
Reduced-order output feedback control design with specSDP, a code
for linear / nonlinear SDP problems

J.B. Thevenet∗ and P. Apkarian† and D. Noll‡
∗ ONERA-CERT, Control System department, 2 Av. Edouard Belin, 31055 Toulouse, France,

MIP, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, France,
e-mail: thevenet@cert.fr

† ONERA-CERT and MIP,
e-mail: apkarian@cert.fr

‡ MIP,
e-mail: noll@mip.ups-tlse.fr

Abstract

Optimization problems with bilinear matrix inequalities
(BMI) constraints arise frequently in automatic control and
are difficult to solve due to the inherent non-convexity. The
purpose of this paper is to give an overview of the spectral
SDP (semidefinite programming) method already presented
in [Thevenet et al., 2004], along with practical information
on how to basically use specSDP, a software designed to
solve LMI / BMI-constrained optimization problems, with a
linear or quadratic objective function. specSDP is a Fortran
code, interfaced with Matlab. It is tested here against several
examples of reduced order control problems from the bench-
mark collection COMPlib [Leibfritz and Lipinsky, 2003].

Keywords: Bilinear matrix inequality, spectral penalty
function, reduced order control synthesis.

1 INTRODUCTION

The problem of minimizing an objective function subject to
bilinear matrix inequality (BMI) constraints :

minimize cT x
(
+ 1

2 xT Qx
)
, x ∈ Rn

subject to B(x) " 0,
(1)

where " 0 means negative semi-definite and

B(x) = A0 +
n∑

i=1

xiAi +
∑

1≤i<j≤n

xixjCij (2)

is a bilinear matrix-valued operator with data Ai, Cij ∈ Sm,
is a general cast for a wide range of problems such as control
synthesis, structure problems, filtering These problems
are central in many industrial applications.

The importance of BMIs was recognized over the past decade
and different solution strategies have been proposed. Earliest

ideas use interior point methods (imported from semidefinite
programming), concave programming or coordinate descent
methods employing successions of SDP subproblems. The
success of these methods is up to now very limited, and even
moderately sized programs with no more than 100 variables
usually may cause failure. For semidefinite programming,
[Zibulevsky, 1996], and [Ben-Tal and Zibulevsky, 1997] pro-
pose a modified augmented Lagrangian method, which in
[Kocvara and Stingl, 2003] has been expanded to include
BMI-problems. The paper presents specSDP (spectral Non-
Linear SDP), a code designed to solve any problem of type
(1), with the option to treat pure LMI constraints explicitely.
It also handles cases where the objective function includes
a quadratic term, at least for LMI constraints. The code
detects these cases and, as a consequence, selects the best
way of solving them, which results in improved computa-
tional times. Using specSDP is relatively easy, and effi-
cient, as it has been tested against many difficult numeri-
cal examples. See for instance [Apkarian et al., 2004] and
[Thevenet et al., 2004], the latter containing in addition a full
theoretical description of the method. The user is given the
opportunity of choosing a number of miscellaneous options,
as the default ones might be suboptimal on a specific prob-
lem. The software will be available soon for academics on
request to the authors. The structure of the paper is as fol-
lows. In section 2, we recall briefly some relevant features
of our spectral SDP method. Section 3 gives information on
how to use the software basically. Finally applications to re-
duced order output feedback control design are examined in
section 4.

NOTATION

Our notation is standard. We let Sm denote the set of m×m
symmetric matrices, MT the transpose of the matrix M and
TrM its trace. We equip Sm with the euclidean scalar prod-

p. 1

uct 〈X, Y 〉 = X • Y = Tr (XY). For symmetric matrices ,
M & N means that M −N is positive definite and M (N
means that M − N is positive semi-definite. We define the
operator svec , which maps the set of symmetric matrices Sm

into Rl where l = n (n + 1)/2, as:

svec X = [X11, · · · , X1n, X21, · · · , X2n, · · · , Xnn]T .

2 SPECTRAL NONLINEAR SDP METHOD

In this chapter we present the main aspects of our method
(See [Thevenet et al., 2004] for a complete description).

2.1 General outline
The method we are about to present applies to more general
classes of objective functions than (1). We shall consider
matrix inequality constrained programs of the form

minimize f(x), x ∈ Rn

subject to F(x) " 0,
(3)

where f is a class C2 function, F : Rn → Sm

a class C2 operator. Our method is a penalty/barrier
multiplier algorithm as proposed in [Zibulevsky, 1996,
Mosheyev and Zibulevsky, 2000]. According to that termi-
nology, a spectral penalty (SP) function for (3) is defined as

F (x, p) = f(x) + TrΦp(F(x)), (4)

where ϕp : R → R is a parametrized family of scalar func-
tions, which generates a family of matrix-valued operators
Φp : Sm → Sm upon defining:

Φp(X) := Sdiag [ϕp (λi(X))]ST . (5)

Here λi(X) stands for the ith eigenvalue of X ∈ Sm and
S is an orthonormal matrix of associated eigenvectors. An
alternative expression for (4) using (5) is:

F (x, p) = f(x) +
m∑

i=1

ϕp(λi(F(x)) . (6)

As ϕp is chosen strictly increasing and satisfies ϕp(0) = 0,
each of the following programs (parametrized through a
penalty p > 0)

minimize f(x), x ∈ Rn

subject to Φp(F(x)) " 0 (7)

is equivalent to (3). Thus, F (x, p) may be understood as
a penalty function for (3). Forcing p → 0, we expect the
solutions to the unconstrained program minx F (x, p) to con-
verge to a solution of (3). It is well-known that pure penalty
methods run into numerical difficulties as soon as penalty
constants get large. Similarly, using pure SP functions as
in (4) would lead to ill-conditioning for small p > 0. The

epoch-making idea of Hestenes [Hestenes, 1969] and Pow-
ell [Powell, 1969], known as the augmented Lagrangian ap-
proach, was to avoid this phenomenon by including a linear
term carrying a Lagrange multiplier estimate into the objec-
tive. In the present context, we follow the same line, but
incorporate Lagrange multiplier information by a nonlinear
term. We define the augmented Lagrangian function associ-
ated with the matrix inequality constraints in (1) as

L(x, V, p) = f(x) + TrΦp(V TF(x)V) , (8)

= f(x) +
m∑

i=1

ϕp(λi(V TF(x)V)).

In this expression, the matrix variable V has the same di-
mension as F(x) ∈ Sm and serves as a factor of the La-
grange multiplier variable U ∈ Sm, U = V V T . In con-
trast with classical augmented Lagrangians, however, the La-
grange multiplier U is not involved linearly in (8). We nev-
ertheless reserve the name of an augmented Lagrangian for
L(x, V, p), as its properties resemble those of the classical
augmented Lagrangian. Schematically, the augmented La-
grangian technique is as follows:

Spectral augmented Lagrangian algorithm

1. Initial phase. Set constants γ > 0, ρ < 1. Initialize
the algorithm with x0, V0 and a penalty parameter:

p0 > 0. (9)

2. Optimization phase. For fixed Vj and pj solve the
unconstrained subproblem

minimizex∈Rn L(x, Vj , pj) (10)

Let xj+1 be the solution. Use the previous iterate xj

as a starting value for the inner optimization.

3. Update penalty and multiplier. Apply first-order rule
to estimate Lagrange multiplier:

Vj+1V
T
j+1 = VjS

[
diagϕ′p

(
λi

(
V T

j

·F(xj+1)Vj))]ST V T
j , (11)

where S diagonalizes V T
j F(xj+1)Vj .

Update the penalty parameter using:

pj+1 =






ρpj , if max(0,λmax(F(xj+1)))
> γ max(0,λmax(F(xj)))

pj , else
(12)

Increase j and go back to step 2.

In our implementation, following the recommendation in

p. 2

[Mosheyev and Zibulevsky, 2000], we have used the log-
quadratic penalty function ϕp(t) = pϕ1(t/p) where

ϕ1(t) =
{

t + 1
2 t2 if t ≥ - 1

2
- 1
4 log(-2t)− 3

8 if t < - 1
2 ,

(13)

but other choices could be used (see for instance
[Zibulevsky, 1996] for an extended list).

The multiplier update formula (11) requires the
full machinery of differentiability (see for instance
[Thevenet et al., 2004] and [Lewis, 1996]) of the spec-
tral function Tr Φp and will not be derived here.

2.2 Solving the subproblem - implementational issues
Efficient minimization of L(x, Vj , pj) for fixed Vj , pj is at
the core of our approach and our implementation in the gen-
uine BMI case is based on a Newton trust region method, fol-
lowing the lines of Lin and Moré [Lin and More, 1998]. As
compared to Newton line search algorithms or other descent
direction methods, trust regions can take better advantage
of second-order information. This is witnessed by the fact
that negative curvature in the tangent problem Hessian, fre-
quently arising in BMI-minimization when iterates are still
far away from any neighbourhood of local convergence, may
be taken into account. Furthermore, trust region methods of-
ten (miraculously) find good local minima, leaving the bad
ones behind. This additional benefit is in contrast with what
line search methods achieve, and is explained to some ex-
tent by the fact that, at least over the horizon specified by the
current trust region radius, the minimization in the tangent
problem is a global one. This is why specSDP uses a trust
region method to solve BMI problems.

However, for pure LMI (convex) problems, and when the
conditioning is not too bad, the line search method may be-
have extremely well. As a result, the implementation default
option for LMI problems in specSDP gives priority to the
line search, but the user is still given the choice to switch to
a trust region approach.

As implemented, both the trust region and line search vari-
ant of our method apply a Cholesky factorization to the tan-
gent problem Hessian. This serves either to build an ef-
ficient preconditioner, or to compute the Newton direction
in the second case. When the Hessian is close to indef-
inite, a modified Cholesky factorization is used (∇2L +
E = JJT , with J a lower triangular matrix and E a
shift matrix of minimal norm). The method from Lin
and Moré [Lin and More, 1998] has been set as the de-
fault option, but the user may choose the variant from
[Schnabel and Eskow, 1999], which is able to control effi-
ciently the condition number of the shifted Hessian. This
is sometimes useful for ill-conditioned problems.

3 USING specSDP

3.1 Calling specSDP
Hereafter we describe how to basically call the specSDP
code from Matlab. This is done by executing the following
command:

in which ’x’ is the value of the decision vector at the
computed optimum, and ’constraints’, ’objective’ are Mat-
lab structures, including the considered problem data. This
describes the standard call of specSDP, but extra optional
arguments can be used and additional returned information
can be requested. Indeed by typing:

from a Maltab prompt, the user will be returned some
more information besides the optimum ’x’: the objective
function at the computed optimum, the maximum eigenvalue
of the BMI and a dignostic concerning the success of the
minimization. The structures ’X’ and ’opts’ enable the user
to specify a panel of options when the default ones are
deemed inappropriate. Both structures include several fields,
among them an initial estimate of the solution, bounds on
the variables, tolerances on the termination tests.... For
convenience, the user may modify one or several fields of
each structure without assigning the remaining ones. In
that case, the unassigned fields will be set internally to the
default values. All these features are detailed in the user’s
guide, which can be downloaded from

"http://www.cert.fr/dcsd/THESES/thevenet/publi.html".

Below is an example of how the previously mentioned
structures should be built. Let us consider the following
simple problem, with nbvar (= 3) variables, nbmi (= 2)
BMI constraints, and a linear objective function:

min. cT x
s.t. A1

0 + x1A
1
1 + x2A

1
2 + x1x3C

1
13 + x2x3C

1
23 ! 0

A2
0 + x2A

2
2 + x3A

2
3 ! 0,

(14)

where

c = [0 0 1]T , x = [x1 x2 x3]
T ∈ R3,

and
A1

l ∈ S2, C1
ij ∈ S2, A2

l ∈ S3, C2
ij ∈ S3,

for

l = {0, ..., 3}, (i, j) ∈ {1, 2}× {3, 3} := Iind × Jind,

A2
1, A1

3, C2
13, C2

23being null matrices.

3.1.1 Structure ’constraints’: this is the first argu-
ment that has to be passed when running specSDP. It requires
a minimum number of fields, which are the following:

• ’A0’, which should be set as: constraints.A0 =
svec A0, where svec has been defined in section 1,

p. 3

• ’AAt’, which must be built as:
constraints.AAt = sparse(AAT), where

AA =




svec A1

1 · · · svec A1
nbvar

...
...

...
svec Anbmi

1 · · · svec Anbmi
nbvar



 .

The lthcolumn of AA is formed by stacking below
each other the “svectorized” matrices Ak

l , where k =
1, ..., nbmi, that are associated with the lth component
xl of the decision vector x in (14). Notice that, for con-
venience, the transposed matrix has to be passed, and
that the Matlab sparse format should be used, since in
many applications AA will have a limited number of
nonzeros entries. specSDP has been designed to take
advantage of sparse data in the computations.

• ’dims’, which is an integer row vector whose
kthcomponent, k = 1, ..., nbmi, determines the size
of the left-hand side matrix of the kth LMI / BMI, what
we will denote Bk(x) in the sequel. In our example we
set:
constraints.dims =

[
2 3

]
.

When treating BMI cases some additional fields have to be
passed :

• ’Iind’ and ’Jind’. These two fields are integer column
vectors of length r, (= 2 in our example), the number
of nonzeros nonlinear matrices Cij , where:

Cij =





C1
ij 0 . . . 0

0
.

...
...

. 0
0 . . . 0 Cnbmi

ij




,

Ck
ij (k = 1, .., nbmi) being as in (14).

For any m = 1, ..., r, we define:

constraints.Iind(m) = i,

constraints.Jind(m) = j,

when referring to the previous notation, the considered
nonlinear term being xixjCij . Here this will give:

constraints.Iind =
[

1
2

]
,

constraints.Jind =
[

3
3

]
.

• ’constraints.CCt’. Again constraints.CCt =
sparse(CCT), with:

CC =





svec C1
I(1)J(1) · · · svec C1

I(r)J(r)
...

...
...

svec Cnbmi
I(1)J(1) · · · svec Cnbmi

I(r)J(r)



 .

3.1.2 Structure ’objective’: now we focus on the
second argument ’objective’ . It must have at least one field,
’c’, and at most two, ’c’ and ’Q’. The first situation arises
when the objective function is linear, and the second one
when it is quadratic.
Naturally, ’objective.c’ will be assigned the corresponding
objective value (objective.c =

[
0 0 1

]T for the ex-
ample above). As for ’objective.Q’, the field will not be as-
signed in linear cases (as in (14)) and will be set to svec (Q),
as defined in section 1, when the objective is quadratic:
f(x) = cT x+xT Qx, with Q ∈ Sn. This way only the lower
part of Q, including the diagonal, is stored, which avoids un-
warranted extra storage.
Notice that the code is also able to solve pure feasibility prob-
lems, that is, programs without any objective function. In
that case a null vector, with as many elements as the unknown
vector ’x’, has to be passed to the solver.
Finally, let us mention that specSDP has not been designed to
solve genuine BMI problems with quadratic criterion. That
means that ’objective.Q’ can be assigned only when the con-
straint is a pure LMI.

3.2 Display
Once the code has been launched, information is displayed
in the course of the iterations, as shown below:

On the top of the shot, “initial feasibility” gives the maxi-
mum eigenvalue at the initial point x0:

λ1(B(x0)) = max
k=1, ..., nbmi

(λ1(Bk(x0)))

(On the example above, the initial point is "feasible").

Also general figures about the optimization problem

p. 4

are provided, such as the number of variables involved, the
number of LMIs / BMIs, their size..., as well as information
about each "tangent" subproblem (current values of the
objective function, penalty parameters, number of inner /
outer iterations....)

4 APPLICATION: REDUCED ORDER
FEEDBACK SYNTHESIS

In this section, we test our code against several examples of
so-called reduced order control problems from the bench-
mark collection COMPlib [Leibfritz and Lipinsky, 2003].
Notice that we have only focused on stabilizing the
closed-loop sytems, without minimizing any H∞ (re-
spectively H2) performance. However specSDP could
have treated those problems via the bounded real lemma
([Anderson and Vongpanitlerd, 1973]) for instance. Anyway
the order of the resulting controllers has been reduced in
many cases, when compared to the "best" compensators
mentioned in COMPlib.

4.1 BMI characterization
We first recall a BMI characterization of the classical output
feedback synthesis problem, before extending it to the fixed-
order synthesis. To this end let P (s) be an LTI (Linear Time
Invariant) system with state-space equations:

P (s) :
[
ẋ
y

]
=

[
A B
C D

] [
x
u

]
, (15)

where

• x ∈ Rn is the state vector,

• u ∈ Rm is the vector of control inputs,

• y ∈ Rp is the vector of measurements.

Our aim is to compute K such that the closed-loop system
is internally stable: for w = 0 the state vector of the closed-
loop system (15) and (u = Ky) tends to zero as time goes
to infinity. It is well known that this problem is equivalent to
finding K and a matrix X ∈ Sn such that:

(A + BKC) T X + X (A + BKC) ≺ 0 (16)
X & 0.

Fixed-order synthesis is concerned with the design of a dy-
namic controller K(s) = CK(sI −AK)−1BK +DK where
AK ∈ Rk×k and k < n. It can be regarded as a static gain
synthesis problem for an augmented system. Consequently,
(16) applies if we perform the following substitutions:

K →
[
AK BK

CK DK

]
, A →

[
A 0
0 0k

]

B →
[

0 B
Ik 0

]
, C →

[
0 Ik

C 0

]
.

(17)

4.2 Discussion
In pratice, attacking (16) with specSDP is somewhat awk-
ward, since this formulation results in introducing an infinity
of equivalent feasible points. Indeed, as soon as the cou-
ple (K0, X0) is feasible for the BMI (16), (K0,αX0) is also
feasible for any scalar α. An accurate way to avoid this phe-
nomenon would be to constraint explicitly the norm of the
Lyapunov matrix X . Since specSDP has not been designed
to handle equality constraints, we found that replacing the
LMI in (16) by:

I & X & εI,

where 0 < ε < 1, was a good alternative. Notice that the
LMI X & εI is a safeguard against converging to the in-
feasible point (0, 0). Paradoxically ε should be chosen small
enough to allow a bad conditioning of X , as it is often the
case when the real part of the closed-loop poles is close to
the imaginary axis.
Similary, there exists for K an infinity of state-space realiza-
tions, which correspond to as many equivalent local minima,
for a given X . As a result is is essential to give a particular
structure to the controller. Although this choice might be dis-
cussed, we chose for K an observable companion structure,
as it is easily implemented.

4.3 Numerical examples
The following table summerizes the results obtained on
the examples from COMPlib, where nx, nu and ny stand
respectively for the number of states, the number of outputs
and the number of inputs of the LTI plants. nc denotes
the smallest order of a stabilizing output feeback controller
found with a previously existing approach. Finally nspec

gives the order of the stabilizing compensator obtained
by specSDP. The notations "nspec = e" (respectively
"nspec = s") mean that the order of the "best" controller
found by specSDP is equal (respectively superior) to nc.

Example nx nu ny nc nspec

(ROC1) 9 2 2 1 0
(ROC2) 10 2 3 1 e
(ROC3) 11 4 4 2 s
(ROC4) 9 2 2 1 0
(ROC5) 7 3 5 1 e
(ROC6) 5 3 3 2 1
(ROC7) 5 2 3 1 0
(ROC8) 9 4 4 3 e
(ROC9) 6 3 3 2 1
(ROC10) 6 2 4 1 s

Table 1: Reduced order control instances.

The table shows that on 5 examples out of 10, the order re-
duction given by specSDP represents an improvement over
the best result obtained so far with other methods. Below are
listed the corresponding controllers, with the same notation

p. 5

as in (17), such that Ki denotes the controller obtained on
the example (ROCi):

K1 =
[

-96.9936 1.1757
12.2472 -0.3010

]
,

K4 =
[

-100 0
0 -0.0917

]
,

K6 =





-96.9315 1 80.5295 21.3260
83.9037 -96.6169 7.1625 10.8001
28.7578 94.3267 -99.8624 -32.8591
-49.6697 -37.1984 67.4075 20.3091



 ,

K7 =
[

-81.0282 -80.6694 40.9775
82.9061 83.3068 -41.9307

]
,

K9 =





-24.6240 1 4.9110 -1.2712
6.5284 -421.1192 -15.4894 -10.7716

-17.2231 3.9298 -57.1176 15.8847
13.3235 -10.0564 -3.3616 0.5402



 .

Furthermore, on 8 examples out of 10, specSDP was at least
as efficient as other approaches, according to Table 1.
Finally, the solver failed to stabilize the models of the ex-
amples (ROC3) (respectively (ROC10)) with controllers of
order 2 (respectively 1). It is hard to determine precisely the
cause of failure for a given problem, since many parameters
are involved. However we found that balancing the data be-
fore solving and providing a "good" initial point were essen-
tial in many cases.

5 CONCLUSION

A spectral penalty augmented Lagrangian method for ma-
trix inequality constrained nonlinear optimization programs
and the associated software specSDP was presented in this
paper. The algorithm performs robustly, as witnessed by
the numerical examples in [Apkarian et al., 2004] and in
[Thevenet et al., 2004], and finally by the applications of re-
duced order control synthesis considered in this paper. It is
an efficient solver for small / medium scale examples, that is
when the number of variables is up to a few hundreds of vari-
ables in the BMI case, up to 1500 variables in the LMI case.
Moreover running the code is quite easy, as a limited number
of data is needed for using it. A wide choice of optional argu-
ments allows the user to make an expert use of it for particu-
larly hard problems. Besides we remind the reader that, sim-
ilarly to our previous approaches, the proposed algorithm,
when tested against BMI-constrained (nonconvex) problems,
is a local optimization method, which gives no certificate as
to finding the global optimal solution of the program.

References
[Anderson and Vongpanitlerd, 1973] Anderson, B. D. O. and

Vongpanitlerd, S. (1973). Network Analysis. Printice Hall,
Englewood Cliffs.

[Apkarian et al., 2004] Apkarian, P., Noll, D., Thevenet,
J. B., and Tuan, H. D. (2004). A Spectral Quadratic-
SDP Method with Applications to Fixed-Order H2 and
H∞ Synthesis. In Asian Control Conference, to be pub-
lished in European Journal of Control.

[Ben-Tal and Zibulevsky, 1997] Ben-Tal, A. and Zibulevsky,
M. (1997). Penalty/barrier multiplier methods for convex
programming problems. SIAM J. on Optimization, 7:347–
366.

[Hestenes, 1969] Hestenes, M. R. (1969). Multiplier and
gradient method. J. Optim. Theory Appl., 4:303 – 320.

[Kocvara and Stingl, 2003] Kocvara, M. and Stingl, M.
(2003). A Code for Convex Nonlinear and Semidefi-
nite Programming. Optimization Methods and Software,
18(3):317–333.

[Leibfritz and Lipinsky, 2003] Leibfritz, F. and Lipinsky, W.
(2003). Description of the benchmark examples in Com-
plib 1.0. Technical report, University of Trier, Dpt. of
Mathematics.

[Lewis, 1996] Lewis, A. (1996). Derivatives of spectral
functions. Mathematics of Operations Research, 21:576–
588.

[Lin and More, 1998] Lin, C. and More, J. (1998). Newton’s
method for large bound–constrained optimization prob-
lems. Technical Report ANL/MCS-P724–0898, Math-
ematics and Computer Sciences Division, Argonne Na-
tional Laboratory.

[Mosheyev and Zibulevsky, 2000] Mosheyev, L. and
Zibulevsky, M. (2000). Penalty/barrier multiplier al-
gorithm for semidefinite programming. Optimization
Methods and Software, 13(4):235–261.

[Powell, 1969] Powell, M. J. D. (1969). A method for non-
linear constraints in minimization problem. In Fletcher,
R., editor, Optimization. Academic Press, London, New
York.

[Schnabel and Eskow, 1999] Schnabel, R. B. and Eskow, E.
(1999). A revised modified cholesky factorization algo-
rithm. SIAM J. on Optimization, 9(4):1135–1148.

[Thevenet et al., 2004] Thevenet, J. B., Noll, D., and Apkar-
ian, P. (2004). Nonlinear spectral SDP method for BMI-
constrained problems : Applications to control design. In
ICINCO, volume 1, pages 237–248, Setubal, Portugal.

[Zibulevsky, 1996] Zibulevsky, M. (1996). Penalty/Barrier
Multiplier Methods for Large-Scale Nonlinear and
Semidefinite Programming. Ph. D. Thesis, Technion Is-
raël Institute of Technology.

p. 6

