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We present a method to solve large optimization programs with bilinear matrix inequality (BMI) constraints. Such
programs arise in control applications such as system analysis, controller synthesis or filter design. Our specific
point of view here is to cast BMI problems as nonconvex eigenvalue optimization programs and to use nonsmooth
optimization methods suited for eigenvalue optimization to compute locally optimal solutions. Our method is based
on the ε-subgradient prototype, suitably adapted to include non-convex problems. In each tangent step, a small size
semidefinite program (SDP) is solved to compute a search direction. Our method is tested on several large scale
benchmark problems in output feedback controller design.
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1 Introduction

We consider affineA : Rn → Sm and bilinear operators B : Rn → Sm into the space
Sm of symmetricm×m matrices,

A(x) = A0 +
n∑

i=1

Aixi, B(x) = A(x) +
∑

1≤i<j≤n

Bijxixj, (1)

whereAi,Bij ∈ Sm. A bilinear matrix inequality constrained optimization program,
for short a BMI program, is a nonlinear mathematical program of the form

minimize c"x, x ∈ Rn

subject to B(x) $ 0. (2)
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The constraint B(x) $ 0 is called a bilinear matrix inequality, a BMI for short, while
A(x) $ 0 is a linear matrix inequality, an LMI for short, and $ 0 means nega-
tive semidefinite. LMI constrained optimization programs of the form (2) are also
known as semidefinite programs (SDPs). SDPs have convex feasible domains, while
BMI programs can be highly non-convex. Notice that (2) contains quadratically con-
strained quadratic programming (QCQP) and integer quadratic programming as spe-
cial cases. This means that despite its seemingly special form, the BMI class is fairly
large, and a general algorithmic solution strategy can hardly be expected. The prob-
lem of finding x such that B(x) ≺ 0 or B(x) $ 0 is called a BMI feasibility problem.
Such problems may be attacked as special BMI programs min{t ∈ R : B(x) $ tI}.
Here we are interested in applications of BMI programs in automatic control, in par-
ticular, for output feedback control design.
The main theme of this paper is to approach BMI programs via eigenvalue opti-

mization. We consider the unconstrained maximum eigenvalue program

minimize λ1 (B(x)) , x ∈ Rn, (3)

and the constrained program

minimize c"x, x ∈ Rn

subject to λ1 (B(x)) ≤ 0, (4)

where λ1 : Sm → R is the maximum eigenvalue function, and where B is a bilinear
operator (1). Observe that (2) is equivalent to (4), while the BMI feasibility problem
can be solved using (3). Note that λ1 is a convex map on Sm, but is nonsmooth in
general, so that f = λ1 ◦B is neither smooth nor convex. Only in the special case of
an affine operatorA is f = λ1 ◦A convex, but nonsmooth, and has been thoroughly
studied by several authors, see e.g. [6–8, 14, 15].
Throughout this work, the term solution means a locally optimal solution. Since

BMI programs are non-convex, locally optimal solutions are not always globally
optimal, and may fail to solve the underlying control problem. For instance, while
solving a BMI feasibility program, min{t ∈ R : B(x) $ tI}, me may run into a
local minimum (t∗, x∗) where t∗ > 0. In that case x∗ is not a valid solution for the
control problem, and the only way round may be to restart the local method at a
different initial guess.
The weak convergence certificates of the local strategy are in contrast with exist-

ing global techniques for several BMI problems in control, where strong certificates
are given. Unfortunately, global methods are of very limited applicability due to se-
rious size limitations. This is not surprising, as many BMI problems in control are
known to be NP-hard, [2, 12], which means that the complexity of the global algo-
rithms grows exponentially with the problem size. In contrast, as we have observed
in our numerical experiments, local optimization methods are surprisingly efficient
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and provide practically valid solutions.
The structure of the paper is as follows. Section 2 examines several control prob-

lems and their BMI constrained optimization formulations. In Section 3, we recall
the idea of ε-subgradient optimization and then adapt it to solve the unconstrained
nonconvex eigenvalue program (3). This is later generalized in Section 4 to solve
the constrained eigenvalue program (4). Finally in Section 5, the algorithm is tested
against several large-scale optimization problems in H∞ synthesis.

Notation

MT denotes the transpose of the matrix M and Tr M its trace. Sm is equipped with
the euclidean scalar product 〈X,Y 〉 = X • Y = Tr (XY ). For symmetric matrices,
M * N means that M − N is positive definite andM , N means that M − N is
positive semi-definite. The operator svecmaps the set of symmetric matrices Sm into
Rl where l = n (n + 1)/2, as:

x = svec X = [X11, · · · , X1n, X21, · · · , X2n, · · · , Xnn]" .

Its inverse, the operator smat satisfies

smat svec X = X, and svec smatx = x.

2 Output feedback synthesis as a BMI program

In this section, we discuss a number of control design problems that can be cast as
BMI programs.

2.1 H∞ synthesis

We recall a BMI characterization of the classical output feedback synthesis prob-
lem. To this end let P (s) be a linear time invariant (LTI) system with state-space
equations:

P (s) :




ẋ
z
y



 =




A B1 B2

C1 D11 D12

C2 D21 D22








x
w
u



 , (5)

where x ∈ Rn1 is the state, u ∈ Rm2 the control, y ∈ Rp2 the output, w ∈ Rm1 the
vector of exogenous inputs, z ∈ Rp1 the controlled or performance vector. Without
loss of generality, we assumeD22 = 0 throughout.
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Let Tw,z(K)(s) denote the closed-loop transfer function from w to z, depending
on the unknown (to be designed) output feedback control law

u(s) = K(s)y(s) . (6)

In the case of a static controllerK, the transfer is described in state-space form by:

Tw,z(K) :
{

ẋ = (A + B2KC2)x + (B1 + B2KD21)w
z = (C1 + D12KC2)x + (D11 + D12KD21)w.

w

u y

zP (s)

K(s)

1: H∞ synthesis interconnection.

The case of a kth-order dynamic feedback controller,K(s) = CK(sI−AK)−1BK +
DK with Ak ∈ Rk×k, can be reduced to the static case by considering an augmented
system, through the substitutions:

K →
[
AK BK

CK DK

]
, A→

[
A 0
0 0k

]
B →

[
0 B
Ik 0

]
, C →

[
0 Ik

C 0

]
. (7)

Our aim is to computeK such that the following conditions are satisfied:

• Internal stability: for w = 0 the state vector of the closed-loop system (5) and (6)
tends to zero as time goes to infinity.

• Performance: the H∞ norm ‖Tw,z(K)‖∞ is minimized among all closed-loop
stabilizingK.

Finding K may be transformed into a matrix inequality using the bounded real
lemma [1]. For a staticK this leads to the following well-known characterization:

PROPOSITION 2.1 A static output feedback controller K is such that
‖Tw,z(K)‖∞ < γ if and only if there exists a Lyapunov matrix P ∈ Sn1 such that:
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[
(A+B2KC2) T P+P (A+B2KC2) P (B1+B2KD21) (C1+D12KC2)T

(B1+B2KD21)T P −γI (D11+D12KD21)T

(C1+D12KC2) (D11+D12KD21) −γI

]
≺ 0 (8)

P * 0. (9)

A similar expression for dynamicK(s) is readily obtained using the substitutions
(7).
Notice that (8), (9) are indeed of the form (4) if the gain γ is minimized subject

to the constraint (8), as soon the strict inequality P * 0 is replaced by a non-strict
inequalityP , εI for a small threshold ε > 0. Similarly,≺ 0 in (8) has to be replaced
by $ −εI .

2.2 Examples of BMI programs in control

Many other applications in control may be turned into BMI-constrained programs.
Let us discuss an application of interest, minimizing the spectral abscissa of the
closed-loop system:

minKα(A + B2KC2), (10)

where α : Rn×n → R is defined as

α(A) = max{Reλ : λ eigenvalue of A}.

Notice that α is not even locally Lipschitz as a function, which renders α difficult
to optimize. It is therefore interesting that an equivalent cast as a BMI optimization
program can be obtained. Observe the following

LEMMA 2.2 Let A ∈ Rn×n. Then α(A) ≤ t if and only if there exists P ∈ Sn,
0 ≺ P $ I , such that AT P + PA− 2tP $ 0.

This suggests that wemight attack the spectral abscissaminimization program (10)
by solving the following BMI:

minimize α
subject to (A + B2KC2)T P + P (A + B2KC2)− 2αP $ 0

ϑI $ P $ I
(11)

where 0 < ϑ. 1 is some small threshold. If (11) is represented as a BMI in standard
form (1), the decision variable is x = (γ,K, P ). Notice that ϑ restricts the condition
number of the Lyapunov matrix P , and is therefore not known a priori. However,
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what can be said is that ϑ can be the same for all (γ,K, P ) varying in a bounded set.
Numerical experiments with program (11) will be presented in Section 5.
Following Trefethen [17], the pseudo-spectral abscissa of a matrix A ∈ Rm×m is

defined as

αε(A) = max {Reλ : λ ∈ Λε(A)} ,

where Λε is the ε-pseudospectrum of A, that is, the set of all eigenvalues of matrices
A + E, with E a perturbation of euclidean norm ‖E‖ ≤ ε. For ε = 0 we recover
α = α0, the spectral abscissa, Λ = Λ0 the spectrum of A. A natural extension of
program (11) is the class of programs of the form

min
x∈Rn

αε (A(x)) , (12)

whereA : Rn → Rm×m is a smooth operator. Using this function for static feedback
synthesis was first proposed by Burke et al. in [3, 4, 10]. We have the following
lemma:

LEMMA 2.3 Let A ∈ Rn×n, then αε(A) < t if and only if there exist P ∈ Sn,
P * 0, λ ∈ R, µ ∈ R, µ < 0, such that

[
(µ− λ)I + 2tP −AT P − PA −εP

−εP λI

]
* 0.

Based on this cast, program (12) may also be converted to a BMI program.

3 Unconstrained eigenvalue problem

3.1 Steepest ε-enlarged descent for f = λ1 ◦ B

In this section we start with the simpler unconstrained program (3). Let us briefly
explain the idea of ε-descent algorithms. For a convex function f : Rn → R and
ε ≥ 0 we define according to [9] the ε-subdifferential of f at x as

∂εf(x) =
{
g ∈ Rn : gT h ≤ f(x + h)− f(x) + ε for every h ∈ Rn

}
.

Then the following simple observation can be made [9, XI, Theorem 1.1.5]. Suppose
at the current xk we have 0 0∈ ∂εf(xk). Then the value of f at xk may be decrease by
at least ε. That is, a new iterate xk+1 may be found such that f(xk+1) ≤ f(xk) − ε.
Conversely, if 0 ∈ ∂εf(xk), then the value f(xk) is ε-optimal, that is, f is within ε
of its minimum value. In particular, if ε is sufficiently small, let’s say of the size of
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the machine ε, we would certainly stop at xk. Otherwise, we would take a step which
decreases f by ε, and proceed.
The ε-subdifferential therefore seems an ideal instrument for optimization, as it

gives us both a good stopping test and a means to achieve sizeable decrease of the
objective function. Unfortunately, it has two drawbacks. Firstly, it is hard to compute.
Secondly, it is not obviously extended to nonconvex functions. Naturally, if f is a
composite function like f = φ ◦ B for convex φ and smooth B, then we would
extend the ε-subdifferential by setting

∂εf(x) = B′(x)# [∂εφ (B(x))] ,

using Clarke’s chain rule [5]. However, ∂εf(x) so defined is no longer a global notion
and its properties are weaker.
Our example of a composite function is of course the maximum eigenvalue func-

tion f(x) = λ1 (B(x))with a bilinear operatorB, and we aim at solving program (3).
In this case, we have the following well-known representation of the ε-subdifferential
(cf. [9]):

∂ελ1(X) = {G ∈ Sm : G , 0,Tr(G) = 1,λ1(X) ≤ G • X + ε} .

From what we have seen, ∂ελ1 is hard to compute, and we need an approximation
which can be computed with reasonable effort. We follow [13] and, previously, [6]
and [14], where affine operators were considered, and use an approximation δ ελ1(X)
of the ε-subdifferential ∂ελ1(X) of λ1 atX ∈ Sm, called the ε-enlarged subdifferen-
tial:

δελ1(X) =
{
QεY QT

ε : Y , 0, tr(Y ) = 1, Y ∈ Srε
}

.

Here rε is called the ε-multiplicity of λ1(X), where the first rε eigenvalues of B(x) ∈
Sm are those which satisfy λi > λ1 − ε, and where the columns of the rε × m-
matrix Qε are the associated eigenvectors. Then ∂λ1(X) ⊂ δελ1(X) ⊂ ∂ελ1(X),
and δελ1(X) is as we shall see a good inner approximation of ∂ελ1(X). Indeed,
following Oustry [14] we have the following

THEOREM 3.1 Let ε > 0, η > 0, X ∈ Sm, and∆ε(X) = λrε(X)− λrε+1(X) > 0.
Define

ρ = ρ(ε, η) =
(

2η
∆ε(X)

)1/2

+
2η

∆ε(X)
. (13)

Then

∂ηλ1(X) ⊂ δελ1(X) + ρB,
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where B is the Frobenius norm unit ball in Sm.

Using the same chain rule as before, we extend the ε-enlarged subdifferential to com-
posite functions, by setting

δεf(x) =
{
B′(x)#Z : Z = QεY QT

ε , Y , 0, tr(Y ) = 1, Y ∈ Srε
}

.

Then obviously

∂f(x) ⊂ δεf(x) ⊂ ∂εf(x),

and δεf(x) is an inner approximation of ∂εf(x). Recall that for ε ≥ 0, the direction
d of steepest ε-descent is obtained as

d = − g

‖g‖
, g = argmin {‖g‖ : g ∈ ∂εf(x)} .

For ε = 0 we obtain the direction of steepest descent as a special case. The following
definition is therefore fairly natural:

Definition 3.1 The direction of steepest ε-enlarged descent d is defined as

d = − g

‖g‖
, g = argmin {‖g‖ : g ∈ δεf(x)} . (14)

Once the concept of generalized gradients is defined, it is standard to introduce an
associated directional derivative. For instance, the ε-directional derivative of f at x
in direction d is associated with ∂εf(x) and defined as

f ′
ε(x; d) = max{g"d : g ∈ ∂εf(x)} (15)

= max{G • D : G ∈ ∂ελ1(X)},

whereD = B′(x)d andX = B(x). Similarly, we introduce the following directional
derivative associated with δεf(x).

Definition 3.2 The ε-enlarged directional derivative of f = λ1 ◦ B at x in direction
d is

f̃ ′
ε(x; d) = max{g"d : g ∈ δεf(x)} (16)

= max{G • D : G ∈ δελ1(X)},

whereD = B′(x)d andX = B(x).
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The remarkable fact, observed in [6] and [14], is that contrary to f ′
ε(x; d), which is

difficult to compute for ε > 0, the ε-enlarged directional derivative can be computed
efficiently.

LEMMA 3.2 1) We have the formula

f̃ ′
ε(x; d) = λ1

(
Q"
ε DQε

)
, (17)

where D = B′(x)d, and where the columns of Qε form an orthonormal basis of the
invariant subspace of X = B(x) associated with the eigenvalues λ i(X) > λ1(X)−
ε.
2) If 0 0∈ δεf(x), then

f̃ ′
ε(x; d) = −dist (0, δεf(x)) < 0. (18)

Proof 1) Formula (17) follows when we substituteG = Q"
ε Y Qε, Y , 0, Tr(Y ) = 1

in (15), because then

f̃ ′
ε(x; d) = max{Q"

ε Y Qε • D : Y , 0,Tr(Y ) = 1}

= max{Y • QεDQ"
ε : Y , 0,Tr(Y ) = 1}

= λ1

(
QεDQ"

ε

)
.

2) Formula (18) follows using Fenchel duality. Indeed, if 0 0∈ δεf(x), then

min
‖d‖≤1

f̃ ′
ε(x; d) = min

‖d‖≤1
max

g∈δεf(x)
g"d (using (16))

= max
g∈δεf(x)

min
‖d‖≤1

g"d (Fenchel duality)

= max
g∈δεf(x)

−g"
g

‖g‖
= − min

g∈δεf(x)
‖g‖

which leads back to formula (14) and thereby proves formula (18). !

With these preparations we are now ready to use Oustry’s estimate to quantify de-
scent. First we have the following

THEOREM 3.3 Suppose 0 0∈ δεf(x), and let σ(ε) := dist (0, δεf(x)) > 0. Let η(ε)
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be chosen as

η(ε) =
1
8
∆ε(x)

(√

1 +
32
9

σ(ε)
‖B′(x)#‖ − 1

)2

(19)

where∆ε(x) = ∆ε (B(x)) = λrε(X) − λrε+1(X) > 0. Then 0 0∈ ∂η(ε)f(x).

Proof Observe that the function η 2→ ρ(ε, η) is monotonically increasing from
0 to +∞ on [0,∞). Therefore there exists a unique η(ε) such that ρ (ε, η(ε)) =
8
9σ(ε)/‖B

′(x)#‖. This implies 0 0∈ ∂fη(ε)(x). Indeed, suppose on the contrary that
0 ∈ ∂ηf(x), then 0 ∈ δεf(x)+ ρB′(x)#[B] by Theorem 3.1. That means there exists
V ∈ B ⊂ Sm such that ρB′(x)#V ∈ δεf(x). Hence ρ‖B′(x)#V ‖ ≥ σ(ε), which in
view of ‖V ‖ ≤ 1 contradicts the above choice ρ‖B ′(x)#‖ = (8/9)σ(ε) < σ(ε).
To conclude, it remains to observe that η(ε) above is given by formula (19), which

follows with (13) by solving a quadratic equation. !

In the case of a convex composite function f = λ1 ◦A we are now ready to quantify
descent. We have the following result, which the reader might compare with Oustry
[14] and [13].

PROPOSITION 3.4 Let f = λ1 ◦ A be convex and suppose 0 0∈ δεf(x). Then there
exists a step x+ away from x such that

f(x+) ≤ f(x)− η(ε),

where η(ε) is given by (19). This step is of the form x+ = x + td, where d is the
direction of steepest ε-enlarged descent (14), and t > 0 may be found by a finite line
search.

All the elements needed to compute η(ε) are available. Since B ′(x)# is the
operator Sm → Rn mapping Z 2→ (B1(x) • Z, . . . , Bn(x) • Z) with Bi(x) =
∂B(x)
∂xi

, the norm of B′(x)# may at least be estimated by any matrix norm of
[vecB1(x), . . . , vecBn(x)].
Unfortunately, we are not done yet when f = λ1 ◦ B is non-convex, as the de-

scent theorem of [9, XI, Theorem 1.1.5], on which Proposition 3.4 depends, is not
available. Here we use the analysis obtained in [13, Lemma 8], which is lengthy and
cannot be reproduced here. The result is the following

PROPOSITION 3.5 Let ε > 0 with 0 0∈ δεf(x). Let d be the direction of steepest ε-
enlarged descent (14) at x. Then a step x+ = x + td away from x may be computed
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such that f(x+) ≤ f(x)− θ(x, ε), where

θ(x, ε) = min

{
η(ε)
2

,
dist (0, δεf(x))2

8L

}
> 0. (20)

Here L = |〈d,B′′d〉|, d is the direction of steepest ε-enlarged descent (14), and η(ε)
is given by formula (19). The step t > 0 can be computed by a finite line-search. For
an affine operatorA, L = 0 and the right hand term in (20) is +∞.

Proof For the convenience of the reader we sketch the idea of the proof, whose
details are presented in [13]. As we have seen, 0 0∈ δεf(x) implies 0 0∈ ∂η(ε)f(x) by
Theorem 3.1. From the convex case we know that this implies that t 2→ λ1 (X + tD)
decreases by at least η(ε), where X = B(x), D = B ′(x)d. Now in the non-convex
case there is a discrepancy between f(x + td) and λ1 (X + tD), and estimating
this mismatch is what takes most of the work in [13]. Roughly, what happens is the
following. Suppose tη is a step where λ1 (X + tηD)−f(x) ≤ −η. Then the situation
depends on whether f(x + tηd) is close to λ1 (X + tηD), in which event we get the
left hand branch of estimate (20), or whether the discrepancy between f(x + td)
and λ1 (X + tD) at tη is important, the case covered by the right hand branch of
the formula. The minimum of both possibilities is then a pessimistic estimate of the
progress achieved. !

What is remarkable here is that the order of magnitude of the descent θ(x, ε) at x is
the same as in the convex case, namely O (η(ε)). In fact, this is obvious for the left
hand term in (20). Now formula (19) shows that η(ε) ∼ ∆ε(X)dist (0, δεf(x))2, if
we observe that

(√
1 + σ − 1

)2 = σ2

4 + O(σ3) for small σ > 0. This means the left
hand term is of the order ∆ε(X)dist (0, δεf(x))2, while the right hand term in (20)
is proportional to dist (0, δεf(x))2. Since ∆ε(X) is bounded by λ1(X) − λm(X),
which is bounded on a bounded set of X, the asymptotic order of θ(x, ε) is indeed
η(ε).
In order to achieve maximum decrease of f at the current x, we wish to find ε > 0

such that θ(x, ε) is maximized. Let us arrange the eigenvalues of X = B(x) in
decreasing order

λ1(X) = · · · = λr2−1(X) > λr2(X) = · · · = λr3−1(X) > λr3(X) . . . ,

where r1 = 1 and where a gap occurs between ri − 1 and ri. Let us choose εi such
that rεi = ri − 1. Then every εi is a candidate for the step selection. Put di(x) =
dist (0, δεif(x)). Then d1(x) ≥ d2(x) ≥ · · · ≥ dt(x) = 0 for some t ≤ m − 1. We
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define

θ(x) = max
i=1,2,...

θ(x, εi) (21)

= max
i=1,2,...

max





∆εi(x)

16

(√

1 +
32
9

di(x)
‖B′(x)#‖

− 1

)2

,
di(x)2

8L




 ,

and we let ε(x) denote the smallest εi where this maximum is attained. As we have
seen, choosing ε(x) gives a guaranteed decrease of θ(x). We now have the following
result for program (3):

THEOREM 3.6 Let f = λ1 ◦ B be a nonconvex maximum eigenvalue function and
suppose x1 ∈ Rn is such that Ω = {x ∈ Rn : f(x) ≤ f(x1)} is compact. Let xk be
a sequence of iterates such that f(xk+1) ≤ f(xk)−θ(xk). Then every accumulation
point x∗ of xk is a critical point, i.e., satisfies 0 ∈ ∂f(x∗).

Proof Since the values f(xk) decrease, iterates xk stay in Ω. Let x∗ be an accu-
mulation point of the xk and select K ⊂ N such that xk → x∗, k ∈ K. Clearly
x∗ ∈ Ω. By monotonicity of the sequence f(xk), we have f(xk+1) → f(x∗),
k ∈ K, even though we do not have any information as to whether xk+1 → x∗.
Therefore f(xk+1)−f(xk)→ 0, k ∈ K. On the other hand, by assumption, we have
f(xk+1)− f(xk) ≤ −θ(xk) < 0, which implies θ(xk)→ 0.
Suppose now that contrary to the claim of the theorem, x∗ is not a critical point.

Then 0 0∈ ∂f(x∗). Let r∗1 = 1, r∗2 , . . . the indicies denoting eigenvalue gaps atX ∗ =
B(x∗). Let ε∗1 > 0 cut into the first eigenvalue gap, that is λ∗1 − ε∗1 > λr∗

2
. Then

∂f(x∗) = δε∗1f(x∗), which means that there is at least one candidate for computing
θ(x∗), namely θ(x∗, ε∗1) > 0, so that θ(x∗) > 0. In other words, if we follow the
procedure to compute descent steps, we would find a step x∗∗ away from x∗ such that
f(x∗∗) − f(x∗) ≤ −θ(x∗) < 0. We will now achieve a contradiction by showing
that the function θ(·) is lower semi-continuous, i.e., satisfies lim inf k∈K θ(xk) ≥
θ(x∗). Indeed, once this is shown, we clearly could not have θ(x∗) > 0, because
lim infk∈K θ(xk) = 0.
Passing to a subsequenceK ′ of K, we can assume that θ(xk)→ θ∗ converges. We

have to show θ∗ ≥ θ(x∗). Since each Xk = B(xk) with k ∈ K′ has only finitely
many eigenvalue gaps, and since there are at most m places for these eigenvalue
gaps, we may pass to a subsequence K ′′ of K′, where each Xk, k ∈ K′′, has its
eigenvalue gaps in the same places r1 = 1 < r2 < . . . . Notice, however, that rj are
not identical with the places r∗j where the limiting matrixX∗ has its eigenvalue gaps.
In fact, X∗ may and will have fewer eigenvalue gaps than the Xk, but by continuity
of the eigenvalues each gap r∗

j of X∗ is also an eigenvalue gap of the Xk. In other
words, {r∗1 , r∗2, . . . } ⊂ {r1, r2, . . . }.
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Now consider the computation of θ(x∗). Suppose the maximum is attained at gap
j∗. Now this eigenvalue gap is also an eigenvalue gap of all the Xk, even though
the number need not be the same. Suppose the number of the same gap is j for the
sequence Xk, which in particular means λr∗

j∗
(X∗) = λrj(X∗). Now the quantity

θ(xk, εj) is considered when computing θ(xk), where εj specifies the eigenvalue gap
j at the Xk and at the same time the gap j∗ at X∗. Clearly the continuity properties
of θ(xk, εj) depend on the continuity of dj(xk) and∆j(xk).
Clearly, ∆j(xk) → ∆j∗(x∗) by continuity of the eigenvalue functions. Concern-

ing the dj(xk), let us argue that lim infk∈K′′ dj(xk) ≥ dj∗(x∗), which hinges on
some sort of set convergence of δεjf(xk) toward δεjf(x∗). Let the distance dj(xk)
be attained at some B ′(xk)#QkYkQT

k , where Yk , 0, Tr(Yk) = 1, and where the
columns of Qk are an orthonormal basis of the invariant subspace of Xk belonging
to the eigenvalues up to the gap j. Passing if necessary to yet another subsequence
K′′′, we may assume Yk → Y ∗ with Y ∗ , 0, Tr(Y ∗) = 1 andQk → Q∗ such that the
columns of Q∗ are an orthonormal basis of the invariant subspace of X ∗ associated
with the eigenvalues up to the j∗th gap of X∗. Then B′(x∗)#Q∗Y ∗Q∗T ∈ δεjf(x∗).
Notice thatQ∗ need not be identical with the orthonormal basisQεj chosen to define
δεjf(x∗), but the values B ′(x∗)#Q∗Y ∗Q∗T do not depend on the actual choice of this
basis. It follows that limk∈K′′′ dj(xk) ≥ dj∗(x∗).
Altogether we have shown that lim inf k∈K′′ θ(xk) ≥ lim infk∈K′′ θ(xk, εj) ≥

θ(x∗), which proves the claim. !

This result proves convergence of the following algorithm, where 0 < τ ≤ 1 is a
fixed parameter:

ε-enlarged descent for f = λ1 ◦ B

1. At the current iterate x stop if 0 ∈ ∂f(x). Otherwise
2. Compute θ(x) according to (21). Let εj > 0 be where the maximum

is attained, and let d be the associated direction of steepest εj-enlarged
descent (14), obtained by solving the tangent program

(T ) min
‖d‖≤1

λ1

(
Q"
εj
B′(x)dQεj

)
.

3. Perform a line search in direction d until f(x + βd) ≤ f(x)− τθ(x, εj).
4. Put x+ = x + βd, replace x by x+, and go back to step 1.

3.2 Practical aspects

Computing θ(x) at the current iterate x involves computing dj(x) for all the eigen-
value gaps j at X = B(x), which is undesirable ifm is large. However, as the proof
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shows, we could avoid this if the position of the first eigenvalue gap j ∗ = 1 of the
limiting matrix X∗ was known. This is the same as to say that the multiplicity of
λ1(X∗) is known. There are practically useful ways to estimate the multiplicity m∗

of λ1(X∗), for instance, by saying that at iterate Xk, thosem with

|λm − λ1| ≤ max(1, |λ1|)τ

will coalesce with λ1 in the limit X∗, where for instance τ ≈ 10−5.
If we wish to compute θ(x) using (20) and (21) as planned, that is, without

knowledge of t∗, we can often exploit the fact that d1(x) ≥ d2(x) ≥ · · · ≥
ds(x) = 0. As long as the right hand term in (21) is dominant, things are easy,
because of this monotonicity. When the left hand term in θ(x, ε) is dominant,
we may still exploit monotonicity of the dj . For instance, if we have computed
θ(xk, εj) ∼ ∆j(xk)dj(xk)2 for some gap j, we can dispense with all the follow-
ing θ(xk, εj+ν) ∼ ∆j+ν(xk)dj+ν(xk)2, where ∆j+ν(xk) is smaller than ∆j(xk).
As a rule, we observe that it is usually sufficient to consider only the initial part of
the spectrum, which is of course of the essence if the BMI size m is large. As our
testing shows, in order to compute θ(xk) reliably, it is very often sufficient to locate
the first relatively large eigenvalue gap∆j(xk).

The following table illustrates this idea, with an example of a stabilization problem
whose resulting BMI is of size m = 28. Since all the entries we are interested in
are computed at a given xk, the dependence on xk has been omitted below. Several
values of rε, given in the first column, corresponding to sizeable gaps, are picked.
The associated values of ε = λ1 − λrε and ∆ε = λrε − λrε+1 are reported in the
second and third column. For each value of rε, an SDP program is solved to compute
the steepest ε- enlarged descent direction d, and the related distance to the enlarged
ε -subdifferential at xk, which is equal to −f̃ ′

ε(xk; d) (see 18), displayed in column
four. Finally, in column 5, a line search along the direction d of golden section type,
with parabolic interpolation, provides the actual achieved progress on the maximum
eigenvalue function λ1. We have here that λ1(B(xk)) = 0.
This example indicates that only the first gap, ∆ε = 1.9, should be considered,

as the associated achieved progress (= 1.14) is best. Indeed the absolute value of
f̃ ′
ε(xk; d) decreases quickly to 0 as ε increases, which seems to confirm our assump-
tion. Indeed, the next meaningful gap appears for rε = 27, with corresponding
f̃ ′
ε(xk) = 0, and does not allow any further progress. We have observed that this
situation is typical.

3.3 Reducing the number of variables

The appealing feature of our algorithm is that the tangent program (T ) is a semidef-
inite program with a matrix Q"

ε [B′(x)d] Qε of size rε, which is usually small. In
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rε ε ∆ε f̃ ′
ε(xk; d) Achieved progress

1 − 1.9 −1.21 1.14
2 1.9 1.4e-4 −7.7e-1 3e-1
18 1.9 3.0e-1 −7.3e-2 6.4e-3
19 2.2 3.7e-1 −7.3e-2 6.4e-3
20 2.6 3.0e-6 0 −
21 2.9 6.5e-3 0 −
27 2.9 1.9 0 −
28 4.8 − 0 −

1: influence of the gap

order to solve it efficiently, the number of variables d ∈ Rn has to be reduced, and
this is done as follows. Let us first rewrite program (T ) as

min
‖d‖≤1

λ1

(
n∑

i=1

Cidi

)

, (22)

where Ci = Q"
ε

∂B
∂xi

(x)Qε for i = 1, · · · , n, and with d = [d1 · · · dn]". Then, by
denoting C) = [svec (C1) · · · svec (Cn)], we have

n∑

i=1

Cidi = smat [C) d] . (23)

Now observe that C) has nε = rε∗(rε + 1) /2 rows and n columns, so that in general
rank (C)) ≤ nε . n. We decompose d as

d = Qd̃ + Zd̂, (24)

where the columns of Q form an orthonormal basis of Range (C"
) ), while the

columns of Z form an orthonormal basis of Null (C)). The matrix Q is found by
a QR-factorization: C"

) = Q R. In particular, R is a small invertible triangular ma-
trix and Q satisfies Q" Q = I . The decomposition (24) guarantees that C) Z = 0.
We now have that

C)d = C) Qd̃ = R"d̃.
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The equivalent form of program (22), in the new variables d̃ and d̂, follows from (23)
and (24):

min
‖ed‖2+‖bd‖2≤1

λ1

(
smat

[
R" d̃

])
. (25)

Notice that ‖d‖2 = ‖d̃‖2 + ‖d̂‖2, by virtue of the definition of Q and Z . Obviously
d̂ can be chosen arbitrarily (equal to zero), as it has no influence on the objective
function. We get the following new equivalent form of the tangent program:

min
‖ed‖≤1

λ1

(
smat

[
R"d̃

])
. (26)

Finally, (26) is equivalent to the linear SDP

minimize t

subject to
r∑

i=1

C̃id̃i $ tI

‖d̃‖ ≤ 1,

(27)

where

R" =
[
svec (C̃1) · · · svec (C̃r)

]
, d̃ =

[
d̃1 · · · d̃r

]
, r = rank(C)).

Let
(
d̃∗, t∗

)
denote the optimal solution of (27), then the descent direction for the

improvement function is simply obtained through

d∗ = Qd̃∗. (28)

The number of variables of the resulting LMI program has been reduced to at
most nε. This point is at the core of our strategy since this program has to be solved
at each step of the method. And now that we have come to a small-sized convex
program, it is particularly easy and efficient to handle via a LMI solver. We used
our software specSDP (see [16]) for the numerical examples examined in Section 5.
This approach allows to treat problems of a priori any size, as soon as en efficient
way to compute all the eigenvalues and eigenvectors of the original problem is
available. Notice that for large-scale problems, say several thousands of variables,
some savings need to be obtained by computing only eigenvectors associated with
few of the largest eigenvalues. We finally point out that the program has always a
feasible solution, because the null vector is admissible in (27).
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4 Constrained eigenvalue program

In this section, we consider the constrained eigenvalue program (4). A first option is
to transfer this to an unconstrained program (3) using exact penalization. Choosing
a penalty parameter p > 0 leads to

min
x∈Rn

c"x + p max {λ1 (B(x)) , 0} ,

which is of the form (3) with f = λ1 ◦ B̃, and B̃ the augmented bilinear operator

B̃(x) =
[
pB(x) +

(
c"x

)
I 0

0 c"x

]
∈ Sm+1.

Since tuning the penalty parameter pmay be cumbersome, we consider an alternative
way to handle program (4), which uses a successiveminimization of a progress func-
tion, incorporating both feasibility and optimality. At the current iterate xk, define the
progress measure

φ(x, xk) = λ1

[
c"(x− xk) 0

0 B(x)

]
= max{c"(x− xk), f(x)}, with f = λ1 ◦ B.(29)

The idea is now to compute at the current xk a descent step for this function, using
the theory of enlarged ε-subgradients developed for program (3). This requires the
same ingredients, choosing ε, computing the direction of steepest ε-enlarged descent,
followed by a line search along this direction to locate a new iterate xk+1. Since
φk(x) := φ(x, xk) is again a bilinear maximum eigenvalue function, we can apply
the tools previously developed almost without change. This leads to the following
program:

Steepest ε-enlarged descent for (4)

1. Given iterate xk, stop if 0 ∈ ∂φk(xk), because xk is a F. John critical point
of (4). Otherwise compute θ(xk) > 0 as in (21) and pick ε > 0 with
θ(xk) = θ(xk, ε).

2. Given ε > 0, compute the solution (d̃, t) of program (27). Obtain, via (28),
the direction of steepest ε-enlarged descent for φk at xk, in the original
variables d.

3. Do a line search in direction d and obtain xk+1 = xk + td, such that
φ(xk+1, xk) < φ(xk, xk)− θ(xk). Increase counter k = k + 1, and go
back to step 1.
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Convergence for this algorithm has already been proved in [13] and is clarified in the
next theorem. We have the following

THEOREM 4.1 Suppose c"x is bounded below on Ω = {x ∈ Rn : f(x) ≤ 0},
where f = λ1 ◦B. SupposeΩ has nonempty interior. Let xk be a sequence of iterates
such that φ(xk+1, xk) < φ(xk, xk)− θ(xk), where θ(xk) is as in (21), but computed
with respect to the function φk. Then the alternatives hold:

(i) Either the xk stay infeasible all the time, that is f(xk) > 0. Then every accumu-
lation point of the sequence xk is a critical point of f .

(ii) Or the sequence xk becomes feasible at some stage k0. Then, it stays feasible,
and every accumulation point of xk is a KKT-point of program (4).

Proof Suppose f(xk) > 0. Then the term c"(x−xk) is inactive at xk, and δεφk(xk)
coincides with δεf(xk). That means the method does exactly what it did in the un-
constrained case, namely, reducing the value of f . If the xk stay infeasible all the
time, we are back in the situation of Theorem 3.6, where f alone is minimized.
Suppose now that some xk becomes feasible. Then the term c"(x − xk) is ac-

tive at xk, which means that this term is reduced at the next step. c"(xk+1 − xk) <
0 = c"(xk − xk). Also, if f(xk) = 0, then this term is active, too, which means
that f(xk+1) < 0, so that xk+1 is strictly feasible. From that moment on, iterates
stay strictly feasible, and the objective function is reduced at each step. Every accu-
mulation point x∗ of the sequence xk is therefore feasible. Moreover, the argument
applied in the proof of Theorem 3.6 shows that 0 ∈ ∂φ(x∗, x∗), which implies that
x∗ satisfied the F. John optimality conditions: There exists (σ, τ) 0= (0, 0) such that
0 = σc + τg for some g ∈ ∂f(x∗). !

5 Numerical examples

5.1 Preliminary comments

• The bundle-type method that we present here can be used for large-scale SDP
problems. Here the matrix involved in the computation of the search direction is
simply obtained by projection

f̃ ′
ε(x; d) = λ1

(

QT
ε

[
n∑

i=1

Aidi

]

Qε

)

= λ1

(
n∑

i=1

QT
ε AiQεdi

)

.

On the other hand the approach may in principle be extended to any nonlinear
SDP, provided B′(x)d is cheaply computable.

• The initial iterate x0 is in general infeasible (Bounded Real Lemma not satisfied
and/or instable system). The algorithm may therefore converge to an infeasible
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local minimum. However, when prior knowledge on the system is available, it
is usually possible to compute a feasible starting point x0. Then all subsequent
iterates are feasible (see [13]). Moreover theH∞-norm is decreased from the first
iterate onwards.
To illustrate this behavior, we consider the example of minimizing theH∞ norm of
a given system when a stabilizing controller K0 is already known. Then it is easy
to compute the H∞ norm γ of the resulting closed-loop system. Now it remains
to provide a Lyapunov matrix P0 such that the matrix inequality in the Bounded
Real Lemma (2.1) is negative definite, for K0 and γ0 > γ fixed. This is done by
solving an LMI-feasibility problem, which can be handled by specSDP if the size
is reasonable. If not, the bundle method itself can be used. A third possibility is to
solve a perturbed Riccati equation:

ÃT P E + ET P Ã−
(
ET P B̃ + S

)
R−1 (B̃T P E + ST ) + Q = 0,

with

Ã = A + B2KC2, (30)

B̃ = B1 + B2KD21, (31)

E = γ0 I, (32)

S = (C1 + D12KC2)T (D11 + D12KD21), (33)

R = (D11 + D12KD21)T (D11 + D12KD21)− γ2
0 I, (34)

Q = (C1 + D12KC2)T (C1 + D12KC2) + δ I, (35)

where δ is a small positive perturbation. It is straightforward to show through
Schur complement that a solution P0 of the previous equation satisfies the strict
Bounded Real Lemma 2.1.

Once the initial point has been computed, theH∞ performance will be enhanced at
every step of the algorithm. Unfortunately, these approaches tend to produce initial
points which lie on the boundary of the feasible set. This may be inconvenient for
large systems, as it gives a high multiplicity for λ1(x0).

• The most important feature of our approach concerns the dramatic reduction of
size when computing the search direction d. The size of the modified problem
becomes roughly r2

ε

2 , where rε is the ε− multiplicity of the maximum eigenvalue.
So the motivation for the algorithm is to identify a set of "active" eigenvalues,
which is hopefully small, and to assume that only these largest eigenvalues play
a role towards optimality. The main limitation is when the multiplicity of λ1(xk)
is high, the size of the problem cannot be reduced and the search direction is no
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longer computable. For this reason it is preferable to provide an initial point that
spreads out the eigenvalues of B.

• Notice that if for a given ε, the computed search direction does not lead to a signif-
icant progress, for instance in the sense that the subsequent line search provided
τ . 1 in step 4. of the algorithm. In that case it appeared useful to consider ε ′

< ε
and to restart the computation of d, as the progress expectation from the choice ε
was probably too large. Naturally, this can also be done at the next iterate.

5.2 Static output feedback stabilization

We first consider examples of static output feedback stabilization. As mentioned in
Section 2, we minimize the (robust) spectral abscissa of the closed-loop system. This
can be cast as a BMI problem:






minimize α
subject to (A + B2KC2)T P + P (A + B2KC2)− 2αP $ 0.

I , P , ϑI

where ϑ > 0 is some small fixed threshold, and where x = (α,K, P ). We consider
the associated improvement function, defined at step k as

φ(α,K, P ;αk ,Kk, Pk) = λ1

(
α−αk 0 0 0

0 (A+B2KC2)T P+P (A+B2KC2)−2αP 0 0
0 0 ϑI−P 0
0 0 0 P−I

)
.

The YALMIP interface (see http://control.ee.ethz.ch/ joloef/yalmip.php) was used
to build an internal representation of the problems examined below and to get the
canonical BMI expressions as in (1) before calling the solver. All these examples
were borrowed from the COMPlεib collection, see [11].
Table 2 summarizes the results obtained with our algorithm, where ns, nK and nV

stand for the number of states, the number of entries in the controller matrix, and the
resulting number of decision variables in the BMI (nV = nK + ns(ns+1)

2 + 1). The
size m of the BMI matrix has been added in the fifth column in order to emphasize
the level of difficulty of the resolution. CPU is in seconds, αOL and αCL denote the
spectral abscissas of the open-loop and the closed-loop systems. Note that all systems
were initially instable.
These results show the efficiency of our algorithm on 8 dynamical systems out

of 9, which were stabilized successfully. In particular the last example involves 324
state variables, which gives rise to a BMI-constrained problem with 52655 variables.
Our algorithm is at its best for medium size problems, but could in principle attack
applications with several thousands of states. Very often, when we run into numer-
ical difficulties with very large problems, this was due to the use of the platform
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Problems ns nK nV m CPU (s) αOL αCL

CM1_IS 20 2 213 61 2 5e-3 −4e-3
AC10 55 4 1545 166 1.6 0.1 −0.02
CM2_IS 60 2 1833 181 - 5e-3 -
CM3_IS 120 2 7263 361 34 5e-3 −0.01

HF2D_CD1_M256 256 4 32901 769 33 1.1 −0.54
HF2D_CD2_M256 256 4 32901 769 48 0.7 −0.46
HF2D_IS3_M256 256 4 32901 769 26 1.3 −0.07
HF2D_IS4_M256 256 4 32901 769 23 0.5 −0.04
HF2D_CD3_M324 324 4 52655 973 47 2.0 −0.60

2: Large-scale static output feedback stabilization

YALMIP, which struggled with huge BMIs due to the limited amount of available
RAM on our Bi-processor Sun Blade 1500. Similarly we used the Lapack libraries
to compute the spectrum of the BMI and it is not sure that the computational time, as
well as the required accuracy, remain acceptable for a (dense) matrix of size larger
than 1e3. On the modified cable-mass model CM2_IS the algorithm got stuck on an
infeasible point. It was actually still progressing, but the maximum number of iter-
ations (40) had been reached without convergence and the progress was very slow.
This is a typical case as described in the previous section, where the multiplicity of
the maximum eigenvalue gets to large. Practically the maximum number of selected
eigenvalues has to be bounded (25 in our testing), so that the "tangent" linear SDP is
solved fast and reliably enough.
As far as the computational time is concerned, we see that it globally increases with
the size of the problems, because of the line search and the associated spectral com-
putations. It still remains reasonable however for these hard problems.

5.3 Static output feedbackH∞ synthesis

The last numerical results that we present below concern static output feedbackH∞
synthesis presented in Proposition 2.1. We consider the same examples as in the pre-
vious paragraph. Column ‖H‖∞ in table 3 now gives the performance index reached
with our algorithm, while the last column gives the pointer to the optimal controllers
given later in this section.
These results in table 3 are of interest, because most of the large-scale problems

presented have to our knowledge not been solved as yet.
We observed that using a "feasible" initial point (see paragraph 5.1) is not always

advisable, unless a good approximation of the optimal Lyapunovmatrix is also avail-
able. We found that it is often better to use randomly generated initial points. This
feature may be related to the nature of our control problems, and should not be inter-
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Problems ns nK nV m ‖H‖∞ name
CM1_IS 20 2 213 45 1.33 K1

AC10 55 4 1545 119 − K2

CM2_IS 60 2 1833 125 3.60 K3

CM3_IS 120 2 7263 245 − K4

HF2D_CD1_M256 256 4 32901 1027 12.8 K5

HF2D_CD2_M256 256 4 32901 1027 19.5 K6

HF2D_IS3_M256 256 4 32901 1027 11.2 K7

HF2D_IS4_M256 256 4 32901 1027 14.8 K8

HF2D_CD3_M324 324 4 52655 1299 23.7 K9

3: Large-scale static output feedbackH∞ synthesis

preted as a general verdict for other classes of BMI-programs.
Interestingly, we were able to compute a suitable controller for problem CM2_IS,
while we failed to accomplish this through the minimization of the spectral abscissa.
As for examples CM3_IS and AC10, the algorithm did not succeed in computing a
stabilizing controller within the maximum allowed number of iterations, which im-
plies that the H∞ norm of the closed-loop transfer functions remains infinite. It is
likely that, at least for problem AC10, the "size" of the stability domain obtained
with a static controller is very limited.
We finally give the computed controllers associated with each plant (See the last col-
umn of the table). The controllers corresponding to plants AC10 and CM3_IS are
those obtained with the spectral minimization approach, since the minimization of
the H∞ norm failed in these cases.

K1 =
[
−0.160 −1.027

]
, K2 =

[
0 3e-5

8e-5 6e-5

]
, K3 =

[
−1.690 −2.719

]
,

K4 =
[
0.210 −11.21

]
, K5 =

[
−0.201 −0.198
−0.228 −0.223

]
, K6 =

[
−0.141 −0.556
−0.020 0.458

]
,

K7 =
[
−0.166 −0.184
−0.628 −0.455

]
, K8 =

[
−0.078 −0.083
−0.229 −0.192

]
K9 =

[
−0.540 −1.847
−0.255 −0.702

]
.
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6 CONCLUSION

In this paper, we have developed a specialized nonsmooth technique to solve large
BMI programs. Both feasibility and linear objective minimization problems are con-
sidered. The core of our approach consists in the computation of the epsilon-enlarged
steepest descent directions along which a line search is performed to approximate lo-
cal solutions of BMI programs.
The main thrust of our approach is that inner steps reduce to small LMI problems

easily handled by currently available solvers such as specSDP. Also, progress of the
cost function is ensured as soon as feasibility of BMI constraints has been achieved.
Therefore, our method may as well be used to refine a given controller obtained by
any other method.
A number of implementation details to improve our algorithm have been discussed

especially regarding initialization difficulties. Practical validity and efficiency of our
method has been demonstrated through a number of H-infinity design problems from
the compleib collection. Our testing indicates that systems with several hundred of
states can be handled with reasonable cputimes.
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