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Abstract. Based on a two-dimensional (2-D) Fourier analysis of the attenuated Radon transform
and a 2-D version of the Shannon sampling theorem, we investigate the problem of resolution in
dynamic emission tomography. As a result we provide guidelines on how to acquire and on how to
filter the projection data.
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1. Introduction. Current state-of-the-art medical imaging technologies provide
extremely detailed and accurate information about human anatomy. However, the
corresponding detailed information about function is not yet readily available. Single
photon emission computerized tomography (SPECT) is a noninvasive diagnostic tech-
nology which is used to show the blood flow in the heart muscle, extent of damage in
stroke patients, presence and degree of malignancy of tumors, and much else.

SPECT is able to image the function of the body through a tracer, a biochemical
molecule labeled with radioactivity. The radioactive material is incorporated by the
patient and metabolized by the organ of interest. The emissions are then recorded by
a rotating SPECT camera (cf. Figure 1), and a three-dimensional (3-D) visualization
is created from the two-dimensional (2-D) projection data.

Currently, the data recorded by SPECT cameras are static and qualitative. It
is not possible, as yet, to measure absolute metabolic rates from the different bio-
logical processes, nor to measure the movement of molecules during biodistribution
and metabolism. Recently, a major step toward the development of dynamic SPECT
(dSPECT) has been achieved through two mathematical methods replacing the tra-
ditional filtered backprojection (FBP) method (cf. [2, 14, 16, 5]), the latter being by
its nature static (cf. [18]) and not feasible for dynamic sources.

The present paper will focus on the problem of resolution in dynamic emission
tomography. Results of this type have previously been obtained in static SPECT,
in positron emission tomography (PET), and in computed tomography (CT), where
an elaborate Fourier analysis led to the idea, among others, of interlaced grids which
significantly improved resolution (cf. [13, 19, 20, 22]). Following these lines, we shall
answer typical questions like how many positions a SPECT camera should take, how
long it should stay in a given position, whether views should be recorded over 180
degrees or 360 degrees, or what the internal resolution of the camera should be if a
certain spatial resolution in the reconstructed image has to be achieved. As a second
application, we present some ideas on how to filter data before doing the actual
inversion.
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2. The model. Emission tomography is modeled by the 3-D dynamic photon
transport equation (cf. [8]). It is convenient to simplify the model by assuming that
scattering is negligible or, rather, to interpret it as a measurement noise. This decou-
ples the equation and allows for splitting the 3-D reconstruction into a series of 2-D
reconstructions on slices. The simplified dynamic 2-D transport equation is

1

c
ut(t, x, ω,E) + ω · ∇u(t, x, ω,E) + µ(x,E)u(t, x, ω,E) = f(t, x, E),(2.1)

where u(t, x, ω,E) is the (unknown) photon transport at time t and position x ∈ R2

at the energy level E in direction ω ∈ S1, µ(x,E) is the unknown linear attenuation
coefficient at position x for photons traveling with energy E, and f(t, x, E) is the
unknown number of photons emitted at time t, position x, at energy level E.

As opposed to X-rays, γ-rays are monochromatic, i.e., photons are emitted at
a fixed energy level E0, for instance, E0 = 140keV for Technetium used in many
clinical applications. Similarly, in PET, the recorded photons, originating from the
annihilation of a positron with an electron, travel with E0 = 511keV, the energy of the
electron. Photons recorded with energy E < E0 are therefore due to Compton scatter,
and an energy window ±∆E about the expected level E0 allows for eliminating most
scattering events (cf. [25]). It is legitimate to further simplify (2.1) by omitting
the reference to energy. More precisely, writing f(t, x, E) = f(t, x) δ(E − E0) and
µ(x) = µ(x,E0), the equation for the cumulative transport u(t, x, ω) integrated over
the relevant energy levels E ∈ [E0 −∆E,E0 +∆E] is

1

c
ut(t, x, ω) + ω · ∇u(t, x, ω) + µ(x)u(t, x, ω) = f(t, x),(2.2)

which may be solved explicitly on each line.
To do this, we have to supply boundary conditions. We assume that the unknown

source and attenuation coefficient are supported on the unit disk D. We adopt the
notations ω = (cosφ, sinφ) and ω⊥ = (− sinφ, cosφ). Rays may then be referenced
(s, φ), that is, x ·ω⊥ = s, or x = sω⊥+ τω, τ ≥ 0 for x on the ray so referenced. Now
notice that the incoming radiation is zero, i.e.,

u(t, sω⊥ + τω, ω) = 0 for all τ ≤ τ0 = τ0(s, ω) and all t

(x0 = sω
⊥+ τ0ω the entry point of the ray x ·ω⊥ = s into D, if any). Second, we use

the fact that u(t, x, ω) has been recorded at certain times t and for certain directions
ω at a camera bin located at x1 = sω

⊥ + τ1ω, τ1 = τ1(s, ω), on the line x · ω⊥ = s.
(Without loss, we may assume that x1 is the exit point of the ray x ·ω⊥ from the disk
D, if any.) That is, the observed data are of the form

u(t, sω⊥ + τ1ω, ω) =: d(s, ω, t).

In fact, a SPECT camera (shown schematically in Figure 1) detects photons which
arrive perpendicular to the camera surface while at a fixed angular position ω =
(cosφ, sinφ).

Integrating (2.2) using the boundary conditions gives the nonlinear relation

∫ τ1

τ0

f(t+ (τ1 − τ)/c, sω⊥ + τω) e
−
∫ τ1

τ

µ(sω⊥ + ρω) dρ
dτ = d(s, ω, t).(2.3)
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Fig. 1. The principle of SPECT: Photons radiating from the region of interest. (a) Photon
misses the camera, (b) is absorbed by the collimator, (c) passes the collimator and hits the camera.
The camera rotates around the region of interest (schematically discretized into pixels).

As photons are traveling with the speed of light c, in practice t+ (τ1 − τ0)/c ≈ t, and
(2.3) simplifies to

R[µ, f(t, ·)](s, ω) :=
∫ τ1

τ0

f(t, sω⊥+τω) e
−
∫ τ1

τ

µ(sω⊥ + ρω) dρ
dτ = d(s, ω, t).(2.4)

Here R[µ, f ] denotes the attenuated Radon transform (cf. [18, 20, 21]). Solving (2.4)
simultaneously for the unknown dynamic source f(t, x) and attenuation µ(x), based
on the acquired data d(s, ω, t), is the mathematical problem of dSPECT. A similar
equation replacing (2.4) may be found for PET using the corresponding symmetric
data (see [16]).

Attempts to estimate both the unknown attenuation and source term from the
projection data have been made by several authors. A method proposed by Natterer
[18, 21] and reported to be practical in [24] uses a consistency condition to obtain an
estimate of µ. This approach is feasible if the camera takes views over 360 degrees
and the source is static. More recently, Dicken [9] proposed a direct inversion of
(2.4). In practice, often less sophisticated ways are chosen, which consist either in
neglecting attenuation or assuming constant attenuation (after tracing the contour of
the patient) or in correcting data via some heuristic methods. A third way proposed
in [6, 7] consists in doing a CT in parallel with the emission scan. The remaining
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problem of estimating f with known µ is then linear but still ill-posed (cf. [20]).

3. Fourier analysis. The way the inverse problem (2.4) is solved depends on
the device. A ring SPECT camera, and similarly the PET cameras, allow for collect-
ing a full set of angular views d(sj , ωk, t�), (j the index for camera bins, k the index
for angular positions, � the index for stops) at a fixed time t�. The reconstruction
algorithms are then essentially the static ones, FBP or EM algorithms, which recon-
struct one static image at a time t�, obtaining the dynamic image frame by frame.
The 2-D Fourier analysis of the static case being known, cf. [20, 13, 22], we may
consider this case as essentially understood.

The situation changes if a rotating camera system is used. As the activity in
the organ changes significantly during the scan, a rotating camera (even triple head)
will not be able to collect sufficiently many views ωk at a fixed time t� in order to
reconstruct the dynamic object frame by frame. Rather, in the extreme case of a
single head camera, we can scan only one position at a time, so the acquired data are
d(sj , ωk, tk). Ideally, the time axis t and angular position φ are then linked through

t =
T

2π
φ, 0 ≤ t ≤ T, 0 ≤ φ ≤ 2π(3.1)

(T is the total acquisition time). With (3.1), reconstruction algorithms necessar-
ily have to process all the projection data simultaneously, which leads to large size
problems difficult to solve in practice (cf. [2, 16], and also [12, 5, 10, 14, 17]).

Assuming that the dynamic source is of the form f(t, x) = g1(t)h1(x) + · · · +
gr(t)hr(x), its attenuated Radon transform (2.4) is

R[µ, f(t, ·)](s, φ) = g1(t)R[µ, h1](s, φ) + · · ·+ gr(t)R[µ, hr](s, φ).

In the case of a rotating camera, in particular a single head camera, (3.1) leads to the
ideal projection data

p(s, φ) := g1((T/2π)φ)R[µ, h1](s, φ) + · · ·+ gr((T/2π)φ)R[µ, hr](s, φ),(3.2)

often referred to as the sinogram of the source f(t, x), for the obvious reason that a
point source scanned over 360 degrees would produce a sinoidal curve. Figures 4(c)
and 4(g) show some experimental sinogram data collected over a 180-degree scan.

The principal purpose of the present paper is to perform a 2-D Fourier analysis of
the sinogram p(s, φ). As a result of this analysis we obtain two practical guidelines:

(1) On resolution. How many stops and angular positions are required to capture
a prescribed spatial resolution along with a predicted half-life? How long
should an individual stop last?

(2) On data filtering, which is inherent to the classical FBP algorithms but has
to be considered anew in dSPECT.

4. Sampling in two-dimensions. In this section, we shall be concerned with
the sampling of the sinogram (3.2) of a dynamic source f(t, x). In the first round we
shall consider only the unattenuated Radon transform (i.e., µ = 0). Later on we will
indicate that the results are usually not altered if attenuation is taken into account.

We recall that the Radon transform Rh(s, φ) of a spatial function h(x), being
2π-periodic in φ, is defined on R×S1, which we shall call the (s, φ)-plane or physical
plane. The 2-D Fourier transform p̂ of p(s, φ) is then defined on R×Z, which will be
referred to as the (σ, k)-plane or frequency plane.



1104 JEAN MAEGHT AND DOMINIKUS NOLL

A sampling operator SK,W in the physical plane is defined by two ingredients—a
sampling latticeWZ2 in the physical plane (W a 2×2-matrix) in tandem with a spectral
window K in the frequency plane—whose replica K + 2π(W−1)T �, � ∈ Z2, generated
by the dual lattice 2π(W−1)TZ2 in the frequency-plane, are mutually disjoint:

SK,W p(s, φ) := det(W )
∑
�∈Z2

p(W�) χ̂K((s, φ)−W�)(4.1)

(χK the characteristic function of the setK). More formally, SK,W may be represented
using the shah-distribution

∐∐
(s, φ) =

∑
�∈Z2 δ(s− �1, φ− �2),

SK,W p =

(
p ·∐∐(W−1·)

)
∗ χ̂K ,

a formulation which is very intuitive when we consider its Fourier transform. Replac-
ing the analog signal p by its digitized version p ·∐∐(W−1·), taken at the points of the
lattice WZ2, has the following effect: Since

∐∐ˆ
=

∐∐
, the spectrum of the digitized

signal shows the true spectrum, p̂, but repeated periodically

(
p ·∐∐(W−1·))̂ = 2π ∑

�∈Z2

p̂(· − 2πW−T �)

along the dual lattice 2πW−TZ2. Consequently, if the spectral window K is well
chosen, i.e., if the spectrum p̂ is captured by K, we may fully retrieve the true signal
p, simply by applying an ideal low pass filter χK which eliminates frequencies �∈ K:

(SK,W p
)̂
= (2π)−1

(
p ·∐∐(W−1·))̂ · χK =

∑
�∈Z2

p̂(· − 2πW−T �) · χK .(4.2)

In fact, 2-D versions of the Shannon sampling theorem are easily understood
through (4.2): the signal p is fully retrieved from the sampled signal if its spectrum has
supp(p̂) ⊂ K. In our applications, however, we are dealing with compactly supported
signals, whose spectra p̂ are analytic and never fully supported on a bounded set K.
We will consequently have to accept aliasing errors associated with the choice of a
sampling operator (4.1). Estimating these errors is the principal task of the present
section. Practical aspects will be considered later.

Let us fix 0 < ϑ < 1, a positive integer m, and b > 0. As our frequency window
in the (σ, k)-plane we choose the bowtie region K,

K = {(σ, k) ∈ R × Z : |σ| ≤ b and |k| ≤ |σ|/ϑ+m},(4.3)

which is displayed in Figure 2(a). Figure 2(c) indicates the scheme 2πW−TZ2 which
produces nonoverlapping replica of K in the frequency plane. The sampling param-
eters are seen to be ∆k = [b/ϑ] + 2m and ∆σ = b, and the matrices W , 2πW−T

are

W = 2π

(
1
2b 0

− 1
2∆k

1
∆k

)
, 2π(W−1)T =

(
2b b
0 ∆k

)
.(4.4)

As we shall see in our experiments, the parameter ϑ may in practice be chosen as
ϑ ≈ 1 but for theoretical reasons has to satisfy ϑ ∈ (0, 1).
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Fig. 2. (a) shows the bowtie region K defined through (4.3), (4.4), while (b) and (c) show two
different lattices generating disjoint replica of K. The interlaced grid (c) requires fewer nodes and
therefore gives a better sampling scheme.

Naturally, the identification of the essential support K of the spectrum p̂ in tan-
dem with the sampling lattice WZ2 is crucial for our principal tasks: resolution and
filtering. The choice of K being ambiguous, we shall have to support our proposition
(4.3) both by numerical tests and by a rigorous analysis, including error estimates.
In the present section we proceed to provide those.

To formulate our main result, we need to introduce two notions for the spatial
and temporal bandwidths, respectively. Concerning the spatial term, Natterer [20]
considers the measures

εd(h, b) =

∫
|ξ|>b

|ξ|d|ĥ(ξ)| dξ,

which may be related to appropriate Sobolev norms. In fact, using

‖h‖Wα,d =

(∫
Rn

(1 + |ξ|2)dα/2 |ĥ(ξ)|α dξ
)1/α

,

and defining the ideal high pass filter at frequency b, Hb, via
(Hbh

)̂
= ĥχ{|·|>b},

Natterer’s error terms satisfy C1εd(h, b) ≤ ‖Hbh‖W 1,d ≤ C2εd(h, b). For the follow-
ing we shall, in addition, obtain error estimates involving the Hilbert space norms
‖Hbh‖W 2,d .

In turn, for a 2π-periodic function g(φ) with Fourier coefficients ĝk, low pass
filtering at a frequency k obviously corresponds to truncating the Fourier series at k,
and correspondingly, high pass filtering corresponds to retaining the tail |ν| > k of
the series. We therefore consider the error terms

Rk(g) :=

( ∑
|ν|>k

|ĝν |2
)1/2

,

k > 0, which play a role similar to the norm estimates of Hbh above. With these
notions we are ready to state the following theorem.

Theorem 4.1. Let ϑ,m, b and K, W be as in (4.3), (4.4). Choose ϑ′ ∈ (ϑ, 1), and
let θ := ϑ/ϑ′ ∈ (0, 1). Consider a dynamic source of the form f(t, x) = g(t)h(x) such
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that h(x) is continuous and supported on the unit disk D and g(t) is continuous. Let
g((T/2π)φ) be continued periodically for φ �∈ [0, 2π]. Let p(s, φ) be the ideal sinogram
of f(t, x), and let SK,W p(s, φ) be the sinogram sampled on the lattice WZ2 in the
(s, φ)-plane using the frequency window K. Then

1. ‖p− SK,W p‖∞ = ‖g‖∞O
(
mε−1(h, b) + ε0(h, b)

)

+‖h‖∞O
( ∞∑

ν=1

νR(1−ϑ′)(ν+m)(g)

)
,

2. ‖p− SK,W p‖2 = ‖g‖∞O
(
‖Hbh‖

W 2,− 1
2

)

+‖h‖∞O
(( ∞∑

ν=1

νR(1−ϑ′)(ν+m)(g)
2

)1/2)
,

3. ‖p− SK,W p‖2 = ‖g‖∞O
(
‖Hbh‖

W 2,− 1
2

)

+‖h‖∞O
(
b1/2

( ∞∑
ν=1

R(1−ϑ′)(ν+m)(g)
2

)1/2)
.

Proof. Part 1. Notice that by Parseval’s formula, ‖p‖2 = ‖p̂‖2, where p̂ is the 2-D
Fourier transform of p, and according to [20, p. 63], ‖p‖∞ ≤ ‖p̂‖1, if the corresponding
norms on the frequency plane are defined through

‖p̂‖α =
( ∞∑

k=−∞

∫
R

|p̂(σ, k)|α dσ
)1/α

.(4.5)

By the definition of the sampling operator (4.1),

p̂− (SK,W p)
ˆ= (1− χK) p̂−

∑
� �=0

p̂(· − 2πW−T �)χK ,

so we derive the estimate

‖(p− SK,W p)
ˆ‖α ≤ ‖(1− χK)p̂‖α +

∥∥∥∥∑
� �=0

p̂(· − 2πW−T �)χK

∥∥∥∥
α

.

By the translation invariance of the Haar measure and using the fact that the trans-
lates K + 2πW−T � are disjoint, the second term on the right-hand side satisfies∥∥∥∥∑

� �=0

p̂(· − 2πW−T �)χK

∥∥∥∥
α

≤ ‖(1− χK)p̂‖α,

so all together

‖(p− SK,W p)
ˆ‖α ≤ 2‖(1− χK)p̂‖α.

Writing K(k) = {σ : (σ, k) ∈ K}, we are therefore led to estimate
∞∑

k=−∞

∫
σ �∈K(k)

|p̂(σ, k)|α dσ.(4.6)
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To do this, we will have to distinguish the cases α = 1 and α = 2. For the case α = 1,
we decompose the region (σ, k) �∈ K into three parts Σ1,Σ2, and Σ3:

Σ1 = {(σ, k) : |k| > |σ|/ϑ+m},
Σ2 = {(σ, k) : |σ| > b and |k| ≤ b/ϑ+m},
Σ3 = {(σ, k) : |σ| > b and |k| ≤ |σ|/ϑ+m and |k| ≥ b/ϑ+m}.

For the case α = 2, two domains Γ1,Γ2 will do:

Γ1 = {(σ, k) : |k| ≥ m and |σ| ≤ min
(
b, ϑ(|k| −m))},

Γ2 = {(σ, k) : |σ| > b}.
Part 2. Let us continue collecting useful information. Let Fsp(·, φ)(σ) be the one-

dimensional (1-D) Fourier transform of p with respect to s, which is again 2π-periodic
in φ. Its kth Fourier coefficient is

p̂(σ, k) =: p̂k(σ) =
1

2π

∫ 2π

0

Fsp(σ, φ)e
−ikφ dφ.

By the Fourier slice theorem [20, p. 11] we have

Fsp(σ, φ) = g((T/2π)φ)Fs[Rh(·, φ)](σ) = g((T/2π)φ) ĥ(σω)
with ω = (cosφ, sinφ). Then

p̂k(σ) = (2π)
−1/2

∫ 2π

0

g((T/2π)φ)ĥ(σω)e−ikφ dφ(4.7)

= (2π)−3/2

∫ 2π

0

g((T/2π)φ)

∫
D

e−iσω·xh(x) dx e−ikφ dφ

= (2π)−3/2

∫
D

h(x)

∫ 2π

0

g((T/2π)φ)e−iσ|x|cos(φ−ψ)−ikφ dφ dx

if we put x = |x|(cosψ, sinψ). Substituting the Fourier series g((T/2π)φ) =∑
ν ĝνe

iνφ,
this becomes

p̂k(σ) = (2π)
−3/2

∫
D

h(x)e−ikψ
∞∑

ν=−∞
ĝν

∫ 2π

0

e−iσ|x| cosφ−i(k−ν)φ dφ dx

= (2π)−1/2ik
∫
D

h(x)e−ikψ
∞∑

ν=−∞
ĝνJk−ν(−σ|x|) dx,(4.8)

where we have used the Bessel functions Jk(x) of the first kind defined through

Jk(x) =
i−k

2π

∫ 2π

0

eix cosφ−ikφ dφ.

Part 3. Let us now consider the estimate on Σ2 with α = 1. As a consequence of
(4.7),∫

|σ|>b

|p̂k(σ)| dσ ≤ (2π)−1/2‖g‖∞
∫
|σ|>b

∫ 2π

0

|ĥ(σω)| dφ dσ

= (2π)−1/2‖g‖∞
∫
|ξ|>b

|ĥ(ξ)|
|ξ| dξ = (2π)

−1/2‖g‖∞ε−1(h, b).(4.9)
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Now observe that (σ, k) ∈ Σ2 only for |k| ≤ b/ϑ + m, so we are left with a finite
number of terms (4.9). In fact

‖χΣ2
p̂‖1 =

∑
|k|≤b/ϑ+m

∫
|σ|>b

|p̂k(σ)| dσ ≤ C‖g‖∞(2b/ϑ+ 2m+ 1)ε−1(h, b)

≤ C‖g‖∞
(
bε−1(h, b) +mε−1(h, b)

) ≤ C‖g‖∞(
ε0(h, b) +mε−1(h, b)

)
,(4.10)

where the last inequality uses (2.9) in [20, p. 66].
Part 4. Let us next discuss the estimate on Σ3, α = 1. According to (4.9) above,

replacing b by ϑ(|k| −m) gives∫
|σ|≥ϑ(|k|−m)

|p̂k(σ)| dσ ≤ C‖g‖∞ε−1

(
h, ϑ(|k| −m)).

But then

‖χΣ3 p̂‖1 =
∑

|k|≥b/ϑ+m

∫
|σ|≥ϑ(|k|−m)

|p̂k(σ)| dσ

≤ C‖g‖∞
∑

|k|≥b/ϑ+m

ε−1(h, ϑ(|k| −m)) ≤ C‖g‖∞ε0(h, b),(4.11)

where the last inequality again uses (2.9) in [20, p. 66].
Part 5. Let us catch up with the error estimate on Γ2, α = 2. Using (4.7), for

fixed σ, and with ω = (cosφ, sinφ), Parseval’s equality gives

∞∑
k=−∞

|p̂k(σ)|2 =
∫ 2π

0

|g((T/2π)φ) ĥ(σω)|2 dφ.

Integrating over |σ| > b shows

‖χΓ2 p̂‖2
2 ≤ C‖g‖2

∞

∫
|σ|>b

∫ 2π

0

|ĥ(σω)|2dφ dσ

= C‖g‖2
∞

∫
|ξ|>b

|ĥ(ξ)|2
|ξ| dξ ≤ C‖g‖2

∞‖Hbh‖2

W 2,− 1
2
.(4.12)

Part 6. We need to consider some technical preliminaries about Bessel functions.
It is well known that Jn(σ) decays exponentially (n → ∞) for fixed σ. According to
[23] even Jn(θn) → 0 exponentially, since 0 < θ < 1. We’ll improve this by showing
that, regarding 0 < θ < 1, Rn(J·(θn))→ 0 exponentially as n→ ∞.

According to [23, p. 255] in tandem with [1, Theorem 4.1.28], and regarding
0 < θ < 1, we have (for n a positive integer)

0 ≤ Jn(θn) ≤ (2πn)−1/2(1− θ2)−1/4e−(n/3)(1−θ2)3/2

.

Summing over |ν| ≥ n and using |Jν(−σ)| = |Jν(σ)|, |J−ν(σ)| = |Jν(σ)| gives
∑
|ν|≥n

|Jν(θn)|2 = 2
∞∑
ν=n

∣∣Jν((θn/ν) · ν)∣∣2

≤ 2

∞∑
ν=n

(
(2πν)−1/2(1− (θn/ν)2)−1/4e−(ν/3)(1−(θn/ν)2)3/2

)2

.
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This term is easily seen to decay exponentially in n, that is,

|Rn(J·(θ′n))| ≤ Ce−c(θ)n(4.13)

for a constant c(θ) > 0 depending on θ, and uniformly over 0 ≤ θ′ ≤ θ.
Part 7. Let us now consider the error estimates on Σ1 with α = 1. Writing

dk(σ) :=

∞∑
ν=−∞

ĝνJk−ν(σ) =
(
ĝ ∗ J·(σ)

)
k

(convolution of sequences),

we find using (4.8) that

|p̂k(σ)| ≤ C‖h‖∞ max
|x|≤1

dk(−σ|x|),(4.14)

and by the definition of Σ1, we are led to estimate dk(−σ|x|) for |σ| ≤ ϑ(|k| −m),
|k| ≥ m, and |x| ≤ 1. This is done by the following steps. Observe that

|dk(−σ|x|)| ≤
∞∑

ν=−∞
|ĝνJk−ν(−σ|x|)|

=
∑

|ν|≥(1−ϑ′)|k|
|ĝνJk−ν(−σ|x|)|+

∑
|ν|<(1−ϑ′)|k|

|ĝνJk−ν(−σ|x|)| =: I + II.

The first term I satisfies

I ≤
( ∑

|ν|≥(1−ϑ′)|k|
|ĝν |2

)1/2( ∑
|ν|≥(1−ϑ′)|k|

|Jk−ν(−σ|x|)|2
)1/2

≤ R(1−ϑ′)|k|(g),(4.15)

the second factor being ≤ 1 since
∑

k |Jk(z)|2 = 1 for every z. The second term II is
estimated through

II ≤ ‖g‖2

( ∑
|ν|<(1−ϑ′)|k|

|Jk−ν(−σ|x|)|2
)1/2

≤ ‖g‖2Rϑ′|k|
(
J·(−σ|x|)

)
.(4.16)

Here the argument −σ|x| of the Bessel coefficients satisfies
∣∣− σ|x|∣∣ ≤ |σ| ≤ ϑ(|k| −m) = ϑ′|k| ϑ(|k| −m)

ϑ′|k| ≤ ϑ′|k| · ϑ
ϑ′
= ϑ′|k| · θ,

which means that | − σ|x|| = θ′ϑ′|k| for some 0 ≤ θ′ ≤ θ. The latter allows us to
apply (4.13) with n = ϑ′|k|:

Rϑ′|k|(J·(−σ|x|)) ≤ Ce−γ(θ)|k| for |σ| ≤ ϑ(|k| −m)(4.17)

and some γ(θ) > 0.
Finally, using in this order (4.14), (4.15), (4.16), and (4.17), the error term on Σ1

is

‖χΣ1 p̂‖1 ≤ C‖h‖∞ max
|x|≤1

∑
|k|≥m

∫
|σ|≤ϑ(|k|−m)

|dk(−σ|x|)| dσ

≤ C‖h‖∞
∑

|k|≥m

(|k| −m)
(
R(1−ϑ′)|k|(g) + ‖g‖2e

−γ(θ)|k|
)

≤ C‖h‖∞
( ∞∑

ν=1

νR(1−ϑ′)(ν+m)(g) + ‖g‖2e
−δ(θ)m

)
(4.18)
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for another constant δ(θ) > 0. Clearly then, (4.18) shows us that ‖χΣ1
p̂‖1

= ‖h‖∞O(∑∞
ν=1 νR(1−ϑ′)(ν+m)(g)), the exponentially decaying term being negligi-

ble. Combining this with (4.10) and (4.11) gives statement 1.
Part 8. Our last step is the error estimate ‖χΓ1p̂‖2. Notice that by the definition

of Γ1,

‖χΓ1 p̂‖2
2 ≤

∑
|k|≥m

∫
|σ|≤min{b,ϑ(|k|−m)}

|p̂k(σ)|2 dσ

≤
∑

m≤|k|≤ b
ϑ+m

∫
|σ|≤ϑ(|k|−m)

|p̂k(σ)|2 dσ +
∑

|k|≥ b
ϑ+m

∫
|σ|≤b

|p̂k(σ)|2 dσ =: III2 + IV2.

Using (4.14) and (4.17), we find

III2 ≤ C‖h‖2
∞ max

|x|≤1

∑
m≤|k|≤ b

ϑ+m

∫
|σ|≤ϑ(|k|−m)

|dk(−σ|x|)|2 dσ

≤ C‖h‖2
∞

∑
m≤|k|≤ b

ϑ+m

∫
|σ|≤ϑ(|k|−m)

(
R(1−ϑ′)|k|(g) + ‖g‖2e

−δ|k|
)2

dσ,

(4.17) being applicable since |−σ|x|| ≤ ϑ(|k|−m) < ϑ′|k|. By the triangle inequality,
and on setting ν = |k| −m,

III ≤ C‖h‖∞
(( b/ϑ∑

ν=1

νR(1−ϑ′)(ν+m)(g)
2

)1/2

+ ‖g‖2e
−γm

)

for another constant γ > 0. Similarly, the term IV satisfies

IV ≤ C‖h‖∞
(
b1/2

( ∞∑
ν=b/ϑ

R(1−ϑ′)(ν+m)(g)
2

)1/2

+ ‖g‖2e
−δm

)
.

So all together,

‖χΓ1
p̂‖2 ≤ C‖h‖∞

(( ∞∑
ν=1

min{ν, b}R(1−ϑ′)(ν+m)(g)
2

)1/2

+ ‖g‖2e
−δm

)
,

which in tandem with (4.12) responds to estimates 2 and 3, again since the exponen-
tially decaying term is negligible.

The function h(x), supported on the unit disk D, is called essentially bandlimited
if

ε0(h, b) =

∫
|ξ|>b

|ĥ(ξ)| dξ ≤ Ce−γb

for certain C > 0, γ > 0. Equivalently, this means that ‖Hbh‖1 decays exponentially
as b→ ∞. By Hölder’s inequality

‖Hbh‖
W 2,− 1

2
≤ ‖ĥ‖1/2

∞ ‖Hbh‖1/2
1 ≤ Ce−γb/2,

so for an essentially bandlimited function h(x), ‖Hbh‖
W 2,− 1

2
also decays exponentially

(as b→ ∞).
Corollary 4.2. With the same notations as in the theorem, suppose that b →

∞, m→ ∞, and either m = O(b) or b = O(m). Let h(x) be essentially bandlimited.
Then
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1. ĝk = O(|k|−ρ) for some ρ > 5
2 implies ‖p− SK,W p‖∞ = O(m 5

2−ρ)→ 0.

2. ĝk = O(|k|−ρ) for some ρ > 3
2 implies ‖p− SK,W p‖2 = O(m 3

2−ρ)→ 0.

3. ĝk = O(|k|−ρ) for some ρ > 1 implies ‖p− SK,W p‖2 = O(b 1
2m1−ρ).

Proof. Suppose m = O(b); then mε−1(h, b) = O(
bε−1(h, b)

)
= O(ε0(h, b)). Simi-

larly if b = O(m), then mε−1(h, b) = mε−1(h,O(m)) = O(ε0(h,m)). This shows that
the terms involving εd(h, b) and ‖Hbh‖

W 2,− 1
2
in Theorem 4.1 decay exponentially, and

we are left with the error terms related to g.
To estimate these, observe that for ρ > 1, ĝk = O(|k|−ρ) givesRk(g) = O(|k|−ρ+ 1

2 ).
Then

Rm[R(1−ϑ′)·(g)] = O(m−ρ+1),

which, using statement 3 in Theorem 4.1, gives the estimate 3. Similarly, if ρ > 3/2,
then( ∞∑

ν=1

νR(1−ϑ′)(ν+m)(g)
2

)1/2

= O
(( ∞∑

ν=1

ν(ν +m)−2ρ+1

)1/2)
= O(m−ρ+ 3

2 )→ 0,

which, using statement 2 in Theorem 4.1, provides estimate 2.
Finally, for ρ > 5

2 , Rk(g) = O(|k|−ρ+ 1
2 ) gives

∞∑
ν=1

νR(1−ϑ′)(ν+m)(g) = O
( ∞∑

ν=1

ν(ν +m)−ρ+ 1
2

)
= O(m 5

2−ρ),

as claimed in statement 1.
The estimates 1–3 do not include the case ĝk = O(|k|−1), as R(1−ϑ′)(ν+m)(g) is

then no longer well behaved. This may be overcome by considering different norms,
as we proceed to do. For 1 < α′ < 2 and 1/α+ 1/α′ = 1, define a norm | · |α′ on the
physical plane by

|p|α′ := ‖p̂‖α =
( ∞∑

k=−∞

∫
R

|p̂(σ, k)|α dσ
)1/α

,

which is in accordance with the norms ‖p̂‖α for α = 1, 2 employed before. Notice that
for 1 < α′ < 2 these norms are less natural than the classical norms ‖ · ‖α′ , but at
least an estimate | · |α′ ≤ ‖ · ‖α′ holds (see [3, p. 177]), known as the Hausdorff–Young
inequality. For α′ > 2, the Hausdorff–Young inequality is no longer true, and usage
of the norms | · |α′ would then appear rather airy.

Corollary 4.3. With the same hypothesis as in Corollary 4.2, let ĝk = O(|k|−1),
and suppose h(x) is essentially bandlimited.

4. If 1 < α′ < 4
3 , then |p− SK,W p|α′ = O(m 3α′−4

4α′−4 )→ 0.

5. If 1 < α′ < 2, then |p− SK,W p|α′ = O(bα′−1

α′ m
1
2− 1

α′ ).
Proof. We have to go through the proof of Theorem 4.1 with the norm ‖p̂ −(SK,W p

)̂ ‖α as in (4.5), (4.6), but with different α > 2. We estimate on the domains
Γ1, Γ2. Now according to (4.12),

‖χΓ2 p̂‖α ≤ ‖p̂‖1−2/α
∞ ‖χΓ2 p̂‖2/α

2 ≤ C‖Hbh‖2/α

W 2,− 1
2
,

which decays exponentially, since h is essentially bandlimited. So we are left with the
error estimate on Γ1 involving the error terms for g.
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Proceeding as in part 8 of the proof of Theorem 4.1, we obtain

‖χΣ1 p̂‖αα ≤ C
∑

|k|≥m

(|k|−m)
(
R(1−ϑ′)|k|(g)+‖g‖2e

−γ|k|
)α

= O
( ∞∑

ν=1

νR(1−ϑ′)(ν+m)(g)
α

)
,

the exponentially decaying term being negligible. Now obviously ĝk = O(|k|−1) im-
plies R(1−ϑ′)|k|(g) = O(|k|−1/2), so for α > 4,

∞∑
ν=1

νR(1−ϑ′)(ν+m)(g)
α = O

( ∞∑
ν=1

ν(ν +m)−α/2

)
= O(m2−α/2)→ 0,

giving |p − SK,W p|α′ = O(m1−α/4), which is estimate 4. Finally, if only α > 2, we
still have

∑
ν R(1−ϑ′)(ν+m)(g)

α = O(m1−α
2 ), which readily gives estimate 5. This

completes the proof.
The principal message of Theorem 4.1 and its corollaries is that the aliasing error

associated with a choice of the bowtie region (4.3) may be attributed to two different
sources. The errors on the regions Σ2,Σ3 (resp., Γ2) decay exponentially (as b→ ∞)
if h(x) is essentially bandlimited. On the other hand, the error contribution from
Σ1, and correspondingly, from Γ1, entirely depends on g and no longer relates to the
spatial bandwidth b. This error contribution decays as m→ ∞, but in general much
slower than the other error terms. In practice, this may require choosing a rather
large m, which may render an appropriate sampling difficult (cf. Figure 4). In detail,
we have the following observations.

Remarks. (1) If g is of class C∞
per or even analytic, the error from region Σ1, and

hence the overall aliasing error, decays rapidly as the support region K grows. This
is of course the case when the source is static, so we reproduce Natterer’s estimates
in [20, Thm. III.3.1]. Similarly, if g(t) presents a full dynamic profile, starting with
0 activity, reaching its peak after uptake, and decaying back to 0 after washout, we
may realistically assume that g((T/2π)φ) ∈ C∞

per, which again gives a fast decay as
m→ ∞.

(2) In many practical cases, however, g((T/2π)φ) is not even of class Cper. For
instance if only a washout profile is scanned, we usually find g(t) decaying like an
exponential or a sum of exponentials, so g((T/2π)φ) is piecewise analytic but discon-
tinuous. Here Theorem 4.1 and Corollary 4.2 are not applicable, since the Fourier
coefficients of g(t) = e−λt are ĝk = O(|k|−1). In this case, we have to retreat to the
estimate 4 from Corollary 4.3, which is not entirely satisfactory, as it involves a norm
| · |α′ with 1 < α′ < 2. One may very well argue that failure of 2-norm convergence
indicates a problem in practice, and some of our experiments seem to emphasize this
(cf. Figure 4).

(3) Notice that ĝk = O(|k|−2) if, according to the terminology of [3], g satisfies a
generalized Lipschitz condition of order 2, that is, if

g(φ+ h) + g(φ− h)− 2g(φ) = O(h−2) as h→ 0,(4.19)

uniformly in φ ∈ [0, 2π].
(4) The first 2-D Fourier analysis of the unattenuated Radon transform was pre-

sented in [22]. These authors calculate the spectrum of a point source f(x) = δ(x−a).
Following their idea, one might consider a dynamic point source

f(t, x) = g(t) δ(x− a)(4.20)
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Fig. 3. The first two lines show the effect of the dynamic g(t) = e−λ(2π/T )t on a point
source located at a = (0.56, 0.8285) ∈ D. The first line displays the cases λ = 0.1, 0.4, 0.6, and
1.1 (left to right). For a fast decay, the spectrum tends to emphasize a diagonal with slope related
to the position a of the source. The second line shows the energy spectra for the same dynamics,
but after doubling the data. The third line shows the effect of the spatial bandwidth b. This may
be simulated by considering sources of the form h(x) = φa,σ(x) with g ≡ 1, where φa,σ denotes
the 2-D Gaussian with mean a = (0.56, 0.8285) ∈ D and covariance matrix σ2I2 for different
σ = 0.008, 0.01, 0.015, and 0.02 (left to right). For σ not exceedingly large, φa,σ may be considered
as compactly supported. Notice that Rφa,σ(s, ω) = φa·ω⊥ (s) is a 1-D Gaussian, whose spectrum
may be calculated analytically, cf. [15].

located at a ∈ D and emitting with dynamic profile g(t). In fact, the energy spectrum
of (4.20), while obviously not bounded in σ-direction, still decays on the region Σ1 (as
m→ ∞). This leads to a support region of infinite bowtie shape (see Figure 3). The
point of view adopted by considering sources (4.20) is useful since it directly relates
the thickness of the bowtie at σ = 0 to the dynamic profile g(t).

(5) The analysis presented in Theorem 4.1 breaks down at an early stage when R
is replaced by the attenuated Radon transform. Even the Fourier slice theorem is no
longer available, nor has it an equally useful alter ego. This seems to limit the analysis
to numerical experiments, which is of course not entirely satisfactory. Fortunately,
adopting the point of view expounded in remark 4, we may interpret attenuation as a
particular type of dynamics. In fact, consider a dynamic point source (4.20) located
at a and attenuated through µ(x). Define the function ga(φ) by

ga(φ) = exp

{
−
∫ ∞

0

µ(a+ τω) dτ

}
, ω = (cosφ, sinφ).

The attenuated Radon transform of δ(· − a) is

R[µ, δ(· − a)](s, φ) =
∫ ∞

−∞
δ(sω⊥ + τω − a) exp

{
−
∫ ∞

τ

µ(sω⊥ + τ ′ω) dτ ′
}
dτ

= exp

{
−
∫ ∞

a·ω
µ(sω⊥ + τ ′ω) dτ ′

}
δ(s− a · ω⊥)

= ga(φ) δ(s− a · ω⊥) = ga(φ)Rδ(· − a)(s, φ).
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Therefore, for a single camera head, according to (3.1), the sinogram of (4.20) is

p(s, φ) = g((T/2π)φ) ga(φ)Rδ(· − a)(s, φ).(4.21)

The interpretation of (4.21) is that on a static point source, attenuation acts like a
dynamic, while for a dynamic point source, it modulates the existing dynamics. The
important point, however, is that as long as 360 degrees are scanned, ga(φ) is smooth
(as soon as µ(x) is). Therefore, one may argue that modulating the existing dynamics
will not seriously slow down the convergence of the Fourier series, and attenuation
will not qualitatively alter the shape of the infinite bowtie support region of the
dynamic point source with profile g(t). This seems to be corroborated by numerical
experiments.

(6) Notice that a result similar to Theorem 4.1 and Corollary 4.2 may be ob-
tained on a 180-degree tour. The estimates involving Bessel functions have to be
modified, but the coefficients replacing Jn(θn) still decay exponentially. What makes
a 180-degree tour seem more delicate is the more serious effect of attenuation. Namely,
ga(φ), defined on [0, π], and continued periodically outside, will now just like g((T/π)φ)
have a discontinuity at φ = 0, adding to the effect of the discontinuity of g((T/π)φ) at
φ = 0. Doubling the data in the way shown in the next section will partially remedy
this (see Figure 4).

5. Experiments. While the results in the previous section serve to theoretically
justify the choice of a frequency window of bowtie shape, K, they do not readily
indicate how to calculate K (or rather, m and b) in practice. To do this, we have to
provide a practical guideline. Treating the error contributions from Σ1 and Σ2,Σ3

separately, we propose the following approach.
For a dynamic profile g(t) having ĝk = O(|k|−ρ) for some ρ > 1, and for a point

source δ(· − a) located on the unit disk D, consider the spectrum p̂ of the sinogram p
of f(t, x) = g(t) δ(x− a). For every frequency σ choose indices m(σ) and m(σ) such
that

m(σ)∑
ν=m(σ)

|p̂ν(σ)|2 ≥ .98 1
2 ·

∞∑
ν=−∞

|p̂ν(σ)|2,(5.1)

uniformly over a ∈ D, which is to say that on each line σ = const, [m(σ),m(σ)]

captures 98.99% of the energy of p̂(σ, ·) (notice .9899 = .98 1
2 ). This procedure will,

if successful for a given dynamic g(t), provide an infinite region which essentially
captures the energy of the spectrum p̂ of any source of the form f(t, x) = g(t)h(x),
h(x) supported on D, but not necessarily bandlimited. It is hoped that the same
region will then emerge for a large variety of dynamic profiles g(t).

As it turns out, this program is indeed realizable. Numerical experiments indicate
that the desired infinite support region is an infinite bowtie as displayed in Figure 3,
with a symmetry m = −m apparent. In (4.3), the choice ϑ ≈ 1 seems justified, and
for a large variety of profiles g(t), the delimiters m, m are then of the form

m(σ) = |σ|+m, m = −m,

where m = m(0) > 0 may be calculated explicitly through (5.1).
In a second step we now have to truncate the infinite bowtie at σ = ±b in order

to define a bounded region K. This may be done by applying the same argument
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again, i.e., by choosing b to satisfy

m(σ)∑
ν=m(σ)

∫
|σ|≤b

|p̂ν(σ)|2 dσ ≥ .98 1
2 ·

m(σ)∑
ν=m(σ)

∫
R

|p̂ν(σ)|2 dσ(5.2)

uniformly over a ∈ D. Clearly this step may require a discretization, conveniently
done by FFT 2. The combined procedure (5.1), (5.2) specifies a region K carrying
98% of the energy of the spectrum p̂.

A second and easier way to specify a bowtie (4.3) is to discretize the spectrum
p̂ into a frame of size S × S, say, and then find a tolerance ε > 0 to the effect that
within the chosen frame, p̂χ{|·|≥ε} carries 98% of the energy of p̂. Both procedures
turn out to be in good agreement, which reinforces the choice (4.3).

Let us now consider an application with experimental data, exhibiting the typ-
ical problem with a discontinuous time profile. The study shown in Figure 4 uses a
phantom built at Vancouver General Hospital [4] and was performed with a Siemens
Multispect-3 (MS3) triple head camera with a low energy ultra high resolution
(LEUHR) collimator. Only data from one of the camera heads were used to sim-
ulate the case of a single head camera.

The phantom, a 17-ml container shown in Figure 4(a), is connected to a supply
and a drain and equipped with a mixing propeller to guarantee a homogeneous flow.
The container was initially filled with Tc-99 m of approximately 40 MBq radio activity.
The activity was diluted and washed out through uniform water flow, producing
approximately a single exponential decay with estimated half-life of 3 minutes. The
plot of the total activities of the 64 views of a slice selected at the horizontal pixel
position 38 is shown in Figure 4(b). The sinogram of the selected slice is shown in
(c), indicating that 180 degrees have been scanned with 64 stops and a camera cross
section divided into 64 bins. The time for the total scan was T = 10 minutes.

Figure 4(d) shows the energy spectrum of Figure 4(c), obtained via zero filling
into a 400×400 frame, applying the 2-D FFT, taking absolute values, and rearranging
the image so that high frequencies are at the edges.

The energy spectrum Figure 4(d), expected to resemble a bowtie shape, is blotted
by a high energy band in vertical direction. According to theory, this high energy
band should not exist here—unless some of the hypothesis on which the results in
section 4 are based turned out to be violated. As a list of possible explanations we
offer the following.

(1) The sinogram, being blurred by attenuation and scatter, may contain noise
components not modeled in (3.2), whose spectra contribute to the vertical
band.

(2) The bowtie region (4.3) was obtained under the hypothesis that the object
is contained in the unit disk. While this is the case for the selected slice,
we have to remember that the radiating object is 3-D, and neighboring slices
contribute to the data through scatter and collimator blurring. Some of these
recorded events may be mistaken as coming from outside the unit circle.

(3) The problem evoked before: the recorded data present a washout with ap-
proximately single exponential decay, see Figure 4(b), causing a discontinuity
of g((T/π)φ) at φ = 0. The high energy band visible in Figure 4(d) may
indicate the failure of convergence of the Fourier series at φ = 0, or rather,
that a very large m = m(0) is required in (5.1).
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Fig. 4. Experimental data from Vancouver General Hospital, obtained with a Siemens
Multispect-3 triple head camera.

(4) Since a 180-degree sector has been scanned, the sinogram, along with the
discontinuity in time, has a singularity in the spatial variable, visible in Figure
4(e) as a kink, which may as well be responsible for the phenomenon.

In order to decide which of these items is likely to cause the phenomenon of Figure 4(c),
we double the data by flipping the sinogram with respect to the axis φ = 0, including
the reverse data among a new symmetric sinogram of size 128×64, displayed in Figure
4(e). The doubled sinogram now has an increase of activity on [−π, 0], followed by
the original period of decay on [0, π].

The effect of the doubling procedure, while theoretically improving the signal
to be of class Cper(−π, π), is dramatic in the case of our experiment. The energy
spectrum Figure 4(f) of the doubled sinogram no longer exhibits the erratic vertical
energy band and quite reasonably displays the bowtie form predicted by theory. As the
decay profile of the bottle may very well be approximated by an exponential e−λφ, the
doubling procedure may even theoretically be justified. While the Fourier coefficients
of e−λφ are O(|k|−1), the doubled signal e−λ|φ| on [−π, π] has Fourier coefficients
ck = (1 + (−1)k+1e−λπ) 2λ

λ2+k2 = O(|k|−2). In any case, we strongly recommend the
doubling procedure, particularly if the dynamic is relatively fast.

In order to indicate that the phenomenon in Figure 4(d) is not due to any of the
noise effects evoked in items (1) and (2) of our list, one may create an artificial 2-D
object, resembling the true slice of the bottle, with activity distribution a properly
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scaled 2-D Gaussian. For the dynamics one would substitute a single exponential
decay found by inspecting the cumulative activity plot Figure 4(b). The result, not
displayed here, shows that the Gibbs phenomenon is still apparent, reinforcing our
explanation (3).

Finally, to discriminate item (3) from the possible explanation (4), we have
scanned the bottle from a different position (Figure 4(a)), the sinogram of the cor-
responding slice shown in Figure 4(g), and selected to the effect that in the doubled
sinogram in Figure 4(i) the spatial singularity is removed. The energy spectra in
Figure 4(h), belonging to in Figure 4(g), and in Figure 4(j), belonging to Figure 4(i),
show that the result is qualitatively the same, indicating that the phenomenon (4) is
less serious than (3).

6. Resolution. We present the promised guideline on how to acquire data with
a rotating SPECT camera. Consider exemplarily the case of a single camera head
rotating over a 180-degree tour. Doubling the data will then give a 360-degree sino-
gram. Suppose the dynamic source f(t, x) is of the form g1(t)h1(x)+ · · ·+gr(t)hr(x),
with the hi(x) supported on the unit disk. Assume that the unit circle is completely
visible from each camera position, which means that a camera cross section has length
2. Assume that the cross section is divided into 64 bins, giving ∆s = 1/32. Since the
Nyquist rate is ∆s = π/b, the best possible bandwidth is b = 32π, a fact we may not
easily debate if the resolution of the camera has to be considered a fixed technical
parameter.

According to (4.4), the sampling parameters in the frequency plane are ∆σ = b,
∆k = [b]+2m, where we have chosen ϑ ≈ 1, as validated by the numerical experiments
in section 4. Using (4.4), this gives

∆s =
π

b
, ∆φ =

π

[b] + 2m
.(6.1)

Let us consider the case where a washout (with decreasing activity) is scanned.
As it comes out, tracer dynamics are often described by a compartmental model (cf.
[11]), and accordingly the dynamic source is represented as a sum of exponentials

f(t, x) = h1(x) e
−λ1(π/T )t + · · ·+ hr(x) e−λr(π/T )t

with λi ≥ 0 (decay to 0 at infinity) and where the hi(x) are supported on the unit disk
D. In practice we may usually exhibit λi ≤ λ, the fastest dynamic to be expected.
Then the bowtie region may be estimated by considering a source of the form f(t, x) =
h(x) g(t) = h(x) e−λ(π/T )t.

As g((T/π)φ) = e−λφ, doubling the data as suggested in our approach gives the
dynamic profile e−λ|φ| over −π ≤ φ ≤ π. Estimating the thickness m = m(λ) of the
bowtie as a function of λ, based on (5.1), yields the approximate linear relationship

m(λ) ≈ 3

8
λ+ 1,(6.2)

which we exploit a little further by considering a realistic situation comparable to the
one in our experiment.

Suppose that the total acquisition time of the scan is T = 10 minutes, while the
shortest expected half-life is of the order of 2 minutes. Then t 1

2
= T log 2/πλ = .2T ,

giving λ = log 2/.2π ≈ 1.1. Hence g((T/π)φ) = exp{(− log 2/.2π)|φ|} = exp{−1.1|φ|},
which through (6.2) suggests m ≈ 1.4. In view of (6.1), this gives ∆φ ≈ .06 = 3.44
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degrees as satisfactory for practical purposes. The interpretation is that an appropri-
ate sampling of the doubled signal over 360 degrees requires approximately 105 views,
that is, 53 views over 180-degrees. This is not in complete agreement with the actual
policies (cf. [16]), where we often prefer to take 64 views on a 180-degree tour. As our
scenario ignores the noise contributions, 53 views may in practice be barely sufficient,
and we consider 64 views as a practical guideline on 180 degrees.

Remark. Formula (6.1) may be interpreted as an uncertainty principle. Assume
that a minimum ∆φ has been specified by the user to guarantee a sufficient number
of recorded counts per camera position. Then we may consider [b] + 2m as fixed. So
within certain limits, we may either increase m and capture faster dynamics, paying
eventually by a loss in spatial resolution (by decreasing b), or we may conversely
choose a better spatial resolution by increasing b, bearing the risk that some of the
faster dynamics may not be adequately represented.

7. Filtering. In this last section we discuss a policy for the 2-D filtering of the
sinogram data. Notice that filtering of the projection data is currently done in one
dimension, that is, every projection is filtered separately. In the static case, this does
not cause any particular difficulty, as the same filter may be used for all projections.
To that effect, various filters have been around for years, and their application is well
understood.

The situation is a little more complicated in dSPECT, as the overall activity
changes from view to view. 1-D filtering may now require adapting an individual
filter to each projection, and it may then seem more attractive to do a 2-D filtering,
based on the insights of section 4. In particular, a 2-D filter, if based on the 2-D Fourier
transform, may use the bowtie shape of the spectrum of the Radon transform, and
may therefore incorporate information not easily assessed through a 1-D procedure.
We therefore propose the following frequency domain based 2-D filtering procedure,
which incorporates the theoretical results obtained in previous sections.

To render the situation even more interesting, we modify the experiment from
section 5 by scanning four bottles of the type shown in Figure 4(a). We arrange a
washout through continuous water flow of different half-lives between 2 and 6 minutes.
Starting out with the 64× 64 sinogram (Figure 5, top left), we double data (top row
right) as done previously, and include them into a frame of zeros of considerably
larger size L × L (zero filling), where usually L = 200 or L = 400. The 2-D FFT is
applied to the enlarged signal. Filtering is now performed in the frequency domain
by multiplying the L× L spectrum with a 2-D window function:

wm,b(x, y) = φ(x/b)φ(y/(m+ x))

with −L/2 ≤ x, y ≤ L/2 integer and parameters m, b ≤ L/2. The window function
satisfies φ(0) = 1, φ(t) = 0 for |t| ≥ 1 and could be any of the standard 1-D lag
windows. Figure 5 (second row) displays several filters with the choice L = 200, b
ranging from 100 to 70, and m ranging from 80 to 20.

Rows 3–6 show the effect of the 2-D filtering of these window functions. The
left-hand picture shows three projections (number 4, number 19, and number 61).
The dotted line shows the original data, the continuous line shows the filtered curves.
The right-hand diagram shows the smoothing effect of the filters on the sum plot.
The latter indicates the success of the doubling, as the same filtering applied to the
simple sinogram would exhibit a Gibbs phenomenon at φ = 0.
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Fig. 5. 2-D filtering of experimental data.
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