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Abstract

We present a new proximity control bundle algorithm to minimize nonsmooth and non-
convex locally Lipschitz functions. In contrast with the traditional oracle-based methods
in nonsmooth programming, our method is model-based and can accommodate cases where
several Clarke subgradients can be computed at reasonable cost. We propose a new way to
manage the proximity control parameter, which allows us to handle nonconvex objectives.
We prove global convergence of our method in the sense that every accumulation point of
the sequence of serious steps is critical. Our method is tested on a variety of examples in
H∞-controller synthesis.
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1 Introduction

It is a long standing objective of nonsmooth optimization to develop methods for the unconstrained
minimization program

min
x∈Rn

f(x)(1)

where f : Rn → R is locally Lipschitz and neither smooth nor convex. The goal is to compute
local solutions x̄ of (1) in the sense that the first order necessary optimality condition

0 ∈ ∂f(x̄)(2)

is satisfied, where ∂f(x) is the Clarke subdifferential of f at x [8]. In this paper we propose a
bundle algorithm based on proximity control for (1), which solves this problem in the sense that
for an arbitrary starting point, every accumulation point of the sequence of serious iterates is a
critical point of f , i.e. satisfies (2).

Bundling is one of the principal techniques in nonsmooth optimization. It is well suited for
convex problems, but falls somewhat short without convexity. The reason for this is that cutting
planes, the driving mechanism behind bundling, is basically a convexity tool and becomes artificial

∗Université Paul Sabatier, Institut de Mathématiques, 118 route de Narbonne, 31062 Toulouse, France.

1



and delicate to handle without this prerequisite. In response, Fuduli and al. [12,13] propose a new
type of bundle methods, where tangent planes at trial points are classified in two groups to create
an upper and a lower model of f , and to use this information to build a trust region around the
current iterate. The authors obtain a global convergence result, but do not completely solve the
principal problem in bundling, the overflow of memory caused by accumulating information. This
is usually addressed by Kiwiel’s idea of aggregation [16–18].

Older approaches which combine bundling and proximity control such as Schramm [28] or
Schramm and Zowe [29] are essentially based on the convex case. For nonconvex f the authors
propose to downshift tangent planes at trial points if they are no longer cutting planes, and they
prove that at least one of the accumulation points x̄ of the sequence of serious steps is critical. The
idea to downshift tangent planes seems to work well as a rule, as witnessed by the BT-codes [33]
or Lemaréchal’s M2FC1, but a rigourous justification seems lacking.

Our present approach is based on a new idea, motivated by practical experience gained from
the study of nonsmooth programs in eigenvalue optimization and automatic control [1–4, 24, 25].
We start with the concept of a local model Φ(·, x) of f in the neighbourhood of the current iterate
x, which may be understood as a nonsmooth generalization of the Taylor expansion. The interplay
between f and its local model is used to create descent steps for f away from x by a proximity
control mechanism. Our investigation shows that a local model should have the form

Φ(y, x) = φ(y, x) + 1
2
(y − x)>Q(x)(y − x),

where φ(·, x) is the first order model of f at x and 1
2
(y−x)>Q(x)(y−x) the second order part. It

turns out that the first order part φ(·, x) is convex, but can be nonsmooth. It has to be contingent
with the objective at the current x, which is to say ∂1φ(x, x) ⊂ ∂f(x). In contrast, the second
order term is smooth, even quadratic, but need not be convex.

Notice that the idea of a local model Φ has also been used in [9] or [27]. What is new in our
approach is that we do not use Φ(·, x) directly to generate search steps, because this may be too
costly. Instead we build a so-called working model Φk(·, x), which has the form

Φk(y, x) = φk(y, x) + 1
2
(y − x)>Q(x)(y − x),

and can be thought of as a crude approximation of the ideal model Φ(·, x). The first order part
φk(y, x) is improved iteratively using cutting planes and aggregation. The second order part
1
2
(y− x)>Q(x)(y− x) is kept fixed during the inner loop and only updated between serious steps.

Let us highlight an important aspect of using the models Φ(y, x) and Φk(y, x). Applications in
eigenvalue optimization and automatic control differ in many respects from the traditional use of
nonsmooth optimization in Lagrangian relaxation [22]. In that class the objectives f are convex,
but one only disposes of the function value f(y) and one particular subgradient g(y) ∈ ∂f(y) at
every trial step y, a situation referred to as calling an oracle. In contrast, applications in control
allow to know many subgradients, and it may then be a good idea to build a more sophisticated
working model Φk. This is what makes the concepts of the models Φ and Φk attractive, because
it leaves their choice to the user, who may have special knowledge in a given application.

Let us look more closely at the bundling mechanism. At the current iterate x of the outer loop,
the inner loop with counter k turns until a new serious step x+ is found. At inner loop counter k
we produce a trial step yk+1 by solving the tangent program with proximity control

min
y∈Rn

Φk(y, x) + τk

2
‖y − x‖2,(3)
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where τk > 0 is the proximity control parameter. If the solution yk+1 of (3) gives sufficient decrease
in f , it becomes the new iterate x+ = yk+1. According to the standard terminology in nonsmooth
optimization, this is called a serious step. Otherwise if yk+1 is not satisfactory, it is called a null
step. In this case we keep x, but use the information transmitted by yk+1 to improve the first
order part of the working model φk+1(·, x). We then update the proximity control parameter τk+1

and rerun the tangent program (3) to obtain a better trial step yk+2. This updating procedure is
crucial and uses cutting planes and aggregation, but based on information from the ideal model
Φ(·, x) and not directly from f . While we keep improving the first-order part of Φk(·, x) in the
inner loop, the second order term is kept invariant. It changes only between serious steps in the
outer loop. Its rationale is to give our method an option to converge superlinearly if f(x) has
hidden smoothness properties, as is often the case in applications [5, 25].

Notation. Our terminology follows [8] or [15], where an introduction to bundle methods in the
convex case can be found. For a function φ(y, x) of two arguments ∂1φ(y, x) denotes the Clarke
subdifferential of φ(·, x) at y, and similarly for ∂2φ(y, x).

Concerning the foundations of nonsmooth optimization we point the reader to the pioneer-
ing work by Wolfe [32], Lemaréchal [21], and Kiwiel [18]. An overview can be obtained from
Lemaréchal [21], Kiwiel [17] or Polak [26], Ruszczyński [27], Shor [30].

2 First order model

What makes convex bundling so successful is that affine support functions of the objective f at
unsuccessful trial steps (null steps) yk+1, also known as cutting planes, are used to improve the
working model. Without convexity it is less obvious in which way first-order affine approximations
of f at the null steps yk+1 should be used to improve the working model, because these planes are
no longer support functions of f . The principal idea of this paper is to generate cutting planes by
means of a local model Φ(·, x) of f in a neighbourhood of x. The model has slightly more structure
than f itself, and is thereby amenable to bundling techniques, which were applied directly to f
as long as the latter was convex. What we call a model of f in a neighbourhood of x could be
thought of as a nonsmooth analogue of the Taylor expansion.

Definition 1. A function φ : Rn × Ω → R is called a first-order model of f on the set Ω ⊂ Rn if
for every x ∈ Ω the function φ(·, x) : Rn → R is convex and the following conditions are satisfied:

(M1) φ(x, x) = f(x) and ∂1φ(x, x) ⊂ ∂f(x).

(M2) For every x ∈ Ω and every ε > 0 there exists δ > 0 such that f(y) − φ(y, x) ≤ ε‖y − x‖ for
every y ∈ Rn with ‖y − x‖ ≤ δ.

(M3) φ is jointly upper semicontinuous on Rn × Ω, i.e., (yj, xj) → (y, x) in Rn × Ω implies
lim sup

j→∞
φ(yj, xj) ≤ φ(y, x).

If Ω = Rn, then we simply say that φ is a first-order model of f . �

Remark 1. Axiom (M2) could be written f(y)− φ(y, x) ≤ o(‖y − x‖) as y → x.

Remark 2. Every locally Lipschitz function has a first order model, which we call the standard
model:

φ](y, x) := f(x) + f 0(x; y − x),
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where f 0(x; d) is the Clarke directional derivative at x in direction d. Indeed, axiom (M1) is
satisfied because ∂2f

0(x; 0) = ∂f(x). Axiom (M2) is immediate from the definition of f 0, and
axiom (M3) follows from the upper semicontinuity of the Clarke subdifferential.

Remark 3. The standard model φ] is the smallest model of f . That is, φ] ≤ φ for any other
first-order model φ of f . In particular, this implies equality ∂1φ(x, x) = ∂f(x) in axiom (M1).

In order to prove φ](·, x) ≤ φ(·, x) it suffices by convexity of φ(·, x) to show f 0(x, d) ≤ φ′(x, x; d)
for every d, where φ′(x, x; d) is the directional derivative of φ(·, x) at x in direction d. Let g ∈ ∂f(x)
be a limiting subgradient. That means there exist xj → x such that f is differentiable at xj and
gj = ∇f(xj) → g as j →∞ (see [8]). Since ∂f(x) is the convex hull of the limiting subgradients,
it suffices to show g ∈ ∂1φ(x, x).

Clearly gj = ∇f(xj) ∈ ∂f(xj). We claim that ∇f(xj) ∈ ∂1φ(xj, xj). Indeed, by axiom (M2)
there exist εt → 0+ as t→ 0+ such that

t−1 (f(xj + td)− f(xj)) ≤ t−1 (φ(xj + td, xj) + εtt‖d‖ − f(xj)) .

Passing to the limit t → 0+ gives ∇f(xj)
>d ≤ φ′(xj, xj; d), hence ∇f(xj) ∈ ∂1φ(xj, xj) by

convexity of φ(·, xj). Now by the subgradient inequality g>j d ≤ φ(xj + d, xj) − φ(xj, xj) for all
d and all j. Passing to the limit j → ∞ and using axiom (M3) gives g>d ≤ lim supj→∞ φ(xj +
d, xj)− f(x) ≤ φ(x+ d, x)− f(x) for every d, hence g ∈ ∂1φ(x, x), which proves the claim.

Definition 2. A first-order model φ(·, ·) of f on Ω is called strong if axioms (M1), (M3) and the
following strong version of (M2) are satisfied:

(M̃2) For every bounded set B ⊂ Rn there exists a constant L > 0 such that

f(y)− φ(y, x) ≤ L‖y − x‖2(4)

for all x ∈ B ∩ Ω, y ∈ B.

Remark 4. Axiom (M̃2) could be written more suggestively as f(y)− φ(y, x) ≤ O(‖y − x‖2) for
y − x→ 0 uniformly on bounded sets.

Remark 5. Consider the case of a differentiable function f : Rn → R. It seems natural to consider
the first order Taylor expansion φ(y, x) = f(x) +∇f(x)>(y − x). Is this a model in the sense of
Definition 1? The answer is no. While axioms (M1) and (M2) are satisfied, (M3) is only satisfied
when ∇f(x) is continuous.

Remark 6. Suppose f is of class C1, then the standard model is the first-order Taylor expansion
φ](y, x) = f(x)+ f 0(x; y−x) = f(x)+∇f(x)>d. Is this model strong? The answer is no, because
strongness requires an estimate of the form f(y) − f(x) − ∇f(x)>(y − x) ≤ O (‖y − x‖2) . A
sufficient condition for this is f ∈ C1,1, but strongness may fail for f ∈ C1 \ C1,1.

Remark 7. Consider the case of a composite function f = g ◦ F , where g : Rm → R is convex
and F : Rn → Rm is a mapping of class C2. Then a first order model may be defined as

φ(y, x) = g (F (x) + F ′(x)(y − x)) .

By Taylor’s theorem F (y)− [F (x) + F ′(x)(y − x)] = O (‖y − x‖2) and by the fact that g is locally
Lipschitz, we obtain an estimate of the form

|f(y)− φ(y, x)| ≤ L‖y − x‖2,

which is even stronger than estimate (4), and implies all items in Definition 2.
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Remark 8. The above example of a non-standard model is instructive, because we see that the
first order model is far from unique. It may even happen that one of the models is strong, while
another fails to be so. Consider for instance composite functions f = λ1◦F , where F : Rn → Sm is
class C2 with values in the space Sm of m×m symmetric matrices, and where λ1 : Sm → R is the
maximum eigenvalue function. Then the nonstandard model φ(y, x) = λ1 (F (x) + F ′(x)(y − x))
is strong by Remark 7, but the standard model φ](y, x) is only strong at those x where λ1 (F (x))
has eigenvalue multiplicity 1.

Remark 9. A convex function f has the trivial strong model φ(y, x) = f(y). For short, f is its
own strong model.

Remark 10. How about concave functions? Consider −f , where f is convex. Let g ∈ ∂f(x),
then the subgradient inequality gives g>(y − x) ≤ f(y)− f(x) or what is the same

−f(y) ≤ −f(x) + g>(x− y) ≤ −f(x) + f 0(x;x− y) = −f(x) + (−f)0(x; y − x) = φ](y, x).

That means the standard model is strong for concave functions. More generally, we have

Proposition 1. Let f be locally Lipschitz. Suppose −f is prox-regular at x̄. Then the standard
model of f is strong on a neighbourhood of x̄.

Proof: If −f is prox-regular at x̄ with respect to ḡ ∈ ∂(−f)(x̄), then there exist ε > 0 and r > 0
such that for all x, x′ ∈ B(x̄, ε) and all g(x) ∈ ∂(−f)(x) with ‖g(x)− ḡ‖ ≤ ε one has

|f(x)− f(x̄)| < ε⇒ −f(x′) ≥ −f(x) + g(x)>(x′ − x)− r
2
‖x′ − x‖2.

That is the same as

f(x′) ≤ f(x)− g(x)>(x′ − x) + r
2
‖x′ − x‖2

≤ f(x) + sup
−g∈∂f(x)

(−g)>(x′ − x) + r
2
‖x′ − x‖2 = f(x) + f 0(x, x′ − x) + r

2
‖x′ − x‖2,

which proves estimate (4) for f with constant L = r
2

on the ball B(x̄, ε). �

Remark 11. Now let f = f1 − f2 where f1 is convex and f2 is prox-regular. Let φ]
2(·, ·) be the

standard model of −f2, then in view of the previous remark

φ(y, x) = f1(y) + φ]
2(y, x) = f1(y)− f2(x) + (−f2)

0(x; y − x)

is a natural candidate for a strong model of f . And it is indeed a strong model as soon as we can
verify that it is a model. Axioms (M̃2) and (M3) being clear, what about axiom (M1)? We have
∂1φ(x, x) = ∂f1(x) + ∂(−f2)(x), which needs to be contained in ∂f(x). Unfortunately, it is just
the opposite inclusion which is always true, while ∂f1(x) + ∂(−f2)(x) ⊂ ∂f(x) needs additional
hypotheses, see e.g. [8]. Nonetheless, this shows that a natural candidate for a strong model for
f = f1 − f2 is φ(y, x) = f1 + φ]

2(·, x), where φ]
2 is the standard model of −f2.

Remark 12. Since f(x) = |x|3/2 is convex, it is its own strong model f = φ(·, x). But the
standard model φ](y, x) = |x|3/2 + 3

2
sgn(x)|x|1/2(y − x) is not strong at x = 0. Indeed, at the
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origin we would have to find L > 0 such that |y|3/2 ≤ φ(y, 0) + L|y − 0|2 = Ly2, but this fails for
small y, no matter how large we choose L.

Now consider f(x) = −|x|3/2, which is concave. The standard model is φ](y, x) = −|x|3/2 −
3
2
sgn(x)|x|1/2(y − x), which is strong by proposition 1. Notice that the differentiability properties

of f and −f are the same, and also is the standard model of −|x|3/2 the negative of the standard
model of |x|3/2. Nonetheless, the second one is strong, the first one fails to be so.

Remark 13. Consider f(x) = x2 sin(1/x) with f(0) = 0. At x 6= 0 the standard model is
φ](y, x) = f(x) + f ′(x)(y − x). This formula is no longer correct at x = 0, where φ](y, 0) =
f 0(0, y) = |y|. This highlights the fact that f is not semismooth at x = 0, i.e. {f ′(0)} 6= ∂f(0).

Clearly estimate (4) holds at every x 6= 0 with some constant Lx, because f is of class C2

around x. And at the origin we have f(y) = y2 sin(1/y) ≤ y2 ≤ f(0) + |y| = |y| for all y ∈ [−1, 1].
In other words, estimate (4) holds again, even with L0 = 0. Does this mean that the standard
model is strong? The answer is no, and the reason is that the constants Lx explode as x → 0.
This is easily understood when we observe that f ′′(x) is unbounded as x→ 0.

3 Working model and tangent program

Let us now complete our local model by including second order information.

Definition 3. Let φ(·, x) be a first order model of f at x. For a (not necessarily positive semidef-
inite) matrix Q(x) = Q(x)> which is bounded on bounded sets of x, the function Φ(y, x) =
φ(y, x) + 1

2
(y − x)>Q(x)(y − x) is called a model of f at x.

Remark 14. We call 1
2
(y − x)>Q(x)(y − x) the second order part of Φ(y, x). Why not allow

more general second order expressions, say Ψ(y, x) with ∂1Ψ(x, x) = 0? Our choice is motivated
by practical considerations, and will become clear as we go. Most of the theory would allow more
general terms Ψ. However, solving the tangent program might then become impractical.

In our algorithm we do not work directly with φ(·, x), but with an approximation φk(·, x),
which we update at each iteration k, and which is easier to manage than φ(·, x).

Definition 4. We call φk(·, x) a first-order working model of f at x if it is a convex function
satisfying φk(x, x) = φ(x, x) = f(x), ∂1φk(x, x) ⊂ ∂1φ(x, x), and φk(·, x) ≤ φ(·, x). If Φ(y, x) =
φ(y, x) + 1

2
(y − x)>Q(x)(y − x) is a model, then Φk(y, x) = φk(y, x) + 1

2
(y − x)>Q(x)(y − x) is

called the corresponding working model.

Let x ∈ Rn be the current iterate. Suppose a working model Φk(y, x) = φk(y, x) + 1
2
(y −

x)>Q(x)(y−x) at counter k has been decided on. Fixing the so-called proximity control parameter
τk > 0, we solve the tangent program

min
y∈Rn

Φk(y, x) + τk

2
‖y − x‖2.(5)

Let yk+1 be a local solution of (5) in the sense that

0 ∈ ∂1φk(y
k+1, x) + (Q(x) + τkI)(y

k+1 − x).(6)

Notice that by monotonicity of the convex subdifferential yk+1 is unique as soon as Q(x)+τkI � 0.
We call yk+1 the trial step generated by the tangent program. The idea is that after some updates
k → k + 1 the trial step yk+1 will improve over the current x and become the new iterate x+.
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Remark 15. In the convex case it is well-known that trust regions and proximity control can be
seen as equivalent, cf. [15]. It turns out that the situation is the same even without convexity.
Consider the trust region tangent program

minimize Φk(y, x) = φk(y, x) + 1
2
(y − x)>Q(x)(y − x)

subject to ‖y − x‖ ≤ tk
(7)

where tk is the trust region radius. Then solutions of (5) and (7) are in one-to-one correspondence
in the sense that if yk+1 solves (5), then it is the global minimum of (7) for tk = ‖x − yk+1‖.
Conversely, if yk+1 is the global minimum of (7), and if the Lagrange multiplier for the trust
region constraint associated with yk+1 is τk, then yk+1 solves (5) for that specific value of τk.
Notice here that the usual argument to show that the Newton trust region program has no duality
gap [31] carries over to our present case and explains why only τ -parameters with Q(x) + τkI � 0
are useful. The case Q(x) + τkI � 0 is when the solution yk+1 of both programs is unique.

Let us get back to (5). The first question is what happens if the solution of (5) is yk+1 = x?

Lemma 1. Suppose yk+1 = x. Then x is a critical point of f .

Proof: By local optimality 0 ∈ ∂1φk(y
k+1, x) + (Q(x) + τkI)(y

k+1 − x). Therefore yk+1 = x
implies 0 ∈ ∂1φk(x, x). By axiom (M1) we have ∂1φk(x, x) ⊂ ∂f(x), hence 0 ∈ ∂f(x) as claimed.
�

In other words, unless x is already a solution of (1) in the sense of (2), the trial step yk+1 will
always offer something new. Let us therefore assume that 0 6∈ ∂f(x). In particular, in that case
we have Φ(yk+1, x) < Φ(x, x) = f(x).

We call yk+1 a serious step if it is accepted as the new iterate, x+, and a null step if it is rejected.
In order to decide whether yk+1 is accepted or not, we introduce two constants 0 < γ < Γ < 1
and compute the quotient

(8) ρk =
f(x)− f(yk+1)

f(x)− Φk(yk+1, x)
,

which reflects the agreement between f and Φk(·, x) at yk+1. If the working model Φk is close to
the true f , we expect ρk ≈ 1. We say that agreement between f and Φk(·, x) is good (at yk+1)
if ρk > Γ, where the reader might for instance imagine Γ = 3

4
. On the other hand we say that

agreement between Φk and f is bad if ρk < γ, where the reader might imagine γ = 1
4
. Our strategy

is now as follows. If ρk ≥ γ, meaning that the trial step is not bad, we accept the trial step, and
x+ = yk+1 becomes the new iterate. Otherwise yk+1 is rejected and φk has to be replaced by a
better first order working model φk+1 in order to obtain a better trial step yk+2 at the next sweep.

Notice that the bad case includes those trial steps where ρk < 0. Now since 0 6∈ ∂1Φk(x, x), it
is always possible to decrease the value of Φk(y

k+1, x) below Φk(x, x) = f(x). In other words, the
denominator in (8) is always > 0. Therefore, if ρk < 0, the numerator is < 0. This happens if the
trial step yk+1 is not even a descent step of f .

Suppose the trial step yk+1 is a null step. Then working model Φk was not entirely useful, and
we need to improve it to do better at step k + 1. Since the quadratic term 1

2
(y − x)>Q(x)(y − x)

remains unchanged during the inner loop k → k + 1, we have to improve φk(y, x), which is done
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through cutting planes and aggregation. But will this be sufficient, or will we have to increase τk?
In order to decide we introduce another control parameter:

ρ̃k =
f(x)− Φ(yk+1, x)

f(x)− Φk(yk+1, x)
,

which reflects the agreement between Φ(·, x) and Φk(·, x) at yk+1. We fix a constant γ̃ with
γ < γ̃ < 1, which plays a role similar to γ. We say that Φk(y

k+1, x) is far from Φ(yk+1, x) if
ρ̃k < γ̃.

Suppose ρk < γ, but ρ̃k > γ̃ i.e. Φk(y
k+1, x) is far from f(yk+1), but at the same time Φk(·, x)

it is already close to Φ(·, x) at yk+1. Using aggregation and cutting planes alone would now drive
Φk+1(y

k+2, x) even closer to Φ(yk+2, x), but would not suffice to make progress. Namely, Φ(yk+1, x)
was too far from f(yk+1), and this phenomenon is likely to persist at if ‖yk+2 − x‖ ≈ ‖yk+1 − x‖.
In order to force Φ(yk+2, x) closer to f(yk+2), we have to reduce the trust region radius, or dually,
to tighten proximity control, which means increasing τk. This is the meaning of step 6 of the
algorithm.

How to build the new φk+1? The first element is to guarantee is exactness φk+1(x, x) =
φ(x, x) = f(x) and ∂1φk+1(x, x) ⊂ ∂f(x). To do this pick an element g(x) ∈ ∂1φ(x, x) ⊂ ∂f(x).
We define the affine function m(y) = f(x) + g(x)>(y − x) and assure that φk+1(y, x) ≥ m(y) for
every y, while φk+1 ≤ φ. Then ∂1φk+1(x, x) ⊂ ∂f(x) is assured. As the reader will notice, m does
not depend on the iteration counter k, and we can keep m(·) ≤ φk(·, x) ≤ φ(·, x) at all k.

To make φk+1 better than φk we use two more elements, referred to as cutting planes, and
aggregation, and these are constructed iteratively. We start by explaining cutting planes.

Assume yk+1 is a null step. Pick gk+1 ∈ ∂1φ(yk+1, x), then by convexity of φ(·, x)

g>k+1(y − yk+1) ≤ φ(y, x)− φ(yk+1, x),

or what is the same, mk+1(y) = φ(yk+1, x)+g>k+1(y−yk+1) is an affine support function to φ(·, x) at
yk+1. Putting ak+1 = φ(yk+1, x)+g>k+1(x−yk+1), we obviously have mk+1(y) = ak+1 +g>k+1(y−x).
The affine function mk+1(y) is called the cutting plane.

Lemma 2. Suppose the convex working model φk+1(·, x) is such that φk+1(y, x) ≥ mk+1(y) for
every y ∈ Rn, i.e., the cutting plane mk+1 is an affine minorant of φk+1(·, x). Then we have
φk+1(y

k+1, x) = φ(yk+1, x), and gk+1 ∈ ∂1φk+1(y
k+1, x).

Proof: A convex working model φk+1 must satisfy φk+1(·, x) ≤ φ(·, x), so the best value φk+1

can possibly attain at yk+1 is φ(yk+1, x). Since mk+1(y
k+1) = φ(yk+1, x) and mk+1 ≤ φk(·, x), this

value is indeed attained at yk+1. Knowing that φk+1(y
k+1, x) = φ(yk+1, x), it is now clear that a

subgradient of φ(·, x) at yk+1 is also a subgradient of φk+1(·, x) at yk+1. �

The effect of making the cutting plane mk+1 an affine support function to the next convex
model φk+1 at yk+1 is that the unsuccessful trial step yk+1 is cut away at the next trial k + 1,
paving the way for a better yk+2 to come.

Aggregation, which we explain next, is used to recycle some of the information stored in φk

for the new working model φk+1. To be more precise, the optimality condition for program (5)
implies 0 ∈ ∂1φk(y

k+1, x) + (Q(x) + τkI)(y
k+1 − x). In other words,

g∗k+1 := (Q(x) + τkI)(x− yk+1) ∈ ∂1φk(y
k+1, x).(9)
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That means m∗
k+1(y) = φk(y

k+1, x) + g∗>k+1(y − yk+1) is an affine support function to φk(·, x) at
yk+1. We can also write it in the more convenient form m∗

k+1(y) = a∗k+1 + g∗>k+1(y − x), where
a∗k+1 = φk(y

k+1, x) + g∗>k+1(x− yk+1). We call m∗
k+1 the aggregate plane.

Lemma 3. Let m∗
k+1 be the affine support function to φk(·, x) at the trial step yk+1 selected by

the optimality condition (9). If the new convex working model φk+1(·, x) has m∗
k+1 as an affine

minorant, i.e., satisfies φk+1(y, x) ≥ m∗
k+1(y) for all y, then we have φk(y

k+1, x) ≤ φk+1(y
k+1, x).

Aggregation is a clever substitute for storing a full sequence of models φk ≤ φk+1 → φ of
increasing complexity. Naturally, the latter would turn out too expensive. Altogether we have
identified the following list of conditions the convex working model has to satisfy

• Exactness. m(·) ≤ φk+1(·, x) ≤ φ(·, x).
• Cutting plane. mk+1(·) ≤ φk+1(·, x).
• Aggregation. m∗

k+1(·) ≤ φk+1(·, x).
We will see that these conditions are sufficient to ensure convergence of our bundle method. The
formal statement of our algorithm is given by the algorithm 1.

Remark 16. Notice that the most basic choice to assure these three conditions is φk+1(y, x) =
max{m(y),mk+1(y),m

∗
k+1(y)}. These three affine functions are support functions to φ(·, x), so

φk+1 ≤ φ is guaranteed.

It is instructive to specialize to the convex case f = φ(·, x). With Q(x) ≡ 0 and φk(·, x) the
standard polyhedral working model of remark 16, we recover a classical bundle method. Since
Φ(·, x) = φ(·, x) = f we have ρ̃k = ρk, so ρk < γ in step 5 of the algorithm always implies
ρ̃k = ρk < γ < γ̃ in step 6. In consequence τk is never increased, but could be decreased if ρk > Γ.
This shows that in convex bundling τ could be frozen once and for all. This is significant because
in the non-convex case it cannot. In those convex bundle methods where τ is not frozen the
motivation is to give the user additional freedom in the management of τ , but this rests optional.
In the non-convex case moving τ becomes mandatory and the freedom is significantly reduced.

4 Analysis of the inner loop

In this section we prove that the inner loop terminates with a serious step after a finite number
of updates k → k+ 1. The current iterate x is fixed, and so is Q := Q(x). We assume that φ(·, x)
satisfies axioms (M1) and (M2). Neither axiom (M3) nor the strong version (M̃2) will be needed
in this section.

Lemma 4. Let x be the current iterate. Suppose the inner loop produces an infinite sequence of
null steps yk+1. Then there exists k0 ∈ N such that ρ̃k < γ̃ for all k ≥ k0.

Proof: i) By assumption none of the trial steps is accepted, so that: ρk < γ for all k ∈ N.
Suppose contrary to the statement that there are infinitely many inner loop instances k where
ρ̃k ≥ γ̃. According to step 6 of the algorithm this means that the doubling rule is applied infinitely
often. Since the proximity parameter τk is never decreased in the inner loop, this implies τk →∞.

ii) Let us prove that under these circumstances, yk+1 → x. Recall that g∗k+1 = (Q + τkI)(x−
yk+1) ∈ ∂1φk(y

k+1, x). By the subgradient inequality

g∗>k+1(x− yk+1) ≤ φk(x, x)− φk(y
k+1, x) ≤ f(x)−m(yk+1),(10)
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Algorithm 1. Proximity control algorithm for (1).

Parameters: 0 < γ < γ̃ < Γ < 1, and 0 < q <∞.
1: Initialize outer loop. Choose initial guess x1 and an initial matrix Q1 = Q>1 with −qI �
Q1 � qI. Then fix memory control parameter τ ]

1 such that Q1 + τ ]
1I � 0. Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂f(xj). Otherwise goto inner loop.
3: Initialize inner loop. Put inner loop counter k = 1 and initialize τ -parameter using

the memory element, i.e., τ1 = τ ]
j . Choose initial convex working model φ1(·, xj), and let

Φ1(y, x
j) = φ1(y, x

j) + 1
2
(y − xj)>Qj(y − xj).

4: Trial step generation. At inner loop counter k solve tangent program

min
y∈Rn

Φk(y, x
j) +

τk
2
‖y − xj‖2.

Solution is the new trial step yk+1.
5: Acceptance test. Check whether

ρk =
f(xj)− f(yk+1)

f(xj)− Φk(yk+1, xj)
≥ γ.

If this is the case put xj+1 = yk+1 (serious step), quit inner loop and goto step 8. On the other
hand, if this is not the case (null step) continue inner loop with step 6.

6: Update proximity parameter. Compute second control parameter

ρ̃k =
f(xj)− Φ(yk+1, xj)

f(xj)− Φk(yk+1, xj)
.

Then put

τk+1 =


τk, if ρ̃k < γ̃

2τk, if ρ̃k ≥ γ̃
(bad)

7: Update working model. Build new convex working model φk+1(·, xj) by respecting the
three rules (exactness, cutting plane, aggregation) based on null step yk+1. Then increase
inner loop counter k and continue inner loop with step 4.

8: Update Qj and memory element. Update matrix Qj → Qj+1 respecting Qj+1 = Q>j+1 and
−qI � Qj+1 � qI. Then store new memory element

τ ]
j+1 =


τk+1, if γ ≤ ρk < Γ (not bad)

τk+1

2
, if ρk ≥ Γ (good)

Increase τ ]
j+1 if necessary to ensure Qj+1 + τ ]

j+1I � 0. Increase outer loop counter j by 1 and
loop back to step 2.
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where we use φk(x, x) = f(x) and the fact that the exactness plane m(·) satisfies m(yk+1) ≤
φk(y

k+1, x). Since m(y) = f(x) + g(x)>(y − x) for some g(x) ∈ ∂f(x), the term on the right of
(10) is g(x)>(x− yk+1), and expanding the term on the left of (10) gives

(x− yk+1)>(Q+ τkI)(x− yk+1) ≤ g(x)>(x− yk+1) ≤ ‖g(x)‖‖x− yk+1‖.(11)

Since τk → ∞, the term on the left of (11) behaves asymptotically like τk‖x − yk+1‖2. Dividing
(11) by ‖x − yk+1‖ therefore shows that τk‖x − yk+1‖ is bounded by ‖g(x)‖. As τk → ∞, this
could only mean yk+1 → x.

iii) Let us use yk+1 → x and go back to formula (10). It is now clear from the passage to (11)
that φk(x, x)− φk(y

k+1, x) = f(x)− φk(y
k+1, x) is sandwiched in between two terms with limit 0.

This implies φk(y
k+1, x) → f(x).

Keeping this in mind, let us use the subgradient inequality (11) again and subtract a term
1
2
(x− yk+1)>Q(x− yk+1) from both sides. That gives the estimate

1
2
(x− yk+1)>Q(x− yk+1) + τk‖x− yk+1‖2 ≤ f(x)− Φk(y

k+1, x).

For those k where τk > ‖Q‖, we clearly have

‖g∗k+1‖ ≤ ‖Q‖‖x− yk+1‖+ τk‖x− yk+1‖ ≤ 2τk‖x− yk+1‖.

Hence, for k with τk > ‖Q‖
1
2
(x− yk+1)>Q(x− yk+1) + τk‖x− yk+1‖2 ≥ τk‖x− yk+1‖2 − 1

2
‖Q‖‖x− yk+1‖2

≥ 1
2
τk‖x− yk+1‖2 ≥ 1

4
‖g∗k+1‖‖x− yk+1‖.

Altogether, this gives

f(x)− Φk(y
k+1, x) ≥ 1

4
‖g∗k+1‖‖x− yk+1‖.(12)

iv) Now let εk := dist
(
g∗k+1, ∂1φ(x, x)

)
. We argue that εk → 0. Indeed, using the subgradient

inequality at yk+1 in tandem with φ(·, x) ≥ φk(·, x), we have for all y ∈ Rn

φ(y, x) ≥ φk(y
k+1, x) + g∗k+1

>(y − yk+1).

Since the subgradients g∗k+1 are bounded by part ii), there exists an infinite subsequence N ⊂ N
such that g∗k+1 → g∗, k ∈ N , for some g∗. Passing to the limit k ∈ N and using yk+1 → x and
φk(y

k+1, x) → f(x) = φ(x, x), we have φ(y, x) ≥ φ(x, x)+g∗>(y−x) for all y. Hence g∗ ∈ ∂1φ(x, x),
which means εk = dist(g∗k+1, ∂1φ(x, x)) ≤ ‖g∗k+1 − g∗‖ → 0, k ∈ N , proving the claim.

v) Using the definition of εk, choose g̃k+1 ∈ ∂1φ(x, x) such that ‖g∗k+1−g̃k+1‖ = εk. Now observe
that we enter the inner loop because 0 6∈ ∂f(x), which by axiom (M1) gives 0 6∈ ∂1φ(x, x). That
means dist(0, ∂1φ(x, x)) = η > 0, so that ‖g̃k+1‖ ≥ η > 0 for all k ∈ N . Hence ‖g∗k+1‖ ≥ η−εk > η

2

for k ∈ N large enough, given that εk → 0. Going back with this to (12) we deduce

f(x)− Φk(y
k+1, x) ≥ η

8
‖x− yk+1‖(13)

for k ∈ N large enough. Since yk+1 → x, axiom (M2) gives a sequence ωk → 0+ such that
f(yk+1)− φ(yk+1, x) ≤ ωk‖x− yk+1‖. Putting ω̃k := ωk + ‖Q‖‖x− yk+1‖ → 0 implies

f(yk+1)− Φ(yk+1, x) ≤ ωk‖x− yk+1‖+ ‖Q‖‖x− yk+1‖2(14)

≤ ω̃k‖x− yk+1‖.
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Now to conclude let us expand the test parameters as follows

ρ̃k = ρk +
f(yk+1)− Φ(yk+1, x)

f(x)− Φk(yk+1, x)

≤ ρk +
ω̃k‖x− yk+1‖
η/8‖x− yk+1‖

= ρk + 8ω̃k/η (estimates (14) and (13))

Since ω̃k → 0, we have lim supk→∞ ρ̃k ≤ lim supk→∞ ρk ≤ γ, contradicting the fact that ρ̃k ≥ γ̃ > γ
for infinitely many k. That proves the result. �

The technique of proof of the following result is essentially known, and in the case Q = 0 the
results could be obtained from [10, Proposition 4.3], [15, Chapter XV] or Part II of [6]. For a
recent extension to prox-regular f , see [14].

Lemma 5. Let 0 6∈ ∂f(x). Then the inner loop finds a serious iterate after a finite number of
trial steps yk+1.

Proof: i) We proceed by contradiction and show that if the inner loop turns forever, we must
have 0 ∈ ∂f(x).

From Lemma 4 we see that if the inner loop turns forever, there exists k0 ∈ N such that ρk < γ
and ρ̃k < γ̃ for all k ≥ k0. According to the update rule in step 8 of algorithm 1, this means the
proximity control parameter is frozen from inner loop counter k0 onwards: τ := τk for k ≥ k0.

ii) We prove that the sequence of trial steps yk+1 is bounded. Using inequality (11) based on
the subgradient inequality and on the support property of the exactness plane, we get the estimate

(x− yk+1)>(Q+ τI)(x− yk+1) ≤ ‖g(x)‖‖x− yk+1‖.

Since the τ -parameter is frozen and Q + τI � 0, the expression on the left is the square ‖x −
yk+1‖2

Q+τI of the Euclidean norm derived from Q+τI. Since both norms are equivalent, we deduce
after dividing by ‖x− yk+1‖ that ‖x− yk+1‖Q+τI ≤ C‖g(x)‖ for some constant C > 0 and all k.
This proves the claim.

Notice an important difference with Lemma 4. Since the τ -parameter is frozen, we cannot
conclude at this stage that yk+1 → x. Proving this will turn out considerably more complicated.

iii) Let us introduce the objective function of program (5) for k ≥ k0:

ψk(y, x) = φk(y, x) + 1
2
(y − x)>(Q+ τI)(y − x).

Let m∗
k+1 be the aggregate plane, then as we know φk(y

k+1, x) = m∗
k+1(y

k+1), and therefore also

ψk(y
k+1, x) = m∗

k+1(y
k+1) + 1

2
(yk+1 − x)>(Q+ τI)(yk+1 − x).

We introduce the quadratic function ψ∗k(y, x) = m∗
k+1(y) + 1

2
(y − x)>(Q+ τI)(y − x). Then

ψk(y
k+1, x) = ψ∗k(y

k+1, x)(15)

by what we have just seen. By the aggregate condition we have m∗
k+1(y) ≤ φk+1(y, x), so that

ψ∗k(y, x) ≤ ψk+1(y, x).(16)
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Notice that∇ψ∗k(y, x) = ∇m∗
k+1(y)+(Q+τI)(y−x) = g∗k+1+(Q+τI)(y−x), so that∇ψ∗k(yk+1, x) =

0 by (9). We therefore have the relation

ψ∗k(y, x) = ψ∗k(y
k+1, x) + 1

2
(y − yk+1)>(Q+ τI)(y − yk+1),(17)

which is obtained by Taylor expansion of ψ∗k(·, x) at yk+1. Notice again that step 8 of the algorithm
assures Q+ τI � 0, so that the quadratic expression defines the Euclidean norm ‖ · ‖Q+τI .

iv) From the previous point iii) we now have

(18)

ψk(y
k+1, x) ≤ ψ∗k(y

k+1, x) + 1
2
‖yk+2 − yk+1‖2

Q+τI (using (15))
= ψ∗k(y

k+2, x) (using (17))
≤ ψk+1(y

k+2, x) (using (16))
≤ ψk+1(x, x) (yk+2 minimizer of ψk+1)
= φk+1(x, x) = f(x).

We deduce that the sequence ψk(y
k+1, x) is monotonically increasing and bounded above by f(x).

It therefore converges to some value ψ∗ ≤ f(x).
Going back to (18) with this information shows that the term 1

2
‖yk+2 − yk+1‖2

Q+τI is squeezed
in between two convergent terms with the same limit, ψ∗, which implies 1

2
‖yk+1− yk+2‖2

Q+τI → 0.
Consequently, ‖yk+1−x‖2

Q+τI −‖yk+2−x‖2
Q+τI also tends to 0, because the sequence of trial steps

yk+1 is bounded by part ii).
Recalling φk(y, x) = ψk(y, x)− 1

2
‖y − x‖2

Q+τI , we deduce, using both convergence results, that

φk+1(y
k+2, x)− φk(y

k+1, x) =

ψk+1(y
k+2, x)− ψk(y

k+1, x)− 1
2
‖yk+2 − x‖2

Q+τI + 1
2
‖yk+1 − x‖2

Q+τI → 0.(19)

v) Recall that according to our algorithm the cutting plane mk+1 is an affine support function
of φk+1(·, x) at yk+1 (cf. Lemma 2). By the subgradient inequality this implies

g>k+1(y − yk+1) ≤ φk+1(y, x)− φk+1(y
k+1, x).

Since φk+1(y
k+1, x) = φ(yk+1, x), we have

φ(yk+1, x) + g>k+1(y − yk+1) ≤ φk+1(y, x).(20)

Now we estimate

0 ≤ φ(yk+1, x)− φk(y
k+1, x)

= φ(yk+1, x) + g>k+1(y
k+2 − yk+1)− φk(y

k+1, x)− g>k+1(y
k+2 − yk+1)

≤ φk+1(y
k+2, x)− φk(y

k+1, x) + ‖gk+1‖‖yk+2 − yk+1‖ (using (20))

and this term converges to 0, because of (19), because the gk+1 are bounded, and because yk+2 −
yk+1 → 0 by part iv) above. Boundedness of the gk+1 follows from boundedness of the trial steps
yk+1 shown in part ii). Indeed, gk+1 ∈ ∂1φ(yk+1, x), and the subdifferential of φ(·, x) is uniformly
bounded on the bounded set {yk+1 : k ∈ N}. We deduce that φ(yk+1, x) − φk(y

k+1, x) → 0.
Obviously, that also gives Φ(yk+1, x)− Φk(y

k+1, x) → 0.
vi) We now proceed to prove Φk(y

k+1, x) → f(x), and then of course also Φ(yk+1, x) → f(x).
Assume this is not the case, then lim supk→∞ f(x)−Φk(y

k+1, x) =: η > 0. Choose δ > 0 such that
δ < (1− γ̃)η. It follows from v) above that there exists k1 ≥ k0 such that

Φ(yk+1, x)− δ ≤ Φk(y
k+1, x)
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for all k ≥ k1. Using ρ̃k ≤ γ̃ for all k ≥ k0 then gives

γ̃
(
Φk(y

k+1, x)− f(x)
)
≤ Φ(yk+1, x)− f(x) ≤ Φk(y

k+1, x) + δ − f(x).

Passing to the limit implies −γ̃η ≤ −η + δ, contradicting the choice of δ. This proves η = 0.
vii) Having shown Φk(y

k+1, x) → f(x), and therefore also Φ(yk+1, x) → f(x), we now argue
that yk+1 → x. This follows indeed from the definition of ψk, because

Φk(y
k+1, x) ≤ ψk(y

k+1, x) = Φk(y
k+1, x) + τ

2
‖yk+1 − x‖2 ≤ ψ∗ ≤ f(x).

Since Φk(y
k+1, x) → f(x) by vi), we have indeed τ

2
‖yk+1 − x‖2 → 0 by a sandwich argument,

which also proves en passant that ψ∗ = f(x) and φk(y
k+1, x) → f(x).

To finish the proof, let us now show 0 ∈ ∂f(x). Remember that by the necessary optimality
condition for (5) we have (Q+ τI)(x− yk+1) ∈ ∂1φk(y

k+1, x). By the subgradient inequality,

(x− yk+1)>(Q+ τI)(y − yk+1) ≤ φk(y, x)− φk(y
k+1, x)

≤ φ(y, x)− φk(y
k+1, x) (using φk ≤ φ).

Passing to the limit, observing ‖x− yk+1‖2
Q+τI → 0 and φk(y

k+1, x) → f(x) = φ(x, x), we obtain

0 ≤ φ(y, x)− φ(x, x)

for all y ∈ Rn. This proves 0 ∈ ∂φ1(x, x), and since ∂1φ(x, x) ⊂ ∂f(x) by (M1), we have 0 ∈ ∂f(x).
�

Remark 17. Our algorithm does not leave much freedom in the management of τk, but Lemmas
4 and 5 cover more general strategies. For instance, in case ρk < γ and ρ̃k ≥ γ̃ it suffices to make
sure that τk increases to infinity to ultimately force ρ̃k < γ̃. This could of course be achieved by
more general rules than just doubling. The proof of Lemma 4 easily adapts.

As soon as the situation ρk < γ, ρ̃k < γ̃ of Lemma 5 is reached, our algorithm freezes τk, but
one could still allow controlled movements of τk. For instance, τk could be allowed to move so that
it stays bounded and bounded away from 0. The proof of Lemma 5 can be adapted to handle this
case. One could also imagine letting τk →∞ monotonically in the case where our method freezes
τk, and for Q(x) = 0 [6, Theorem 10.14] gives hypotheses under which this works. However, this
concerns only the inner loop. Letting τk →∞ leads to difficulties in the convergence proof of the
outer loop.

5 Convergence of the outer loop

All we have to do now is piece things together and show subsequence convergence of the sequence
of serious steps xj retained in the outer loop. Notice that the ideal model used at the serious
iterates xj is now

Φ(y, xj) = φ(y, xj) + 1
2
(y − xj)>Qj(y − xj),

where Qj = Q(xj) is updated in the outer loop (step 8 of the algorithm) and remains unchanged
during the inner loop. That means, we allow the quadratic term to be updated only between
serious steps. We assume that Qj + τkj

I � 0, which is guaranteed by starting the inner loop with
a τ parameter having this property (step 8). Since the τ -parameter is never decreased in the inner
loop, this property remains valid at all instances k of the inner loop. We now have the following
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Theorem 1. Let f be a locally Lipschitz function, and let x1 ∈ Rn be such that the level set {x ∈
Rn : f(x) ≤ f(x1)} is bounded. Suppose f has a strong model φ(·, x). Then every accumulation
point of the sequence of serious steps xj generated by the algorithm is a critical point of f .

Proof: i) From the analysis in section 4 we know that the inner loop always ends after a finite
number of steps k with a new x+ satisfying the acceptance test, unless we have finite termination
due to 0 ∈ ∂f(x). Let us exclude this case for the following. Let xj denote the infinite sequence of
serious steps, satisfying the acceptance test in step 5 of the algorithm, and let x̄ be an accumulation
point of xj. We assume that at outer loop counter j the inner loop finds a serious step at inner
counter k = kj. In other words, ykj+1 = xj+1 passes the acceptance test in step 5 of the algorithm
and becomes a serious iterate, while the yk+1 with k < kj are null steps. That means

f(xj)− f(xj+1) ≥ γ
(
f(xj)− Φkj

(xj+1, xj)
)
.(21)

Now recall that τkj
(xj − xj+1) ∈ ∂Φkj

(xj+1, xj) due to (9), or what is the same, (Qj + τkj
I)(xj −

xj+1) ∈ ∂1φkj
(xj+1, xj). The subgradient inequality for φkj

(·, xj) at xj+1 therefore gives(
xj − xj+1

)>
(Qj + τkj

I)(xj − xj+1) ≤ φkj
(xj, xj)− φkj

(xj+1, xj) = f(xj)− φkj
(xj+1, xj),

using φkj
(xj, xj) = f(xj). With Φk(y, x

j) = φk(y, x
j) + 1

2
(y − xj)>Qj(y − xj) we therefore have

1
2
‖xj+1 − xj‖2

Qj+τkj
I ≤ f(xj)− Φkj

(xj+1, xj) ≤ γ−1 (f(xj)− f(xj+1)) ,

using (21). Now, recall that f(xj) ≥ f(xj+1) because our method is of descent type in the serious
steps. Since x̄ is an accumulation point of the sequence xj, f(x̄) is an accumulation point of f(xj),
and by monotonicity, we deduce f(xj) → f(x̄), (j →∞). Hence f(xj)− f(xj+1) → 0 and then
also ‖xj+1 − xj‖2

Qj+τkj
I → 0 as j →∞.

ii) Let us now prove that this implies gj := (Qj + τkj
I) (xj − xj+1) → 0, (j → ∞). Assume

on the contrary that there exists an infinite subset N of N and some µ > 0 such that ‖gj‖ =
‖(Qj + τkj

I)(xj − xj+1)‖ ≥ µ > 0 for every j ∈ N .
We first notice that under this assumption the τkj

, j ∈ N , must be unbounded. Indeed, assume
on the contrary that the τkj

, j ∈ N , are bounded. By boundedness of Qj, and boundedness of the
serious steps, there exists then an infinite subsequence N ′ of N such that Qj, τkj

and xj − xj+1

converge respectively to Q̄, τ̄ and δx̄ as j ∈ N ′. This implies that the corresponding subsequence
of gj converges to (Q̄+ τ̄ I)δx̄, where ‖(Q̄+ τ̄ I)δx̄‖ ≥ µ > 0. Similarly, (xj−xj+1)>(Qj +τkj

I)(xj−
xj+1) → δx̄>(Q̄+ τ̄ I)δx̄. By part i) of the proof we have g>j (xj+1− xj) = ‖xj+1− xj‖2

Qj+τkj
I → 0,

which means δx̄>(Q̄ + τ̄ I)δx̄ = 0. Since Q̄ + τ̄ I is symmetric and Q̄ + τ̄ I � 0, we deduce
(Q̄+ τ̄ I)δx̄ = 0, contradicting ‖(Q̄+ τ̄ I)δx̄‖ ≥ µ > 0. This argument proves that the τkj

, j ∈ N ,
are unbounded.

iii) We now argue that there exists yet another infinite subsequence N ′ of N with τkj
→ ∞,

(j ∈ N ′), such that in addition for each j ∈ N ′, the doubling rule in step 6 of the algorithm was
applied at least once before the step xj+1 = ykj+1 was accepted. Indeed, to construct N ′ we let,
for every j ∈ N , j′ ≤ j be that outer-loop instant where the τ -parameter was increased for the
last time before j, and we put N ′ := {j′ : j ∈ N}. It is possible that j′ = j, but in general we
may have j′ < j, and we only know that

2τkj′−1
≤ τk′j and τkj′

≥ τkj′+1
≥ · · · ≥ τkj

.
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Since τkj
→ ∞, j ∈ N , this assures τkj′

→ ∞, j′ ∈ N ′. Since the doubling rule was applied at
least once at the outer-loop counter j′, the set N ′ is as claimed.

Let us say that for j ∈ N ′ the doubling rule was applied for the last time at stage τkj−νj
for

some νj ≥ 1. That means, τkj−νj+1 = 2τkj−νj
, while the τ -parameter remained unchanged during

the following inner steps before acceptance:

τkj
= τkj−1 = · · · = τkj−νj+1 = 2τkj−νj

.(22)

Now recall that in step 6 of the algorithm we have ρk < γ and ρ̃k ≥ γ̃ for those k where the trial
step was not accepted and the doubling rule was applied. Since this is the case at stage kj − νj

we have

ρkj−νj
=

f(xj)− f(ykj−νj+1)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

< γ and ρ̃kj−νj
=

f(xj)− Φ(ykj−νj+1, xj)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≥ γ̃.

By (22) we now have (Qj + 1
2
τkj
I)

(
xj − ykj−νj+1

)
∈ ∂1φkj−νj

(ykj−νj+1, xj). Using the subgradient
inequality for φkj−νj

(·, xj) at ykj−νj+1 and φkj−νj
(xj, xj) = f(xj), we obtain(

xj − ykj−νj+1
)>

(Qj + 1
2
τkj
I)

(
xj − ykj−νj+1

)
≤ φkj−νj

(xj, xj)− φkj−νj
(ykj−νj+1, xj)

= f(xj)− φkj−νj
(ykj−νj+1, xj),

which on subtracting 1
2
(xj − ykj−νj+1)>Qj(x

j − ykj−νj+1) from both sides becomes

1
2
(xj − ykj−νj+1)>(Qj + τkj

I)(xj − ykj−νj+1) ≤ f(xj)− Φkj−νj
(ykj−νj+1, xj).

Using ‖xj − ykj−νj+1‖2
Qj+τkj

I ≥ (τkj
− ‖Qj‖)‖xj − ykj−νj+1‖2, this could also be written as

(τkj
− ‖Qj‖)‖xj − ykj−νj+1‖2

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≤ 2.(23)

Now, substituting (23) into the expression for ρ̃kj−νj
and expanding gives

ρ̃kj−νj
= ρkj−νj

+
f(ykj−νj+1)− Φ(ykj−νj+1, xj)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≤ ρkj−νj
+

(L+ ‖Qj‖)‖xj − ykj−νj+1‖2

f(xj)− Φkj−νj
(ykj−νj+1, xj)

(using (4))

≤ ρkj−νj
+ 2

L+ ‖Qj‖
τkj
− ‖Qj‖

(using (23)).

Here estimate (4) is applied to the set B = {xj, ykj−νj+1 : j ∈ N ′}, which as we now argue is
bounded. Indeed, to see this observe that τkj−νj

= 1
2
τkj

→∞ as j ∈ N ′. Applying the subgradient
inequality to g̃j = (Qj + τkj−νj

I)(xj − ykj−νj+1) ∈ ∂1φkj−νj
(ykj−νj+1, xj) gives

(xj − ykj−νj+1)>(Qj + τkj−νj+1I)(x
j − ykj−νj+1) ≤ φkj−νj

(xj, xj)− φkj−νj
(ykj−νj+1, xj)

≤ f(xj)−mj(y
kj−νj+1) = g(xj)>(xj − ykj−νj+1)

≤ ‖g(xj)‖‖xj − ykj−νj+1‖.
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Here mj(·) is the exactness plane at xj. By (22) we have τkj−νj+1 →∞, so using boundedness of
the xj and boundedness of the Qj, we deduce (via the argument already employed in the proof of
Lemma 4) that the ykj−νj+1 are bounded.

Going back to the above estimate involving ρ̃kj−νj
and ρkj−νj

, notice that ρkj−νj
< γ and

(L+‖Qj‖)/(τkj
−‖Qj‖) → 0 imply lim supj→∞ ρ̃kj−νj

≤ γ in that estimate, contradicting ρ̃kj−νj
≥

γ̃ > γ for the infinitely many j ∈ N ′. That proves gj → 0, j →∞.
iv) Having shown that gj := (Qj + τkj

I)(xj − xj+1) → 0, (j → ∞), let us argue that every
accumulation point x̄ of the sequence xj of serious steps must be critical. Notice that since
{x ∈ Rn : f(x) ≤ f(x1)} is bounded by hypothesis, and since our algorithm is of descent type in
the serious steps, the sequence xj is bounded.

Since gj is a subgradient of φkj
(·, xj) at xj+1 = ykj+1, we have for every test vector h:

g>j h ≤ φkj
(xj+1 + h, xj)− φkj

(xj+1, xj)

≤ φ(xj+1 + h, xj)− φkj
(xj+1, xj) (using φkj

≤ φ).

Now we use the fact that ykj+1 = xj+1 was accepted in step 5 of the algorithm, which means

γ−1
(
f(xj)− f(xj+1)

)
≥ f(xj)− Φkj

(xj+1, xj).

Combining these two estimates for a fixed test vector h gives:

g>j h ≤ φ(xj+1 + h, xj)− f(xj) + f(xj)− φkj
(xj+1, xj)

= φ(xj+1 + h, xj)− f(xj) + f(xj)− Φkj
(xj+1, xj) + 1

2
(xj − xj+1)>Qj(x

j − xj+1)

≤ φ(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
+ 1

2
(xj − xj+1)>Qj(x

j − xj+1)

= φ(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
+

+1
2
(xj − xj+1)>(Qj + τkj

I)(xj − xj+1)−
τkj

2
‖xj − xj+1‖2

≤ φ(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
+ 1

2
(xj − xj+1)>(Qj + τkj

I)(xj − xj+1).

Now fix h′ ∈ Rn. Plugging h = xj − xj+1 + h′ in the above estimate gives

1
2
‖xj − xj+1‖2

Qj+τkj
I + g>j h

′ ≤ φ(xj + h′, xj)− f(xj) + γ−1 (f(xj)− f(xj+1)) .

Passing to the limit j ∈ N and using, in the order named, ‖xj−xj+1‖2
Qj+τkj

I → 0, gj → 0, xj → x̄,

f(xj) → f(x̄) = φ(x̄, x̄) and f(xj)− f(xj+1) → 0, we obtain:

0 ≤ φ(x̄+ h′, x̄)− φ(x̄, x̄).(24)

Here the rightmost term f(xj) − f(xj+1) → 0 converges by monotonicity, while convergence of
the leftmost term was shown in part ii). Notice that estimate (24) is the only place in the whole
demonstration where axiom (M3) is used, because we need lim supj∈N φ(xj +h′, xj) ≤ φ(x̄+h′, x̄).

Now the test vector h′ in (24) is arbitrary, which shows 0 ∈ ∂1φ(x̄, x̄). By axiom (M1) we have
0 ∈ ∂f(x̄). This completes the proof. �

Remark 18. The now standard way to prove convergence of bundle methods in the convex case
is the anchor technique of Kiwiel [16], see also [27]. The complicated argument above becomes
necessary due to the absence of convexity.
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6 Convergence without strongness

In this section we show that the strongness assumption (M̃2) can be substantially weakened if
the algorithm is slightly modified. What is needed is an additional safeguard rule (S) against
exceedingly large τ -parameters. To begin, we need the following

Definition 5. The first-order model φ of f is called strict if (M1), (M3) and the following strict
version of axiom (M2) are satisfied:

(M̂2) For every bounded set B and every ε > 0 there exists δ > 0 such that for all x, y ∈ B,
‖x− y‖ ≤ δ implies f(y)− φ(y, x) ≤ ε‖y − x‖.

Remark 19. Condition (M̂2) could also be written more suggestively as f(y)− φ(y, x) ≤ o(‖y −
x‖), as y − x → 0 uniformly on bounded sets. Yet another practical way to write (M̂2) is as
follows: For every x and sequences xj → x and yj → x there exists a sequence εj → 0+ such that
f(yj) ≤ φ(yj, xj) + εj‖yj − xj‖.

Remark 20. It is clear that every strong model is strict, and that every strict model is a model.
None of these implications is reversible.

Remark 21. Let f ∈ C1, then the standard model is φ](y, x) = f(x) +∇f(x)>(y − x). Notice
that φ] is strict because f is strictly differentiable. Since φ] need not be strong for f ∈ C1 \ C1,1,
it follows that strict models need not be strong.

Remark 22. We show by way of an example that a model need not be strict. We take f(x) =
x2 sin(1/x) on the real line, where f(0) = 0. Notice that f is differentiable everywhere, but
∂f(0) = [−1, 1], even though f ′(0) = 0. We show that the standard model of f is not strict.

Observe that at x 6= 0 we have

φ](y, x) = x2 sin(1/x) + (2x sin(1/x)− cos(1/x)) (y − x).

Therefore writing f(y) = φ](y, x) + ε(y, x)(y − x) we find that the o-term is

ε(y, x) =
y2 sin(1/y)− x2 sin(1/x)

y − x
− 2x sin(1/x) + cos(1/x).

If the standard model was to be strict on a bounded interval B containing 0, we would have to
have ε(y, x) → 0 as x, y → 0. But this is not the case. Take xk = 1/kπ → 0 as k → ∞ and
yl = (`π + π/2)−1 → 0 as `→∞. Then sin(1/yl) = ±1 and sin(1/xk) = 0, while cos(1/xk) = ±1.

Then ε(yl, xk) = (±y2
l /(yl − xk)) ± 1 = ±(1/π)

k+π(kl−l2−l+ k
2
− 1

4
)

k`+ k
2
−`2−`− 1

4

. Letting k = ` → ∞ gives

ε(yk, xk) → ∓(2− π)/π 6= 0. �

As we shall see, axiom (M̂2) allows a finer analysis of the mechanism in the proof of Theorem
1. In order to study this, let us introduce the following terminology. A subsequence xj, j ∈ N of
the sequence of serious iterates is called of type I if τj is bounded. It is called of type II if τj is
not bounded. We say that j ∈ N is of type IIa if τj → ∞ as j ∈ N , but for every j ∈ N the
τ -parameter was not increased during the jth run of the inner loop. The sequence is called of type
IIb if τj →∞, j ∈ N , and there exists an infinite subset N ′ of N such that for every j′ ∈ N ′, the
τ -parameter was increased at least once during the inner loop j′.

With these preparations we are ready for
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Theorem 2. Let f ha a strict model φ and suppose the level set {x ∈ Rn : f(x) ≤ f(x1)} is
bounded. Suppose x̄ is the accumulation point of a sub-sequence of type I or of type IIb of the
sequence xj of serious iterates. Then 0 ∈ ∂f(x̄).

Proof: The case of a sequence of type I where τkj
is bounded poses no problem, so suppose the

sequence j ∈ J is of type IIb and has τkj
→ ∞, and xj → x̄. We have to show that x̄ is critical.

Since the sequence is of type IIb, we are now in the situation of part iii) of the proof of Theorem
1, but have to manage without estimate (4), because we do not assume that our model is strong.
We consider ρkj−νj

< γ and ρ̃kj−νj
≥ γ̃ as in that proof. In particular, the null step ykj−νj+1 will

again play a decisive role.
Notice first that as τkj

→ ∞ and τkj
= 2τkj−νj

, boundedness of the subgradients g̃j :=
(Qj + 1

2
τkj
I)(xj − ykj−νj+1) ∈ ∂1φkj−νj

(ykj−νj+1, xj) shows ykj−νj+1 → x̄. Suppose there exists
a subsequence J ′ of J such that ‖g̃j′‖ → 0, j′ ∈ J ′. Then for a test vector h and j ∈ J ′:

g̃>j h ≤ φkj−νj
(ykj+νj+1 + h, xj)− φkj−νj

(ykj−νj+1, xj)(25)

≤ φ(ykj+νj+1 + h, xj)− φkj−νj
(ykj−νj+1, xj).

Now we use the fact that ρ̃kj−νj
≥ γ̃, then

f(xj)− Φkj−νj
(ykj−νj+1, xj) ≤ γ̃−1

(
f(xj)− Φ(ykj−νj+1, xj)

)
.

Adding 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj) on both sides gives

f(xj)− φkj−νj
(ykj−νj+1, xj) ≤ γ̃−1

(
f(xj)− Φ(ykj−νj+1, xj)

)
+ 1

2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj).

Combining this and estimate (25) gives

g̃>j h ≤ φ(ykj−νj+1 + h, xj)− f(xj) + γ̃−1
(
f(xj)− Φ(ykj−νj+1, xj)

)
+1

2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj).

As we have seen ykj−νj+1 − xj → 0, hence the rightmost term converges to 0 by boundedness
of Qj. Moreover, we claim that lim f(xj) − Φ(ykj−νj+1, xj) = 0, so the term γ̃−1(. . . ) on the
right hand side converges to 0. Indeed since ykj−νj+1 − xj → 0 and xj → x̄, axiom (M3) gives

lim supφ(ykj−νj+1, xj) ≤ φ(x̄, x̄) = f(x̄). Since φ is strict, axiom (M̂2) gives εj → 0 such that

(26) f(ykj−νj+1)− φ(ykj−νj+1, xj) ≤ εj‖ykj−νj+1 − xj‖.

Passing to the limit in (26) then gives lim inf φ(ykj−νj+1, xj) ≥ f(x̄), so the two estimates together
show f(xj) − φ(ykj−νj+1, xj) → 0. Since the quadratic term converges to 0, we deduce f(xj) −
Φ(ykj−νj+1, xj) → 0. Going back with this information to the above subgradient inequality and
passing to the limit shows

0 ≤ φ(x̄+ h, x̄)− f(x̄) = φ(x̄+ h, x̄)− φ(x̄, x̄),

where we use axiom (M3) for the first term on the right hand side. This proves 0 ∈ ∂1φ(x̄, x̄),
because h was arbitrary. As a consequence of this argument, we now see that the case of a
subsequence j ∈ J ′ where g̃j → 0 was in fact the easier one to deal with. To settle the difficult
case, let us now assume that ‖g̃j‖ ≥ η for some η > 0 and all j ∈ J .
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We argue that with ‖g̃j‖ ≥ η there exists θ > 0 such that

f(xj)− Φkj−νj
(ykj−νj+1, xj) ≥ θ‖ykj−νj+1 − xj‖(27)

for all j ∈ J sufficiently large. Indeed, by the subgradient inequality we have

g̃>j (xj − ykj−νj+1) ≤ φkj−νj
(xj, xj)− φkj−νj

(ykj−νj+1, xj) = f(xj)− φkj−νj
(ykj−νj+1, xj).

Subtracting 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj) from both sides gives

1
2
(ykj−νj+1 − xj)>(Qj + τkj

I)(ykj−νj+1 − xj) ≤ f(xj)− Φkj−νj
(ykj−νj+1, xj).

Now as τkj
→∞, we have 1

4
‖g̃j‖‖ykj−νj+1 − xj‖ ≤ 1

2
(ykj−νj+1 − xj)>(Qj + τkj

I)(ykj−νj+1 − xj) for
j large enough, which proves formula (27) with θ = 1

4
η.

Next using (26) and subtracting the usual 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj) from both sides
gives

f(xj)− Φ(ykj−νj+1, xj) ≤ ε̃j‖ykj−νj+1 − xj‖,(28)

where ε̃j := εj + 1
2
‖Qj‖‖ykj−νj+1 − xj‖ → 0. Combining (27) and (28) gives the estimate

ρ̃kj−νj
≤ ρkj−νj

+
ε̃j‖ykj−νj+1 − xj‖
θ‖ykj−νj+1 − xj‖

which as in the proof of Theorem 1 shows lim sup ρ̃kj−νj
≤ lim sup ρkj−νj

≤ γ, contradicting
ρ̃kj−νj

≥ γ̃ > γ for the infinitely many j ∈ J ′. That completes the proof. �

The conclusion of Theorem 2 is weaker than that of Theorem 1, because the sequence of xj

which admits subsequence convergence cannot be identified algorithmically. This can be remedied
by adding a safeguard rule to the algorithm.

Corollary 1. Suppose f has a strict model φ and let the level set {x ∈ Rn : f(x) ≤ f(x1)} be
bounded. Suppose further that we include the following safeguard rule (S) against large proximity
control parameters in step 8 of algorithm 1:

(S) If τ ]
j > T , then set τ ]

j = T ,

where T > q is some large constant. Then every accumulation point x̄ of the sequence xj of serious
iterates is critical.

Proof: By Theorem 2 it suffices to show that no sequences of type IIa occur. This is indeed
ensured by adding the safeguard rule (S) to the algorithm. Suppose contrary to what is claimed
that xj (j ∈ J) is a sequence of type IIa. Let j ∈ J . As soon as the jth inner loop begins, the
τ parameter is set to τ ]

j , the memory element of the previous sweep. But the sequence is of type
IIa, so the τ -parameter is never increased during the jth inner loop. Since the jth inner loop ends
with τkj

, we have τ ]
j = τkj

. Since τkj
→ ∞, j ∈ J , we deduce τ ]

j → ∞, j ∈ J , which contradicts
rule (S). �

Remark 23. Notice that T > q is necessary so that (S) is not in conflict with the rule Qj+τ
]
j I � 0

in step 8.

20



Remark 24. The safeguard rule (S) should not be confused with a restart mechanism, where τ
is re-set as soon as it gets too large numerically. This may be seen from the fact that (S) does
not prevent the τ -parameter to go to infinity in the outer loop. This may still happen if there is a
sub-sequence of type IIb. On the other hand, from a practical point of view, rule (S) is certainly
hard to distinguish from such a restart procedure.

7 Applications

In order to illustrate our method, which is fairly abstract, let us discuss some applications.

Example 7.1. Steepest descent. Let f ∈ C1, then as we know φ](y, x) = f(x)+∇f(x)>(y−x).
Put Q(x) = 0. We let φk = φ for every k, then the only parameter which changes in the inner
loop is τk, and the inner loop becomes in fact a linesearch. Namely, the tangent program is

min
y∈Rn

f(x) +∇f(x)>(y − x) + τk

2
‖y − x‖2,

so the trial step is yk+1 = x− τ−1
k ∇f(x), which we accept as soon as

f(x)− f(yk+1) ≥ γ
(
f(x)− [f(x) +∇f(x)>(yk+1 − x)]

)
= −γ∇f(x)>(yk+1 − x) = γτ−1

k ∇f(x)>∇f(x).

This is just steepest descent with steps of size τ−1
k , where the step has to satisfy the Armijo

condition with 0 < γ < 1. The doubling rule in step 6 of the algorithm becomes the backtracking
strategy where steplength is halved.

It follows from Theorem 1 that the steepest descent method with memorized stepsize converges
if f ∈ C1,1. Here memorized means that we start the (j + 1)th linesearch with exactly that
steplength which was accepted at iteration j, or with the doubled steplength if ρ > Γ.

On the other hand, when only f ∈ C1, then in order to converge the steepest descent method
needs the safeguard rule (S). In terms of the linesearch this means the initial steplength at j + 1
has to be reset to T−1 if the step accepted at j was smaller than T−1. When f ∈ C1 the steepest
descent method converges if the linesearch is memoryless and starts each time at t = 1.

Example 7.2. Newton’s method. Now let f ∈ C2. Let x be a serious iterate. We choose
Q(x) = ∇2f(x). Taking again φk = φ, the tangent program is

min
y∈Rn

f(x) +∇f(x)>(y − x) + 1
2
(y − x)>(∇2f(x) + τkI)(y − x)

so we have

yk+1 = x− (∇2f(x) + τkI)
−1∇f(x).

This is a damped Newton step. For large τk we are essentially doing a steepest descent step, and
multiplying τk by 2 corresponds to backtracking. On the other hand, small τk brings us close to
doing the Newton step.

However we now see a weakness of the dual approach since τk, the Lagrange multiplier of the
trust region program, is non-zero. But in the case of quadratic convergence of Newton’s method,
we expect the trust region constraint to be inactive in the end, a case excluded by choosing τk > 0.

21



For all that, can this method still converge superlinearly? The answer is yes. Assume we
are in the neighbourhood of a minimum where the sufficient second order optimality condition
is satisfied: Qj = ∇2f(xj) � εI � 0 for all j. According to the update rule in step 8 of the

algorithm, the memory parameter τ ]
j+1 need not to be adjusted to force Qj+1 + τ ]

j+1I � 0. That
means, the halving rule is applied as soon as ρk ≥ Γ. But we know that ρkj

will be close to 1 in
the convergence zone of Newton’s method, so we get ρkj

≥ Γ in the neighbourhood of the qualified

minimum. From some counter j0 onwards, we therefore have τj = 2−(j−j0)τj0 . The remaining

question is whether the method xj+1 = xj− (∇2f(xj) + 2−jτ0I)
−1∇f(xj) converges superlinearly.

This is indeed the case by the Broyden-Moré theorem [11, Thm. 8.2.4], so our method converges
locally superlinearly if f is of class C2. �

Example 7.3. Piecewise quadratic model. In some applications it may be interesting to use
a piecewise quadratic model Φ(y, x). This is for instance the case if f itself is piecewise of class C2,
when the domains of smoothness are explicitly known, and gradient and Hessians are available.
Lukšan and Vlček [23] use such an approach, but in contrast with our method they use a line
search scheme. Approximations of the Hessian are computed by a finite difference process. Their
convergence proof uses a hypothesis, which in our case amounts to boundedness of Qj + τkI, and
which would be artificial.

8 Practical aspects: solving the tangent program

A crucial point which we have not touched upon yet is whether our approach is practical. For
this to be true we have to assure that solving the tangent program (5) is considerably easier than
solving the original problem. Naturally, this point can only be clarified by looking at important
classes of examples.

8.1 Polyhedral models

Let us start by looking at polyhedral working models, the most common case. In fact, all tra-
ditional bundle approaches are based on polyhedral models, because if nothing specific is known
about f or φ, all we can do is generate finitely many cutting planes and aggregate planes. At a
fixed instant k of the inner loop, the tangent program has then the form

min
y∈Rn

max
i=1,...,p

ai + g>i (y − x) + 1
2
(y − x)>(Q+ τI)(y − x).

This can easily be transformed into a quadratic program, which is even convex because Q+τI � 0.
It takes the form

minimize t+ 1
2
(y − x)>(Q+ τI)(y − x)

subject to ai + g>i (y − x) ≤ t, i = 1, . . . , p

with decision variable (t, y) ∈ Rn+1. This may be solved efficiently with standard software tools
for convex quadratic programming.

If the solution yk+1 of the tangent QP is a null step, the current working model is improved
using cutting planes and aggregation. For a polyhedral model the aggregate plane is of the form

m∗
k+1(y) = a?

k+1 + g?
k+1

>(y − x) =
∑
i∈I

λi

[
ai + g>i (y − x)

]
,
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where I = {i ∈ {1, . . . , p} : ai +g
>
i (yk+1−x) = max

i=1,...,p
ai +g

>
i (yk+1−x)} is the set of active indices,

and λi ≥ 0,
∑

i∈I λi = 1.

8.2 Eigenvalue optimization

Let us next examine eigenvalue optimization, a case of practical interest. Here f = λ1 ◦ F .
Assuming that the strong model φ(y, x) = λ1 (F (x) + F ′(x)(y − x)) is used, the working model
may include non-polyhedral parts.

Since f and φ are both composite functions of the maximum eigenvalue function, subgradients
of f and φ(·, x) are obtained by a chain rule

∂f(x) = F ′(x)?∂λ1 (F (x)) ,

∂1φ(y, x) = F ′(x)?∂λ1 (F (x) + F ′(x)(y − x)) .

Now as is well-known, for X ∈ Sm,

∂λ1(X) = {QY Q> ∈ Sm : Y � 0,Tr(Y ) = 1, Y ∈ Sr},

where r is the eigenvalue multiplicity of λ1(X), and where the r columns of the orthogonal matrix
Q form a basis of the associated eigenspace. Therefore exactness and cutting planes lead to pairs
(a, g), where the subgradients are of the form

g = F ′(x)?G, G = QYQ>, Y � 0,Tr(Y ) = 1

with
G • [F (x) + F ′(x)(y − x)] = λ1(F (x) + F ′(x)(y − x)),

and where
a = G • F (x) = Y • [Q>F (x)Q].

Assume we have a family (ai(Yi), gi(Yi)), i = 1, . . . , p of such pairs, stemming from certain yi,
indexed by the finitely many yi and the infinite set of constraints Yi � 0, Tr(Yi) = 1. Assume that
the aggregate plane is (a0, g0), which we add to the list. Let G be the set of these pairs, then the
tangent program is

min
y∈Rn

max
(a,g)∈co(G)

a+ g>(y − x) + 1
2
(y − x)>(Q+ τI)(y − x).

Using Fenchel duality, we may switch the min and the max operator. The then inner minimum
may be computed explicitly and yields y − x = −(Q + τI)−1g. Substituting this back gives the
dual form of the tangent program

max{a− 1
2
g>(Q+ τI)−1g : (a, g) ∈ co(G)}.

Going back to the way the elements of G are constructed, we have to solve the program

maximize

p∑
i=0

µi

(
ai(Yi)− 1

2
gi(Yi)

>(Q+ τI)−1gi(Yi)
)

subject to µi ≥ 0,

p∑
i=0

µi = 1

Yi � 0, Tr(Yi) = 1
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Introducing the variable s, we can replace g>(Q + τI)−1g ≤ s by the LMI

[
Q+ τI g
g> s

]
� 0.

Introducing Zi = µiYi, we finally get the semidefinite program

maximize

p∑
i=0

ai(Zi)− si

subject to

[
Q+ τI gi(Zi)
gi(Zi)

> si

]
� 0, Zi � 0, i = 0, . . . , p

ai(Zi) = Zi • [Q>i F (x)Qi], gi(Zi) = F ′(x)?[QiZiQ
>
i ],

p∑
i=0

Tr(Zi) = 1

with decision variable (s, Z). The trial step yk+1 is then obtained by the return formula yk+1 =

x−(Q+τI)−1

p∑
i=0

gi(Zi) where (s0, . . . , sp, Z0, . . . , Zp) is the dual optimal solution and

p∑
i=0

gi(Zi) =

g?
k+1 the aggregate subgradient. Notice that these tangent SDPs are usually of small size, and

could be solved by existing SDP solvers.

9 Practical aspects: recycling cutting planes

When a new inner loop starts in step 3 of the algorithm, a new working model φ1(·, xj+1) is formed
at the new serious iterate xj+1. In the convex case this model does not start from scratch, because
one can recycle some of the affine support planes (cutting planes or aggregate planes) from xj,
so that φ1(·, xj+1) starts close to where φkj

(·, xj) ended. This happens naturally because these
planes are affine support functions of f and remain meaningful as we go from xj to xj+1.

This changes significantly when f is nonconvex. It is then a priori impossible to use planes
mj(·) from xj at the new xj+1, because it is not even clear whether mj(x

j+1) ≤ f(xj+1). This puts

some doubt on our strategy to memorize the τ -parameter via τ ]
j , because the latter presumes some

sort of continuity in the working model. Fortunately, in many cases recycling of planes between
serious steps xj → xj+1 is still possible.

Consider for example f = h ◦ F , with h convex and F of class C1. Suppose mj(y) = aj +
g>j (y−xj) is one of the planes used at xj. That means aj ≤ φ(xj, xj) = f(xj). Can we recycle mj

at xj+1 so that it contributes reasonably to the working model at xj+1? According to the chain
rule we know that gj = F ′(xj)∗g̃j for some subgradient g̃j ∈ ∂h (F (xj)). Since h is convex, g̃j is
still useful even though we pass from xj to xj+1. We therefore put gj+1 := F ′(xj+1)∗g̃j, and we
build the plane mj+1(y) = aj+1 + g>j+1(y − xj+1), where aj+1 = f(xj+1). The procedure does not
interfere with our convergence analysis, so it is up to the user to do this in a sophisticated way if
the particular structure of the application can be exploited.

A general way to recycle planes which applies without any specific structure of f is downshift-
ing. Suppose mj(y) = a+ g>(y− xj) is a plane used at xj. If the new serious iterate xj+1 arrives,
then compute the shift s = [f(xj+1)−mj(x

j+1)]+ + c‖xj −xj+1‖2, where c > 0 is some small fixed
constant. Now recycle the plane under the new guise mj+1(y) = mj(y) − s. See e.g. [29, 33] for
convergence results with downshifted planes.
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10 Numerical tests

We now test our method on several examples in eigenvalue optimization and automatic control.

Example 10.1. Max-quad-function. Let us start with an academic example, the minimization
of the maximum of a finite number of quadratic functions:

min
x∈Rn

f(x), f(x) := max {qi(x) : i = 1, . . . , r} with qi(x) = 1
2
x>Aix+ b>i x,

where Ai ∈ Sn and bi ∈ Rn, i = 1, . . . , r. Our goal in this example is to get some hints on how to
build the second order part of our model, i.e., how to choose the symmetric matrix Q(x). To do
this we assume φ = φk.

We introduce a polyhedral convex model φ of f at a given point x ∈ Rn defined by:

φ(y, x) = max
{
qi(x) +∇qi(x)>(y − x) : i = 1, . . . , r

}
.(29)

We can easily check that φ is a strong first order model in the sense of definition 2 and that
∂1φ(x, x) = ∂f(x). We replace program min

x∈Rn
f(x) by the constrained program

minimize t
subject to qi(x) ≤ t, i = 1, . . . , r

(30)

so that it makes perfect sense to apply SQP. The tangent QP for (30) in the SQP formalism is

minimize δt+ 1
2
δx>∇2

xxL(x, t, λ)δx
subject to qi(x) +∇qi(x)>δx ≤ t+ δt, i = 1, . . . , r.

(31)

Here the matrix ∇2
xxL(x, t, λ) is the (x, x)-block of the Hessian of the Lagrangian L(x, t;λ) =

t+
∑r

i=1 λi (qi(x)− t) of (30). In other words: ∇2
xxL(x, t;λ) =

r∑
i=1

λi∇2qi(x) =
r∑

i=1

λiAi.

Let us see whether we can get back from (31) to the tangent program (5). Writing the
constraints in (31) as maxi=1,...,r qi(x) +∇qi(x)>δx ≤ t+ δt, we can eliminate δt from the tangent
program and write it as

min
δx∈Rn

max
i=1,...,r

(
qi(x) +∇qi(x)>δx

)
− t+ 1

2
δx>∇2

xxL(x, t, λ)δx.

Since t = maxi=1,...,r qi(x) is constant, this is equivalent to (5) (with φ = φk) if we use the
strong model (29), and if Q(x) = ∇2

xxL(x, t, λ). The latter does not depend on t, but on λ,
so that Lagrange multiplier estimates λ are required. Can λ be related to the nonsmooth con-
text? Yes it can, namely, if yk+1 = x+ is a serious step, then the last aggregate subgradient
is g∗k+1 = (Q(x) + τkI) (x − x+), so g∗k+1 =

∑r
i=1 λ

+
i ∇qi(x), where λ+

i are a convex combination
involving only indices i where the maximum φ(x+, x) is attained. In other words, the coefficients
. . . , λ−i , λi, λ

+
i , . . . are in principle available if the latest aggregate subgradients before each serious

step are stored.
Our goal is to get some information as to what to do in the case of a genuinely nonsmooth

function, where we cannot use ∇2
xxL = Q(x) directly. What we propose to do is let Q(x) be

an approximation for ∇2
xxL, maintained e.g. by an SR1 update. For this we have to find an

appropriate secant equation for ∇2
xxL.
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Taylor expansion at x+ gives ∇xL(x, t;λ+) ≈ ∇xL(x+, t;λ+) + ∇2
xxL(x+, t;λ+)(x − x+), so

that we get the secant equation

Q(x)δx =
r∑

i=1

λ+
i

[
∇qi(x+)−∇qi(x)

]
.

Here the term
∑r

i=1 λ
+
i ∇qi(x) is the aggregate subgradient in our proximity control algorithm,

which is available. The question is how to get hold of
∑r

i=1 λ
+
i ∇qi(x+), which is not an aggregate

subgradient. This may in principle be done in the following way.
Let yk+1 and λ(k+1) respectively be the solution and the corresponding Lagrange multiplier

given by the tangent program after k iterations of the inner loop. In other words, trial steps
y1, y2, . . . , yk have been rejected (null steps), while yk+1 = x+ is the serious step. Then the
aggregate subgradient approximating

∑r
i=1 λ

+
i ∇qi(x) is given by:

(32) g∗k+1 = (Q(x) + τkI)(x− x+) ∈ ∂1φk(x
+, x).

Now introducing the multiplier λ(k+1), it can also be expressed as g∗k+1 =
∑

i λ
(k+1)
i gi, where

the subgradients gi may have three different origins: the exactness rule, the cutting plane and
aggregation. We denote E and CP the (finite) sets of indices of subgradients chosen during the
exactness and the cutting planes stages. Then

g∗k+1 =
∑
i∈E

λ
(k+1)
i ∇qi(x) + λ

(k+1)
icp ∇qicp(x) + λ

(k+1)
iAgg g

?
k,

where g?
k = (Q(x) + τk−1I)(x − yk) is the second to last aggregate subgradient computed in the

inner loop. Our idea to estimate
∑

i λ
+
i ∇qi(x+) is to re-evaluate this expression at x+. The main

difficulty is clearly how to re-evaluate the aggregate subgradient g?
k at x+. This could be done

recursively in the inner loop counter k by proving that g∗k+1 is of the form:

g∗k+1 =
∑
i∈E

λ̃
(k+1)
i ∇qi(x) +

∑
i∈CP

λ̃
(k+1)
i ∇qi(x)

where the new multiplier λ̃
(k+1)
i is given by:

(33) λ̃(1) = λ(1), λ̃(k+1) =

 Inexact 0
λ̃(k)

0 0
0 1 0

λ(k+1).

Consequently the term
∑

i λ
+
i ∇qi(x+) could now be estimated by:

(34) g+ =
∑
i∈E

λ̃
(k+1)
i ∇qi(x+) +

∑
i∈CP

λ̃
(k+1)
i ∇qi(x+).

Altogether the information stored at each iteration of the inner loop is the set of indices selected
both by the exactness and the cutting plane processes and the modified Lagrange multiplier (see
relation (33)). Then the SR1 update is performed the following way:

s = x+ − x

y = G+λ̃+ − (Q(x) + τkI)(x− x+)
where the columns of G+ are given by the subgradients computed by the
exactness rule and those defining the successive cutting planes

Q(x+) = Q(x) +
(y −Q(x)s)(y −Q(x)s)>

(y −Q(x)s)>s
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Numerical results. The following numerical stopping criteria have been used. Let ε > 0 be a
tolerance parameter. We first check criticality 0 ∈ ∂f(x) by computing:

(35) inf{‖h‖ : h ∈ ∂f(x)} < ε.

Two additional tests are implemented to avoid pointless computational efforts during the final
phase, where iterates make minor progress. We compare the progress of the local model around
the current iterate, and we evaluate the relative step length to the optimization variable gains:

(36) f(x)− f(x+) < ε(|f(x)|+ 1), and
∥∥x− x+

∥∥ < ε(‖x‖+ 1).

The algorithm is stopped if either (35) or both criteria in (36) are satisfied.

We performed experiments with a max-quad-function where the first order and several second
order approaches are compared, including the approximation outlined above. Fig. 1 presents the
results of our trust region algorithm 1 for the four different models of the objective f of the form:

Φ(y, x) = φ(y, x) + 1
2
(y − x)>Q(x)(y − x)

where:

• (in black dash-dotted line) Q(x) = 0: we use the first order model φ without any second
order information.

• (in green dashed line) Q(x) is the true Hessian of the Lagrangian of SQP, computed as the
convex combination of the matrices Ai and whose coefficients λ+

i are given by the aggregation
process: Q(x) =

∑r
i=1 λ

+
i Ai.

• (in red dash-crossed line) Q(x) is an approximation of the Hessian of the Lagrangian involved
in a SQP approach, computed using the Symmetric Rank One (SR1) update.

• (in blue dashed line) Q(x) is the approximation of the Hessian of the Lagrangian involved in
a SQP approach, computed using formula (32), (33) and (34) to perform the SR1 update.
Only this approximation would be available in a truly nonsmooth application.
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Convex ex. (left fig.) Nonconvex ex. (right fig.)
f(x?) Iter f(x?) Iter

TR without 2nd order term Q -0.03527 50 -0.031478 10
TR & SR1 update -0.03527 10 -0.104917 9
TR & SR1 approx -0.03527 10 -0.104917 11

TR & Q=Hessian of Lagrangian -0.03527 27 -0.104917 9

Figure 1: Performance of the proximity control algorithm for the quadratic min-max problem.
We compare four different models of Q(x) on two randomly generated examples in dimension 2
with r = 10 quadratics. The case on the left is convex, the case on the right non-convex.

0 10 20 30 40 50 60
0

0.5

1

1.5

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Figure 2: Behaviour of the proximity control parameter τk along serious iterations for the two
examples presented on Fig. 1.

As expected, in the convex case (see Fig. 1 left), we observe an acceleration of the convergence
with second order information Q, compared to the case where Q = 0. Using a second order model
in the sense of definition 2 improves the approximation of the objective function f by the model
Φ and reduces zigzagging.

Table 1 suggests that this might be particularly significant in high dimension and for nonconvex
problems. In addition, in the nonconvex case, as illustrated by Fig. 1 right, we observe that, unlike
the first order method, the three second order methods converge towards the global minimum of
the nonconvex problem.

Our last remark concerns the behaviour of the proximity control parameter τk along serious
iterations. Recall that a decreasing proximity parameter τk means a good agreement between the
objective f and the current working model Φk(·, x). In particular, in the convex case (Figure 2
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n = 2, m = 0 n = 2, m = 557 n = 10, m = 0
f(x?) Iter. f(x?) Iter. f(x?) Iter.

Matlab fminimax -2.78939e-04 - -8.42395e-06 - Time out -
TR & Q = 0 -2.78971e-04 185 -1.03922e-05 48 -1.29756e-02 30

TR & SR1 update -2.78971e-04 13 -1.05374e-05 7 -1.29756e-02 17
TR & SR1 approx -2.78971e-04 10 -1.05374e-05 7 -1.29756e-02 17
TR & Q Hessian -2.78971e-04 20 -1.05395e-05 11 -1.29756e-02 15

Table 1: Proximity control algorithm 1 applied to n-dimensional quadratic min-max examples
with r = 1000 quadratics and m negative semidefinite matrices Ai. The numerical data (Ai, bi,
x0) are randomly generated.

left), introducing second order terms via a SR1 update improves approximations and reduces the
number of steps computed by our algorithm.

Example 10.2. H∞-controller synthesis was one of the motivating examples to develop our model
based bundling approach. Here the objective function is of the form

(37) f(x) = max
ω∈[0,∞]

σ1 (T (x, jω)) ,

where the unknown variable x = vec(K) represents the gains of the feedback controllerK ∈ Rny×nu

to be designed (ny the number of measured outputs of the system, nu the number of controlled
inputs), and s 7→ T (x, s) is a stable closed loop transfer operator, depending rationally on x,
mapping into a space Cnz×nw of matrices. The objective f is the H∞ norm of the transfer operator
T (x, ·) as a function of x = vec(K) and as such is subject to two sources of nonsmoothness, the
infinite max-operator, and the maximum singular value function σ1, which is convex but generally
nonsmooth. Non-convexity of f springs from the nonlinearity of T .

Most H∞ synthesis techniques in the literature are based on the Kalman-Yakubovitch-Popov
Lemma and amount to solving bilinear matrix inequalities (BMIs). Here numerical problems
arise from the strong disparity between controller gains and Lyapunov variables. Our proximity
control algorithm allows to perform H∞ synthesis from the frequency domain point of view, i.e.,
by minimizing (37) directly. Since (37) depends only on controller variables K, (that is, on
x = vec(K)), we do not have to identify Lyapunov variables, which is a great advantage when
large plants are considered. In exchange, a difficult semi-infinite nonsmooth and non-convex
optimization program (37) has to be solved.

In our experiments we evaluate the proximity control algorithm on a variety of H∞ case studies
and compare with older experiments obtained with the line-search based method of [1, 4].

Local model. The objective function to be minimized is f(x) = supω∈[0,∞] σ1(T (x, jω)) =
‖T (x, ·)‖∞. The strong first-order local model we use is:

φ(y, x) := sup
ω∈[0,∞]

σ1 (T (x, jω) + T ′(x, jω)(y − x))

= ‖T (x, ·) + T ′(x, ·)(y − x)‖∞ ,(38)

where T ′(x, ·) is the derivative of T (x, ·) with respect to x, and where ‖G(·)‖∞ stands for the H∞
norm of a transfer matrix operator G(s). Expressions of T ′(x, ·) in terms of the plant state space
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data can be found in [4]. Strongness of this model follows from remark 7. In these tests, no second
order term Q(x) was used.

Computing subgradients. The following result explains how to compute subgradients of σ1.

Lemma 6. Let A ∈ Cm×n and suppose σ1(A) has multiplicity r ≥ 1 (with r ≤ min{m,n}). Let
U1 ∈ Cm×r and V1 ∈ Cn×r be such that

(39) UH
1 AV1 = σ1(A)Ir.

Then

(40) ∂σ1(A) =
{
V1Y U

H
1 : Y ∈ Sr

}
,

where Sr = {A ∈ Cr×r : A = AH , 0 � A � Ir,Tr(A) = 1}. We have the following useful
equivalent formulations

∂σ1(A) =

{
AHU1Y U

H
1

σ1(A)
: Y ∈ Sr

}
=

{
V1Y V

H
1 AH

σ1(A)
: Y ∈ Sr

}
.

The first-order model φ has a convenient structure, because (38) shows that φ(y, x) is the H∞
norm of the transfer function s 7→ T (x, s) + T ′(x, s)(y− x). In consequence, the function value of
φ and its subgradients can be computed using the same H∞ norm algorithm of [7] used already
to compute objective value f(x) and subgradients at x. This requires computing the adjoint of
the operator T ′(x, jω), which is somewhat technical, so we point the reader to [4] for details.

Notice however that computing φ(y, x) is more expensive than computing f(y). Indeed, since
s 7→ T (x, s) + T ′(x, s)(y − x) is built from a parallel connection of the transfer functions T (x, ·)
and T ′(x, ·)(y− x), it has as many states as both transfer functions taken together. While T (x, ·)
has nx states, T ′(x, ·)(y − x) has even 2 × nx states, being itself a serial connection between two
transfer function with nx states. Hence, T (x, ·) + T ′(x, ·)(y− x) has 3× nx states, and computing
φ(y, x) is therefore more expensive than computing f(x). As a consequence, the inner loop may
significantly slowdown the algorithm. For small to medium size problems, this is not really felt,
but for very large system the cost of φ(y, x) becomes dominant. This is the price to be paid for
its better performance of the trust region method compared to line-search based method.

Implementation and stopping criteria. The method has been implemented in Matlab, and
all numerical experiments have been performed on a 2Ghz Linux computer.

As in the previous example, we stop the algorithm if either (35) or the two conditions in (36)
are satisfied. In the line-search method [4] a different stopping criterion based on a measure of
criticality θ was used. The algorithm was stopped if |θ| < εθ. For comparison, the optimality
function θ is also computed here, but a posteriori to measure criticality of the controller obtained
by the proximity control method. We have chosen εθ = 1e− 5 for all numerical tests.

In a practical implementation it is necessary to add yet another stopping tests to (35) and (36)
used in the outer loop. We need a mechanism to detect convergence in the inner loop, because
even though theoretically we only enter the inner loop when 0 6∈ ∂f(xj), it may happen that xj

is near optimal. This will typically lead to a lengthy inner loop having a hard time to find xj+1,
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which when found will give only marginal progress over xj. The inner loop is therefore stopped if
the descent of the working model is too small, i.e.

f(x)− φk(y
k+1, x) < ε2,

where the parameter ε2 is chosen very small in order to stop only when the algorithm gets stuck
in doing null steps. We have set ε2 = 0.01× ε for our tests.

Results. H∞ synthesis was performed on four models from the COMPLeIB library [19] : aircraft
AC2, helicopter HE4, aircraft AC14, and distillation column BDT2. More details about these
models can be found in [20]. Table 2 shows the sizes ranging from small to large. For their
numerical experiments, static feedback controllers were synthesized to compare with proximity
control and line-search based methods.

Model nx nz nw ny nu

AC2 5 5 3 3 3
HE4 8 12 8 6 4
AC14 40 11 4 4 3
BDT2 82 4 2 4 4

Table 2: Sizes of the models treated in numerical experiments

Table 3 presents results for the four models with both linesearch (LS) and proximity control
(PC). For each experiments, the value of the H∞ norm γ∞, the number of outer and inner it-
erations, the mean CPU time for outer and inner iterations, the total CPU, and the criticality
measure |θ| are reported. We can see that our proximity control method achieves better gains,
except for AC2, where both methods find the same local minimum. In exchange, PC needs gen-
erally more iterations and takes more time than the LS approach. To compare the speed of the
methods, we have reported the CPU times of LS and PC needed to reach the maximum value of
the two γ∞ values obtained by each algorithm.

• PC is faster on the HE4 model: it reaches the value 34.07 in 1.34 seconds within 16 serious
step, whereas LS needs 1.5 seconds and 51 iterations. Our algorithm being a first order
approach, minimization sometimes stalls when approaching the local minimum. Indeed, PC
needs 19.85 seconds to perform 90% of the whole optimization, whereas 85.4% of CPU time
are used for the last 10%.

• LS is faster for AC14, where it reaches the optimal value 104.43 in 4.3 seconds after 62
iterations, whereas PC needs 10 seconds and 37 serious steps to reach the same value.

• For BDT2, PC reaches the same value as LS in 22 seconds and 22 serious steps, which is
faster than LS.

It can be observed in Table 3 that the LS optimization stops earlier than PC, often with a quite
large value of |θ|. This strange behaviour can be explained by the following fact: linesearch is not
suited to handle situations, where the two first singular values of the transfer function coalesce.
This is explained in [4], where for numerical simplification the authors make the assumption that
the maximal singular value is simple. Figure 10.2 shows clearly that this is not the case for last step
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of the linesearch method on the AC14 example. This explain why LS stops prematurely. Moreover,
it should be highlighted that the criticality measure θ has no meaning when the hypotheses are not
satisfied. The same phenomenon was observed for the HE4 model. Again LS stops prematurely
when the maximal singular value becomes non-simple at some frequencies. On both HE4 and
AC14 example, PC continued to optimize even when a multiple singular-value was encountered.

Method γ∞ it itin CPU CPUin Time |θ|
HE4 - LS 34.07450 51 - 2.85213e-02 - 1.5 9.0
HE4 - PC 23.73891 641 2697 1.72951e-02 4.62476e-02 136 4.8e-3
AC2 - LS 0.11149 43 - 3.32525e-02 - 1.5 4.1e-6
AC2 - PC 0.11149 31 265 1.22026e-02 3.27288e-02 9 1.4e-6
AC14 - LS 104.43078 62 - 6.92522e-02 - 4.3 1.0
AC14 - PC 103.43986 134 494 3.47064e-02 2.32865e-01 120 1.6e+2
BDT2 - LS 0.82873 71 - 3.87617e-01 - 27.5 3.1e-4
BDT2 - PC 0.67687 854 1533 1.35960e-01 1.54915e+00 2490 1.2e-4

Table 3: Results of H∞ synthesis on four models from [19], using linesearch (LS) and proximity
control (PC) algorithms. For each experiment, the optimal value of the H∞ norm γ∞, the number
of outer and inner iterations, the mean CPU times for serious steps and null steps, and the total
CPU and criticality measure |θ| are given.
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Figure 3: Frequency plot ω 7→ σi (T (x, jω)) of the first two singular values i = 1, 2 at the last
step x before acceptance of the LS method on AC14 shows coalescence σ1 ≈ σ2 on a relatively
large low frequency band.
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