω) has real analytic eigenvalue functions λν(ω), hence ϕ2(ω) is a

finite maximum of real analytic functions, and then also ϕ because ϕ > 0. The rest of the
argument is now as in [6]. □

Remark 10. In consequence, ϕ is twice continuously differentiable in a neighborhood of
each peak, and in particular on a set {ω ∈ [0,∞] : ϕ(ω) > ∥Twz(K

∗)∥∞ − ϑ0} for some
ϑ0 > 0. This means Lemma 5 is applicable.

We use this to construct the grid Ωopt used in (6) as follows. Start with ω0 = 0. Having
constructed ωi, compute an extrapolation ω♯

i > ωi and obtain M = max{M [ωi, ω] : ω ∈
[ωi, ω

♯
i ]}. Then choose ωi+1 ∈ (ωi, ω

♯
i ] such that

M(ωi+1 − ωi) < 2max{ϕ(ωi), ϕ(ωi+1)}+ 2ϑ− ϕ(ωi)− ϕ(ωi+1). (17)

If G(s) is available analytically, then M [·, ·] is computable. In the numerical approach we
use a finite difference estimation ϕ′(ω) ≈ (ϕ(ω+)−ϕ(ω))/(ω+−ω). Since ϕ is continuously
differentiable near the peak values, this gives excellent results. In our experience, the
method rarely leads to grids with more than a few hundred of nodes, which allows an
efficient solution of the optimization program. A typical example is shown in Figure 2.

The following result justifies our method theoretically.

Theorem 2. If 0 < ϑ ≤ ϑ0 and if a first-order bound M [·, ·] for ϕ = σ (Twz(K
∗, ·)) in

tandem with rule (17) is used in step 4 of algorithm 1 to construct Ωopt, then the gain γ∗

achieved by the solution K∗ of (6) is certified to satisfy γ∗ ≥ ∥Twz(K
∗)∥∞ − ϑ.

Proof: Since ϕ(ω) = σ (Twz(K
∗, jω)) and ∥Twz(K

∗)∥∞ = maxω∈[0,∞] ϕ(ω), we have to
show that γ∗ ≥ ϕ(ω) − ϑ for every i and all ω ∈ [ωi, ωi+1], where ωi are the nodes of
the grid Ωopt constructed in step 4 of algorithm 1 based on the rule (17). Since γ∗ is the
gain achieved by the solution K∗ of (6) on that grid, it satisfies γ∗ = maxi ϕ(ωi). Hence
γ∗ ≥ max{ϕ(ωi), ϕ(ωi+1)}, and so condition (16) of Lemma 5 is satisfied. Since by Lemma
6 we may apply Lemma 5 to ϕ, we obtain the conclusion ϕ(ω) ≤ max{ϕ(ωi), ϕ(ωi+1)}+ϑ ≤
γ∗ + ϑ on [ωi, ωi+1], as claimed. □

Remark 11. In rule (17) we apply (16) with γ∗ = max{ϕ(ωi), ϕ(ωi+1)} on each interval
[ωi, ωi+1]. When it comes to just certifying the optimal value f(x∗) = ∥Twz(K(x∗))∥∞ =
ϕ(ω∗) in step 6 of algorithm 1, then we can construct an even coarser grid by applying
(16) with γ∗ = ϕ(ω∗) the same for all [ωi, ωi+1]. Namely, our grid can be very coarse at
frequencies ω where ϕ(ω) ≪ ϕ(ω∗), and still capture sharp peaks, as illustrated in Figure
2. We refer to this as a verification grid Ωver. According to our experience, the outlined
method to construct Ωopt is well-adapted to discretize the controller design problem.
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We can further exploit lemma 5 to obtain information on how close the values γ∗
of (6) and γ∞ of the infinite-dimensional program (5) are. Writing as before f(x) =
∥Twz(K(x))∥∞,d for the discrete H∞-norm on Ωopt, and f∞(x) = ∥Twz(K(x))∥∞ for the
true H∞-norm, we compare the discretized H∞-program minx f(x), i.e., (6), to the un-
derlying infinite-dimensional minx f∞(x), i.e. (5).

Corollary 1. Let x∞ be a local minimum of (5) with value γ∞, and x∗ a local minimum
of (6) with value γ∗. Suppose a first-order bound in tandem with rule (17) has been used
in step 6 of algorithm 1. Then if x∗, x∞ are within neighborhoods of local optimality of
each other, we have f(x∞) ≥ f(x∗) ≥ f∞(x∗)− ϑ ≥ f∞(x∞)− ϑ ≥ f(x∞)− ϑ.

Proof: Indeed, f(x∞) ≥ f(x∗) because x∗ is a minimum of f on a neighborhood U(x∗),
and x∞ ∈ U(x∗) by hypothesis. Next f(x∗) ≥ f∞(x∗)−ϑ by Lemma 5, because construc-
tion of the grid uses the bound M [·, ·] and rule (16). Next f∞(x∗) ≥ f∞(x∞), because x∞
is a minimum of f∞ on a neighborhood U(x∞), and x∗ ∈ U(x∞) by hypothesis. The last
inequality is satisfied because f ≤ f∞. □

This means comparable locally optimal values of the infinite dimensional H∞-program
(5) and its approximation (6) differ by at most ϑ, our apriori chosen tolerance. Since most
of the time our algorithm finds the global minimum of (6), this is a very useful result in
practice, as it determines the value of the infinite dimensional H∞-program (5) within a
prior tolerance level ϑ.

The argument remains valid if x∞, x∗ are only approximate local minima, say up
to the same tolerance ϑ in the values. Then we get the chain f(x∞) ≥ f(x∗) − ϑ ≥
f∞(x∗) − 2ϑ ≥ f∞(x∞) − 3ϑ ≥ f(x∞) − 3ϑ, so here our approximation (6) gives the
correct value up to an error of 3ϑ in the values.

5 Applications
In this section, we apply our method to several challenging studies in control of infinite
dimensional system, and in particular, to boundary and distributed control of systems of
parabolic partial differential equations.

5.1 Computation of G(s) in boundary control

We illustrate how our procedure is applied to boundary control of parabolic PDEs. Con-
sider a boundary problem of the form

zt(x, t) =
∑

|α|,|β|≤m

(−1)|α|Dα(aαβ(x)D
βz)(x, t) = 0 (x, t) ∈ Q× [0,∞)

Di−1
ν z(x, t) = Ui(x, t) x ∈ ∂Q, i = 1, . . . ,m,

(18)

where Ui are abstract controls acting on the boundary ∂Q. Here for convenience Q is
bounded open with ∂Q a compact orientable C∞-manifold, the coefficients are aα,β ∈
C∞(Q), and uniform ellipticity

∑
|α|,|β|≤m aαβ(x)ξ

αξβ ≥ c|ξ|2 is assumed for x ∈ Q. Then
by [28] problem (18) may be represented in the abstract form (1), where however the
input space U is potentially still infinite dimensional. To comply with our assumption
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that K(s) should be finite-rank, i.e., that input and output spaces U, Y should be finite-
dimensional, we select basis functions ϕik on the boundary ∂Q and replace the boundary
control action U in (18) by a finite-dimensional version

Di−1
ν z(x, t) =

N∑
k=1

ϕki(x)uik(t), x ∈ ∂Q, i = 1, . . . ,m,

which now has input space U ≃ RNm. A finite-dimensional output space Y ≃ Rp could
be obtained by taking measurements of the form

yi(t) =

∫
Q

ψi(x)z(x, t) dx, i = 1, . . . , p,

with another set of basis functions ψi on Ω representing sensors. For one-dimensional Q
point evaluations on ∂Q are possible. This case will be used in our numerical experiments.

Referring to [28, 10, 29] for the correct setup of (1), we directly pass to the computation
of G(s). Laplace transforming (18) with initial condition z(x, 0) = 0 leads for fixed s ∈ C
to the elliptic boundary value problem

sz(x, s) =
∑

|α|,|β|≤m

(−1)|α|Dα(aαβ(x)D
βz)(x, s) = 0 x ∈ Q

Di−1
ν z(x, s) =

N∑
k=1

ϕki(x)uik(t) x ∈ ∂Q, i = 1, . . . ,m.

(19)

Then Gikr(s) is obtained by solving (19) with uik = 1 ui′,k′ = 0 for (i′, k′) ̸= (i, k), and
by computing yr(s) =

∫
Q
ψr(x)z(x, jω) dx. For the one-dimensional case Q = [0, 1], point

evaluations yr(s) = zr(0, s), yr(s) = zr(1, s), or linear combinations of those, are possible.

Remark 12. Computation of G′(s) can also be obtained by solving an elliptic boundary
value problem, which is (19) differentiated with respect to s. Since K is known explicitly,
this is useful when computing the bound M [·, ·] of ϕ in Lemma 5.

Remark 13. In those cases where computations are not performed formally, a high
spatial resolution is used to solve (19) accurately. One such solve can then be interpreted
as a function evaluation Gikr(s). If carried out numerically, we perform the computation
of G(s) for fixed s = jω with the highest spatial discretization available in our setup.
Typically, this is at least as accurate spatially as our final simulation of the closed-loop
system. Since the number of inputs and outputs is not very large, pre-computing G(s)
will not seriously burden the overall performance of algorithm 1. Since pre-computing
G(jω) is done off-line, it neither impedes the optimization phase, nor the plant modeling
phase.

5.2 Reaction-convection-diffusion equation

We consider a non-linear reaction-convection-diffusion equation with Danckwaerts and
von Neumann boundary conditions

∂C(z, t)

∂t
= D

∂2C(z, t)

∂z2
− U(t)

∂C(z, t)

∂z
− kC(z, t) (z, t) ∈ [0, L]× [0,∞)

D
∂C(0, t)

∂z
− U(t)(C(0, t)− Cin) = 0,

∂C(L, t)

∂z
= 0.

(20)
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The process represents a chemical reaction in a cylindrical plug flow reactor with time-
varying flow velocity U(t), constant axial dispersion D, and constant reaction rate k. The
dynamics of the reaction A

k→ B are described by the spatially and temporally varying
concentration C(z, t) of reactant A, the concentration of product B being a dependent
state. Using online measurement y(t) = C(L, t)−Css(L) of the concentration of ingredient
A at the outflow position z = L we steer the plug flow velocity U(t) to maintain the process
in steady-state Uss, Css(z), yss, while attenuating measurement noise and a disturbance
of the flow velocity, and to enable speedy tracking of set-point changes in the steady-state
concentration. We refer to [29] or [10, Example 3.3.5] for the correct setup of this problem
as a Hilbert space linear system (1).
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Figure 3: Bode plot of infinite-dimensional transfer function G(s) compared with finite-difference
based Gfd(s). Left shows study 1 computed with Maple, compared to finite-differences of order
N = 1000. Even with 5000 states the transmission zero at frequency ω1.6Hz, which is missed by
the discretization of order N = 1000. Right shows Van de Vusse study with G(s) computed via
numerical Maple solve of (29), compared to finite-differences of order N = 2000.

Fixing a steady-state flow velocity Uss, we compute the corresponding steady-state
concentration Css(z) by solving the one-dimensional boundary value problem

DC ′′
ss(z)− UssC

′
ss(z)− kCss(z) = 0

DC ′
ss(0)− Uss(Css(0)− Cin) = 0, C ′

ss(L) = 0.
(21)

Linearization about steady-state with U(t) = Uss + u(t) and C(z, t) = Css(z) + c(z, t)
leads now to the linearized boundary and distributed control problem

ct(z, t) = Dczz(z, t)− Usscz(z, t)− C ′
ss(z)u(t)− kc(z, t)

Dcz(0, t)− Ussc(0, t) + (Cin − Css(0))u(t) = 0, cz(L, t) = 0.
(22)

The linearized output is y(t) = c(L, t). In this case steady-state Css(z) and transfer
function G(s) = y(s)/u(s) of the linearized equation can be computed formally using
Maple. We obtain

Css(z) = Cin b
(b− f)e

f(1−z/L)−bz/L
2a − (b+ f)e

f(z/L−1)−bz/L
2a

(−bf − 2ak − b2)e
−f
2a − (bf − 2ak − b2)e

f
2a

(23)
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where
a =

D

L2
, b =

−Uss

L
, f =

√
b2 + 4ak. (24)

Then the transfer u(s) → c(z, s) is obtained analytically as Cin
P1(z,s)
P2(z,s)

, where

P1(z, s) =

[
2La(s+ k)

∫ 1

0

f1(x)dx− LT2

∫ z
L

0

f2(x)dx− T3(m− 1)

]
eT4(z)+[

LT6

∫ z
L

0

f1(x)dx+ 2La(s+ k)

∫ 1

0

f2(x)dx+ T8(m− 1)

]
eT9(z)+

eT5(z)LT2

∫ z
L

1

f1(x)dx+ eT7(z)LT6

∫ 1

z
L

f2(x)dx

P2(z, s) = LT1(T2e
T1
2a + T6e

−T1
2a )

with

T1 =
√
b2 + 4a(s+ k), T2 = bT1 + 2a(−k − s)− b2, T3 = bT1 + 4a(−k − s)− b2,

T4(z) =
z
L
b+ ( z

L
− 1)T1

−2a
, T5(z) =

− z
L
b+ ( z

L
+ 1)T1

2a
, T6 = bT1 + 2a(s+ k) + b2,

T7(z) =
z
L
b+ ( z

L
+ 1)T1

2a
, T8 = bT1 + 4a(s+ k) + b2, T9(z) =

− z
L
b+ ( z

L
− 1)T1

2a

f1(z) = Cssz(z)e
(b−T1)z

2aL , f2(z) = Cssz(z)e
(b+T1)z

2aL , m =
Css(0)

Cin

.

The transfer u→ y is then obtained at z = L.
Adopting numerical values D = 1.05m2/min, Uss = 1.24m/min, Cin = 0.5mol/m3,

k = 0.25m3/mol, and L = 6.36m from a study in [14], we can compare the the infinite-
dimensional transfer function G(s) with a finite-difference approximation Gfd(s). Figure
3 left shows the comparison of G(s) and Gfd(s).

The scheme for synthesis is shown in Figure 4 and uses the filters in Figure 5 (right),
which are defined as

We(s) =
0.00001s+ 5

s+ 0.25
, Wn(s) =

0.00125s2 + 0.00035s+ 0.00005

0.000025s2 + 0.007s+ 1
, Wu = 0.1.

The controller structure Kpi includes SISO PI-controllers with two parameters K(s) =
kp+

ki
s
, so x = (kp, ki). With the mixed performance-robustness channel w = (r, n) → z =

(ze, zu) = (Wee,Wuu) we have now defined the objective ∥Twz(K(x))∥∞ of our problem,
and according to section 4.1 the objective f is complemented by the barrier function
c∥S(K(x))∥∞. Note that in the scheme of Figure 4 the sensitivity function S equals the
unfiltered closed-loop transfer function Tre, so altogether with regard to the general form
(6) in this study the channel (r, n) → (ze, zu, ce) is optimized, where c = 0.2. The optimal
solution obtained by algorithm 2 is x∗ = (k∗i , k

∗
p) = (9.93 · 10−5, 7.13 · 102).

Remark 14. The functional analytic setup for (22) is as follows. On the Hilbert space
H = L2([0, L]) define the differential operator A = D d2

dz2
− Uss

d
dz

− k with domain
D(A ) = {h ∈ H : h, d

dz
h a.c., d2

dz2
h ∈ L2([0, L])}, and the boundary control operator by

P =
(
D d

dz
− Uss

)
/(Css(0)−Cin) with domainD(P) = {h ∈ H : d

dz
h ∈ L2([0, L]), h a.c.},
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Figure 4: Scheme for synthesis. The H∞-norm of the performance channel (r, n) → (ze, zu) is
minimized, which assures that the system reacts to a set-point change r, and attenuates noise
with bandwidth specified by the filter Wn. Tracking e is in the low-frequency range specified by
We.
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6.3 Van de Vusse reactor
The following more challenging study uses a parallel Van de Vusse process

A
k1−→ B

k2−→ C

A+ A
k3−→ D

which we want to operate in continuous mode in an isothermal reactor. In [31] Van de
Vusse considers A = cyclopentadiene, B = cyclopentenol, C = cyclopentanediol, D =
dicyclopentadiene. The desired output product is B, the inlet is the primary product
A, whereas C,D are waste products. The reaction takes place in a steady-plug-flow
cylindrical chemical reactor of length L, through which a fluid with velocity U is flowing,
where ingredients are mixing axially with dispersion coefficient D, while the now non-
linear chemical reaction is described by the rates ki. In ODE-based models the axial
dispersion is often neglected, or replaced by a singular perturbation approach [11]. Here
we discuss the full non-linear model. For the functional analytic setup of the problem see
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Figure 4: Scheme for synthesis. In studies 5.2 and 5.3 the H∞-norm of the performance channel
(r, n) → (ze, zu) is minimized, which assures that the system reacts to a set-point change r, and
attenuates noise with bandwidth specified by the filter Wn. Tracking e is in the low-frequency
range specified by We. In study 5.4 the channel r → (ze, zy) is optimized.
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Figure 5: Left: Time response to a noisy reference signal of analytic closed loop. Right: Filter
We for synthesis and noise filter Wn.

so that D(A ) ⊂ D(P). One defines α = (Css(0)− Cin) / (D − Uss/2) and the function
b(z) = α

2
(z + 1)2, then the multiplication operator Bu = b(z)u satisfies P(Bu) = u, and

now we have a boundary control problem in the sense of [10, Def. 3.3.2], which can be
brought to the form (1).

5.3 Van de Vusse reactor

The following more challenging study uses a parallel Van de Vusse process

A
k1−→ B

k2−→ C

A+ A
k3−→ D

which we want to operate in continuous mode in an isothermal reactor. In [32] Van de
Vusse considers A = cyclopentadiene, B = cyclopentenol, C = cyclopentanediol, D =
dicyclopentadiene. The desired output product is B, the inlet is the primary product
A, whereas C,D are waste products. The reaction takes place in a steady-plug-flow
cylindrical chemical reactor of length L, through which a fluid with velocity U is flowing,
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where ingredients are mixing axially with dispersion coefficient D, while the now non-
linear chemical reaction is described by the rates ki. In ODE-based models the axial
dispersion is often neglected, or replaced by a singular perturbation approach [12]. Here
we discuss the full non-linear model. For the functional analytic setup of the problem see
again [29].

Assuming radially homogeneous conditions in the tube, the system can be described
by one spatial dimension z, and the reaction for ingredients A and B is governed by the
following diffusion-convection-reaction system of parabolic PDEs:

∂CA(z, t)

∂t
= D

∂2CA(z, t)

∂z2
− U

∂CA(z, t)

∂z
− k1CA(z, t)− k3C

2
A(z, t)

∂CB(z, t)

∂t
= D

∂2CB(z, t)

∂z2
− U

∂CB(z, t)

∂z
+ k1CA(z, t)− k2CB(z, t)

(25)

for (z, t) ∈ [0, L]× [0,∞), with Danckwaerts and von Neumann boundary conditions

D
∂CA(0, t)

∂z
− U (CA(0, t)− CAin) = 0, D

∂CB(0, t)

∂z
− UCB(0, t) = 0

∂CA(L, t)

∂z
= 0,

∂CB(L, t)

∂z
= 0

(26)

for all t ∈ [0,∞). The meaning of these boundary conditions at z = 0 is that as soon as
the feed enters the reactor at z = 0, it will be diluted by the axial mixing caused by the
flow. At z = L we have Neumann boundary conditions, which simply require that the
concentration stops changing at the point where the flow leaves the reactor.

The goal of the study is to operate the reactor at a steady-state flow Uss leading to
a steady outflow CBss(L) of product B at the outlet of the reactor. This steady-state
flow has to be controlled by feedback, where we have the possibility to act on the veloc-
ity U(t) = Uss + u(t), and where we use the deviation y(t) = CB(L, t) − CBss(L) from
the steady-state production as our online measurement at the outlet. It is assumed that
changes of the axial flow velocity do not affect the axial dilution D assumed constant.
Control has to maintain a stable steady-state, attenuate measurement noise and distur-
bances at the inflow, and enable the system to react to set-point changes in the flow
velocity U .

Our procedure starts by computing the steady-state, which leads to solving the system
of ODEs

DC ′′
Ass(z)− UssC

′
Ass(z)− k1CAss(z)− k3C

2
Ass(z) = 0

DC ′′
Bss(z)− UssC

′
Bss(x) + k1CAss(z)− k2CBss(z) = 0

(27)

with steady-state boundary conditions

DC ′
Ass(0)− Uss (CAss(0)− CAin) = 0, DC ′

Bss(0)− UssCBss(0) = 0,

C ′
Ass(L) = 0, C ′

Bss(L) = 0.
(28)

This defines a mapping Uss → (CAss(L), CBss(L)), which allows us to see what flow Uss

gives the largest output. In the numerical study we fix Uss = 6.175e-3, which leads to the
solutions in Figure 6.

Remark 15. According to our strategy we assume that CAss(z), CBss(z) are computed
with a very high precision, representing a quasi-analytic solution. Indeed, it is in principle
possible to solve the steady-state system formally using Taylor series expansions, but since
the difference with a high precision numerical solution is marginal, we proceed with the
numerical approach.
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Figure 6: Steady-state flow computed by Maple for Uss = 6.175e-3. The parameters were
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on [0, 1].

Once the steady-state is computed, we linearize the system by putting CA(z, t) =
CAss(z) + cA(z, t), CB(z, t) = CBss(z) + cB(z, t), U(t) = Uss + u(t) with off-sets cA, cB, u,
which leads to the linearized system

∂cA(z, t)

∂t
= D

∂2cA(z, t)

∂z2
− Uss

∂cA(z, t)

∂z
− (k1 + 2k3CAss(z))cA(z, t)−

∂CAss(z)

∂z
u(t)

∂cB(z, t)

∂t
= D

∂2cB(z, t)

∂z2
− Uss

∂cB(z, t)

∂z
+ k1cA(z, t)− k2cB(z, t)−

∂CBss(z)

∂z
u(t)

(29)

with left boundary conditions

D
∂

∂z
cA(0, t)− UsscA(0, t) + (CAin − CAss(0))u(t) = 0

D
∂

∂z
cB(0, t)− UsscB(0, t)− CBss(0)u(t) = 0.

(30)

and right boundary conditions

∂cA(L, t)

∂z
= 0,

∂cB(L, t)

∂z
= 0. (31)

The measured output is y(t) = cB(L, t). The transfer function G(s) = y(s)/u(s) is in
principle also available analytically, but we continue with the high precision numerics
strategy. We first compute the transfers cA(z, s)/u(s) and cB(z, s)/u(s), which we obtain
by Laplace transforming the linearized system. This leads to the linear boundary value
problem

D(cA)zz(z, s)− Uss(cA)z(z, s)− (k1 + 2k3CAss(z)− s)cA(z, s)− (CAss)z(z)u(s) = 0

D(cB)zz(z, s)− Uss(cB)z(z, s) + k1cA(z, s)− (k2 + s)cB(z, s)− (CBss)z(z)u(s) = 0
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with Laplace transformed boundary conditions

D(cA)z(0, s)− UsscA(0, s) + (CAin − CAss(0))u(s) = 0,

D(cB)z(0, s)− UsscB(0, s) + (CBin − CBss(0))u(s) = 0

D(cA)z(L, s) = 0

D(cB)z(L, s) = 0

Solving this boundary value problem for fixed s = jω with u(s) ≡ 1 gives the value G(jω)
of the transfer function y(s) = cB(L, s) = G(s)u(s). This is in fact the method presented
in section 5.1. The magnitude of G(s) is shown in Figure 7 (right).

Note that for every fixed s = jω we have to solve a static elliptic problem associated
with the dynamic equation (29), and we perform these computations with the finest scale
available, so that G(s) is essentially lossless. In Figure 3 it can be seen that in order
to achieve the accuracy in G(s) with a finite-difference discretization Gfd(s) we would
requires at least 2000 states. So in state-space we would have to perform synthesis on
a system of order 2000 to be sure that we do not lose information. This size is beyond
existing synthesis techniques. In the same vein, any approach based on system reduction
would run the risk of losing information in forming a transfer function based on a reduced
model.

constant denomination numerical value unit
k1 exchange rate A→ B 1.39× 10−2 s−1

k2 exchange rate B → C 2.78× 10−2 s−1

k3 exchange rate A+ A→ D 2.77× 10−4 l/mol/s
D axial dispersion coefficient 3.33× 10−4 m2/s
Uss steady-state velocity 6.175× 10−3 m/s
CAin inlet concentration of component A 10.0 mol/l
L length of reactor 1.0 m

The spatiotemporally, spatially, and temporally varying quantities are

Quantity denomination unit
CA(z, t) concentration of reactant A mol/l
CB(z, t) concentration of reactant B mol/l
CAss(z) steady-state concentration of A mol/l
CBss(z) steady-state concentration of B mol/l
U(t) superficial velocity m/s

In the synthesis scheme of Figure 4 we use again the channel (r, n) → (ze, zu), now with
the filters

We(s) =
10−5s+ 1.502

s+ 0.07509
, Wn(s) =

0.00125s2 + 0.00035s+ 5 · 10−5

2.5 · 10−5s2 + 0.007s+ 1
, Wu = 0.1.

Optimization is now over the class K3 of third order controllers, which leads to a tunable
vector x ∈ R14, as the system matrix AK of the controller (2) is parametrized in tridiagonal
form. The channel is again complemented by the barrier c∥S(K(x))∥∞, where S = Tre
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Figure 7: Left: Comparison of transfer function magnitude for different positions of the sensor.
The blue curve (z = L) is the one chosen in the experiment. Right: Response of closed-loop
system to a noisy reference for optimal controller computed by algorithm 1.

and c = 0.2. The optimal H∞-controller K(x∗) with x∗ ∈ R14 computed by algorithm 1
is obtained in the form (2) as

AK =

−.8946 −36.65 0
−1.324 −50.27 −18.4

0 82.2 12.14

 , BK =

−8.32
4.728
2.019

 , CK =
[
−1.839 −3.129 −9.019

]
,

DK = −.08686.

the optimal gain being f(x∗) = 0.464. The final number of nodes required for a certified
result was |Ωopt| = 101, where one update of the grid in step 6 of algorithm 1 was needed.
The study ends with a non-linear simulation of the optimal controller. In Figure 7 (right)
the response if the nonlinear system to a noisy reference signal is displayed.

5.4 Cavity flow

We consider a challenging cavity flow study from [33], where the infinite-dimensional
transfer function is available analytically and of the form

G(s) =
e−τ1s

p2(s) + q2(s)e−τ2s + ce−τ3s

with quadratic polynomials p2(s), q2(s) and delay parameters τi > 0. Figure 8 (left) shows
the magnitude plot of G in blue, indicating a large number of resonant peak frequencies.

As H∞-objective we have chosen the channel ∥(W1S,W2T )∥∞ with S the closed-loop
sensitivity function, T the complementary sensitivity functions, and with the frequency
weighing filters W1(s) = (0.01s + 177.4)/(s + 50.68), W2(s) = (100s + 500)/(s + 50000).
Optimization (6) is over the class K2 of order 2 controllers, which features 9 tunable
parameters. The optimal controller K(x∗) with x∗ ∈ R9 computed by algorithm 1 is given
in transfer function form as K∗(s) = (0.5069s2+119.2s+1419)/(s2+308s+1.276e04), and
achieves a gain of γ∗ = 1.937, which improves over the value 1.948 obtained in [33] using
a coprime factorization approach. The final grid size is |Ωopt| = 382. The fact that the
class K2 with which we achieve γ∗ = 1.937 is much simpler than the infinite-dimensional
controller structure used in [33] explains why our novel approach represents a significant
improvement in this study.
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embedded in the cavity leading edge, see Fig. 1. Actuation
is provided by the movement of the titanium diaphragm
of a Selenium D3300Ti compression driver whose voltage
signal is amplified by a Crown D-150A amplifier. This
assembly has a mean actuator to main flow momentum ratio
Cµ = hu2/HU2

∞
in the range 10−6 to 10−4, where u is

the rms value of the forcing velocity at the actuator exit slot
and U∞ is the velocity of the freestream in the test section
above the cavity. The Pressure fluctuations are measured
by Kulite dynamic pressure transducers placed in different
locations in the test section. A dSPACE 1103 DSP board
connected to a Dell Precision Workstation 650 computer is
used to simultaneously acquire the pressure signals at 50 kHz
through 16-bit channels and manipulates them to produce
the desired control signal from a 14-bit output channel.
Each recording is band-pass filtered between 200 and 10,000
Hz to remove spurious frequency components. In order to
maximize the control board performance, its processor is
used exclusively for running the control routines. For more
detailed spectral analysis, simultaneous pressure recording
of 262,144 samples each are band-pass filtered between 200
and 20,000 Hz and acquired at 200 kHz through a 16-
bit resolution acquisition board (National Instruments PCI-
6036E) operating independently in the computer. By using
the Kulite sensitivity and accounting for the amplifier gain
setting, the voltage values of the timetraces are converted to
non-dimensional pressure referenced to the commonly used
value of 20 µPa. Thirty two narrowband power spectra, each
from 8192 points, are computed using fast Fourier transform
with Hanning window, converted to Sound Pressure Level
(SPL) spectra, and then averaged. The resulting spectra have
a spectral resolution of about 24 Hz and are accurate within
±1 dB. A stereo particle imaging velocimetry (PIV) is

Fig. 1. Cutout of the wind tunnel showing the converging nozzle, the test
section, the cavity, the actuator coupling, and the placement of a Kulite
transducer in the cavity floor.

currently being used to obtain detailed velocity, vorticity,
and turbulence data in the flow. The system is composed
by a dual-head Nd-Yag laser operating at 10 Hz, with
minimum time separation between the two heads of 200 ns.

Two CCD cameras (2K by 2K) with maximum acquisition
frequency of 15 Hz capture the images when the laser is
fired. Dedicated software is used to process the images and
obtain the velocity flow field information. For this purpose
the flow is seeded with sub-micron size particles using an
atomizer that guarantees the uniform size and distribution
of particles in the flow. These measurements provide the set
of snapshots required for the derivation of the POD basis
for the low dimensional model. In the initial phase of the
experiments only 2 velocity components are obtained.
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Fig. 2. Empirical Rossiter modes, cavity first longitudinal and transversal
acoustic modes, and measured Rossiter modes (circles) as a function of
Mach number.

Debiasi and Samimy [7] observed that the experimental setup
exhibits strong, single-mode resonance in the Mach number
ranges 0.25-0.31 and 0.39-0.5, and multi-mode resonance
in the Mach number range 0.32-0.38 as shown in Fig. 2
where the dominant peaks are represented by closed cir-
cles, whereas open circles represent other peaks appearing
in multi-mode resonance. Shown are also the frequencies
predicted by the semi-empirical formula of Rossiter [13],
[11] and the cavity first longitudinal and transversal (vertical)
modes.

III. ANALYTICAL MODELS

From a system-theory point of view, the most outstanding
difficulty in approaching cavity flow control comes from the
nature of the governing Navier-Stokes equations, resulting in
an intractable nonlinear infinite dimensional system. These
equations cannot be solved sufficiently fast for any practical
model, and they cannot be used in any internal model control
scheme. Therefore, the key to the success of feedback control
strategies for the considered problem lies in the development
of suitable reduced-order models of the flow dynamics that
can be effectively used for controller design. A physically
motivated linear model was proposed and used in [15], [20].
It has been shown that a feedback controller derived from
this model based on the H∞ mixed sensitivity minimization
reduces the dominant resonant tone for which it is designed

5493

Figure 8: Cavity flow study from [33]. Left image shows magnitude of G(jω) (blue), and of GS
in closed loop (red). Sharp peaks are significantly reduced by the synthesized control law.

6 Conclusion
We have presented a novel method to compute H∞-controllers for infinite dimensional
systems and in particular for boundary and distributed control of PDEs. At the core our
approach uses a non-smooth trust-region bundle algorithm to solve a frequency discretized
version of the infinite-dimensional problem. The method was justified theoretically and
tested numerically on a reaction-convection-diffusion equation, on a Van de Vusse reactor,
and for control of a cavity flow. A convergence certificate for the non-smooth trust-region
algorithm under Kiwiel’s aggregation rule was proved, allowing to limit the number of cuts
in the tangent program (8) to any fixed number N ≥ 3, and answering in the affirmative
a question left open in [5].
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