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Abstract—We present an approach to simultaneous design
optimization of a plant and its controller. This is based on a
bundling technique for solving non-smooth optimization prob-
lems under nonlinear and linear constraints. In the absence of
convexity, a substitute for the convex cutting plane mechanism
is proposed. The method is illustrated on a problem of steady
flow in a graph and in robust feedback control design of a
mass-spring-damper system.

Index Terms—Robust control, Hankel norm, system with
tunable parameters, nonlinear optimization, steady flow.

I. I NTRODUCTION

I N modern control system, desirable closed-loop charac-
teristics include stability, speed, accuracy, and robustness

and depend on both structural and control specifications.
Traditionally, structural design with its drive elements pre-
cedes and is disconnected from controller synthesis, which
may result in a sub-optimal system. In contrast, optimizing
plant structure and controller simultaneously may lead to a
truly optimal solution. We therefore propose design methods
which allow to optimize various elements such as system
structure, actuators, sensors, and the controller simultane-
ously.

Here we focus on simultaneous optimization of certain
plant and controller parameters to achieve the best perfor-
mance for a closed-loop system with constraints. This leads
to a complex nonlinear optimization problem involving non-
smooth and non-convex objectives and constraints. Suitable
optimization methods are discussed to address such prob-
lems.

Consider a stable LTI state-space control system

G :

{
δx = Ax +Bu

y = Cx+Du

where δx representṡx(t) for continuous-time systems and
x(t + 1) for discrete-time systems, and wherex ∈ R

nx is
the state vector,u ∈ R

m the control input vector, andy ∈ R
p

the output vector. Our interest is the case in which system
G is placed in a control system containing actuators, sensors
and a feedback controllerK, and matricesA,B,C,D and
controller K depend smoothly on a design parameterx

varying inRn or in some constrained subset ofR
n. Denoting

by Tw→z(x) the closed-loop performance channelw → z,
this brings to the optimization program

minimize ‖Tw→z(x)‖
subject to x ∈ R

n,
K = K(x) assures closed-loop stability

(1)
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Here standard choices of‖ · ‖ include theH∞-norm ‖ · ‖∞,
the H2-norm ‖ · ‖2, or the Hankel norm‖ · ‖H which is
discussed in more detail in the sections III and VI. Solving
(1) leads to non-smooth optimization problems.

II. A PROXIMITY CONTROL ALGORITHM

Bundle methods are currently among the most effective ap-
proachs to solve non-smooth optimization problems. In these
methods, subgradients from past iterations are accumulated
in a bundle, and a trial step is obtained by a quadratic tangent
program based on information stored in the bundle. In the
absence of convexity, tangent planes can no longer be used
as cutting planes, and a substitute has to be found. A so-
phisticated management of the proximity control mechanism
is also required to obtain a satisfactory convergence theory.
We will show in which way these elements can be assembled
into a successful algorithm.

For the purpose of solving the problem (1), we present here
a non-smooth algorithm for general constrained optimization
programs of the form

minimize f(x)
subject to c(x) 6 0

Ax 6 b
(2)

wherex ∈ R
n is the decision variable, andf and c are

potentially non-smooth and non-convex, and where the linear
constraints are gathered inAx 6 b and handled directly.

Expanding on an idea in [15, Section 2.2.2], we use a
progress function at the current iteratex,

F (·,x) = max{f(·)− f(x)− νc(x)+, c(·)− c(x)+},

where c(x)+ = max{c(x), 0}, and ν > 0 is a fixed
parameter. It is easy to see thatF (x,x) = 0, where either
the left branchf(·) − f(x) − νc(x)+ or the right branch
c(·)− c(x)+ in the expression ofF (·,x) is active atx, i.e.,
attains the maximum, depending on whetherx is feasible for
the non-linear constraint or not.

SettingP = {x ∈ R
n : Ax 6 b}, it follows from [16,

Theorem 6.46] that the normal cone toP at x is given by

NP (x) = {A⊤η : η > 0, η⊤(Ax− b) = 0}.

We remark therefore that ifx∗ is a local minimum of
program (2), it is also a local minimum ofF (·,x∗) on P ,
and then0 ∈ ∂1F (x∗,x∗) + A⊤η∗ for some multiplier
η∗ > 0 with η∗⊤(Ax∗ − b) = 0. The symbol∂1 here
stands for the Clarke subdifferential with respect to the
first variable. Indeed, ifx∗ is a local minimum of (2) then
c(x∗) 6 0, Ax∗ 6 b, and so fory in a neighborhood ofx∗

we have

F (y,x∗) = max{f(y)− f(x∗), c(y)}

> f(y)− f(x∗) > 0 = F (x∗,x∗).
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This implies thatx∗ is a local minimum ofF (·,x∗) on P ,
and therefore0 ∈ ∂1F (x∗,x∗) + NP (x

∗). We now present
the following algorithm for computing solutions of program
(2).

Algorithm 1 . Proximity control with downshift

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < q < ∞,
0 < c < ∞, q < T < ∞.

1: Initialize outer loop. Choose initial iteratex1 with
Ax1 6 b and matrixQ1 = Q⊤

1 with −qI � Q1 � qI.
Initialize memory elementτ ♯1 such thatQ1 + τ ♯1I ≻ 0.
Put j = 1.

2: Stopping test. At outer loop counterj, stop the algo-
rithm if 0 ∈ ∂1F (xj ,xj)+A⊤ηj , for a multiplierηj > 0
with ηj⊤(Axj − b) = 0. Otherwise, goto inner loop.

3: Initialize inner loop. Put inner loop counterk = 1 and
initialize τ1 = τ ♯j . Build initial working model

F1(·,x
j) = g⊤0j(· − x

j) + 1
2 (· − x

j)⊤Qj(· − x
j),

whereg0j ∈ ∂1F (xj ,xj).
4: Trial step generation. At inner loop counterk find

solutionyk of the tangent program

minimize Fk(y,x
j) + τk

2 ‖y− x
j‖2

subject to Ay 6 b,y ∈ R
n.

5: Acceptance test.If

ρk =
F (yk,xj)

Fk(yk,xj)
> γ,

put xj+1 = y
k (serious step), quit inner loop and goto

step 8. Otherwise (null step), continue inner loop with
step 6.

6: Update working model. Generate a cutting plane
mk(·,x

j) = ak +g⊤k (·−x
j) at null stepyk and counter

k using downshifted tangents. Compute aggregate plane
m∗

k(·,x
j) = a∗k + g∗⊤k (·−x

j) at yk, and then build new
working modelFk+1(·,x

j).
7: Update proximity control parameter. Compute sec-

ondary control parameter

ρ̃k =
Fk+1(y

k,xj)

Fk(yk,xj)

and put

τk+1 =

{
τk if ρ̃k < γ̃,

2τk if ρ̃k > γ̃.

Increase inner loop counterk and loop back to step 4.
8: Update Qj and memory element.UpdateQj → Qj+1

respectingQj+1 = Q⊤
j+1 and−qI � Qj+1 � qI. Then

store new memory element

τ ♯j+1 =

{
τk if ρk < Γ,
1
2τk if ρk > Γ.

Increaseτ ♯j+1 if necessary to ensureQj+1 + τ ♯j+1I ≻ 0.
If τ ♯j+1 > T then re-setτ ♯j+1 = T . Increase outer loop
counterj and loop back to step 2.

Convergence theory of Algorithm 1 is discussed in [7],
[10] and based on these results, we can prove the following
theorem.

Theorem 1: Supposef and c in program (2) are lower-
C1 functions such that the following conditions hold:

(a) f is weakly coercive on constraint setΩ = {x ∈ R
n :

c(x) 6 0, Ax 6 b}, i.e., if xj ∈ Ω, ‖xj‖ → ∞, then
f(xj) is not monotonically decreasing.

(b) c is weakly coercive onP , i.e., if xj ∈ P , ‖xj‖ → ∞,
thenc(xj) is not monotonically decreasing.

Then the sequence of serious iteratesx
j ∈ P generated by

Algorithm 1 is bounded, and every accumulation pointx
∗

of thex
j satisfiesx∗ ∈ P and0 ∈ ∂1F (x∗,x∗) +A⊤η∗ for

some multiplierη∗ > 0 with η∗⊤(Ax∗ − b) = 0. �

An immediate consequence of Theorem 1 is the following
Corollary 2: Under the hypotheses of the theorem, every

accumulation point of the sequence of serious iterates gen-
erated by Algorithm 1 is either a critical point of constraint
violation, or a Karush-Kuhn-Tucker point of program (2).

Proof: Supposex∗ is an accumulation point of the
sequence of serious iterates generated by Algorithm 1. Ac-
cording to Theorem 1 we have0 ∈ ∂1F (x∗,x∗) +NP (x

∗).
By using [4, Proposition 9] (see also [5, Proposition 2.3.12]),
there exist constantsλ0, λ1 such that

0 ∈ λ0∂f(x
∗) + λ1∂c(x

∗) +NP (x
∗),

λ0 > 0, λ1 > 0, λ0 + λ1 = 1.

If c(x∗) > 0 then ∂1F (x∗,x∗) = ∂c(x∗), and therefore
0 ∈ ∂c(x∗) + NP (x

∗), which means thatx∗ is a critical
point of constraint violation. In the case ofc(x∗) 6 0, if x∗

fails to be a Karush-Kuhn-Tucker point of (2), thenλ0 must
equal0, and so0 ∈ ∂c(x∗) + NP (x

∗). We obtain thatx∗

is either a critical point of constraint violation, or a Karush-
Kuhn-Tucker point of program (2).

In the absence of convexity, proving convergence to a
single Karush-Kuhn-Tucker point is generally out of reach,
but the following result gives nonetheless a satisfactory
answer for stopping of the algorithm.

Corollary 3: Under the hypotheses of the theorem, for
every ε > 0 there exists an indexj0(ε) ∈ N such that for
every j > j0(ε), x

j is within ε-distance of the setL of
critical pointsx∗ in the sense of the theorem.

Proof: By the fact that our algorithm assures always
x
j − x

j+1 → 0 and Ostrowski’s theorem [14, Theorem
26.1], the set of limit pointL of the sequencexj is either
singleton or a compact continuum. Our construction then
assures convergence ofxj to the limiting setL in the sense
of the Hausdorff distance. See [11] for the details.

III. H ANKEL NORM

Given a stable LTI system

G :

{
ẋ = Ax +Bw

z = Cx

with statex ∈ R
nx , inputw ∈ R

m, and outputz ∈ R
p, if we

think of w(t) as an excitation at the input which acts over
the time period0 6 t 6 T , then the ring of the system after
the excitation has stopped at timeT is z(t) for t > T . If
signals are measured in the energy norm, this leads to that
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the Hankel norm of the systemG is defined as

‖G‖H = sup
T>0

{(∫ ∞

T

z(t)2dt

)1/2

:

∫ T

0

w(t)2dt 6 1, w(t) = 0 for t > T

}
.

For the discrete-time case, the Hankel norm ofG is given
by

‖G‖H = sup
T>0





(
∞∑

t=T

z(t)2

)1/2

:

T∑

t=0

w(t)2 6 1, w(t) = 0 for t > T

}
.

The Hankel norm can be understood as measuring the
tendency of a system to store energy, which is later retrieved
to produce undesired noise effects known as system ring.
Minimizing the Hankel norm therefore reduces the ringing
in the system. It is worth to note that in both continuous-time
and discrete-time cases we have the following

Proposition 4: If X and Y are the controllability and
observability Gramians of the stable systemG, then

‖G‖H =
√
λ1(XY ),

whereλ1 denotes the maximum eigenvalue of a symmetric
or Hermitian matrix.

Proof: See [6] and also [8, Section 2.3].

IV. STEADY FLOW IN A GRAPH

Here we consider the problem of steady flow in a directed
graphG = (V ,A ) with sources, sinks, and interior nodes,
V = Vstay ∪ Vin ∪ Vout, and not excluding self-arcs. For
nodesi, j ∈ V connected by an arc(i, j) ∈ A the transition
probability i → j quantifies the tendency of flow going
from node i towards nodej. As an example we may for
instance consider a large fairground with separated entrances
and exits, where itineraries between stands, entrances and
exits are represented by the graph. By acting on the transition
probabilities between nodes connected by arcs, we expect to
guide the crowd in such a way that a steady flow is assured,
and a safe evacuation is possible in case of an emergency.

Assume that an individual at interior nodej ∈ Vstay

decides with probabilityajj′ > 0 to proceed to a neighboring
nodej′ ∈ Vstay, where neighboring means(j, j′) ∈ A , or
with probabilityajk > 0 to a neighboring exit nodek ∈ Vout,
where(j, k) ∈ A . The case(j, j) ∈ A of deciding to stay
at standj ∈ Vstay is not excluded. Similarly, an individual
entering ati ∈ Vin proceeds to a neighboring interior node
j ∈ Vstay with probability bij > 0, where(i, j) ∈ A . We
assume for simplicity that there is no direct transmission
from entrances to exits. Then

∑

j′∈Vstay:(j,j′)∈A

ajj′ +
∑

k∈Vout:(j,k)∈A

ajk = 1, (3)

for everyj ∈ Vstay, and
∑

j∈Vstay :(i,j)∈A

bij = 1 (4)

for every i ∈ Vin. Let xj(t) denote the number of people
present at interior nodej ∈ Vstay and time t, and wi(t)
the number of people entering the fairground through entry
i ∈ Vin at time t. Then the number of people present at
interior nodej ∈ Vstay and timet+ 1 is

xj(t+1) =
∑

j′∈Vstay:(j′,j)∈A

aj′jxj′ (t)+
∑

i∈Vin:(i,j)∈A

bijwi(t).

We quantify the total number of individuals still inside the
fairground via the weighted sum

z(t) =
∑

j∈Vstay

cjxj(t)

at time t, wherecj > 0 are fixed weights. We assess the
performance of the network by using theL2-norm to quantify
input and output flowsw, z. This attributes a high cost to a
strong concentration of people at a single spot. Takex to
regroup the parametersajj′ , ajk, bij , the discrete LTI system
above has the formG(x) = (A(x), B(x), C, 0), whereC is
the row vector ofcj ’s. The Hankel norm‖G(x)‖H may then
be interpreted as computing the worst-case of all scenarios
where the infloww is stopped at some timeT , and the
outflow is measured via the patternz(t), t > T , with which
the fairground is emptied. Minimizing‖z‖2,[T,∞)/‖w‖2,(0,T ]

may then be understood as enhancing overall safety of the
network. It leads to the optimization program

minimize ‖G(x)‖H
subject to G(x) internally stable

ajj′ > 0, ajk > 0, bij > 0, (3), (4)
(5)

which is a version of (1).

w - e
+

–

e - G -z

6

K �

Fig. 1. Control architecture in the fairground.

In an extended model one might consider measuring the
number of people at some selected nodesj ∈ Vstay ∪ Vout,
and use this to react via a feedback controller at the entry
gates as in Figure 1. With this controller, we can regulate
the number of people in the fairground. More accurately,
the feedback controllerK = K(κ) includes admission rates
κi at entry gatei, and the number of people entering may
be restricted based on the total weighted number of people
inside the fairground. LettingTw→z(x, κ) denote the closed-
loop transfer function of the performance channel mapping
w into z, this leads to the following problem where controller
and parts of the plant are optimized simultaneously.

minimize ‖Tw→z(x, κ)‖H
subject to K = K(κ) assures closed-loop stability,

ajj′ > 0, ajk > 0, bij > 0, κi > 0, (3), (4)
(6)
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V. ROBUST CONTROL OF A MASS-SPRING-DAMPER

SYSTEM

In this section we discuss a 1DOF mass-spring-damper
system with massm, spring stiffnessk and damping co-
efficient c. The values can be in any consistent system of
units, for example, in SI units,m in kilograms,k in newtons
per meter, andc in newton-seconds per meter or kilograms
per second. The system is of second order, since it has a
mass which can contain both kinetic and potential energy.
The forceF is considered as inputu, and the displacement
p of the mass from the equilibrium position is considered as
output y of this system. By Hooke’s law, the force exerted
by the spring is

Fs = −kp.

Let v be the velocity of the mass, then the damping force
Fd is expressed as

Fd = −cv = −c
dp

dt
= −cṗ

due to d’Alembert’s principle. Using Newton’s second law,
we have

F + Fs + Fd = m
d2p

dt2
= mp̈,

which gives
mp̈+ cṗ+ kp = u.

A possible selection of state variables is the displacement
p and the velocityv. The linear model of the mass-spring-
damper is then described by

G :

{
ẋ = Ax +Bu

y = Cx

where

A =

[
0 1

− k
m − c

m

]
, B =

[
0
1
m

]
and C =

[
1 0

]
.

r = 0- e

+ –
- K - e

u

+
?

w

+ - G -y

6

Fig. 2. The structure of mass-damper-spring control system

The design objective for the mass-spring-damper system
with a disturbance is to find an output feedback control
law u = Ky which stabilizes the closed-loop system while
minimizing worst-case energy of outputz = [y u]⊤ in order
to avoid the disturbance inputw to affect the system. In
realistic systems, the physical parametersk and c are not
known exactly but can be enclosed in intervals. Assuming
the controller is parameterized asK(κ), takingx to regroup
the tunable parametersk, c andκ, and denoting byTw→z(x)
the closed-loop performance channelw → z, this leads to
the optimization problem

minimize ‖Tw→z(x)‖
subject to x = (k, c, κ) ∈ R

n,
K = K(κ) assures closed-loop stability,
k andc are in some intervals

(7)

where choices of‖ · ‖ include theH∞-norm ‖ · ‖∞ or the
Hankel norm‖ · ‖H .

VI. CLARKE SUBDIFFERENTIALS OF THEHANKEL NORM

In order to apply nonlinear and non-smooth optimization
techniques to programs of the form (5), (6) and (7) it is
necessary to provide derivative information of the objective
function

f(x) = ‖G(x)‖2H = λ1(X(x)Y (x)),

whereX(x) andY (x) are the controllability and observabil-
ity Gramians. In the discrete-time case,X(x) andY (x) can
be obtained from the Lyapunov equations

A(x)XA⊤(x) −X +B(x)B⊤(x) = 0, (8)

A⊤(x)Y A(x) − Y + C⊤(x)C(x) = 0. (9)

Remark that despite the symmetry ofX andY the product
XY needs not be symmetric, but stability ofA(x) guarantees
X ≻ 0, Y ≻ 0 in (8), (9), so that we can write

λ1(XY ) = λ1(X
1
2Y X

1
2 ) = λ1(Y

1
2XY

1
2 ),

which brings us back in the realm of eigenvalue theory of
symmetric matrices.

Recalling the definition of the spectral radius of a matrix

ρ(M) = max{|λ| : λ eigenvalue ofM},

we can address programs (5) and (6) in the following
program

minimize f(x) := ‖G(x)‖2H
subject to c(x) := ρ(A(x)) − 1 + ε 6 0

(10)

for some fixed smallε > 0. Notice thatf = ‖ · ‖2H ◦ G(·)
is a composite function of a semi-norm and a smooth
mappingx 7→ G(x), which implies that it is lower-C2, and
therefore also lower-C1 in the sense of [16, Definition 10.29].
Theoretical properties of the spectral radiusc(x), used in the
constraint, have been studied in [3]. We also haveX(x) ≻ 0
andY (x) ≻ 0 on the feasible setC = {x : c(x) 6 0}, so
that f is well-defined and locally Lipschitz onC.

Let Mn,m be the space ofn × m matrices, equipped
with the corresponding scalar product〈X,Y 〉 = Tr(X⊤Y ),
whereX⊤ andTr(X) are respectively the transpose and the
trace of matrixX . We denote byBm the set ofm × m
symmetric positive semidefinite matrices with trace 1. Set
Z := X

1
2 Y X

1
2 and pick Q to be a matrix whose columns

form an orthonormal basis of theν-dimensional eigenspace
associated withλ1(Z). By [13, Theorem 3], the Clarke
subdifferential off at x consists of all subgradientsgU of
the form

gU = (Tr(Z1(x)
⊤QUQ⊤), . . . ,Tr(Zn(x)

⊤QUQ⊤))⊤,

whereU ∈ Bν , and whereMi(x) := ∂M(x)
∂xi

, i = 1, . . . , n
for any matrixM(x).We next have

Zi(x) = χi(x)Y X
1
2 +X

1
2Yi(x)X

1
2 +X

1
2 Y χi(x), (11)

whereχi(x) :=
∂X

1
2 (x)

∂xi

. It follows from (8) and (9) that

A(x)Xi(x)A
⊤(x)−Xi(x) = −Ai(x)XA⊤(x)

−A(x)X [Ai(x)]
⊤ −Bi(x)B

⊤(x)−B(x)[Bi(x)]
⊤, (12)

A⊤(x)Yi(x)A(x) − Yi(x) = −[Ai(x)]
⊤Y A(x)

−A⊤(x)Y Ai(x)− [Ci(x)]
⊤C(x)− C⊤(x)Ci(x). (13)
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SinceX
1
2X

1
2 = X ,

X
1
2χi(x) + χi(x)X

1
2 = Xi(x). (14)

Altogether, we obtain Algorithm 2 to compute elements of
the subdifferential off(x).

Algorithm 2 . Computing subgradients.

Input: x ∈ R
n. Output: g ∈ ∂f(x).

1: Compute Ai(x) = ∂A(x)
∂xi

, Bi(x) = ∂B(x)
∂xi

,

Ci(x) = ∂C(x)
∂xi

, i = 1, . . . , n and X,Y solutions
of (8), (9), respectively.

2: ComputeX
1
2 and Z = X

1
2Y X

1
2 .

3: For i = 1, . . . , n computeXi(x) andYi(x) solutions of
(12) and (13), respectively.

4: For i = 1, . . . , n computeχi(x) solution of (14) and
Zi(x) using (11).

5: Determine a matrixQ whose columns form an orthonor-
mal basis of theν-dimensional eigenspace associated
with λ1(Z).

6: Pick U ∈ Bν , and return

(Tr(Z1(x)
⊤QUQ⊤), . . . ,Tr(Zn(x)

⊤QUQ⊤))⊤,

a subgradient off at x.

Remark 1: In the continuous-time case, the Gramians
X(x) andY (x) can be obtained from the continuous Lya-
punov equations

A(x)X +XA⊤(x) +B(x)B⊤(x) = 0, (15)

A⊤(x)Y + Y A(x) + C⊤(x)C(x) = 0, (16)

Therefore,Xi(x) andYi(x) are solutions respectively of the
following equations

A(x)Xi(x) +Xi(x)A
⊤(x) = −Ai(x)X −X [Ai(x)]

⊤

−Bi(x)B
⊤(x)−B(x)[Bi(x)]

⊤, (17)

A⊤(x)Yi(x) + Yi(x)A(x) = −[Ai(x)]
⊤Y − Y Ai(x)

− [Ci(x)]
⊤C(x) − C⊤(x)Ci(x). (18)

In addition, let us note that for this case, the stability
constraint in program (10) isc(x) = α(A(x)) + ε 6 0,
whereα(·) denotes the spectral abscissa of a square matrix,
i.e., the maximum of the real parts of its eigenvalues.�

We now introduce a smooth relaxation of Hankel norm.
It is based on a result established by Y. Nesterov in [9],
which gives a fine analysis of the convex bundle method in
situations where the objectivef(x) has the specific structure
of a max-function, including the case of a convex maximum
eigenvalue function. These findings indicate that for a given
precision, such programs may be solved with lower algo-
rithmic complexity using smooth relaxations. While these
results area priori limited to the convex case, it may be
interesting to apply this idea as a heuristic in the non-convex
situation. More precisely, we can try to solve problem (10),
(2) by replacing the functionf(x) = λ1(Z(x)) by its smooth
approximation

fµ(x) := µ ln

(
nx∑

i=1

eλi(Z(x))/µ

)
, (19)

whereµ > 0 is a tolerance parameter,nx the order of matrix
Z, and whereλi denotes theith eigenvalue of a symmetric
or Hermitian matrix. Then

∇fµ(Z) =

(
nx∑

i=1

eλi(Z)/µ

)−1 nx∑

i=1

eλi(Z)/µqi(Z)qi(Z)⊤,

with qi(Z) the ith column of the orthogonal matrix
Q(Z) from the eigendecomposition of symmetric matrix
Z = Q(Z)D(Z)Q(Z)⊤. This yields

∇fµ(x) =

(Tr(Z1(x)
⊤∇fµ(Z)), . . . ,Tr(Zn(x)

⊤∇fµ(Z)))⊤.

Let us note that

f(x) 6 fµ(x) 6 f(x) + µ lnnx.

Therefore, to find anǫ-solution of problem (2), we have to
find an ǫ

2 -solution of the smooth problem

minimize fµ(x)
subject to c(x) 6 0

Ax 6 b
(20)

with µ = ǫ
2 lnnx

. This smoothed problem can be solved using
standard NLP software. We have initialized the non-smooth
algorithm 1 with the solution of problem (20).

VII. N UMERICAL EXPERIMENTS

A. Steady Flow in a Graph

We give an illustration of programs (5) and (6).
Let Vstay = {1, 2, . . . , nx}, Vin = {1, 2, . . . ,m} and
Vout = {1, 2, . . . , p}. Taking x to regroup the unknown
tunable parametersajj′ , bij and settingA(x) = [ajj′ ]

⊤
nx×nx

,
B(x) = [bij ]

⊤
m×nx

, C = [c1, . . . , cnx
], whereajj′ = 0 if

(j, j′) 6∈ A , bij = 0 if (i, j) 6∈ A , we have a discrete LTI
system

G(x) :

{
x(t+ 1) = A(x)x(t) +B(x)w(t)

z(t) = Cx(t).

Note that the linear constraint conditions in (5) as well as
(6) can be transferred to the form

{
Aeqx = beq,

x > 0.

We now take the graphG = (V ,A ) with nx = 36,
m = 2 and p = 2 as in Figure 3. Letz(t) be the total
number of individuals inside the fairground with doubled
weights at 6 nodes in the center that form a hexagon
as compared to the other nodes. We start with the case
without controller and initialize at the uniform distribution
x
1, wheref(x1) = 528.7672 and‖G(x1)‖H = 22.9949. In

order to save time, we use the minimizer of the relaxation
fµ(x) in (19) with initial x1 to initialize the non-smooth
algorithm 1. Our algorithm then returns the optimalx

† with
f(x†) = 16.5817, meaning‖G(x†)‖H = 4.0721.

In the case with controllerK = K(κ), κ = [κ1 . . . κm]⊤,
as shown in Figure 1, we have

Tw→z(x, κ) :

{
x(t + 1) = A(x)x(t) +B(x)e(t)

z(t) = Cx(t).
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Fig. 3. Model of the fairground.

Heree(t) = w(t) −Kz(t) = w(t) −KCx(t), which gives

Tw→z(x, κ) =

[
A(x) −B(x)K(κ)C B(x)

C 0

]
.

Initializing at (x, κ) = (x1, 0) with remarking that
Tw→z(x, 0) = G(x) and proceeding as in the previous case,
we obtain the optimal(x∗, κ∗) with f(x∗, κ∗) = 2.0001,
meaning‖Tw→z(x

∗, κ∗)‖H = 1.4142. Step responses and
ringing effects in unit step and white noise responses trun-
cated atT = 30 for the three systemsG(x1) = Tw→z(x

1, 0),
G(x†) and Tw→z(x

∗, κ∗) are compared in Figure 4 and
Figure 5.
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Fig. 4. Experiment 1. Step responses of three systemsG(x1) (dotted),
G(x†) (dashed) andTw→z(x∗, κ∗) (solid).

B. Robust Control of a Mass-Spring-Damper System

Here we apply Algorithm 1 to solve problem (7), where
the mass-spring-damper plant with a disturbance is given by

P :




ẋ
z
y



 =




A B1 B
C1 0 D12

C 0 0








x
w
u



 ,

with

A =

[
0 1

− k
m − c

m

]
, B1 = B =

[
0
1
m

]

C1 =

[
1 0
0 0

]
, D12 =

[
0
1

]
andC =

[
1 0

]
.
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Fig. 5. Experiment 1. Ringing effects of three systemsG(x1) (dotted),
G(x†) (dashed) andTw→z(x∗, κ∗) (solid). Input: Unit step signal (top)
and white noise signal (bottom).

The controllerK is chosen of order 2, namely

K(κ) =
κ1s

2 + κ2s+ κ3

s2 + κ4s+ κ5

=




−κ4 κ5 1
1 0 0

κ2 − κ1κ4 κ3 − κ1κ5 κ1


 :=

[
AK BK

CK DK

]
.

Then, the closed-loop transfer function of the performance
channel channelw → z has the state-space representation

Tw→z(x) :

[
ξ̇
z

]
=

[
A(x) B(x)
C(x) 0

] [
ξ
w

]
,

whereξ = [x xK ]⊤, xK the state ofK, and where

A(x) =

[
A+BDKC BCK

BKC AK

]
,

B(x) =

[
B1 +BDKD21

BKD21

]
,

C(x) =
[
C1 +D12DKC D12CK

]
.

Assume that massm = 4, and spring stiffnessk and damping
coefficient c belong to the intervals[4, 12] and [0.5, 1.5],
respectively. Using the Matlab functionhinfstruct based
on [1], we optimizedH∞-norm and obtainedk = 12, c = 1
and

K∞ =
−6.0927s2 − 0.3981s− 5.1816

s2 + 19.0834s+ 1.1708
.
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In the Hankel norm synthesis case, our Algorithm 1 returned
k = 12, c = 1.5 and

KH =
−6.1975s2 − 2.1828s− 4.2523

s2 + 19.3261s+ 3.9198
.

Figure 6 compares step responses and white noise responses
in two synthesis cases. Bearing of the algorithm is shown in
Figure 7.
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Fig. 6. Experiment 2. Step responses (left) and white noise responses
(right) in two synthesis cases.
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Fig. 7. Experiment 2. Bearing of the algorithm.

VIII. C ONCLUSION

We have shown that it is possible to optimize plant and
controller simultaneously if the idea of a structured control
law introduced in [1] is applied. Our approach was illustrated
for Hankel norm synthesis as well as forH∞-synthesis, and
for a continuous and a discrete system. Due to inherent non-
smoothness of the cost functions, non-smooth optimization
was applied, and in particular, a non-convex bundle method
was presented. For eigenvalue optimization, as required for
Hankel norm synthesis, a relaxation developed by Nesterov
for the convex case was successfully used as a heuristic in
the non-convex case to initialize the bundle method.
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