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Abstract. Suppose that A and B are closed subsets of a Euclidean space
such that A ∩ B "= ∅, and we aim to find a point in this intersection with
the help of the sequences (an)n∈N and (bn)n∈N generated by the method of
alternating projections. It is well known that if A and B are convex, then
(an)n∈N and (bn)n∈N converge to some point in A ∩ B. The situation in
the nonconvex case is much more delicate. In 1990, Combettes and Trussell
presented a dichotomy result that guarantees either convergence to a point in
the intersection or a nondegenerate compact continuum as the set of cluster
points.

In this note, we construct two sets in the Euclidean plane illustrating
the continuum case. The sets A and B can be chosen as countably infinite
unions of closed convex sets. In contrast, we also show that such behaviour
is impossible for finite unions.
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1. Motivation. Let X be a real Euclidean space, and let A and B be
closed subsets of X. Our aim is to find a point in A ∩ B which we assume to
be nonempty. One classical algorithm is the method of alternating projections :
Given a starting point b−1 ∈ X, generate sequences

(1) (∀n ∈ N) an ∈ PA(bn−1) and bn ∈ PB(an)

where PCx :=
{

c ∈ C
∣

∣ ‖x − c‖ = dC(x) := infy∈C ‖x − y‖
}

denotes the projec-

tion of x onto C. When A and B are convex, then the projectors PA and PB are
single-valued and the sequences (an)n∈N and (bn)n∈N converge to some point in
A ∩ B. This classical result goes back to Bregman [6], and it has found a huge
number of extensions (see, e.g., [3], [8], [10], [11]). In the general case, when A
and B are not necessarily convex, the situation is much more delicate. In their
1990 paper [9], Combettes and Trussell gave quite general sufficient conditions for
the following dichotomy: either (an)n∈N and (bn)n∈N converge to a point in A∩B
or the set of cluster points is a nondegenerate continuum. (For recent results in
the nonconvex case, see [4] and [5] and the references therein.)

The goal of this note is to explicitly construct two sets A and B illustrating

the continuum case.

The main ingredient of our construction is a spiral in the Euclidean plane
from which we pick points in an alternating fashion1.

The sets A and B may be chosen to be countably infinite unions of closed
convex sets. In contrast, we also prove that the continuum case cannot occur
when A and B are finite unions of closed convex sets.

The remainder of the paper is organized as follows. In Section 2, we lay
the ground work by studying a certain curve in the Euclidean plane. In Section 3,
we use this curve to construct a sequence of points in the plane that is crucial
in obtaining the sets A and B. Some remarks and the announced positive result
conclude the paper.

2. A useful spiral. We will mostly work in the Euclidean plane R2.
As usual, angles will be measured in radians, but sometimes we shall use degrees
as in writing π/2 = 90◦.

Let us recall that the distance d between (r cos(α), r sin(α)) and (s cos(β),
s sin(β)), where r ∈ R+ and α ∈ R, satisfies

d2 = ‖(r cos(α), r sin(α)) − (s cos(β), s sin(β))‖2 = r2 + s2 − 2rs cos(α − β)(2a)

≥ r2 + s2 − 2rs = (r − s)2;(2b)

1The reader is invited to take a peek at the figure below for an illustration of the location of
these points.
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hence,

(3) r − d ≤ s ≤ r + d.

Define the function ρ by

(4) ρ : R+ → R+ : t *→ 1 + exp(−t).

This function will represent the distance of a point on the curve at time t to the
origin. Clearly, ρ is strictly decreasing with ρ(0) = 2 and limt→+∞ ρ(t) = 1. Also
define

(5) ε : R+ → R++ : t *→
ρ(t) − ρ(t + 2π)

2
.

Then ε′ = −ε and hence ε is strictly decreasing to limt→+∞ ε(t) = 0. Note that

(6) R+ → R++ : α *→
ε(α)

ρ(α)
=

1

2

1 − e−2π

1 + eα
is strictly decreasing.

We now define the curve

(7) x : R+ → R
2 : α *→ ρ(α) ·

(

cos(α), sin(α)
)

.

Note that x describes a spiral traversing counter-clockwise; x is injective because ρ
is strictly decreasing. Now let α and β be in R+, and assume that ‖x(α)−x(β)‖ ≤
ε(α). By (3), ρ(α) − ε(α) ≤ ρ(β) ≤ ρ(α) + ε(α). Using the definitions, we solve
these inequalities for β and obtain

(8) α−0.40 ≈ α+ln(2)− ln(3−e−2π) ≤ β ≤ α+ln(2)− ln(1+e−2π) ≈ α+0.69;

in degrees, this implies α − 24◦ ≤ β ≤ α + 40◦. To summarize,

(9) ‖x(α) − x(β)‖ ≤ ε(α) ⇒ α − 24◦ ≤ β ≤ α + 40◦.

We will now discuss the monotonicity of the function

(10) f : t *→ ‖x(α + t) − x(α)‖2.

Recall that

(11) t ∈ ]0,π/2[ ⇒ sin(t) + cos(t) > 1.

One checks that

(12) f ′(t)
exp(2(α + t))

2
= g1(t) + g2(t) + g3(t),

where

g1(t) = sin(t) exp(2t + α)(1 + exp(α)),(13a)

g2(t) = exp(α + t)
(

sin(t) + cos(t) − 1
)

,(13b)
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g3(t) = exp(t)
(

sin(t) + cos(t) − exp(−t)
)

.(13c)

Since each gi is strictly positive on ]0,π/2[, it follows from the mean value theorem
that

(14) f is strictly increasing on [0,π/2].

Combining with (9), we deduce2

(15)
(

∀α ∈ R+
)(

∃ !β > α
)

‖x(β) − x(α)‖ = ε(α).

Furthermore, denoting the unit sphere by S, we have

(16) (∀α ∈ R+) dS(x(α)) = ρ(α) − 1 = exp(−α) > ε(α).

3. A useful sequence. We now construct a sequence (xn)n∈N in the
Euclidean plane with remarkable properties. Let us initialize

(17) α0 := 0, x0 := x(α0), ρ0 := ρ(α0), ε0 := ε(α0).

In Cartesian coordinates, x0 = (2, 0), and ε0 ≈ 0.5. Now suppose n ∈ N and αn,
xn, ρn, and εn are given. In view of (15), there exists a unique β > αn such that

(18) ‖x(β) − x(αn)‖ = εn.

We then update

(19) αn+1 := β, xn+1 := x(αn+1), ρn+1 := ρ(αn+1), and εn+1 := ε(αn+1).

(The picture illustrates the beginning of the spiral and x0, . . . , x15 along with the
radii used to construct the next iterate.) We also set

(20) δn := αn+1 − αn.

By construction,

(21) (∀n ∈ N) ‖xn − xn+1‖ = εn and
n

∑

k=0

δk = αn+1 − α0.

Note that

(22) (αn)n∈N is strictly increasing, and (εn)n∈N is strictly decreasing

because the function ε is strictly decreasing. Set

(23) α∞ := lim
n∈N

αn ∈ ]0,+∞] .

2“∃ ! ” stands for “there exists a unique”
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Since ρ is strictly decreasing we also note that

(24) (ρn)n∈N is strictly decreasing, with lim
n∈N

ρn =: ρ∞ ∈ [1, 2[ .

Hence the corresponding sequence of quotients satisfies

(25) 1 > qn :=
ρn+1

ρn
→ 1.

Using (2a) and the half-angle identity for sine, we have

(∀n ∈ N) ε2
n = ‖xn − xn+1‖

2(26a)

= ρ2
n + ρ2

n+1 − 2ρnρn+1 cos(δn)(26b)

= (ρn − ρn+1)
2 + 2ρnρn+1

(

1 − cos(δn)
)

(26c)

= (ρn − ρn+1)
2 + 4ρnρn+1

1 − cos(δn)

2
(26d)

= (ρn − ρn+1)
2 + 4ρnρn+1 sin2(δn/2).(26e)

Dividing by ρ2
n and recalling (6), we obtain

(27) (∀n ∈ N)

(

1

2

1 − e−2π

1 + eαn

)2

=
ε2
n

ρ2
n

= (1 − qn)2 + 4qn sin2(δn/2).

Taking limits, we learn that

(28)

(

1

2

1 − e−2π

1 + eα∞

)2

= 4 lim
n

sin2(δn/2).
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Since δn, in degrees, belongs to ]0◦, 40◦] by (9), we deduce that (δn)n∈N is con-
vergent as well. If α∞ = +∞, then δn → 0 by (28); however, if α∞ < +∞, then
δn = αn+1 − αn → α∞ − α∞ = 0. Either way,

(29) δn → 0.

Again by (28), we have

(30) αn → α∞ = +∞,

which by (21) implies

(31)
∑

n∈N

δn = +∞,

(32) εn → 0,

and

(33) ρn → ρ∞ = 1.

Note also that in view of (26), we have

(34) ε2
n > 4 sin2(δn/2) ≥

δ2
n

4
eventually,

where we used (29) and the Taylor estimate

(35) sin(t/2) ≥
1

2
t −

1

48
t3 =

t

2

(

1 −
1

24
t2

)

≥
t

4
for t sufficiently close to 0.

Combining with (31), we record that

(36) (∀n ∈ N) ‖xn − xn+1‖ > ‖xn+1 − xn+2‖ → 0,

and
∑

n∈N

‖xn − xn+1‖ = +∞.

Furthermore, (30) and (33) imply that

(37) the set of cluster points of (xn)n∈N is the unit sphere S.

Define

(38) (∀n ∈ N) Cn := {x0, x1, . . .} " {xn}

We claim that

(39) (∀n ∈ N) PCnxn = {xn+1}.

Let n ∈ N. Since Dn := {xn+1, xn+2, . . .} ⊂ x
(

]αn,+∞[
)

, it follows from (9),
(14), and (15) that PDnxn = {xn+1}. We show that there is no k ∈ N such
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that k < n and ‖xk − xn‖ < ‖xn − xn+1‖. Suppose the contrary. Then, by (9),
αn − 24◦ ≤ αk < αn. Hence αk < αn ≤ αk + 24◦. By (14), ‖xk − xk+1‖ =
‖x(αk)−x(αk+1)‖ ≤ ‖x(αk)−x(αn)‖ = ‖xk −xn‖ < ‖xn −xn+1‖ < ‖xk −xk+1‖,
which is absurd. This verifies (39). Furthermore, by (16),

(40) (∀n ∈ N) dS(xn) > ‖xn − xn+1‖.

Let us summarize our findings.

Theorem 3.1. The sequence (xn)n∈N and the set Y :=
{

xn

∣

∣ n ∈ N
}

satisfy the following:

(i) (‖xn − xn+1‖)n∈N is strictly decreasing.

(ii) xn − xn+1 → 0.

(iii)
∑

n∈N
‖xn − xn+1‖ = +∞.

(iv) (∀n ∈ N) P(S∪Y )!{xn}xn = {xn+1}.

(v) The set of cluster points of (xn)n∈N is the compact continuum S.

(vi) S ∪ D is closed, where D is an arbitrary subset of Y .

We now obtain the announced example concerning an instance of the
method of alternating projections whose set of cluster points is a nondegenerate
compact continuum.

Corollary 3.2. Set

(41) A :=
{

x2n

∣

∣ n ∈ N
}

∪ S, B :=
{

x2n+1

∣

∣ n ∈ N
}

∪ S, and b−1 := x0.

Then A and B are nonempty compact subsets of R2. The corresponding sequences

of alternating projections satisfy

(42) (∀n ∈ N) an = PAbn−1 = x2n and bn = PBan = x2n+1.

Moreover, an − bn−1 → 0, bn − an → 0, and S is the set of cluster points of

(an)n∈N and of (bn)n∈N.

Remark 3.3. Some comments on Corollary 3.2 are in order.

(i) We note that Corollary 3.2 is the first example constructed where the set
of limit points of alternating projections is a nondegenerate compact con-
tinuum. This complements the analysis of Combettes and Trussell [9] who
conceived this case.

(ii) If the starting point b−1 is an arbitrary point, then either a0 ∈ S or a0 ∈
A"S. In the first case, we have (∀n ∈ N) an = bn = a0; in the second case,
the sequences (an)n∈N and (bn)n∈N are tails of (x2n)n∈N and (x2n+1)n∈N
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respectively. A more involved analysis shows that if b−1 is outside the
closed unit disk, then PAb−1 ∈ A " S and we are in the second case. Hence
one obtains a nondegenerate compact continuum of cluster points exactly
when b−1 lies outside the closed unit disk.

(iii) Suppose that, in (41), we replace S by the closed unit disk and we consider
all possible orbits, i.e., the starting point b−1 ranges over the entire space
X instead of being pinned at x0. Then the corresponding union of the sets
of cluster points of (an)n∈N and (bn)n∈N is the closed unit disk. Note that
in this case, both A and B are countably infinite unions of convex sets. In
the following result, we show that a degenerate continuum cannot occur as
the set of cluster points when A and B are finite unions of nonempty closed
convex sets.

Theorem 3.4 (finite unions of convex sets). Suppose that I and J are

nonempty finite index sets, let (Ai)i∈I and (Bj)j∈J be families of nonempty closed

convex subsets of a Euclidean space X, and set A :=
⋃

i∈I Ai and B :=
⋃

j∈J Bj.

Consider a sequence of alternating projections (an)n∈N and (bn)n∈N generated by

A and B: b−1 ∈ X, and (∀n ∈ N) an ∈ PAbn−1 and bn ∈ PBan. Suppose that

(an)n∈N and (bn)n∈N are bounded, and that bn−an → 0 and an+1− bn → 0. Then

there exists a point c ∈ A ∩ B such that an → c and bn → c.

P r o o f. After relabeling and considering the tails of the sequences if
necessary, we assume that

(43a) (∀i ∈ I) Ai is projected upon infinitely often

and that

(43b) (∀j ∈ J) Bj is projected upon infinitely often.

The pigeonhole principle gives (i+, j+) ∈ I × J and subsequences (akn)n∈N and
(bkn)n∈N lying in Ai+ and Bj+ respectively. After passing to further subsequences
if necessary, we also assume that there is c ∈ Ai+ ∩ Bj+ such that akn → c and
bkn → c. Set I− :=

{

i ∈ I
∣

∣ c /∈ Ai

}

, I+ := I " I−, J− :=
{

j ∈ J
∣

∣ c /∈ Bj

}

,
J+ := J " J−, δ := min{mini∈I− dAi

(c),minj∈J−
dBj

(c), 1}, A− :=
⋃

i∈I−
Ai, and

B− :=
⋃

j∈J−

Bj. Now assume that there exists m ∈ N such that ‖am − c‖ < δ/2.
Then dB−

(am) ≥ dB−
(c) − ‖am − c‖ > δ − δ/2 = δ/2 > ‖am − c‖ ≥ dB!B−

(am).
Hence (∀j ∈ J−) bm /∈ PBj

(am), and thus bm ∈
{

PBj
(am)

∣

∣ j ∈ J+
}

. Since
projectors are nonexpansive, it follows that ‖bm−c‖ ≤ ‖am−c‖ < δ/2. Therefore,

(44a) ‖am − c‖ < δ/2 ⇒ ‖bm − c‖ < δ/2 and (∀j ∈ J−) bm /∈ PBj
(am),
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and a similar argument yields

(44b) ‖bm − c‖ < δ/2 ⇒ ‖am+1 − c‖ < δ/2 and (∀i ∈ I−) am+1 /∈ PAi
(bm).

Since akn → c, there does exist M ∈ N such that ‖aM − c‖ < δ/2. But then (44)
has two consequences. First, starting with iteration index M , (∀i ∈ I−) Ai is
not projected upon and (∀j ∈ J−) Bj is not projected upon. In view of (43), we
conclude that I− = J− = ∅, i.e., c ∈

⋂

i∈I Ai ∩
⋂

j∈J Bj . The second consequence
of (44) is (∀m ≥ M) ‖am − c‖ ≥ ‖bm − c‖ ≥ ‖am+1 − c‖. Finally, since c is
a cluster point of (an)n∈N and (bn)n∈N, it thus follows that ‖an − c‖ → 0 and
‖bn − c‖ → 0. !
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