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Abstract

Multi-objective H∞/H∞-synthesis with structured control laws is discussed and used as
a means to enhance robustness of the system in the presence of real parametric uncertainty.
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1 Introduction

In multi-objective control design several closed-loop performance specifications have to be opti-
mized simultaneously. A specific form is multi-objective H∞/H∞-synthesis, where the H∞ norm
of a first closed loop performance channel ‖Tw→z(K)‖∞ is minimized subject to a constraint
‖T ew→ez(K)‖∞ ≤ γ on a second one. Here we discuss structured H∞/H∞ synthesis, where the
controller is in addition constrained to have a specific pattern. Controller structures or pattern
are dictated by practical considerations and include reduced and low-order controllers, decen-
tralized or PID controllers, observer-based controllers, or even control architectures where simple
controllers are combined with feed-forward, set-point or washout filters, and much else.

In this work we use structured H∞/H∞-synthesis to achieve a trade-off between performance
and robustness specifications. We select a channel w → z to describe good performances of the
system, and a second channel w̃ → z̃ to assess robustness. Then H∞/H∞-synthesis is a practical
way to optimize performance subject to a constraint assuring a satisfactory level of robustness.

It is well-known that input or output sensitivity functions can, when measured in the H∞-
norm, give robustness certificates with respect to unstructured system uncertainty [33]. Here the
system is desensibilized, but the structure of the uncertainty is not taken into account. As soon as
one is interested in the more specific case of real parametric uncertainty, the structured singular
value µ according to Doyle et al. [33] is a mathematically rigorous way to assess robustness.
Unfortunately, µ is NP-hard even to evaluate in most cases, [10, 11], which means that it is not
fit to be used within an optimization procedure, where functions and constraints are evaluated
many times. Here we show that the distance to instability can offer a compromise between an
accurate representation of the parametric uncertainty, and a convenient use within an optimization
procedure.

The structure of the paper is as follows. Section 2 recalls the concept of controller structure
and structured synthesis. Parametric uncertainty is briefly reviewed in section 3. Semi-structured
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stability radii are discussed in section 4, and the trade-off between performance and robustness is
presented subsequently. In section 5 we use contour plots to analyze the degree of conservatism in
using stability radii. Section 6 presents methods to compute structured mixed H∞/H∞ controllers.
Section 7 gives the link with µ and its approximation µ̃, which can be used for robustness analysis
of a controller computed with the help of a stability radius. Regulation of the roll axis of a flexible
geostationary satellite is discussed in the experimental section 8.

2 Structured synthesis

Following [3] a feedback controller in state-space form

K :

[
ẋK

u

]
=

[
AK BK

CK DK

] [
xK

y

]
(1)

with AK of size nK ×nK , BK of size nK × p2, CK of size m2×nK and DK of size m2× p2 is called
structured if the state space matrices depend smoothly on a design parameter θ varying in some
parameter space Rn or some constrained subset of Rn:

AK = AK(θ), BK = BK(θ), CK = CK(θ), DK = DK(θ).(2)

Writing K = K(θ) for short, this notion is particularly useful if the dimension n of θ is smaller
than the total number of degrees of freedom N := n2

K + nKm2 + nKp2 + m2p2 in (1). Controller
structures arise naturally in practical situations and include for instance reduced and low-order
controllers, PID, decentralized, observer-based controllers, or controller architectures combining
simple controllers with feed forward, setpoint or washout filters.

Two typical examples can be seen in (3). PID controllers are parametrized as Kpid(θ), where
θ = (τ, vec(Ri), vec(Rd), vec(DK)) ∈ R3m2p2+1, while observer-based controllers Kobs(θ) have θ =
(vec(Kc), vec(Kf )) ∈ Rnxm2+nxp2 .

Kpid(θ) =

 0 0 Ri

0 −τI Rd

I I DK

 , Kobs(θ) =

[
A−B2Kc −KfC2 Kf

−Kc 0

]
.(3)

Structured H∞-synthesis is now as follows. Given an open loop plant

P :

 ẋ
z
y

 =

 A B1 B2

C1 D11 D12

C2 D21 0

 x
w
u

(4)

with state x ∈ Rnx , measured output y ∈ Rm2 , controlled input u ∈ Rp2 , external inputs w and
regulated outputs z, and fixing a controller structure (2), we have to compute an output feedback
controller with that pre-defined structure K(θ∗) in (2) which stabilizes P internally and minimizes
the H∞ norm of the closed-loop performance channel Tw→z(K(θ)) among all stabilizing controllers
of the same structure K(θ). For short, we compute a solution θ∗ of the optimization program

minimize P(θ) = ‖Tw→z (K(θ)) ‖∞
subject to K(θ) closed-loop stabilizing

(5)

We refer to P(θ) as the performance specification or simply as the performance in closed-loop,
with θ indicating that controller K(θ) is used.
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Remark 1. The standard H∞ synthesis problem is a special case of (5) if K(θ) stands for the
class of full order controllers (1), where full-order means nK = nx and that all gains AK , BK , . . .
are free optimization variables. In this case n = N , which is why we sometimes refer to full order
controllers en abus de langue as unstructured. It is well-known [18] that the standard H∞-problem
is equivalent to a convex problem, which can be solved via AREs or LMIs, available via the
Matlab functions HINFRIC or HINFLMI. Imposing the structural constraint K = K(θ) makes (5)
non-convex as a rule. Even for very simple structures like fixed reduced order controllers, where
nK < nx, computation of a global optimum in (5) is NP-hard (see [10,11]). Computing the global
minimum is then out of the question and we accept locally optimal solutions.

The structured H∞/H∞-problem can now be introduced in a similar way. Given the plant

P̃ :


ẋ
z̃
z
y

 =


A B̃0 B1 B2

C̃0 D̃00 D̃01 D̃02

C1 D̃10 D11 D12

C2 D̃20 D21 0




x
w̃
w
u

(6)

and a controller structure (2), we have to find the optimal solution θ∗ of the following constrained
optimization program.

minimize P(θ) = ‖Tw→z (K(θ)) ‖∞
subject to R(θ) = ‖T ew→ez (K(θ)) ‖∞ ≤ γ

K(θ) closed-loop stabilizing
(7)

Regarding the fact that (7) is non-convex as a rule, we accept locally optimal solutions. For
reasons which will become clear shortly, we refer to w̃ → z̃ as the robustness channel, and to R
as the robustness criterion or simply as the robustness.

3 Parametric robustness

In parametric robustness the state-space representation (4) depends rationally on a set of real
uncertain parameters δ1, . . . , δr, which are arranged in block-diagonal matrices of the form

∆ =

 δ1Im1

. . .

δrImr

 ,(8)

where mi ∈ N, m = m1 + · · ·+mr. The set of matrices ∆ with structure (8) is denoted ∆, and we
refer to ∆ ∈ ∆ as a real parametric uncertainty, where δi is called repeated if mi > 1 and scalar
if mi = 1. Via normalization the set of uncertainties over which we wish to guarantee robustness
is usually of the form

Q = {∆ ∈ ∆ : σ1(∆) ≤ 1},(9)

where σ1 denotes the maximum singular value. The robust design problem is now the following.
Given the family of plants

P (∆) :


ẋ
p
z
y

 =


A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

C2 D20 D21 0




x
q
w
u

 , q = ∆p(10)
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indexed by the uncertainty ∆ ∈ ∆, we wish to compute an output feedback controller u = Ky
such that

1. K = K(θ∗) has the pre-defined structure (2) and stabilizes P (∆) internally in closed loop
for every uncertainty ∆ ∈ Q.

2. K(θ∗) minimizes the closed-loop performance objective P(K(θ)) among all other controllers
K(θ) with the same structure satisfying item 1.

Arranging (10) in such a way that the controller K = K(θ) is static, closing the loop with the
controller and leaving the loop with ∆ in (10) open shows that K stabilizes each P (∆) internally
if and only if each matrix

A(K, ∆) = A + B2KC2 + (B0 + B2KD20) ∆ (I −D00∆−D02KD20∆)−1 (C0 + D02KC2)(11)

is Hurwitz. We may therefore present the following idealized optimization program

minimize P(K) = ‖Tw→z(K)‖∞
subject to A(K, ∆) Hurwitz for every ∆ ∈ Q

K = K(θ)
(12)

If we define the structured stability radius as

r∆(A, B, C,D) = inf{σ1(∆) : ∆ ∈ ∆, A + B∆(I −D∆)−1C unstable},(13)

then as a consequence of (9) program (12) may be cast more accurately as

minimize P(K)

subject to R(K) = r∆ (A(K), B(K), C(K), D(K))−1 ≤ 1− ε
K = K(θ)

(14)

where ε > 0 is some small threshold. Here we have written the matrix A(K, ∆) in (11) as

A(K, ∆) = A(K) + B(K)∆(I −D(K)∆)−1C(K)(15)

with A(K) = A+B2KC2, B(K) = B0+B2KD20, C(K) = C0+D02KC2, D(K) = D00+D02KD20.
Notice that r−1

∆ coincides with the structured singular value µ∆ of [33] in the special case where
only real uncertain parameters are present.

Remark 2. Notice that our problem differs from the robust control problem of Zhou [33] mainly
by the fact that we allow arbitrary controller structures K(θ), while classical µ-theory works
only with full order (unstructured) controllers K. We could also consider robust performance,
in which case the nominal performance objective P(K) would have to be replaced by P(K) =
sup∆∈Q ‖Tw→z (P (∆), K) ‖∞.

Remark 3. The difficulty in (12) or (14) can be gauged by the fact that computation of µ∆, and
therefore also r∆, is NP-hard (in the state-space dimension of F`(P, K)), so that solving program
(14) frontally is out of the question. Realistically, we may just be able to perform robustness
analysis of a given controller over Q at reasonable cost, i.e., check whether r∆ (F`(P, K)) > 1.
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4 Semi-structured stability radius

As the structured stability radius r∆ is generally inaccessible, we propose to measure robustness
via relaxed forms of the stability radius. Formula (15) suggests to the following semi-structured
stability radius [29]:

rF(A, B, C,D) = inf{σ1(∆) : A + B∆(I −D∆)−1C unstable, or det(I −D∆) = 0, ∆νµ ∈ F},
(16)

where F = R or F = C and ∆µν are the elements of matrix ∆. Clearly rF ≤ r∆, so that
rF (A(K), B(K), C(K), D(K)) > 1 implies robust stability of A(K) over Q. We expect rF to be
conservative in the sense that rF � r∆, because in (16) we replace structured ∆ ∈ ∆ by an
arbitrary matrix ∆ of the same size. The conservatism will be addressed in section 5. We now
consider the following relaxation of (12):

minimize P(K) = ‖Tw→z(K)‖∞
subject to R(K) = rF (A(K), B(K), C(K), D(K))−1 ≤ r−1

K = K(θ)
(17)

The difficulty here is to choose the parameter r. The choice r = 1 would provide a robustness
certificate, but we expect it to be too conservative, so that we would either fail to satisfy the
constraint, or if we succeed, would spoil performance. Several ideas to calibrate r can be employed.
In generally we use the following scheme:

Algorithm I

Input: Q, structure K(θ), plant P . Output: Solution K(θ∗) of (17) robustly stable over Q.

1: Nominal synthesis. Compute optimal solution θ1 to (5). Its performance is p1 = P(θ1).
Check parametric robustness using µ∆ respectively µ̃∆. If K(θ1) is robustly stable over Q
quit, otherwise continue. Compute rF (A(K(θ1)), B(K(θ1)), C(K(θ1)), D(K(θ1))) =: r1 > 0.

2: Calibrate. Compute solution θ2 of

min
θ∈Rn

rF (A(K(θ)), B(K(θ)), C(K(θ)), D(K(θ)))−1(18)

and let r−1
2 be the value of (18).

3: Constrained synthesis. Given r between r1 and r2, solve constrained program (17). The
solution is K(θr).

4: Robustness analysis. Use µ∆ or its approximation µ̃∆ to analyze parametric robustness of
K(θr) over Q. If it holds stop and return θ∗ = θr. If K(θr) is too robust (hence lacking in
performance), choose larger r ∈ (r1, r2), if K(θr) lacks robustness choose smaller r ∈ (r1, r2).
Then go back to step 3.

In the above scheme we have the option to replace program (17) by a dual version in which
the roles of constraint and objective are interchanged. More precisely, let θ1 be the solution of
the nominal program (5) obtained in step 1, with p1 = P(θ1) denoting nominal performance. If
K(θ1) fails to be parametrically robust over Q, the distance to instability of A(K(θ1)) is likely to
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be too small, and in consequence we expect performance to be too good, (i.e. p1 too small). In
step 3 of algorithm I we could then consider the following dual version of (17):

minimize R(θ) = rF (A(K(θ)), B(K(θ)), C(K(θ)), D(K(θ)))−1

subject to P(θ) ≤ (1 + α)p1

K(θ) closed-loop stabilizing
(19)

Here we accept a loss of 100α% over nominal performance p1 and use this freedom to increase the
semi-structured distance rF to instability. The question is now how to choose α. The lower bound
being α = 0, we may use the solution θ2 of (18) to get the upper bound α = P(θ2)/p1 − 1. The
rest of the algorithm I now goes without change.

Computation of rF has been investigated by many authors. In the complex case we have
rC(A, B, C,D)−1 = ‖C(sI − A)−1B + D‖∞ as long as A is Hurwitz. This can be seen e.g.
from Hinrichsen and Pritchard [21]. As a consequence, for P = r−1

C programs (17) and (19) are
structured H∞/H∞ synthesis problems and therefore specific instances of (7). For that we have

to augment the plant P into a plant P̃ according to (6) such that ‖C(K)(sI − A(K))−1B(K) +
D(K)‖∞ becomes the H∞ norm of the channel w̃ → z̃.

The real case is more complicated to analyze. Qiu et al. [29] prove that for A stable and
G(s) = C(sI − A)−1B + D,

rR
−1(A, B, C,D) = sup

ω∈[0,∞]

inf
0<γ≤1

σ2

([
Re G(jω) −γIm G(jω)

γ−1Im G(jω) Re G(jω)

])
,

where σ2 is the second largest singular value of a matrix. While function values of rR have been
computed by Tits et al. [30], subgradient information is more difficult to obtain, so that making
R = r−1

R fit for the numerical approach (17) is more complicated. In the following section we
investigate whether the reduction of conservatism obtained by using rR instead of rC justifies the
additional work.

5 Analysis of conservatism

In order to decide how conservative the constraints r−1
F ≤ r−1 in (17) are, we look at polar plots,

or as they are sometimes called, spectral value sets. For a given controller K we are interested in
the set

Λ(K) = {λ ∈ C : λ eigenvalue of A(K, ∆) for some ∆ ∈ Q}(20)

of all closed loop poles of the uncertain matrices A(K, ∆), ∆ ∈ Q. Namely, K is robustly stabilizing
over Q as soon as Λ(K) ⊂ C−, where C− is the open left half plane. The link with r∆ in (13) is
the following. If q = max{σ1(∆) : ∆ ∈ Q}, then Λ(K) ⊂ C− iff r∆(K)−1 < q−1. Satisfying the
constraint in (12) with r = q by optimizing K = K(θ) is therefore the same as pushing Λ(K) into
the left half plane C−. As r∆ is NP-hard to compute, so is Λ(K). For a single visualization with
few uncertainties this may be possible, but in general we need to consider approximations.

A first approximation which comes to mind uses the pseudo-spectrum, a classical tool to analyze
properties of non-normal matrices and operators, see e.g. Trefethen [31]. Writing A(K, ∆) =
A(K) + E(K, ∆), one may replace the structured perturbation E(K, ∆) by an unstructured E of
the same size with appropriate norm bound. Putting

e(K) = sup{σ1 (E(K, ∆)) : ∆ ∈ Q}
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we define

Λ1,F(K) = {λ ∈ C : λ eigenvalue of A(K) + E for some E

with σ1(E) ≤ e(K) and Eµν ∈ F}.(21)

Clearly Λ(K) ⊂ Λ1,R(K) ⊂ Λ1,C(K), so that Λ1,F(K) ⊂ C− implies robust stability, but at the cost
of some conservatism. Namely, as Λ(K) might be a small subset of Λ1,F(K), placing Λ1,F(K) in
the left half plane C− may mean overdoing it and pushing Λ(K) ⊂ C− too far to the left, leading
to a severe loss of performance. This conservatism can now be visualized via the gap between the
contours Λ(K) and Λ1,F(K) in the polar plot (see Figure 1). Notice that contours Λ1,F correspond
to using rF(A, I, I, 0) in program (7) or (19). This distance to instability is sometimes noted
β(A) and related to the spectral abscissa α(A) of a matrix. Stability optimization based on α(A)
has been proposed in [14]. Our graphical evaluation in Figure 8 shows that pseudo-spectra are
very conservative so that the use of β(A(K)) in (17) should in our opinion not be encouraged.
Moreover, the fact that e(K) depends on K shows that in principle r should also depend on K,
which is not manageable.

In order to reduce conservatism, we go back to (11) and write A(K, ∆) as

A(K, ∆) = A(K) + B(K)F (K, ∆)C(K),(22)

with B(K) = B0 +B2KD20, C(K) = C0 +D02KC2, and F (K, ∆) = ∆(I−D00∆−D02KD20∆)−1.
Putting

f(K) = sup{σ1 (F (K, ∆)) : ∆ ∈ Q}
we consider the following polar sets with semi-structured perturbations of the form

Λ2,F(K) = {λ ∈ C : λ eigenvalue of A(K) + B(K)FC(K) for some F

with σ1(F ) ≤ f(K) and Fµν ∈ F}.(23)

By construction we have Λ ⊂ Λ2,R ⊂ Λ2,C, so that Λ2,F(K) ⊂ C− is sufficient for robust stability.
With the use of Λ2,F we expect conservatism to be somewhat reduced, even though we cannot be
sure that Λ2,F ⊂ Λ1,F. Notice that there is a fair chance that D02 = 0 or D20 = 0, in which case
F (∆) = F (K, ∆) no longer depends on K, so that f = f(K) is a constant. This is indeed what
happens in our numerical example studied in section 8. The contours Λ2,F correspond to using
rF(A, B, C, 0) in programs (7), (17) or (19), see section 8. This type of contour has been discussed
in [20] under the term spectral value sets. In our experiment Λ2,C gives much better results than
Λ1,C (see Figure 9), but this may no longer be the case if f = f(K) depends on K, as then r in
(17) should in principle also depend on K, respectively, θ.

In order to avoid dependence of r on K, we decompose F (K, ∆) in (22) as

F (K, ∆) = ∆(I −D(K)∆)−1,

where D(K) = D00 + D02KD20. Letting

q = sup{σ1(∆) : ∆ ∈ Q},

the following set of poles makes sense:

Λ3,F(K) = {λ ∈ C : λ eigenvalue of A(K) + B(K)∆(I −D(K)∆)−1C(K)

for some ∆ with σ1(∆) ≤ q, ∆µν ∈ F}.(24)
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We have Λ ⊂ Λ3,R ⊂ Λ3,C, so that Λ3,F(K) ⊂ C− implies robust stability of K over Q. Moreover,
we expect Λ3,F to be even less conservative than Λ2,F, although there is no inclusion between
the two contours. Contours Λ3,F correspond to using the full rF(A, B, C,D) in the optimization
programs. Figure 10 confirms that the third type of contours produces the best results.

Sets of the form Λi,F(K) are generally referred as pseudo-spectra of A(K). Λ1,R, Λ1,C are known
as the complex and real pseudo-spectrum, while Λ2,F, Λ3,F are sometimes called structured (real
or complex) pseudo-spectra. Here we prefer the nomination semi-structured pseudo spectrum,
because the truly structured pseudo-spectrum is Λ in (20).

Proposition 1. Let f3,C(s) = 1/σmax (G(s)), where G(s) = C(sI − A)−1B + D. Then Λ3,C =
{s ∈ C : f3,C(s) ≤ q}.

This is indeed Theorem 5.2.16 in [23]. The functions f1,C and f2,C defining the contours Λ1,C
and Λ2,C are obtained as special cases. For Λ2,C one puts D = 0 (and ∆ becomes F , q is replaced
by f). For Λ1,C one puts D = 0, B = I, C = I (and F becomes E, f is replaced by e).

Computing real pseudo-spectra is slightly more involved. Defining f3,R : C → R as

f3,R(s) =

(
inf

0<γ≤1
σ2

[
Re G(s) −γ Im G(s)

γ−1Im G(s) Re G(s)

])−1

,

where G(s) = C(sI −A)−1B + D, we have the following result, which is essentially based on [29]
and can be found as Theorem 5.2.31 in [23].

Proposition 2. Λ3,R = {λ ∈ C : f3,R(λ) ≤ q}.

Computing pseudo-spectra Λ1,C via contour plots of f1,C is discussed at length in Trefethen [31],
for Λ1,R in Trefethen and Embree [32]. The argument in proposition 1 is essentially based on
Hinrichsen and Pritchard [21], while proposition 2 uses the argument of Qiu et al. [29]. Karow et
al. [24] give further information.

Based on propositions 1 and 2, we compute

Λρ
3,C =

{
z ∈ C : log10

(
max

(
svd

(
C (zI − A)−1) B + D

))
≤ ρ

}
,(25)

and similarly for Λρ
3,R. (Here ρ = log10 q for the q in Proposition 2). We discretize z = x + jy on

a 250× 250 grid.

There are two aspects which we hope to learn from the polar plots. Firstly, as already men-
tioned, inspecting the gap between Λ and the Λi,F allows to gauge the degree of conservatism,
which is considerable. Secondly, we want to compare Λi,R to Λi,C in order to understand whether
r−1

R should be preferred to r−1
C in (7). Notice that rC is easier to handle, so that the reduction in

conservatism needed to justify the use of rR has to be significant.

Remark 4. Concerning the question rR versus rC, we can see immediately that fi,R(x) = fi,C(x)
for real x. This is confirmed by checking the point on the real axis where the complex and the
real contour meet (Figures 1, 3, 5). As soon as this point is the rightmost point of the complex
contour, we cannot expect rR to offer any advantage over rC.
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Figure 1: Contours Λ1,R(K), Λ1,C(K) at level ρ = 1.22 on the left (with ρ = log10 e for e as
in (21)). The real contour shows the typical pointed-beak on the right. The beak touches the
complex contour at the rightmost point on the real axis. Right image shows zoom on Λ(K).

Figure 2: Graphs of f1,C on the left, f1,R on the right.

6 Solving the H∞/H∞ program

In this section we consider numerical strategies to solve the structured H∞/H∞ program. The
first numerical approach we are aware of is [5], where this problem has been treated as a multidisk
problem. The multidisk problem was introduced and motivated in [25], and the novelty in [5] over
e.g. [25] is the presence of the structural constraint K = K(θ).

More recently, in [17], mixed H∞/H∞ is used to synthesize a structured controller in longitu-
dinal flight control of a civil aircraft. Here K(θ) stands for an ensemble of PID controllers and
pre-filters. The authors use a progress function method which was previously analyzed in [6, 7]
for mixed H2/H∞-synthesis, and can be traced back to [28]. In [2] we have extended this to
H∞-synthesis subject to time domain constraints. The progress function method may be slow, as
it tries to achieve feasibility R ≤ γ in (7) respectively R ≤ r−1 in (17) before the objective starts
getting reduced.
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Figure 3: Contours Λ2,R(K) (continuous) and Λ2,C(K) (dashed-dotted) at ρ = 0.835 on the left,
zoom on a neighborhood of the origin on the right (where ρ = log10 f with f as in (23)). The real
contour is globally much closer to Λ(K) than the complex, but the extremely pointed beak spoils
this advantage.

Figure 4: Graphs of f2,C left and f2,R right. The function defining the real contour is very spiky.

An alternative way to address (17) uses a succession of structured H∞ problems. Indeed,
locally program (7) is equivalent to the following unconstrained structured H∞-program

minimize max{‖Tw→z(K(θ))‖∞, β‖T ew→ez(K(θ))‖∞}
subject to K(θ) closed-loop stabilizing

(26)

which for fixed β > 0 is a specific form of (5) if a suitable weighting is introduced in (4) and the
performance channel is (w, w̃) → (z, z̃). We have the following

Proposition 3. Programs (17), (19) and (26) are locally equivalent in the following sense. Let θr

be a KKT point of (17) where the constraint R(θ) ≤ r−1 is active. Then θr is a critical point for
(26) for the value β(r) = rP(θr), and it is a KKT point for (19) for the value α(r) = P(θr)/p1−1.
If θβ is a critical point of (26) for parameter β, then it is also a KKT point for (17) with r(β) =

10
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Figure 5: Left image shows contours Λ3,R (continuous) and Λ3,C (dashed-dotted) at ρ = 0.4
(with ρ = log10 q for q as in (24)). The real contour shows the typical beak along the real axis.
Right image shows zoom on neighborhood of origin.

Figure 6: Graphs of f3,C on the left, f3,R on the right. The real contour is again obtained from
a very spiky function.

R(θβ), and a KKT point for (19) at α(β) = P(θβ)/p1 − 1. Finally, if θ]α is a KKT point of (19)
for that value of α, then it is critical for (26) at β(α) = (1 + α)p1/R(θ]α), and it is a KKT point
for (17) with r(α)−1 = R(θ]α).

Proof: We compare necessary optimality conditions of the three programs. �

In other words, at least locally we have a one-to-one correspondence θr ↔ θβ ↔ θ]α as soon as
α ↔ r ↔ β are in correspondence as above. This gives us the option to solve (19) via (26) and
use a line-search in β to steer α(β) toward the desired value α, respectively R to the desired value
(1+α)p1. This works often quite satisfactory if objective and constraint are antagonistic. In order
to solve the equation α(β) = α, one can use quadratic fitting of several older results α(βi) = αi

in order to predict a new guess β.
Program (5) respectively (26) can be solved by the recent structured H∞-synthesis function

11
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Figure 7: Choices R = r−1
C (A), R = r−1

C (A, B, C) and R = r−1
C (A, B, C,D) in (7) are compared

for the spacecraft example. Every point corresponds to a run of (19) with different α and R.
r−1

C (A) performs badly and gives the cloud on the lower right, with P ≥ 400 and q ≤ 20. The
semi-structured stability radii rC(A, B, C)−1 and rC(A, B, C,D)−1 produce the cloud on the upper
left with good robustness q ≥ 60 and a rather mild loss of performance P ≥ p1 = 50.

HINFSTRUCT made available through the MATLAB R2010b Prerelease, Robust Control Toolbox
Version 3.5 developed by The MathWorks, Inc., and based on nonsmooth H∞-synthesis according
to [3]. Evolutions of this method are presented and discussed in [6, 26,27].

As programs (17), (26) are nonconvex, we use local optimization methods, which in some rare
cases may cause discontinuity or rupture of the correspondences θr ↔ θβ ↔ θ]α despite a seemingly
continuous behavior β 7→ r(β) or r 7→ β(r), etc., because we may jump from one branch of local
minima to another. This cannot be avoided unless global optimization techniques are applied, but
those are usually prohibitively expensive.

It is possible to disregard the non-smoothness of the criteria P and R and to apply smooth
methods like the Matlab function FMINCON. In our present study this did not lead to results of
satisfactory quality. Yet another alternative is to use derivative free methods like FMINSEARCH,
but these methods, while not asking for derivative information, make the tacit assumption that
the functions P ,R are smooth. Since this is not the case, one can get surprising results. This
problem was already encountered and analyzed in [4]. Search methods for nonsmooth criteria are
discussed in [4, 8]. They are usually limited to small problems.

Using a succession of instances of (26) to solve (19) has the advantage that the Matlab function
HINFSTRUCT can be used. The proceedings can be organized as follows.

12



Algorithm for program (19)

Input: α > 0, plant P̃ , structure K(θ). Output: Solution θ]α of (19), β = β(α).

1: Initialize. Find initial guess β1 with α(β1) < α and β2 with α(β2) > α.
2: Interpolate. Given two or three consecutive values βi with corresponding θβi , compute

αi = P(θβi)/p1 − 1. Use linear or quadratic fit of (αi, βi) to obtain new estimate β of β(α).
3: Structured H∞ synthesis. Solve program (26) for that value β and obtain θβ.
4: Update. Compute α(β) = P(θβ)/p1 − 1. If α(β) is sufficiently close to α stop and return θβ

as θ]α and β as β(α). Otherwise continue and integrate β among the three best parameter
values, dropping the worst one. Loop back to step 2.

In order to solve (26) for fixed β > 0 as an instance of (5), we have to form a single channel (w, w̃) →
(z, βz̃) in the plant P̃ such that ‖T(w, ew)→(z,βez)(K)‖∞ = max{‖Tw→z(K)‖∞, β‖T ew→ez(K)‖∞}.

Using a progress function to solve (17) leads to so-called phase I/phase II methods in the sense
of [28]. We have used this approach successfully to address the mixed H2/H∞ problem [7], and
the H∞/H∞ problem [17].

7 Posterior analysis with µ and µ̃

For small to medium size examples it may be realistic to end the procedure in Algorithm I with a
robustness analysis based on the test µ∆ (F`(P, K(θ)) < q, where K(θ) is the structured H∞/H∞
controller with a suitable choice of α respectively r, β. For a speedy analysis, however, it may be
preferable to use the Matlab function MU, available in the Robust Control Toolbox. It appears
that this function is based on the approximation µ̃ of µ discussed in [30]. For M = F`(P, K(θ)) it
can be represented as

µ̃(M) = sup
ω∈[0,∞]

inf{µ ≥ 0 : M∗(jω)SωM(jω) + j[TωM(jω)−M∗(jω)Tω] � µ2Sω,

Sω∆ = ∆Sω, Tω∆ = ∆Tω ∀∆ ∈ ∆, Sω � 0, Tω � 0}.(27)

As an alternative, we have implemented the following procedure, which gives a fairly accurate
evaluation of µ̃.

Computation of µ̃

Input: M(s), ∆. Output: µ̃(M).

1: Select frequencies. Choose a finite subset Ω ⊂ [0,∞], possibly including random elements.
Initialize µ0 ≥ 0. Order Ω as ω1, . . . , ωN .

2: Main loop. For k = 1, . . . , N , given µk−1, check whether the LMI

M(jωk)
∗SM(jωk) + j[TM(jωk)−M∗(jωk)T ] � µ2

k−1S, S � 0, T � 0(28)

has a solution (S, T ) where S, T commute with the ∆ ∈ ∆. If this is the case, put µk = µk−1

and loop on with step 2. Otherwise go to step 3.
3: Increase µ. Find smallest µk > µk−1 such that (28) has a solution. Then increase counter k

and go back to step 2.
4: Return µN .

13



I (kg/m2) ωci
(rd/s) λ2

i ζc ωi (rd/s)
0.5 6.5 1.33

11200 3.3 1.3 0.003 3.8
9.1 1.1 9.5

Table 1: Nominal parameter values.

This procedure can be re-started with different random frequencies included in Ω, and also the
order to run through Ω can be changed and adapted. Denoting the optimal µ at frequency ω by
µω, we may obviously speed up things and increase the reliability if we have prior information as
to where µω is largest, because then the correction step 3 is required less often and the LMI (28)
is solved more easily. On the other hand, as soon as step 3 occurs, it is important to increase µ
very carefully in order to avoid overestimation of µ̃.

8 Case study

We consider the robust control of the roll axis of a geostationary satellite. Model uncertainty is
mainly caused by the solar panels, which lead to a large number of flexible modes.

8.1 System presentation

A simplified model of the satellite adapted from [16, 19] takes into account the rigid mode of the
satellite roll axis, and the first three flexible modes:

Iφ̈ + p>η̈ = u

η̈i + 2ζiωiη̇i + ω2
i ηi = −u, i = 1, 2, 3

Here φ is the inertial angular position of the satellite (in rd), η = (η1, η2, η3)
> is the free mode

state vector (in kg ·m2), u is the control torque (in Nm) applied to the satellite, I is the satellite
inertia (in kg ·m2), ωi are the free pulsations (in rd/s), ζi = λiζc are the free damping coefficients,
p = (λ2

1 − 1, λ2
2 − 1, λ2

3 − 1)> is the modal participation vector, λi = ωi/ωci
are the free cantilever

pulsation ratios, ωci
are the cantilever pulsations (in rd/s), and ζc is the common cantilever

damping. The system is represented schematically in figure 8, the nominal parameter values are
gathered in table 1.

The maximal uncertain parameter vector is δ = (ωc1 , ωc2 , ωc3 , λ
2
1, λ

2
2, λ

2
3, I) ∈ R7, but the

authors of [19] show that one can concentrate on three uncertain parameters ωc1 , λ
2
1, I, so the vector

of uncertain parameters in our testing is (δ1, δ2, δ3) = ((ωc1−ωc1)/ωc1 , (λ
2
1−λ

2

1)/λ
2

1, (I−I)/I), where
over-lined entities are nominal values. It turns out that two of the three uncertainties are repeated,
so that the matrix ∆ ∈ ∆ has the structure ∆ = diag(δ1, δ1, δ2, δ2, δ3) ∈ R5×5. Multipliers
S ∈ R5×5 which commute with ∆ ∈ ∆ have therefore two 2×2 blocks and a 1×1 block. The scheme
of the uncertain model is given in figure 9. This includes the block [q1, . . . , q5]

> = ∆[p1, . . . , p5]
>

in (10).
The goal is to stabilize the system robustly over a set (9) of parameter variations, and to

regulate the roll angle (in rd) of the space vehicle to obtain a short settling time, reasonable
overshoot, and good torque disturbance rejection.
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Figure 8: Satellite model P (s) in open loop.
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Figure 9: Uncertain model M(s) for satellite.

8.2 Nominal design

For synthesis we have used the configuration of figure 10, with two choices of the low pass filter
F and the coefficient ε:

case 1: F1(s) = s+0.1
(s+0.01)2

and ε1 = 1.0 case 2: F2(s) = 1
s+0.001

and ε2 = 0.001.(29) 15



The controlled input w is a reference φref on the roll angle, the regulated output is z = (z1, z2)
with the weighing described above. In case 1 the system has 10 states (8 system + 2 filter), in
the second case we have 9 states (8 system + 1 filter).

-
w e

−
+

-

F

-
z1

y
K -

u
P

ε

-
z2

-
φ

6

Figure 10: The feedback scheme.

A second aspect of this study is that the satellite has to be regulated with a low order controller,
because full order controllers with orders nK = 9 respectively nK = 10 are too clumsy to be of
practical use. In consequence we have synthesized controllers of reduced order nK = 5. As the
system is SISO, this leads to n = 36 unknown variables in programs (5), (19) or (7). Synthesis
within the structure of 5th order controllers leads to nominal performance p∗1 = 61.48 in case 1,
and p∗2 = 2.94 in case 2.
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Figure 11: Time domain responses of slow 5th-order controller K1.

The 5th-order H∞/H∞ controllers for the two scenarios in (29), computed via program (26),
will be denoted K1 and K2. As can be seen in Figures 11, 12 the step response for K2 is considerably
faster than the one for K1, so that the frequency band pass of the closed-loop system is increased,
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which accounts for the fact that disturbances are badly rejected. Figures 11,12 also feature the
control inputs generated by K1, K2.
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Figure 12: Time domain responses of fast 5th-order controller K2.

In order to assess parametric robustness, we measure the stability cube Q by representing it as
Q = qQ0, where max{σ1(∆) : ∆ ∈ Q0} = 1. This allows to display q as a curve against parameter
α in (19), allowing comparison with R = r−1

C and P . We refer to q as the percentage of parametric
robust stability, where q = 100% corresponds to stability over Q0. For K2 we initially achieve
only q2 = 0.15%, while the nominal K1 gives q1 = 58.6%. Our experiment shows that program
(7), respectively (26), allows to increase parametric robustness q for both scenarios, despite their
completely different nominal behavior.

8.3 Enhanced parametric robustness

In Figure 13 the results for scenario 1 are shown. As parameter α in (19) varies form 0 to 250%,
we can see a global increase of P , which means a gradual loss of performance. At the same time
robustness R = r−1

C decreases as we increase α from 0 up to α = 100%, which corresponds to an
increase of the semi-structured distance to instability. For values α larger than 100% robustness
R stagnates without significant increase. Parametric robustness q increases initially, to stagnate
form α = 25% onwards. As we zoom on the range α ∈ [0%, 25%] (upper right) and again on
α ∈ [0%, 7%] (lower image), we see that program (26) is useful up to α ≈ 7%, where it leads to a
steady increase in parametric robustness, with a strong increase around α = 5%.

For scenario 2 the same procedure was followed, the results being shown in Figure 15. Increase
of α allows to increase parametric robustness from q = 0.15% up to q = 16.4%, with a snapshot at
q = 11.6% shown in between. Performance degrades moderately as α increases, while robustness
R = r−1

C has a dramatic jump at the beginning, to decrease moderately from α = 3% onwards.
The size of the stability domain qQ0 is shown in Figure 15 for the 3 snapshots.

Finally, using the method of section 7, we use the obtained controller K5 to compare µ, µ̃ and
its Matlab approximation MU. The results are shown in Figure 16. In this study Ω contained 2000
frequencies in the range [10−0.35, 101.08]. The LMI in step 2 of the algorithm of section 7 was solved
with the Matlab function MINCX. We initialized µ0 = 1 and increment µk by 0.01 in step 3 until
a new µk+1 satisfying (28) was found. For the result in Figure 16 our method needed 655s CPU
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Figure 13: Program (19) solved for various values α. Performance P , robustness R, and size
of the stability cube q are displayed against α for scenario 1 in (29). Performance degrades as α
increases, robustness improves, and q increases with a strong slope around α = 5.2%.

to compute µ̃, while MU required 112s CPU. We have observed that MU is indeed made rather for
speed than precision, so the discrepancy seen in Figure 16 is rather typical. It is also interesting
to notice that contrary to what is often claimed, µ̃ almost always differs from µ, which means that
even with multipliers Sω, Tω some conservatism cannot be avoided. This is important because
it can be understood as a disclaimer to use µ̃ directly in optimization. Using it as a posterior
evaluation as discussed in section 7 seems preferable.

9 Conclusion

Multi objective H∞/H∞ synthesis was used to enhance robustness in closed-loop in the presence
of real uncertain parameters in the system. The synthesized control laws can in addition be struc-
tured, which includes low-order controllers, decentralized and PID or observer-based controllers,
control architectures including set-point or washout filters, fead forward, and much else. We have
tested an approach which minimizes the nominal H∞ performance objective subject to a constraint
rC ≥ r guaranteeing a non-negligible distance to instability of the closed-loop system. Contour
plots were used to investigate the degree of conservatism in our approach. The method was tested
numerically to control the roll axis of a flexible satellite with 3 uncertain parameters.
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Figure 14: Performance P , robustness R, and size of the stability cube q for controller K2

displayed against α. Choices of α to increase q from q = 0.15% on the left to q = 16.4% on the
right can be read off.

Figure 15: Stability cube for K2 is shown for q = 0.15% upper left, q = 9.6% upper right,
q = 16.4% lower left. This corresponds to the situation in figure 14.
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