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Given a convex operator cp: E + Fu {I% } and a concave operator 
$: E+ Fu { - oo}, both defined an a locally convex Frtchet space and having 
values in an ordered locally convex vector space F with the least upper bound 
property, and satisfying +<cp, we ask for conditions ensuring the existence of a 
continuous atline mapping h: E + F satisfying + <h < cp. Besides this continuous 
sandwich problem we discuss the problem of existence of continuous linear support 
mappings for partially defined sublinear operators, by reducing it to a sandwich 
problem. ,i“ 1990 Academic Press, Inc. 

Let C, D be convex sets in a real vector space E, cp a convex function 
defined on C, rj a concave function defined on D, both having values in an 
ordered real vector space F. Suppose $(x) 6 q(x) holds for every x E C n D. 
The sandwich problem consists in finding an aftine function h: E + F 
satisfying 

h(Y)> $(Y) for all y E D, 

WI 6 dx) for all x E C. 

In [Z,], Zowe has investigated this algebraic sandwich problem in the 
case where F is an ordered vector space with the least upper bound 
property. The outcome of this investigation is that a sufficient (and also 
reasonable) condition to ascertain the existence of an aftine separator h is 
that 0 be an algebraic relative interior point of C-D, i.e., 

OE (C- D)“. 

Usually, infinite-dimensional vector spaces are endowed with (natural) 
locally convex topologies. This makes it desirable to find solutions h for the 
sandwich problem above which are continuous with respect to these 
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topologies. In [Z,], Zowe has established such a continuous sandwich 
theorem under the assumption that F is a normally ordered locally convex 
vector space having the least upper bound property. It states that 

(1) the continuous sandwich theorem is valid if cp is continuous at 
some x,, E int C n D. 

This provides an answer in many cases, and the method of proof it relies 
on has been relined by several authors (see, e.g. [B]). Nevertheless, it is 
not fully satisfactory in the light of its algebraic counterpart. The existence 
of a topological interior point in one of the sets C, D is a rather strong 
restriction. In our paper [Nz] we therefore asked for conditions of a 
different nature in which a continuous sandwich theorem is valid without 
this request. We have obtained the following result. 

(2) The continuous sandwich theorem is valid if E is a separable 
Frechet space, C, D are convex Bore1 sets in E such that 0 is an algebraic 
interior point of C - D, i.e., 0 E (C-D)‘, and there exist weakly Bore1 
measurable cpO: C + F, $,, : D -+ F satisfying cp d ‘pO on C, $2 ij0 on D. 

This result maintains the symmetry of its algebraic counterpart, and 
moreover covers all cases of practical relevance in the case of a separable 
space E, since the measurability assumptions on cp, $ are quite natural. Of 
course we would like to avoid separability in statement (2). We do not 
know whether this is possible in general. In [N?] we obtained a partial 
answer. 

(3 ) The continuous sandwich theorem is valid if E is a Frechet space 
and there exist closed convex sets C, c C, D, c D having 0 E (C, - D,)', 
and weakly Bore1 measurable maps cpO: C, + F, ij0: D, + F satisfying 
c~<cp,on Co, $21/~on Do. 

In the present paper we shall, in particular, prove a generalization of state- 
ment (3). We introduce the notion of pseudo-complete convex sets and we 
prove that statement (3) remains valid for such pseudo-complete sets C,, 
D,. Since the class of pseudo-complete convex sets in a Frechet space is 
fairly large-in particular it contains as a proper subclass the CS-closed 
sets in the sense of Jameson and therefore, by a result of Fremlin and 
Talagrand, all convex G&-sets-we obtain a satisfactory version of the 
continuous sandwich theorem which again covers all cases of a practical 
relevance. 

The sandwich theorem bears some relation to the support problem for 
partially defined sublinear operators. Recall that the problem of existence 
of (continuous) linear support mappings for partially defined sublinear 
operators- in contrast with the case of fully defined operators-does not 
admit a solution in general. In [Nz] we have outlined a method for 



SANDWICH THEOREM 55 

producing solutions to the support problem in the partially defined case 
under some mild measurability assumptions by reducing the support 
theorem to the sandwich theorem. This method is based on a boundedness 
result for convex operators with measurability condition. In the present 
paper we give another application of this method. Roughly speaking we 
show that lower semi-continuity of convex operators is a one-dimensional 
property, if a weak measurability assumption is made. 

The structure of the paper is as follows. In Section 1 we introduce the 
concept of pseudo-completeness for convex sets and prove some basic facts. 
Section 2 presents our main sandwich theorem generalizing statement (3) 
above. In Section 3 we establish a result on the existence of continuous 
linear support mappings for partially defined sublinear operators. The final 
Section 4 presents an application of the support theorem. We prove that a 
convex function cp defined on a pseudo-complete convex set C in a Frechet 
space E which is dominated by a Bore1 measurable function is actually 
lower semi-continuous as a mapping E -+ [w u { cc } if for every one-dimen- 
sional linear manifold L in E the restriction cp 1 L : L -+ R u {m } is lower 
semi-continuous. 

NOTATIONS AND PRELIMINARIES 

We assume that E, F are real locally convex vector spaces and that F is 
ordered by a normal cone F,, which means that F has a base of 
neighborhood of 0 consisting of order-convex sets. F is said to have the 
least upper bound property (lubp) if every subset of F which is order-bounded 
below has an infimum. 

We adjoin two new elements cc, -cc to F, imposing the rules 
x+m=m,x+(-al)= -co, -cx3<xx<, co+o3=cG, (-a)+(-00) 
= -co, Occi=O(-cc)=O, Aco=rm, %-cc)= --co, (-l)(-co)=cc for 
all x E F, 2 > 0. An operator cp : E -+ F u { cc } is called convex if for X, y E E, 
0 < A < 1 we have q(Ax + (1 - 1) -v) d @(x) f (1 - E.) cp( J), sublinear if it is 
convex and satisfies cp(Ax) = Acp(x) for all 2 3 0. cp is called concave if -cp 
is convex, and it is called superlinear if --cp is sublinear. The set of x E E 
with q(x) E F is noted D(q). Observe that D(q) is convex when cp is convex 
or concave, and it is a cone when cp is sub- or superlinear. 

Let X be a subset of E. A function f: X+ F is called weakly Bore1 
measurable if go f is Bore1 measurable on X for every g E Fi , i.e., for every 
continuous and positive linear functional g on F. f: X + F is called weakly 
Baire if for every g E F; g of is a mapping with the Baire property (see 
[Ku, p. 399-J). 

Finally we need a topological notion. Let X be a topological space. A 
pair (9, T) consisting of a tree T= (T, < T) of height K, and a mapping 9 



from T to the topology of X is called a web on X if the following conditions 
(i), (ii) are satisfied: 

(i) (,9(t): TV T) is a base for the topology of X; 

(ii) For fixed t E T (3(s): t cr s E T) is a base for the topology of 
s(t). 

Moreover, a web (9, T) on X is called p-complete if the following condition 
(iii) is satisfied: 

(iii) If (t,) is a colinal branch in T (i.e., t, cT t, + ,) such that 
S(t,)#Qr for all n, then n (@t,):nEN) #Qr as well. 

Various concepts related with the notion of a web have been discussed. See 
for instance [CCN] for the concept of a sieve, [DW] for the notion of a 
sifter. Following [N,], a topological space X is called p-complete if it 
admits a p-complete web. Note that the class of p-complete spaces is 
invariant under products, continuous open images and is G,-hereditary. 
Moreover, every p-complete space is a Baire space. 

1. Pseudo-Complete Convex Sets 

In this section let C be a convex cone with vertex 0 in a separated locally 
convex vector space E. Let r denote the topology on C inherited from E. 
Observe that 7 is not invariant under the translations x--f x + y, ye C, 
preserving C. This suggests introducing different topologies on C which are 
invariant under translations x -+ x + y, 4’ E C, and at the same time preserve 
most of the information about the original topology 7. One special 
topology of this kind may be defined by taking as a base of neighbour- 
hoods of x E C the sets 

.u+(UnC), 

where U varies over the neighbourhoods of 0 in E. This topology, which 
we agree to call (r, has been defined by Saint Raymond [SRI in the special 
case E= I ‘, C= I :, and it has been further investigated in our paper [N2]. 
The following properties of c are easily stated: 

(1) The translations x -+ x + y with y E C map (C, a) homeomorphi- 
tally onto its open subspace (C + y, a), respectively; 

(2) D is invariant under homotheties x + Ax, A > 0; 

(3) 0 is locally convex ; 

(4) 0 is liner than the original topology 7. 

In the following, every topology y on C satisfying conditions (1) to (4) will 
be called an invariant topology on C. The special invariant topology CJ 
defined above will be called the cone topology of C. 
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Let us consider an example. Let E = [w, C = (w +. Then z is the euclidean 
topology on C, while (r is the topology generated by the intervals [a, b), 
0 <a < 6, on C, sometimes called the Sorgenfrey topology. Clearly in this 
case 0 is the only invariant topology on C. 

In the general case, suppose there exists x E C having -x 4 C. Then every 
invariant topology y on C induces the Sorgenfrey topology on the ray 
(Ix: i >/ 0}, whereas z naturally induces the euclidean topology. This 
implies that r itself is not an invariant topology on C unless C is a vector 
subspace of E, 

DEFINITION 1. Let C be a convex cone with vertex 0 in a separated 
locally convex vector space E. C is called pseudo-complete if there exists an 
invariant topology y on C such that (C, y) is a p-complete topological 
space. If, in addition, the topology y may be chosen to be the cone 
topology 0, then C is called o-pseudo-complete. 

This definition will be clarified in an instant, when we will become aware 
of the fact that CS-closed sets are pseudo-complete. Recall that a convex 
set K in a locally convex vector space E is called CS-closed (see [J]) if 
every convergent series C,“=, A,,x, in E having x, E K and 0 < A,, < 1, 
C,“= 1 i, = 1 actually converges to an element of K. 

PROPOSITION 1. Every CS-closed convex cone C with vertex 0 in a 
locally convex FrPchet space E is o-pseudo-complete. In particular, every 
convex G,-cone with vertex 0 in E is a-pseudo-complete. 

Proof The second part of the statement follows from the first one 
together with a result of Fremlin and Talagrand [FT] stating that convex 
G,-sets in Frtchet spaces are CS-closed. So let us prove the first part of the 
statement. 

Since C is a cone, its CS-closedness may be expressed equivalently by 
saying that every convergent sequence (x,) of vectors from C having 

- x, E C in fact converges to an element of C (see [J, Section 2, 
;rz, ). 

Let (U,) be a base of convex and open neighbourhoods of 0 in E 
satisfying U, + i + U, + , c U,. For SEC we define S(x)=x+(U,nC), 
which is a a-open set in C. Suppose now we have already defined a-open 
sets 9(x,, . . . . x, _ , ) for all sequences x1, . . . . X, ~ 1 of length n - 1 consisting 
of elements of C. Then define 

x, + ( Uk. n C), if x, E 9(x,, . . . . x, _ I ) and where 

9(x -%I)= 
k, is the smallest integer > n having 

, 1 . . . . 
.~,+((Uk,+Uk.+Uk,)nCC)~Q(xl,...,x,~,); 

~,ifx,~9(x,,...,x,~,). 
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Let T denote the tree of all finite sequences of elements of C ordered in the 
obvious way. We claim that (9, T) fullfills the conditions (i)--(iii) of a 
p-complete web on (C, a). Since conditions (i ) and (ii) are clear from the 
construction, we have the check condition (iii). 

Let (x,) be a sequence in C having $(.u,, . . . . x,,) # @ for every n. By 
construction we find ~1,~ E U,” n C with x,, + , = x,, + J,,. In view of x,, + , - 
x, E U,” the sequence (x,, ) converges to some .Y E E. By the above descrip- 
tion of CS-closedness we actually have .Y E C. We conclude by proving 
x E 9(x, ) .., x,) for every n. So let n be fixed. For k 3 1 we have 

Iltk-I 
.K t1 + k =x,1+ c Y,. 

I=” 

Therefore the sequence (x,, + k - x,) lies in C and converges to some u, 
which, in view of 

(x n+k+l -X,)-((X,+k-X,)=-K,+k+,-X,,+kEC 

and the CS-ciosedness of C must lie in C. This means u, = C;z n ??I E C. But 
on the other hand we have 

giving 

This readily implies x = x,, + C,:, yi E x, + (( Uk, + Ukn + U,J n C) c 
9(X , 3 ..., x,). I 

Proposition 1 tells that the class of pseudo-complete convex cones in a 
Frechet space is fairly large. The following example shows that, although 
the description of pseudo-completeness relies on the concept of Baire 
category, there exist pseudo-complete sets which are of the first category in 
themselves. 

EXAMPLE 1. Let E = 1’ and let C be the order cone of the lexicographic 
ordering on E. Then C is CS-closed and hence pseudo-complete. But C is 
ofthefirstcategory,sinceC=U~~=,C,,,,whereC,,,={xEI’:~~= . . . 
=x,-, =O, x,2 l/m}, and the sets C,,, have no interior points relative 
to c. 

We continue our investigation with the following invariance properties of 
the class of pseudo-complete cones. 
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LEMMA 1. Let E, E, be separated locally convex vector spaces. 

(1) Let Cc E, C, c E, be (a-) pseudo-complete cones. Then C x C, is 
again (o-) pseudo-complete ; 

(2) Let Cc E be a pseudo-complete cone and let f: E + E, be a 
continuous linear operator. Then f(C) is pseudo-complete; 

(3) Let C, D c E be pseudo-complete cones. Then C + D is again 
pseudo-complete; 

(4) Suppose E is metrizable and let C, D c E be (a-) pseudo-complete. 
Then C n D is again (a-) pseudo-complete. 

Proof Consider (1). Let y, y, be invariant topologies on C, C, such 
that (C, y), (C, , y,) are p-complete spaces. Then y x y, is invariant and 
p-complete on C x C,. This proves the non-bracket part of the statement. 
Since the product of the cone topologies on C, C, is again the cone 
topology on C x C,, the bracket part follows as well. 

Next consider (2). Let y on C be invariant and p-complete. We define an 
invariant topology y , = f (y ) on C, = f (C) by taking as a base of 
neighborhoods of y E C, the sets y+ f( IV), W varying over the 
neighborhoods of 0 in (C, y). This provides in fact an invariant topology 
on C, Since f 1 C: (C, 11) + (C, , y, ) is by construction a continuous open 
surjection, we deduce that y1 = f(y) is a p-complete topology. 

Clearly statement (3) follows from (1) and (2). So let us finally consider 
(4). Let y, 6 be invariant p-complete topologies on C, D, respectively. We 
define a new invariant topology y v 6 on C n D by taking as a base of 
neighborhoods of x E C n D the sets .K + ( Vn W), V a neighborhood of 0 
in (C, ?;), W a neighborhood of 0 in (D, 6). Note that in the case where y, 
6 are the cone topologies on C, D the new topology y v 6 is again the cone 
topology on C n D. It therefore remains to prove that 1’ v 6 is p-complete. 

Let (9, T) and (p, R) be given on (C, y), (D, 6) in accordance with the 
definition of p-completeness. Considering property (4) of an invariant 
topology, we may assume that the sets s(t), p(r) are metrically bounded 
and that for colinal branches (t,) in T, (v,) in R the relations 
lim, + ix diam 9( t,) = lim, _ o diam p(r,) = 0 are valid. 

Let S denote the tree of height Et, consisting of all finite sequences 
((tl, rl 1, . . . . (t,,, r,)) having t, cr... CT. t,, r, cR... CRY,,, and give S the 
natural order. Define a mapping x on S by setting 

x((tlq rlL . . . . (t,, rn))=Q(tn)np(r,). 

Then (x, S) fulfills the requirements of the definition of a p-complete web 
in the space (Cn D, y v 6). Since properties (i), (ii) are clear from the 
definition, we check condition (iii). So let (t,) and (r,) be increasing 
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sequences having x((tr, r,), . . . . (I,,, Y,)) # 0 for every n. This implies 
s(t,) # 0, ~(r,,) # 0 for every n, so there exist x E 0 {:J( t,,): n E N ), 
.vEfl (dr,):nEN). But note that we have J(.Y, .v) d diam 8(r,,) + 
diam p( t,,) -+ 0, so x = Y. This proves the result. 1 

EXAMPLE 2. Let E= I’ and let C be the cone consisting of all vectors 
x = (x,) in E having ?cr > 0 and Ix,,1 d x,/n for n 3 2. It is easy to check 
that C is CS-closed hence pseudo-complete. Let f: 1’ -+ 1’ be the left-shift 
operator. Thenf( C) is a pseudo-complete cone in I r by Lemma 1. But note 
that f(C) is no longer CS-closed. This follows from the fact (proved in 
[J, Cor. 11) that any dense CS-closed set must be the whole space. Indeed, 
j(C) is clearly dense in I’ but it is not all of 1’. 

We wish to extend the notion of pseudo-completeness to arbitrary 
convex sets. This will be achieved by making use of the following standard 
construction. Given any convex set C in the separated locally convex 
vector space E, we denote by 5: the convex cone with vertex (0,O) in E x R 
generated by the set C x (11, i.e. f?=lR (Cx 11)). , + 

DEFINITION 2. Let C be a convex set in the separated locally convex 
vector space. Then C is called pseudo-complete if the cone 2: associated 
with C in E x R is pseudo-complete in the sense of Definition 1. Moreover, 
C is called o-pseudo-complete if C? is a a-pseudo-complete cone. 

Note that Definition 2 makes sense also in the case where C is already 
a convex cone with vertex 0, for then ?= C x R + , and thus (a-) pseudo- 
completeness of C in the sense of Definition 1 is equivalent to (a-) pseudo- 
completeness of ?. 

PROPOSITION 2. Every CS-closed convex set in a locally convex FrPchet 
space is a-pseudo-complete. In particular, every convex G,-set in a FrPchet 
space is u-pseudo-complete. 

Proof. This follows from Proposition 1 when we observe that the cone 
c associated with a CS-closed convex set C is itself CS-closed. 1 

2. Sandwich Theorem 

Let C, D be convex cones with vertices 0 in a locally convex vector space 
E. The pair (C, D) is said to induce an open decomposition of E if for every 
neighborhood V of 0 in E the set 

o=(VnC)-(VnD) 

is again a neighborhood of 0. A classical result of Banach tells that in a 
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Frechet space E every pair (C, D) of closed cones C, D satisfying 
E = C - D induces an open decomposition. This has been generalized to 
the CS-closed case in [J]. Here we present the following pseudo-complete 
version. 

THEOREM 1. Let E be a locally convex Frechet space and let C, D be 
pseudo-complete convex cones with vertices 0 in E having E = C-D. Then 
(C, D) induces an open decomposition of E. 

Proof Let y, 6 be invariant and p-complete topologies on C, D. Then 
C x D is p-complete with the invariant topology y x 6. Let CY be the image 
of the topology y x 6 under (x, y) - x - y, i.e., tx = y - 6, then a is invariant 
and p-complete on E, where p-completeness follows from the fact that 
(x, y) -+ x - y is continuous and open with respect to the topologies y x 6 
and ~1. 

Let - c( be the image of a under x + -x, then --c( is again an invariant 
and p-complete topology on E. Let /I = a v --tl be defined as in part (4) of 
the proof of Lemma 1, then j turns out to be once more an invariant and 
p-complete topology on E. But note that /I has a base of neighborhoods of 
0 consisting of symmetric sets. So b is actually a vector space topology. 

Let us consider the identity mapping i: (E, fl) + (E, r), where r denotes 
the original Frechet topology on E. Then i is continuous and by [KG, 
p. 24, (l)] is nearly open. Since (E, 1-3) is p-complete, we may apply our 
open mapping theorem from [N,, Theorem 31, and this implies fl= z. But 
note that for every r-neighborhood U of 0 the set 0 is a neighborhood of 
0 with respect to a and so with respect to 8. This finally proves that 0 is 
a neighborhood of 0 with respect to z. 1 

As we shall see next, Theorem 1 is an important tool in order to estab- 
lish our main Sandwich Theorem. 

THEOREM 2. Let E be a locally convex FrPchet space and let F be a nor- 
mallWy ordered locally convex vector space with lubp. Let cp : E -+ F v (co > be 
a convex, $ : E -+ F v { - GO } a concave operator satisfying $ < cp. Suppose 
there exist pseudo-complete sets Cc D(p), D c D($) having 0 E (C- 0)’ 
such that cp on C and -II/ on D are majorized, respectively, by weakly Bore1 
measurable maps. Then there exists a continuous affine function h: E + F 
such that for all x E E 

Ii/(x) G My) d v(x) 

is satisfied. 

Proof Let us first consider the case where cp, $ are sublinear, resp. 
superlinear, and where C, D are pseudo-complete convex cones with 

409:146;l-5 
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vertices at 0 having E = C- D and Cc D(q), D c D( $) and such that cp. 
-@ are weakly Bore1 measurably dominated on C, D, respectively. 

Define a sublinear operator x: E + F by setting 

Note that x is well-defined in view of the fact that E = C-D and hence 
E=D(cp)-D(IC/) and since F has the lubp. Now the Hahn-Banach 
theorem provides a linear support mapping f for x, which consequently 
satisfies $ <f< cp. It remains to prove that f is continuous. F being nor- 
mally ordered , we are led to prove that gtlfis continuous for every gE F’ 
with g 3 0. So let g E F’ positive be fixed. We prove that g’~’ x and hence g’9.f 
is continuous. 

Let 11, 6 be invariant p-complete topologies on C, D. In particular, this 
implies that (C, y), (D, 6) are Baire spaces. This permits us to apply the 
following 

LEMMA 2. Let C he a convex cone with vertex 0 in a separated locally 
convex vector space E and let 3’ be an invariant topology on C such that 
(C, y) is a Baire space. Let cp : C + [w be a convex function and suppose there 
exists a Bore1 measurable function +: C -+ R! having q(x)< tj(x) for all 
x E C. Then there exists a dense G,-subset G of (C, y) such that cp 1 G: 
(G, y) + 174 is continuous. 

Proof of the Lemma. This is just Lemma 1 in [N2], where the argu- 
ment has been presented in the case y = c. Since only properties (l)-(4) of 
an invariant topology y have been used in [N?], the present result holds 
as well. 1 

Let G be a dense G,-subset of (C,y) so that gocplG:(G,y)+R is 
continuous and let H be a dense G,-subset of (D, 6) so that go $1 H: 
(H, 6) --f R is continuous. Fix -x0 E G and y0 E H and choose some open 
neighborhood V of 0 in (C, y) and some open neighborhood W of 0 in 
(D, S) such that 

g(d(x,+ VnG))cdcp(x,))+ C-L 11 

g(ti((.vo+ WnH))cg($(.v,))+ C-1, 11 

are satisfied. Let U = (.x0 + I’) - ( y0 + IV), then U is an open neighborhood 
of x0 - y, in E in view of the fact that (C, D) induces an open decomposi- 
tion of E (Theorem 1) and hence (x, y) -+ x - .v is continuous and open 
with respect to the Frechet topology on E and y x 6 on C x D. 

Since (x0 + V) n G is residual in x0 + I’ and ( y, + W) n H is residual in 
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y, + W and since the restriction of (x, y) -+ x - y to (x0 + V) x ( y, + W) is 
again continuous and open onto U, Lemma 4 below tells us that 

R=((x,+VnG)-((y,+ W)nH) 

is a residual subset of U. 
We claim that go x (and hence g of) is bounded above by 2 on the set 

R. Indeed, let v E V, x0 + u E G, MI E W, y0 + w  E H, then we obtain 

g(x((xo + 0) - (Yo + w))) G g(d4J + 0)) - d@(Yo + WI) 

<1+1=2. 

Let us define a mapping 5 g: U + R by setting t,(z) = 2 in case z E R, 
t,(z) = g(x(z)) in case z E U\R. R being a residual subset of U, we deduce 
that 5, : U + [w has the Baire property and, moreover, majorizes g 0 x on U. 
Therefore the following Lemma 3 implies the continuity of go x, and this 
ends the proof of Theorem 2 in the sublinear case. 

LEMMA 3. Let E be a locally convex Frechet space and let cp : E -+ [w be 
a convex function. Suppose there exists a nonempty open set U in E and a 
mapping. $1 U -+ [w with the Baire property such that $ majorizes cp on U. 
Then cp is continuous on E. 

Proof of Lemma 3. This is essentially Theorem 3 in [N?]. 1 

Before stating the announced Lemma 4, let us indicate the proof of 
Theorem 2 in the general case. First of all we may, if necessary, shift the 
whole situation such that 0 E Cn D. Now let us define a sublinear operator 
Q5: Ex[W-,FU{GO} bysetting$(Ax,A)=Iq(x)whenever.xED(cp),A>O, 
@5( y, p) = co otherwise, and a superlinear operator 3 : E x IF&! + Fu { - 00 } 
by setting $(A.x, A) = 2$(x) in case XED(~C/), i20, $(y,u)= --oo 
otherwise. Then D(G) = D(q)- and D(g) = D($)- and 5 ,< @ are satisfied. 
Moreover, we have cc D(q), b c D(G), and c:, b are pseudo-complete 
cones having E x [w = c’- b, the latter in view of 0 E (C-D)’ and 
0 E C n D. Clearly @, - $ are weakly Bore1 measurably dominated on c, 8, 
and therefore we may apply the first part of our proof. This provides a con- 
tinuous linear mapping f: E x [w -+ F satisfying 5 < f < 4. Setting h = f ( , 1) 
finally provides the desired continuous aftine separator h for cp, I/. This 
ends the proof of Theorem 2. u 

LEMMA 4. Let X be a p-complete topological space and let f be a 
continuous and open surjection from X onto a metrizable space Y. Then f 
maps residual subsets of X onto residual subsets of Y. 
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Proof: Let G be a dense G,-subset of X, G = n [G,,: n E N ) for dense 
open sets G,, + , c G, in X. Let (3, 7’) be given on X according to the delini- 
tion of p-completeness. We may assume that (3, T) satisfies the following 
sharpened versions of conditions (i ), (ii) : 

(i’) {9(t): TV T,) is a base for X; 

(ii’) For fixed TV T,{S(s): f<,s~ T,+r} is a base for 9(t). 

Here T, denotes the set of elements t in T having height n in the tree. 
We define a new mapping x on T by recursion. For t E TO let x(t) = 9(t) 

in case f(8( t)) has metric diamater < 1 and 8(t) c G,. Otherwise let 
x(t) = Qr. Suppose x(t) has been defined for t E T, ~ 1. Let s E T,,, t < 7‘ s. If 
x(t) # @ and if f($(s)) has diameter < l/(n -I- 1) and S(s) is contained in 
G n+, , then define x(s) = 9(s). In all other cases let x(s) = Qr. This defines 
x on the level II. 

Suppose x has been defined along these lines. Let H, = IJ (f(x(t)): 
t E TO}, then H, is open dense in Y. By translinite induction define a 
mapping r on TO such that either {(t)=f(x(t)) or t(t)= /zr so that 
U {t(t): TV TO) is dense in H, and t, t’~ TO, t#f’ implies <(t)nt(t’)=@. 

Now let t E TO be fixed. Define 4 for the immediate successors s of t by 
setting t(s)=f(~(s)) or i”(s)=@ in such a way that U {t(s): t<,sc T,) 
is dense in t(t) and, moreover, t cT s’ and s # s’ implies r(s) n {(s’) = 0. 
This defines t on the level 1. Continuing in this way, we obtain a nested 
sequence of disjoint open coverings {l(t) : t E T,, 1 for dense open subsets 
0, = U (l(t): TV T,} of Y. Since n (0 n : n E f%J ) is a dense G&-subset of Y 
contained in f(G), the proof of Lemma 4 is complete. 1 

Remarks. (1) In [N2] we have obtained Theorem 2 in the case where 
C, D are closed convex sets. In this situation we were able to apply another 
method, namely we brought into action the Michael selection theorem. 
This is no longer possible in the present more general context. 

(2) We de not know whether our separable Sandwich Theorem (2) 
from the introduction carries over to the nonseparable case without 
imposing stronger conditions on the sets C, D. In [NJ] we therefore 
presented another nonseparable version of (2) where the sets C, D are 
chosen to be weakly K-analytic and where the functions cp, $ are required 
to satisfy some mild measurability condition involving weak K-analyticity. 

We end this section with an application of Theorem 2 to semi- 
continuous functions cp, II/. Note that Corollary 1 below is not presented 
in its possibly strongest form, since we have chosen a version of more 
practical interest. 

COROLLARY 1. Let E be a locally convex FrPchet space and let 



SANDWICH THEOREM 65 

cp : E + R v { 00 } be convex and lower semi-continuous and let $ : E -+ R v 

{ - 00 } be concave and upper semi-continuous. Let $ Q cp be satisfied and 
suppose 0 E (D(q) - D($))i. Then there exists a continuous affine functional 
h on E having $ < h < cp. 

Proof. Let x0 E D(q) n D($) be fixed and define closed convex sets C, 
D in E by setting 

C= {XE E: q(x)< Idxo)l + l}, 

D={xeE:II/(x)> -Ill/(.x,,-1). 

Clearly C c D(q), D c D(e) and cp is dominated by a constant map on C 
while -I(/ is dominated by a constant map on D. In view of Theorem 2 it 
therefore remains to show that 0 E (C - O)i. 

Let ZE E be fixed. Choose XE D(q), y E D(e) and 120 such that 
z = 1(x- y) is satisfied. Let p = max{ 1, Iq(x)l, I$( y)l>. Then we have 

and the difference of these two vectors is just (l/&)z. Moreover, we have 

This proves OE (C- D)j. 1 

EXAMPLE 3. Let E be an incomplete normed space and let C be a 
closed convex cone with vertex 0 in E such that E = C - C but C does not 
induce an open decomposition of E. Then there exists a non-continuous 
linear functional g on E such that g I C: C + [w is continuous. Define cp by 
setting qIC=glC, cp(x)=cc for x$C and II/ by setting $IC=glC, 
It/(x) = -cc for x $ C. Then cp, $ fulfill the requirements of Corollary 1, but 
clearly there does not exist a continuous linear f satisfying I,!J <f< cp, for 
this would imply g =f, contradictory to the fact that g is not continuous. 
This proves that the completeness assumption on E in Corollary 1 is 
essential. 

3. Support Theorem 

In this section we establish a result on the existence of continuous linear 
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support mappings for partially defined sublinear operators satisfying a 
weak measurability assumption. First we need the following preparatory 
proposition which generalizes [N,” Lemma 31 as well as the result given 
in [SRI. 

~CPOSITION 3. Let E he a locally convex Frechet space and let F he u 
normally ordered locally convex vector space with an order-unit, Let C be a 
o-pseudo-complete convex cone with vertex 0 in E and let cp: C + F be a 
sublinear operator which is dominated by a weakly Bore1 measurable function 
on C. Then cp is order-bounded below on some neighborhood U qf 0 in E. 

Proof: Let (U,) be a base of neighborhoods of 0 in E. Suppose that ~0 
is not bounded below on any of the sets U,, n C, n = 1, 2, Choose 
vectors x, E U, n C with cp(x,,) b -ne, where e denotes the order-unit 
on F. There exist continuous positive linear functionals fn on F satisfying 
f,(e) = 1 and 

.fn,(cpC~,,)) <.f,( -ne) = --n, 

n = 1, 2, . . . Setting q,(x) = (l/&)f,(cp(x)), n = 1, 2, . . . . we therefore define 
a sequence (cp,) of sublinear functionals on C which pointwise converges 
to 0. It suffices to prove that (qD,) is uniformly bounded below on 
a neighborhood of 0, for then cp,(x,) < -& provides the desired 
contradiction. 

By assumption, cp is weakly Bore1 measurably dominated, hence each cp, 
is majorized by a Bore1 measurable function on C. By Lemma 2 there exists 
a dense G,-subset G of (C, a) such that each (P,,~G: (G, a) + Iw is 
continuous. 

ForkEfVletF,={xEG:sup n.m3k Iv,(x) - cp,&)l < a>, then the Fk are 
closed in (G, a). Let X= U { aFk : k E N }, where the boundary 8 refers to 
the space (G, a), then X is a first category subset of G and G’= G\X is a 
dense G,-set in (C, a). 

Let x E G’ be fixed. Since cp,(x) + 0, there exists k having x E Fk, hence 
x~int, Fk (in view of x$X), where int, refers to the interior operator in 
the space (G, 0). Consequently, there exists a neighborhood V of 0 in E 
such that 

(x+(VnC))nGcF,. 

Note that in view of the continuity of (Pi 1 G, I’ may in addition be chosen 
such that y E (x + (Vn C)) n G implies 

IVk(X) - (Pko))l < f. 

We claim that for every n 2 k and every v E Vn C cp,(v) 2 -2, which finally 
provides the desired contradiction. So let n > k and v E Vn C be fixed. Let 
G” = {ZE C: z + iv E G}, then G” is a dense G&-set in (C, a) since it is the 
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preimage of G n (C + 4~) under the a-homomorphism x --+ .Y + iu mapping 
(C, (T) onto (C + $0, a). Consequently the set 

(x+(iVnC))nGnG” 

is nonempty and we may choose .V within. This means y E (x + ($Vn C)) n 
Gc(x+(VnC))nGcF,, giving 

IV,(Y) - (Pko.)l G t. 

On the other handy+$vE[x+($VnC)+(~VnC)]nGc(x+(VnC)) 
n G implies y -t $u E F,, hence 

lcp,( y + ;u, - (Pk( y + +)I < a. 

Finally,y+~uE(x+(VnC))nG yields 

IPI; - ‘pk(Y + $)I < $3 

hence in view of Ivk(x) - (P~( y)l $ i we deduce 

IVk(Y) - cp/c(Y + $a 6 t. 

This proves the result in view of 

-1 ~cp,(Y+~~)-cp,(Y)~~cp,(~). I 

THEOREM 3. Let E be a locally conuex vector space and let F be a nor- 
mally ordered locally conuex uector space with lubp and having an order-unit. 
Let cp: E + Fu { 03 > be a sublinear operator. Suppose that either 

(i) D(q) is o-pseudo-complete and cp is weakly Bore1 measurably- 
dominated on D(cp), or 

(ii) There exist a-pseudo-complete subcones C, D of D(q) having 
E = C-D such that cp is weakly Bore1 measurably dominated on C, D, 
respectively. 

Then cp admits a continuous linear support function f: E -+ F. 

Proof First consider case (i). By Proposition 3 cp is order-bounded 
below on a closed convex neighborhood U of 0 in E, cp 2 -e, say for some 
order-unit e on F. This implies cp 2 -qe, when q denotes the Minkowski 
functional of U. Indeed, let x E E be fixed. If q(x) > 0, then q(x)- Ix E U, 
hence cp(q(x) ‘x) B -e, giving q(x) > -q(x)e. On the other hand suppose 
we have q(x) = 0. This implies R + xc U, so cp(Lx) 2 -e for all 2 > 0. We 
claim that this implies p(x) ~0, hence cp(x) 2 -q(x)e as well. Assume 
q(x) 2 0. Then there exists gE FI, having g(e) = 1 such that g(cp(x)) < 0. 
This implies g(qn(lx)) + -co, 2 -+ co, a contradiction since g(cp(;ix)) >, 
g( -e) = - 1. So p(x) 2 0 is proved. 
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We may now apply the Sandwich Theorem of Zowe (see (1) in the 
Introduction) to cp and the concave $ = -qe. This provides us with a 
continuous linear operator ,f’satisfying f< (0. 

Next consider case (ii). Here we obtain a closed convex neighborhood U 
of 0 in E such that cp is bounded below on U n D, cp 3 -e say for an order- 
unit e on F. Let p denote the Minkowski functional of Un D. Then p is 
sublinear with domain the cone D. Let $ be the concave operator -pe. We 
claim that cp 2 $. Indeed, this may be established as above. 

To conclude we observe that p is Bore1 measurable and hence $ is 
weakly Bore1 measurable. Since E = C - D, we may apply our Sandwich 
Theorem. This provides a continuous linear operator ,f with tj d f < cp. 1 

Remark. The existence of an order-unit in F is essential in Theorem 3. 
This was indicated in [N,, Example 11. 

4. Lower semi-continuity~ 

In this section we prove a somewhat surprising result stating that lower 
semi-continuity of partially defined convex functions satisfying a mild 
measurability assumption is essentially a one-dimensional property. 

THEOREM 4. Let E be a locally convex Frechet space and let 
cp : E + [w u { GO > be a convex function. Suppose there exist a-pseudo-complete 
subsets C, D of D(q) with 0 E (C- D)i such that cp is Bore1 measurably? 
dominated on C, D, respectively. Suppose that for every one-dimensional 
linear submanifold L of E the map q~ I L: L + Iw u { co ) is lower semi- 
continuous. Then cp itself is lower semi-continuous. 

Proof: First we treat the case where cp is sublinear and where C, D are 
D-pseudo-complete cones contained in D(q) and having E = C-D such 
that cp is Bore1 measurably dominated on C, D. 

Let XE E be fixed. We prove that cp may be approximated from below at 
I by continuous linear support functionals. First we consider the case 
where q(x) = -cp( -x). This means that cp is linear on the line Rx. By 
Theorem 3 part (ii) there exist a continuous linear support functional f for 
cp. Clearly this must satisfy the equality f(x) = q(x). So let us now consider 
the difficult case where cp(x)# -cp(-x). Let /I< q(x). We have to find a 
continuous linear f < cp with f(x) > fl. First of all we choose an c( having 
p < M < q(x) such that - CI -G cp( -x). This is possible since cp is not linear 
on the line Rx. 

We define a mapping 1+9 : E + R u { - co, cc 1 by setting 

ll/(z)=inf{~(z+2.x)-~~:~~lR}. 

It suffices to prove that I+G does not actually assume the value - rx). 
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For then II/ is a sublinear functional whose domain is the cone 
II($) = D(q) + Rx. Since II/ < cp and since cp is Bore1 measurably dominated 
on C, D, we may then apply the Support Theorem (Theorem 3) to II/, and 
this provides a continuous linear functional f< $. The latter implies f < cp 
and 

hence f fulfills the requirements. 
Let ZE E be fixed. We check tj(z) > -co. Let us define a function 

‘p*: R*+Ru {a} by setting 

cp*(i, p) = (p(pz + Ax) - ht. 

‘p* is sublinear, and consequently there exists a neighborhood of (0,O) in 
R* on which cp* is bounded below, i.e., there exists 6 E (0, 1) and y > 0 such 
that 111, 1~1 ~6 implies cp*(E., p)> -y. 

By the choice of a we have cp*(O, 1) > 0 and ‘p*(O, - 1) > 0. By 
assumption cp is lower semi-continuous on the lines L+ =x + Rz and 
L ~ = -x+ Rz. Consequently, the functions A + cp*(l, 1) and A-+ cp*(l, - 1) 
are lower semi-continuous as well. Hence there exists E E (0,6) such that 
111 GE implies cp*(A, & l)>O. 

We claim that 

Let ALE R be fixed. We consider two cases, 1~1 > l/s and 1~1 < l/s. First 
assume 1~1 > l/s. Then we have 

Now let 1~1 < l/s, then we have 

W*(l,P)=‘P*(~(6&,661r))=~(p*(~&;6EII)~ -$, 
the latter in view of 1681, ISs~l < 6. This ends the proof of our claim and 
therefore of part 1. 

(2) Let us now prove the convex result under the additional assump- 
tion that E is a Banach space and D(q) is a bounded set and C, D c D(q) 
are (bounded) a-pseudo-complete sets satisfying 0 E (C - D)i and 0 E C n D 
such that cp is Bore1 measurably dominated on C, D. Now let @ be the 
sublinear function associated with cp on E x R and let c, b be the convex 
cones associated with C, D. Then we have E x R = t?- d, 2', b are 
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a-pseudo-complete and iJ is Bore1 measurably dominated on ?, b. It 
remains to prove that $J 1 L is lower semi-continuous for every line L in 
E x R. For suppose this has been established. Then @ is globally lower 
semicontinuous by part 1 of our proof, and consequently the same is true 
for cp = @J( , 1). 

Let L be a line in E x R. Then D(q) n L is either all of L or a ray, an 
interval, or a single point. The first and the last case are clear, so it remains 
to consider the two other cases. Clearly here problems may arise only at a 
boundary point of L n D(4). So let (x, A) be such a boundary point and let 
(x, A) + p,( y, p) be a sequence in L tending to (x, A), i.e., y, --+ 0. The case 
where (x, A)+p,,(y, p)$D(@) bears no difficulty, so let us assume 
(x, A) + p,( ): p) E D(q). By the definition of 4 this means that 
(A +~~~))l(~+p.?))~D(cp). By assumption the set D(cp) is bounded and 
therefore we must have i # 0. This implies (A + p,p)- ‘(x + p,, y) + A ‘x. 
By assumption cp is lower semi-continuous on every line, so we obtain 

liminfcp((l+P,,p) ‘(.u+p,~!))>(p(A~‘x). (*I 
,I + n 

If 1~0 then A+p,p<O eventually, so that (x, A)+P,(~, I*) is not an 
element of D(q). Consequently, we must have ;i > 0, giving A + pnp > 0. 
But now we may multiply the inequality (*) with the factors A + pnpL, and 
this gives lim inf, _ ,~ +((x, A) + p,( y, p)) 3 4(x, A). This ends the proof in 
case (2). 

(3) Let us finally consider the general case. Let x E E be fixed and 
let (x,) be a sequence in E converging to X. We have to prove 
lim inf, j a, rp(x,) 2 q(x). We choose a closed circeled convex set B in E 
such that the x, and x are contained in B and such that (x,) converges to 
.Y in the Banach space E, generated by B (see [KG, p. 711 for the 
possibility of finding such B). We claim that for sufficiently large n E N the 
set (C n nB) - (D n nB) is absorbing in E,. Indeed , let x0 E C n D be fixed 
and choose n with .x0 E int(nB). Then 0 E ((C n nB) - (D n nB))i. 

We claim that the assumptions of part 2 of our proof are now satisfied 
for $: E, + R u {co} defined by Ii/(x) = q(x) in case x~nB, G(x) = cc 
otherwise. Clearly $ is convex and lower semi-continuous on every line, 
since B is a closed convex set. Moreover, $ has a bounded domain in the 
Banach space E, and is majorized by Bore1 measurable functions on the 
sets Cn nB and D n nB. Here we make use of the fact that the Banach 
space topology on E, is liner than the original topology, and hence Bore1 
measurability with respect to the topology of E implies Bore1 measurability 
with respect to Es. Now part 2 of the proof applies, yielding the result. 1 

EXAMPLE 4. Define cp: R2 -+ [w u {cc } by cp(A, p) = i for p > 0, 
~(0, 0) = 0, &A, p) = clj otherwise. Then cp is sublinear. Moreover, on each 
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one-dimensional linear subspace of R’ cp is lower semi-continuous. Since cp 
itself is not lower semi-continuous, it follows that we may not weaken the 
assumption in Theorem 4 to the extent that cp be lower semi-continuous on 
every line passing through 0. 
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