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Abstract.We present a Maximum Entropy based approach to the restoration of degraded images as
an alternative to restoration techniques using inverse Wiener filtering. The method we discuss applies
in particular to images corrupted by a relatively high system noise. A variety of experimental results
supporting our imaging model are included.
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1. Introduction

Images recorded in electronic or photographic media are often degraded due to
system imperfections such as diffraction effects, optical system aberrations, camera
and/or object motions, defocussing, or atmospheric turbulences. In addition to
these blurring effects, the recorded image is usually corrupted by various random
noise effects such as the randomness of the film grain, photoelectric effects, but
also random measurement or transmission errors and a further degradation caused
by digitization. The general goal of an image restoration is then to model these
degradations in an appropriate way which, given the recorded data, allows for
estimating the original signal.
Our recordingmodel described belowcomprises both spatial degradation caused

by blur, and random pixel degradations responsible for the recording noise. We
assume a linear system transmission of the form

1 1
; (1.1)

1 . . . , 1 . . . , where 0 are the gray levels of the observed
degraded image, and the 0 the gray levels of the unknown original image
of size . The linear operator ; is called the blur, and the

represent a signal-independent pointwise mean zero noise process.
In addition to the linearity of the recording system (1.1), we further assume that

the total energy of the original object be preserved during the recording, and
that the recording device neither absorbs nor generates optical energy. This leads
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to the conditions ; 0 and 1 1 ; 1 for every pixel
. Wemention that in practical applications, the blur is often spatially invariant:
; : and the function is then referred to as the

point spread function (PSF), or the mask of the system (1.1), which then has the
convolutional form

1 1
(1.2)

Some standard masks encountered in practical situations are out-of-focus blur,
linear motion blur, and various types of pillbox blurs, which are typical, e.g.
for photographic images, and atmospheric turbulence, which is often apparent in
satellite images. For a description of the corresponding masks and other types of
blurrings, see e.g. [1, 2, 7, 12, 14, 23, 31].
In practice the additive noise in (1.1) is often modeled as a white noise

process with spatially invariant variance 2, i.e., cov 2 , but our theoretical
considerations apply to more general situations involving colored noise. In the
following, we shall refer to and 2, (or more generally cov ), as the model
parameters. The process of restoring a blurred-and-noisy image now involves two
principal goals, to be achieved either simultaneously or in two stages.

Problem 1. Blur identification
Given only the observed image , and assuming the linearmodel (1.4), identify
(or rather estimate) the model parameters and 2.

Problem 2. Restoration
Given the observed image , and assuming that the mask and the noise
variance 2 are known, restore the noisy-blurred image such that it is as close as
possible to its undegraded version.

In practical situations, Problem 1 may be hard to solve, or even intractable, unless
some a priori information is available which allows e.g. to select the unknown
parameters from a list of possible blurrings. A fairly general pattern for attacking
Problem 1 is the following. In a first step, we estimate the noise variance 2.
This is usually possible by directly inspecting parts of the image with a relatively
homogeneous gray tone and calculating the variance of over such a region.
Once the noise variance has been estimated, identifying the blur, which is the

really difficult part, may be treated in the following way. We specify a certain
family of possible masks, and consider an optimization problem of the form

minimize subject to (1.3)

where is some optimization criterion whose evaluation requires knowledge of
the solution to the restoration Problem 2, given the mask in and the
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noise variance 2 estimated before. For instance, in [23, 1, 31], an approach of type
(1.3) lead to a maximum likelihood parameter estimation, with denoting the
corresponding log-likelihood function, the family represented possible blurs of
known size, e.g. all masks of a given size, and where function evaluation
was performed using Kalman digital filtering.
It should be clear that the optimization problem (1.3) is difficult to solve since

function evaluation by itself is relatively costly and possibly lacking in precision,
and since derivative information is not available. Consequently, in order to pursue
the approach (1.3), a highly effective method for solving Problem 2 is needed,
which serves as a black box in (1.3), and in the present paper we shall focus on this
aspect. We discuss a Maximum Entropy based approach to solving Problem 2, and
we present numerical results based on mathematical programming duality.

2. Noise Model

Assuming that the statistical law of the additive mean zero noise process is
known, we are led to consider the following noise model. Arrange the 2D sequence

as a 1D sequence in the usual left-to-right top-to-bottom way. If we
assume that the are independent and second moments exist, the strong law of
large numbers implies

1

1

2 2 (2.1)

which for large justifies the asymptotic estimate 1
2 2 Our image

model (1.1) therefore yields the estimate

2
2

2
2

1 1

2 2 (2.2)

It is clear how to modify this type of argument in the case of a colored noise with
known covariance matrix (see e.g. [2]). In the case of white noise, solving the
restoration problem 2 now leads to the following model:

Given rsp. and 2 find 0 satisfying:

tol 2 :
:

We mention two other approaches to choose the tolerance level. The spectrum
matching method proposed in [2], and an approach proposed by Gull [16].
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3. Maximum Entropy Reconstruction

In order to solve the under-determined reconstruction problem tol , we replace
it by the following Maximum Entropy optimization program:

tol

minimize
1 1

log

subject to
1 1

:
1 1

0

2
The Maximum Entropy (ME) approach for solving under-determined or unstable
problems has been applied in various fields (see [2, 4, 8, 10, 18, 25, 30]), and several
theoretical models supporting its use are known (see [20, 21, 6]). For the image
restoration problem, an entropy based model has been discussed by Frieden (see
[14] or [18]). We do not discuss its validity here, but mention that the choice of the
Boltzmann–Shannon entropy log has been challenged. For instance,
for a related inversion problem in speech processing, the authors of [22] propose
the use of the Burg entropy log instead. At equal rights, Burg’s entropy
has been used in image reconstruction, see e.g. [2]. For other choices of entropy
type objectives see [4, 5, 9, 10, 26, 27, 28].
Let us now examine the tolerance program tol . Observe that the equality

2 ranging in tol has been replaced by an inequality 2
in order to obtain a convex program. We argue that this is justified in all situations
of practical relevance.
Indeed, notice that program tol consists in minimizing over the intersec-

tion of the affine manifold : and the ellipsoid
: 2 . Since is strictly convex on , the minimum

is attained at a boundary point of the 1 -dimensional ellipsoid in
– unless the global minimum of over happens to be an interior

point of relative to . But notice that is a constant
image without structure, which by conservation of energy satisfies . Hence

2 2 meant that the observed image was close to –
a situation which may be excluded in practice. Therefore, the maximum entropy
solution of tol practically always lies on the relative boundary of and
therefore satisfies the equality 2 , as claimed. In particular, is then
automatically a solution to tol .
Observe next that the convexity of tol allows us to apply the well-known

techniques of convex programming duality. The details of the Lagrangian duality
could be found in [3, 4]. The associated dual program tol , written in convex
form, is then to minimize

tol
1

2
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over all . This is an unconstrained minimization program, due to the fact that
the Boltzmann-Shannon entropy log 0 has a globally defined
Fenchel conjugate 1. The link between the primal and the dual is the
following return formula:

1 1 . . . 1 . . . (3.1)

which gives an explicit representation of the optimal solution of tol in terms
of the optimal multipliers .
We mention that the following penalty model might be discussed as an alterna-

tive to tol and its dual:

pen
minimize 2

2
2

subject to

Using the same dual approach, the associated convex dual program pen here
consists in an unconstrained minimization of the function

pen
1 1

2
2
2 (3.2)

with the return formula being again (3.1). For a discussion of a penalty model to a
Fourier inversion problem in crystallography we refer to [10].
The penalty model bears some similarity with Frieden’s approach (cf. [14, 18]):

minimize log

fried subject to

Here 0 is a constant to be chosen so that the terms for the relevant
errors are nonnegative. The penalty constant is now . The associated dual is again
an unconstrained minimization problem, linked to its primal via the same return
formula (3.1), and whose objective is

fried
1 1

(3.3)

Notice that in contrast with the tolerance model tol , where could be specified
using theoretical considerations, the penalty type models pen and fried suffer
from the fact that no good estimates for the constants rsp. seem to be
available, so that these have to be found experimentally (see also [10] for this).
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4. Practical Aspects

The overall advantage of the dual technique is that the constrained primal opti-
mization program is transformed into a dual which we solve using techniques for
unconstrained problems. The approachworks since the original program is convex,
the Fenchel conjugate can be calculated explicitly, and the return formula (3.1) is
explicit. On the other hand, the challenge is of course the large scale, the number
of variables being . For instance, the 200 320 image used for the exper-
iments already gives a total of 64 000 variables, and an image of size 1000 1000
involves a million variables.
Let us now discuss the algorithmic aspects of the dual. We found that it is

advantageous to break the minimization into two steps:

inf inf tol

the constraints 2 and being different in nature.
Indeed, notice that for a relatively small tolerance, the constraint will
become redundant, since the operator preserves total energy. Even for a relatively
large one may still hope that 2 implies . Let

denote the solution of the inner minimization inf tol , and define
via the return formula, i.e., ; exp 1 exp . Then
the optimal for tol is just , which may therefore be calculated by
solving the equation ; for . We therefore always start the inner
minimization over with the default value 0. If the solution so obtained fits
the constraint up to some tolerance, we stop. Otherwise we adjust
this constraint doing a line search over . This strategy turns out to be successful
since in most cases the default value 0 is satisfactory, and even when this is
not the case, adjusting often does not significantly improve the quality of the
reconstruction, so that the line search in can be limited to a few steps.
A drawback of the tolerance approach tol seems to be that tol is not differ-

entiable at 0, due to the term 2. The latter practically excludes the use of any
Newton type methods since the Hessian is a full matrix of size . On
the other hand, the penalty models pen and fried seem to enable Newton type
methods combined with line search techniques, since the matrices in (1.1) are
typically sparse band matrices. However, our experiments with Newton’s method
and a truncated Newton method, when applied to the penalty model, indicate that
the use of Newton’s method is inefficient, since generally too much time is spent
on calculating Newton directions not leading to a reasonable decrease in function
value.
Using secant methods like the BFGS update does not present a real alternative,

since the band structure of is not preserved by the update, and since special
structure preserving updates are not considered as truly efficient (see [11]). Alter-
natively, the inverse BFGS update avoids solving a large scale linear system, but
requires storing and updating a full matrix, which is hardly expected to
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be efficient. On the other hand, recent experiments with a limited memory inverse
BFGS method in the spirit of Liu and Nocedal [24] are more encouraging. Even
though algorithmically more demanding, this approach seems to improve on the
present technique. We refer the discussion to a forthcoming report.
The method which worked best for both the tolerance and the penalty models

was conjugate gradients, which needs only few storage locations, and which we
implemented in the Pollak–Ribière variant (see [13]), combined with various line
search techniques (including a non-monotonous line search [15]). For comparison,
we also tested a gradient type method which to some degree uses second order
information, known as conjugate gradient alternative (see [29]). While the con-
jugate gradient method worked surprisingly well and efficient, the gradient based
method could not really competewith the former, but turned out to be quite reliable.
For the implementation of the cg algorithm we simply ignored the singularity

of tol at 0. As a stopping criterion we compare the relative change of with the
relative change in ,

which leads to the test

max eps (4.1)

where we used eps 10 6 in our experiments. Notice that this criterion works
well here since and are away from 0. As further halting criteria we tested
the progress in and in function values as suggested in [11].

5. Experiments

Our experiments were performed for the 200 320 image shown in Figure 1,
provided by the MATLAB image tool box, which presents a good simulation of
black-and-white photographic pictures. This image was blurred using various 7 7
masks. In particular, we used the 7 7 pillbox blur, the 7 7 ring mask having
24 boundary entries equal to 1 24, and the 7 7 approximation of an out-
of-focus blur. Independent mean zero random normal noise of different variance
levels 2 was then added to further degrade the blurred images. In order to judge
the influence of the noise, it is customary to compare the noise variance 2 with the
variance 2 of the original image , which gives the signal-to-noise ratio ,
usually measured in decibels (dB) via the formula

10 log10
2

2 dB (5.1)
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Figures 2, 3 and 4 show the blurred-and-noisy clown degraded by two types of
7 7 supported masks with noise of different levels added.
To compare the total CPU time for the reconstructions, the initial vector was

chosen as constant ones. Notice, however, that a considerable gain in CPU time
could be obtained during experiments with e.g. different tolerances or different
penalization constants if the solution to a certain reconstruction with say
was used as starting point for the reconstruction with nearby.
Our experiments suggest that the tolerance model is best when the ’correct’

is used. In contrast, it seems to be more difficult to determine a
satisfactory default value for the penalty constant in pen . In [14], the default
value 20 for the model fried was suggested as satisfactory for a large class
of realistic reconstructions.

EXAMPLE 1. In Figure 2 (left) the clown was blurred with the 7 7 pillbox blur
and further degraded with additive random normal noise of variance 2 3 99,
giving 505 2, and leading to a signal-to-noise level of 22dB. The
reconstruction (right) was calculated via the model tol , with 0, and initial
1 1. The number of iterations was 150, with an average of 12 function

evaluations during line search. No further search in was performed. The total
CPU was 1175.7, and the stopping criterion (4.1) became active with eps 10 6.
This corresponded with the final gradient 150

2 23 06.
As further criteria for the goodness of the numerical procedure we calculated

the following criteria. The total energy of the blurred-and-noisy image was
dirty 1998846, and the total energy of the reconstruction was found
to be rec 1949513, which gave the relative energy difference

rec dirty

dirty
0 0247

As a second test for goodness we calculated the relative duality gap, whose theo-
retical value is 0. This compares the entropy of the reconstruction with the
dual value , and was found to be

0 00095

EXAMPLE 2. In Figure 3 the clown was blurred using the 7 7 pillbox blur with
14dB noise added (left). The reconstruction (right) was again obtained

via model tol , with 2 24 87, and 1261. The algorithm was started
with 0 and 1 1, and the number of iterations was 101, where again the
criterion (4.1) with eps 10 6 became active. The total CPU was 1103.3, and
the average number of function evaluations during line search was 13.2. The total
energies dirty 2313191 and rec 2183724 led to a relative energy difference
of 0 056. The relative duality gap was 0 0012.
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EXAMPLE 3. Here the clown was blurred using the 7 7 ring mask, and white
noise with 8 1dB was added, which corresponded to 2 94 39 (left).
The reconstruction (right) was calculated via the tolerance model with the correct

2457. The number of iterations before the criterion (4.1) became active
was 77, with a total of 11.6 function evaluations during line search, leading to
a total CPU of 752.3. The final gradient was 77

2 25 7. We obtained
dirty 2620246 and rec 2845137, giving 0 0858. The relative duality
gap was 0 00065.
In order to test our algorithm, a greater variety of simulations was performed,

and the results are presented in the following table:

Mask S/N (dB) iter eval CPU

M1 22.0 150 12 1175.7
M1 14.0 101 13.2 1103.0
M1 18.0 95 13 1095.7
M1 8.0 77 12 781.6
M2 8.1 77 11.6 752.3
M2 14.2 61 12 635.3
M2 6.5 24 13.8 406.0
M3 9.96 62 12.3 740.1

Here M1 refers to the pillbox mask, M2 means the ring mask, and M3 the 7 7
approximation of the out-of-focus blur. The restorations for the masks M1, M2 are
shown in Figures 2, 3 and 4. Results for the out-of-focusM3 not displayed here lead
to the same type of result. Our experiments were obtained in double precision on a
RS 6000/320 H with 32 MB memory, but for comparison we also tested two faster
processors, a Pentium 90 with 32 MB and a HP 9000/735 with 64 MB memory.
While the Pentium 90 was approximately 1.2 times faster, the HP 9000/735 was
considerably faster and needed only 60 per cent of the CPU displayed above.
As a general rule, it may be observed that a badly degraded image (having

low signal-to-noise ratio), which according to the noise model requires a larger
tolerance level , makes the restoration algorithm faster but, as would be expected,
less performing. In these situations a further treatment of the images might be
necessary (see the final section).
Our approach must be compared with other experiments based on ME type

models. In [14], themodel fried was solved using aLagrangemultiplier approach,
but the convexity of the program was not exploited directly, i.e., fried was not
discussed. In [7], an approach similar to tol was chosen, but the associated dual
tol was not discussed, and the authors present a rather sophisticated approach
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Figure 1. The true image

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200
50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Figure 2. 7 7 pillbox blur; 22dB. Blurred-and-noisy image (left), Restoration (right).

to solving tol which is certainly algorithmically demanding. Similarly, in [18],
a differential equation approach for solving the primal program tol is proposed,
which is claimed to perform well but in our opinion is rather complicated. We
suggest that the dual approach tol is conceptually easier and since it performs
well should be given the preference over the discussed methods. On the other
hand, in contrast with the duality approach tol , the method in [18] might still
be applied to nonlinear filters where program tol is not necessarily convex. We
mention another approach to entropy type optimization problems via nonlinear
interior point methods (given in [17]), which are reported to perform well for
entyropy type problems.
Perhaps closest to our present approach is the dual method presented in [2]. In

contrast with tol the authors of [2] use a ME model based on the Burg entropy
expression, and they propose a slightly different approach to determine a tolerance
level . The major difference to our present experiments is, however, that their
experiments are only for examples of academic scale 25.

6. Prospective

The restoration process outlined here, while conceptually easy, was found to
improve on several related approaches. Moreover, as has been reported in [27],
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Figure 3. 7 7 pillbox blur; 14dB. Blurred-and-noisy image (left), Restoration (right).
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Figure 4. 7 7 ring mask; 8 1dB. Blurred-and-noisy image (left), Restoration (right).

it is clearly superior to the performance of linear inverse filters as for instance
proposed by Hunt [19]. Nevertheless, a further improvement of the present tech-
nique could be obtained by combining the maximum entropy model with a priori
and/or a posteriori smoothing techniques. This is most obvious in cases where the
signal-to-noise ratio of the dirty image is low, and the present algorithm terminates
faster, but with a less satisfactory result (cf. Figure 4). This combined approach
has been discussed in [27], which also comments on how to avoid ringing effects
in restorations (Figure 2).
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