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Souslin measurable homomorphisms of topological groups 

By 

DOMINIKUS NOLL 

1. In a recent paper [18], A. Kleppner proved that every Haar measurable homomor- 
phism 4 : G ~ H between locally compact groups G, H is continuous. This result also 
follows from a measure theoretic result by D. H. Fremlin [8], (see also [9, 19]), which 
provides a technique to prove measurability of uncountable unions of measurable sets. 

The purpose of this note is to present a different and new approach to continuity of 
measurable homomorphisms, based on Souslin and Borel rather than Haar measurabil- 
ity. This slight investment on part of the measurability of the homomorphism 4~ allows 
for weakening considerably the conditions to be imposed on the groups G, H. In partic- 
ular, the presence of the Haar measure, which is essential in the approach of [18] resp. 
[8, 9], is no longer needed to establish our continuity result. 

Our technique is completely different from the methods used in [18] (resp. [8, 9]). It 
gives rise also to a generalization of Banach's classical result [2] stating that Borel 
measurable homomorphisms between Polish groups G, H are continuous. We prove that 
every Souslin measurable homomorphism q5 : G ~ H from a paracompact Cech complete 
group G into any topological group H is continuous (Theorem 1). Some consequences of 
this result such as a theorem on joint continuity of separately measurable homomor- 
phisms and a version of the Sousiin graph theorem are included. 

There is, of course, a variety of results dealing with continuity of homomorphisms of 
topological groups measurable in one sense or other, in contrast with our present 
approach, these all need countability type assumptions on at least one of the groups G, H. 
We just mention the following list [2, 5, 10, 13, 15, 17, 18] of references on Borel and 
Souslin graph theorems and continuity theorems for measurable homomorphisms. Fur- 
ther references are [1, 3, 5, 12, 16, 22, 23, 25, 26], where closed graph theorems are treated. 
An interesting paper is [27], where the continuity of sequentially continuous homomor- 
phisms between locally compact groups is discussed. 

2. In this section we state our main results and obtain some consequences. The proofs 
of Theorems 1, 2 below will be given in Section 3. 

Theorem 1. Let  ~ : G ~ H be a Souslin measurable homomorphism from a paracompact 
Cech complete group G into a topological group H. Then ~ is continuous. 
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In the present context, a homomorphism 4:  G - ,  H is called Souslin measurable if 
~--1 (U) is a Souslin set in G for every open F~-set U in H. Recall that a Souslin set in 
a topological space X is a subset of X which admits a Souslin representation by closed 
subsets of X, i.e. a set of the form 

for closed sets F~I . in X. We refer to [4, 5, 11, 13, 14, 20] for details concerning Souslin 
sets. Just notice that Borel sets in metric spaces are known to be Souslin (see Section 4). 

A homomorphism 4 : G ~ H from a locally compact group G into a topological group 
H will be called Haar measurable if there exists a Haar  measurable subset A of G having 
finite positive (left) Haar  measure such that 4 -  ~ ( U ) n  A is Haar  measurable for every 
open set U in H. With this notation, Kteppner's result [16, Theorem 1] telts that every 
Hoar measurable homomorphism q5 : G --, H between locally compact groups G, H is 
continuous. Here we obtain the following parallel to this result. 

Theorem 2. Let  4 : G ~ H be a homomorphism fi'om a locally compact group G into a 
topological group H. Suppose there exists a subset A of  finite positive left Haar measure 
such that O- 1 (U) c~ A SousIin set for every open F~-set U in H. Then 4 is continuous. 

An even more general result of this type could be obtained if the notion of Haar  null 
sets introduced by Christensen [5] was used. Local compactness of the group G would 
then no longer be needed, but G had to be metrizable instead. 

Next we obtain a version of the Souslin graph theorem for a homomorphism q5 : G -+ H 
of groups. 

Corollary 1. Let  r  G ~ H be a homomorphism from a locally compact group G into a 
a-compact group H. Suppose there exists a subset A of  G, having 0 < )o(A) < oo with 
respect to some left Hoar measure 2 on G, such that G (4) c~ (A x U) is a Soustin set in G x H 
for  every open K~-set U in H. Then 0 is continuous. 

P r o o f. First observe that we may assume the group G to be a-compact and locally 
compact. Indeed, choose a compact neighbourhood V of e in G such that 2 (A ~ V) > 0. 
It suffices to prove the continuity of q5 o = 4 [ Go, where G o is the subgroup of G generated 
by V. But setting A o = A c~ G O provides a subset of Go for which the assumptions of the 
Corollary are again met with 4 replaced by 40. 

Let us therefore assume that G is locally compact and ~r-compact. The result is now a 
consequence of Theorem 2 above, when we prove that 4 -1  (U)c~ A is Haar measurable 
for every a-compact open set U in H. (See also [15, (22.18)].) 

Observe that for any such U we have 

4 - !  (g)  c~ A = projG(G(4 ) c~ (A x g)) ,  

where proje denotes the projection operator G x H ~ G, and where G(~b) is the graph 
of 4. By assumption, the set G (4) c~ (A x U) is Souslin in G x U, a C-compact space, 
hence its image under the continuous projection proje onto G is Souslin in G (cf. [10, 
Lemma 1], [4]). It is known, however, that Souslln sets are universally measurable with 
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respect to the Borel a-algebra (see [24, w 3] or [5, Theorem 1.5]), which means that for every 
Borel measure # on G they are elements of the Carath6odory completion of the Borel 
a-algebra with respect to #. Choosing as a special Borel measure the Haar  measure 2 
proves that 4) - 1 (U) c~ A is Haar  measuraNe. This ends the proof. []  

R e m a r k s. 1) The countability assumption on the group H cannot be omitted in 
the statement of the Souslin graph theorem. This may be seen by considering the follow- 
ing example. Let G be a locally compact  group, and let H = Ge be the group G with 
discrete topology. Choosing for 4): G ~ H the identity mapping provides a homomor -  
phism whose graph G (4)) is even closed in G x H, but which is certainly not continuous 
in general. 

2) The above example also shows that Theorems 1, 2 above resp. Kleppner 's  results 
[18] are no longer valid if the corresponding measurability assumptions on 4)-t  (U) resp. 
4) - ~ (U) c~ A are required for the elements U of a basis of H only. Indeed, in the above 
example, basic open sets for H are all singletons, whose preimages are clearly measurable 
in either sense. Notice also that preimages of a-compact  open subsets of H are measurable 
here, since a-compact  sets in H are countable. This proves, in particular, that me measur- 
ability hypothesis for preimages of open F~-sets U in Theorem 2 cannot be weakened to 
pertain to preimages of open K~-sets only. 

3) We do not know whether the statement of the Corollary remains valid if Souslin 
measurability of G(4))c~(A x U) is replaced by Haar  measurability or even universal 
measurabili ty (concerning Borel measurability see Section 4). The reason is that in these 
cases it is not clear whether the image of a measurable set under the projection proj~ is 
again measurable in an appropriate  sense. 

We conclude this section with the following result on joint continuity of separately 
measurable homomorphisms.  

Corollary 2. Let  GI, G 2 be paracompact Cech complete groups and let 0 : G1 x G2 ~ H 
be a mapping into a topological group H such that 4) (x," ) : G 2 ~ H and 0 (', Y) : G~ ~ H 
are Souslin measurable homomorphisms for all x e GI, y e G 2. Then 4) is (jointly) cominu- 

OUS. 

P r o o f. It follows from Theorem 1 that the homomorphisms qS(x, '), 4)(., y) are 
actually continuous, i.e. 4) is separately continuous. But now we deduce the joint continu- 
ity of 4) using a result of Namioka  [2/]. Fix a left-invariant pseudo-metric a on H. It 
suffices to show that 4) is continuous as a mapping G1 x G z -+ (H, a), for the topology of 
H is generated by these a. Next observe that Cech complete spaces are so-called k-spaces, 
which means that the continuity of ~b follows from the continuity of 4) ] C : C -~ (H, a) for 
every compact  subset C of G t x G2. Let us therefore fix a compact  subset K of G1. It  
suffices to prove the continuity of 4) I K x G 2 : K x G 2 -~ (H, a). 

Now Namioka ' s  result [21, Theorem 1.2] tells that 4)[K x G2 is continuous at the 
points of K x A, where A is some dense G~ subset of G2. As ~b (x, .) is a homomorph i sm 
for every x, this implies that 4)[K • G 2 is continuous everywhere on K x G2. As K was 
chosen arbitrarily, this completes the proof. []  
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R e m a r k. Using the same reasoning combined with Theorem 2, we might obtain a 
result on joint continuity of a separately Haar measurable @ defined on a product of 
locally compact groups. The reader might compare these with the corresponding results 
[6, Cor. 8] and [21, Theorem 3.1]. 

3. In this section we give the proofs of Theorems 1, 2. The following lemma turns out 
to be a crucial step towards both results. 

Lemma 1. Let H be a topological group and let V be a neighbourhood of e in H. Then 

there exists an open cover ~ = 0 ~ of H refining the cover ~ = {Vy: y ~ H} such that 
n = l  

every ~U, is disjoint (i.e. V c~ V' = 0 for V, V' e ~r, V ~ V'). Moreover, ~ can be found 
completely F:additive in H. 

P r o o f. Let (In) be a sequence of symmetric open neighbourhoods of e in H satisfying 

o 2 
and let S = ( /  V,. Then S is a subgroup of H. Let @ denote the natural mapping 

n = l  

H ~ HIS onto the homogeneous right coset space HIS. We consider two topologies on 
H/S, the quotient topology, and the coarser metric topology induced by the right-invari- 
ant pseudo-metric ~ on H arising from the sequence (V,), resp. the corresponding quotient 
metric a* on HIS (cf. [15, pp. 68, 76]). Notice that the sets ~ (V,), n s N, form a base of 
neighbourhoods of @ (e) in H/S for the metric topology. Let W be the interior of @ (V1) 
with respect to the metric topology. Then W is as well open in the quotient topology, 
hence @-1 (W) is open in H. But observe that @-~(W) is contained in V in view of 

(*) @-~(W) c @-~@(VO = V~. Ker@ ~ V~ . Vz ~ V. 

Now consider the open cover 0 = {zy W: y E H} of H/S in the metric topology, where zy 
denotes the translation operator H x  ~ H x y  on H/S. Notice that W is a neighbourhood 
of ~ (e) and that zy is a homeomorphism of H/S with respect to the metric topology 
mapping @ (e) into @ (y). This proves that (9 is actually an open cover of HIS. Using the 

fact that metric spaces are paracompact, we obtain an open cover ~U = 0 ~ of H/S 

refining (9 such that each ~ is discrete. But ~O- 1 (@) refines d by (*) and the fact that zy 
commutes with the right translation x ~ x y  on H over ~. Hence ~ = @- a ( ~ )  is a 
disjoint open refinement of d the ~U, = @-i (~K~) being disjoint open families in H 
refining d .  Moreover, as ~U,,, is a discrete family of open sets in a metric space, it is 
completely F:additive, which means that U ~#/' is an F : se t  in H/S for every subfamily 
~#/" of ~n- Hence the same is true for ~U, = @- 1 ( ~ ) ,  and consequently also for V. This 
completes the proof of the lemma. [] 

Let us now give the proof of Theorem 1. Let U be a neighbourhood of e in H. Choose 
a symmetric neighbourhood V of e having V. V c U. According to the 1emma above let 
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oo 

~/~ = U t/~., with ~ = {v~: e s It}, be a c~-disjoint completely F~-additive open refine- 
i = l  

merit of {Vy: y ~ I-/} covering H. Now let 

U 
then G is the union of the countably many  sets G,,, hence some G. is of the second category 
in G. The main step of the w o o f  now consists in checking that  some of the sets ~b-I (~ . ) ,  

~ I . ,  is as well of the second category in G. Suppose for a moment  that this has been 
shown for the set S .= 4 - 1  (V~n). Then S is a second category Souslin subset of G. As 
Souslin sets are known to have the Baire proper ty  (cf. [20, p. 94]), Pettis" Lemma  (cf. [5, 
p. 86] or [17, p. 92]) gives that W = S- S -1 is a neighbourhood of e in G, By the 
construction of ~U we have V~. c Vy for some y e H. This gives 

0 (W)  = 4,(S" S -~) = V~.-~;,2 t = Vy. (y -~  V -~) = V - V  -~ = U,  

proving that q~ is continuous. 
It remains to show that some (b- 1 (V~.) is of the second category. Now observe that the 

hmi ly  5 ~ = {S~.: e e t,,} with S~. = 4 - ~  (V~.) is a completely Souslin additive family, 
which means that $I = Q) {S~. : c~ s I} is a Souslin set in G for every subset ! o f / . .  Indeed, 
this follows from the hc t  that 

is the preimage of an open F~-subset of H, hence is Souslin in G. We claim that  this 
i m 

property of the disjoint family Y implies that 5O has a refinement ~" = ,'~j .~ covering 
i = I  

G. = ~ ) ~  such that each family ~ is discrete in G.. Suppose this has been checked. 
Then 

is a sequence of sets covering the second category set G., so some G.~ is as welt of the 
second category in G. But now ,~ is a discrete family covering the second category set 
G.z. So some element X of Y'~ must be of the second category in G, for the Banach category 
theorem implies that  a discrete union of first category sets is still of the first category~ Now 
as this set X is contained in some S~. = 4 -  ~ (V~.), the latter is as well a second category 
set, and that is what we claimed to be true. Hence we are left to find a ~r-diserete 
refinement for the disjoint completely Souslin additive family 5O. 

Such a a-discrete refinement for 5O is provided by combining results of Frolik and 
Hoticky [11, Theorem 2] and Hansell, Jayne and Rogers [14]. According to the terminol- 
ogy of the latter paper, a topological space G is called K-analytic if G is the image of some 
strongly zero dimensional metric space ~c ~' under a compact-valued upper semi-continu- 
ous set-valued correspondence K : ~c ~ ~ 2 G such that  the famiiy {K (I (t)) : t e pd} is ~-dis- 
crete in G (see [14, Theorem i]). The authors of [t4] also prove in their Corollary 1 that 
every paracompact  ~ech complete space G is K-analytic in this sense. They further notice 
that  in the class of paracompact  spaces their notion of K-analyticity coincides with Frolik 
and Hotickys'  notion of anatyticity for uniform spaces when the paracompact  space 
under consideration is given the fine uniformity (compare [J 1]). In our case this means 
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that the paracompact Cech complete group G is analytic in the sense of Frolik and 
Holicky. But then [11, Theorem 2] yields the desired a-discrete refinement for the disjoint 
completely Souslin additive family 5 ~ on G. This settles the proof of Theorem I. 

Let us next give the proof of Theorem 2. Using the same reasoning as in the proof of 
Corollary 1, we may assume that the group G is locally compact and a-compact. Clearly 
also the set A from the statement of the theorem may then be chosen to be a-compact. 
Now let U be a neighbourhood of e in H, and let V be a neighbourhood of e in H having 

V. V - 1 c U. Let 3e" _- [) ~/~ be the a-disjoint completely F~-additive open cover of H 

refining {Vy: y e H} guaranteed by Lemma 1. Now let ~r = {~b- 1 (W) c~ A: We ~ } ,  

then ~4~ is a disjoint completely Souslin addivite family in G. Let A = U Arc for compact 
k = l  

sets Ak in G. Then the family sJik = {~b -1 (W)~  Ak: We ~-} is again disjoint and com- 
pletely Souslin additive in the compact space As o But now [11, Lemma 2] says that ~r 

actually has to be countable. This implies that the family d '  = U Q) ,~k is countable. 
i = 1  k=l 

Since d '  covers A and A has finite positive measure, it follows that some qb- t (W) c~ As, 
W e ~ ,  must have positive measure. But now [15, (20.17)] implies that 

O = (~-  1 (W) c~ As)" (aS- 1 (W) c~ As)- i 

is a neighbourhood of e in G. Since W is contained in some Vy, it follows that 

43(0) = Vy. (y-~ V -x) = U, 

proving that q~ is continuous. This settles the case of Theorem 2. 

R e m a r k. We do not know whether Theorem 1 remains valid if Souslin measurability 
of qb is replaced by universal measurability, while a version of Theorem 2 with respect to 
Haar measurability follows from Fremlin's result [8, 9] in tandem with [I5, (20.17)]. 
However, a corresponding result giving a-discrete refinements for disjoint completely 
additive families with respect to these notions of measurability cannot be expected to be 
true, as the following example indicates. 

Let C be a Cantor set in IR having Lebesgue measure 2 (C) = 0. Then the family J~ of 
singleton subsets of C is a completely Haar additive family, which means that F '  = [ j  .~-' 
is Haar  measurable in P,~ for every subfamily 3 v '  of f t .  Indeed, every such F '  is a sub- 
set of a Borel nullset, hence is Haar  measurable. But clearly the family ,~7 does not admit 
a a-discrete refinement, for any such refinement had to consist of singleton subsets of 
C, so a-discreteness of the refinement would imply a-discreteness of C as a set, a contra- 
diction with the fact that C is dense in itself. The example can be modified by taking 
as C any dense in itself or second category Haar null set in a locally compact group 
G. 

4. It is well-known that the Souslin operation, when applied to the family of closed 
sets in a topological space, provides a family of sets, called the Souslin sets (or some- 
times Soustin-o ~ sets), which is closed under countable unions and intersections. Conse- 
quently, open sets need not be Souslin sets in general, but are Souslin if they are F~-sets. 
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In a metric space, therefore, all Borel sets are Souslin. Anyway, the class of Souslin sets 
is not too small even in the general case, for it contains all Baire sets. These observations 
lead to immediate Corollaries to Theorems t, 2 stated for Baire measurable homomor-  
phisms resp. for Borel measurable homomorphisms on metric groups. In the case of a 
metrizable group G we could even obtain continuity results for homomorphisms which 
are Borel measurable in the extended sense (compare [13] for details concerning extended 
Borel sets). Notice, however, that there is no ad hoc method providing Borel measurable 
versions of Theorems 1, 2, at least not without imposing anything additional on the 
group G or restricting the measurability assumption in some sense. Indeed, this follows 
from 

Proposition 1. Let G be a paracompact Cech complete group in which every Borel set is 
Souslin. Then G is metrizable. 

It follows from [14, Corollary 1] that G is K-analytic in the sense of this paper. But then 
the assumption on G means that every open set in G is K-analytic in G. Combining 
Lemmas 10, 11 of [14] now proves that then every open set in G has to be an F~  hence 
every singleton is a Go. This means that G is metrizable. 

We conclude with a set-theoretic result. If Fleissner's axiom P is added to the usual 
axioms of set theory, then it is true that any completely Borel additive family in a metric 
space is a-discretely decomposable, hence has a a-discrete refinement (see [7]). This leads 
to the following 

Theorem 3. Assume axiom P. Then every Borel measurable homomorphism ~ from a 
second category metrizable group G into any topological group H is continuous. 

Clearly neither axiom P nor the metrizability of G are needed here if the group H 
satisfies some countability type assumption such as a-boundedness in the sense of Pettis 
[25] or the condition that disjoint open families are at most countable. 
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