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1 Introduction

Recently nonsmooth optimization has been successfully used to solve a variety

of difficult problems in structured linear controller design (Apkarian and Noll,

2006; Bompart et al., 2008; Apkarian et al., 2008; Simões et al., 2008). A com-

mon feature in these design methods is that the use of Lyapunov variables is

avoided. Since their number grows quadratically with the plant state dimen-

sion, this explains why nonsmooth techniques perform satisfactorily even for

sizeable systems, where standard BMI or LMI methods succumb due to the

curse of dimension. Yet another appealing feature of non-smooth optimiza-

tion is the ease with which controller structures and architectures favoured by

practitioners may be addressed directly.

An application of specific interest is synthesis of structured controllers satisfy-

ing explicit time-domain specifications. Time domain constraints may involve

rise and settling times, overshoot or undershoot, steady-state error, input am-

plitude and rate constraints or other operational limits on plant trajectories,

but also control constraints like saturation. It is therefore deplorable that most

existing linear controller synthesis methods do not allow to address these crite-

ria directly. Frequency-domain methods like H∞ or H2 synthesis (Zhou et al.,

1996) only allow the designer to address time-domain specifications indirectly

by setting up suitable frequency weighing filters. This leads to trial-and-error

and remains prone to failure. Similar comments apply to optimal control or

eigenstructure assignment techniques, see Oliva and Leite Filho (2002). Fi-

nally, all these methods use linear plant models, even though most physical

system are nonlinear. This is clearly regrettable if a non-linear plant model is

available for synthesis.
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On the other hand, genuine frequency-domain constraints also arise quite reg-

ularly in control design, for instance when robustness with regard to model

uncertainty or exogenous disturbances is needed. In consequence, controller

synthesis techniques working simultaneously in time- and frequency-domain

are of great practical interest, and probably even more so if they allow to

compute control laws with predefined structure. The method we present here

does in fact combine these three aspects in a single optimization framework.

We mention that multi-objective controller synthesis has been discussed be-

fore. For instance (Polak and Salcudean, 1989; Boyd and Barratt, 1991) set

forth similar ideas. The main difference with our techniques is that these

approaches rely on the Youla parametrization, which leads to high-order con-

trollers devoid of any particular physical structure.

In practical applications controllers should not only perform well in the nomi-

nal situation, but exhibit some form of robustness e.g. with respect to parame-

ter uncertainties, perturbations, and possibly in situations where the plant op-

erates under conditions which differ significantly from the nominal behaviour.

Multi-scenario design addresses this situation by grouping various time and

frequency-domain specifications for several scenarios of the same system into

the design. The present work expands on (Apkarian and Noll, 2006; Bompart

et al., 2008; Apkarian et al., 2008; Simões et al., 2008) in two main aspects.

Time-domain responses to input test signals are those of the non-linear plant

if nonlinear dynamics are available. At the same time frequency domain crite-

ria like the H∞ norm continue to be based on the linearized model, and both

aspects are unified in a single optimization program.

The structure of the paper is as follows. The multi-objective synthesis problem
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is formalized in section 2. The main ingredients of the proposed nonsmooth

minimization technique are reviewed in section 3. Two realistic applications

are discussed in section 4. In the first application, a robust tracking and de-

coupling controller under control amplitude and rate constraints is designed

for the nonlinear model of a satellite launcher. As a second example, a fault-

tolerant flight controller is designed for a combat aircraft in challenging flight

conditions subject to wind gusts.

Notation

Let R
n×m denote the space of n×m matrices equipped with the corresponding

scalar product 〈X, Y 〉 = X • Y . Concepts from nonsmooth analysis covered

by Clarke (1983) are used. For a locally Lipschitz function f : R
n → R, ∂f(x)

denotes its Clarke subdifferential at x while f ′(x; h) stand for the Clarke direc-

tional derivative at x in the direction h. For functions of two variables f(x, y),

∂1f(x, y) denotes the Clarke subdifferential with respect to the first variable.

For differentiable functions f of two variables x and y the notation ∇xf(x, y)

stands for the gradient with respect to the first variable. The max operator

applied to a vector v ∈ R
n is defined as max v = max

i=1,...,n
vi. The notation [.]+

applied to a scalar ρ denotes the threshold function [ρ]+ = max{0, ρ}. Its gen-

eralization to a vector v ∈ R
n is defined as [v]+ = max{0,max v} = max

i=1,...,n
[vi]+.

The symbol Fl(·, ·) denotes the traditional lower Linear Fractional Transforma-

tion. The symbol α(M) represents the spectral abscissa of a matrix M ∈ R
n×n

defined as α(M) := max {Re λ : λ eigenvalue of M }.
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Fig. 1. Multi-scenario interconnection

2 Multi-objective synthesis set-up

The set-up for multi-objective synthesis as investigated in this paper is as

follows. In Figure 1 we seek a structured feedback controller K(κ) which si-

multaneously stabilizes a finite family of plants P = {P 1, . . . , P p} internally

in closed loop. Moreover, this controller optimizes closed-loop performances

of the plants. We dispose of a set W of test input signals (steps, ramps, si-

nusoidals), which we can inject into the different plants P ∈ P, generating

closed-loop responses z = z(w, P, κ). Each plant P i ∈ P is described by a

system of nonlinear ordinary differential equations

(P i)






ẋ(t) = fi (x, u, w
i, t)

zi(t) = gi1 (x, u, wi, t)

y(t) = gi2 (x, u, wi, t)

, (1)
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which reduces to the familiar state-space description in the particular case of

linear time invariant (LTI) systems if linearized about steady state:

(P i
lin)
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The dimensions of the input and output vectors y and u must agree for all

plants P i, because a single controller is used for all P i, but we do not require

that the P i have the same state dimension or that the (wi, zi) have concordant

dimensions. Yet, typically all P i derive from a single system, which we wish to

control. It may also happen that several test signals wij with responses zij , are

used for the same P i. The set of all these (wij, zij) are called scenarios. During

the following we do not use the index notation, as it does not contribute to

readability. We shall write z ∈ Z for the responses arising in the different

scenarios, assuming that the corresponding input and plant are then known.

The above somewhat abstract description is flexible enough to include situa-

tions where a single plant is submitted to various test signals, as is the case

when decoupling properties must be guaranteed, but also in the case where

the original system P is split into several operating conditions or faulty modes

P i, which have to be controlled simultaneously. The latter is often referred to

as multi-model control (Mäkilä, 1991; Piguet et al., 1999) or reliable control

(Liao et al., 2002; Pujol et al., 2007).

Most practical design problems require structured controllers such as PID,

decentralized, fixed-order, observer-based etc. It is therefore convenient to in-
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troduce a controller parametrization in state-space

κ ∈ R
q → K(κ) :=





AK(κ) BK(κ)

CK(κ) DK(κ)




, (3)

with corresponding frequency-domain representation

K(s) = CK(κ)(sI − AK(κ))−1BK(κ) +DK(κ) .

It is not restrictive to assume that the mapping K : R
q → R

(m2+k)×(p2+k)

is continuously differentiable, while otherwise arbitrary. See Bompart et al.

(2008) and Simões et al. (2008) for examples. In (3), κ denotes the design

variables and k stands for the order of the controller, where the case k = 0

of a static controller is included. As a consequence of the smoothness of (3),

closed-loop scenario responses z(w, κ, t) depend smoothly on κ.

The goal of multi-scenario design in the time-domain is now the following.

Compute κ ∈ R
q such that the closed-loop time responses z = z(w, κ, ·) ∈ Z

obtained with controller K(κ) satisfy shape constraints of the form

lz(t) ≤ z(t) ≤ uz(t), ∀t ≥ 0, ∀z ∈ Z, (4)

where the lower and upper bounds lz and uz for each scenario z ∈ Z are

usually chosen as piecewise constant. These bounds are illustrated as dashed

lines in Figure 2 for a step following specification. The strategy used here is

to force these constraints (4) by minimizing the constraint violation function

ψ(κ) := max
z∈Z

max
t≥0

{[z(κ, t) − uz(t)]+, [lz(t) − z(κ, t)]+} . (5)

Note that the constraints (4) are satisfied as soon as ψ(κ) ≤ 0, while ψ(κ) > 0

indicates constraint violation.
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The LTI models P i
lin obtained by linearizing the P i ∈ P about steady state

allow us to address closed-loop frequency domain specifications. Those arise

naturally in synthesis due to robustness issues. Unstructured model uncer-

tainty for instance or energy-bounded disturbances require that the controller

satisfies specific bounds on the largest singular value norm of certain closed-

loop transfers

sup
ω∈IP

σ (TP (κ, jω)) ≤ γP , ∀P ∈ Plin, (6)

where TP (κ, s) := Fl (P (s), K(κ, s)), and where Plin denotes the set of lin-

earized plants {Plin : P ∈ P}. For each P specific frequency bands IP =

[ωP1 , ω
P
2 ], or more generally, IP = [ωP1 , ω

P
2 ]∪ . . .∪ [ωPq , ω

P
q+1] , can be specified,

where right interval tips may take infinite values. Dynamic weights W P
∞(s)

may also be used in (6), in which event the constraint take the normalized

form

sup
ω∈IP

σ
(
W P

∞(jω)TP (κ, jω)
)
≤ 1, P ∈ Plin . (7)

Typically, each transfer TP (κ, jω) may use the traditional closed-loop sensi-

tivity functions. Constraints (7) will be satisfied as soon as the constraint
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violation function

σ(κ) := max
P∈Plin

sup
ω∈IP

σ
(
W P

∞(jω)TP (κ, jω)
)
− 1 (8)

becomes ≤ 0. For disturbances of finite average power, the H2 norm may be

more appropriate:

∥∥∥W P
2 (s)TP (κ, s)

∥∥∥
2
≤ 1, P ∈ Plin. (9)

The corresponding constraint violation function is

θ(κ) := max
P∈Plin

∥∥∥W P
2 (s)TP (κ, s)

∥∥∥
2
− 1 . (10)

Finally, the most fundamental closed-loop specification is internal stability.

If this is difficult to achieve based on the performance criteria alone, it may

become necessary to include constraints on K(κ) using the closed-loop spectral

abscissa

α(AP (κ)) ≤ αP , P ∈ Plin, (11)

where αP < 0 and AP (κ) is the state matrix of the closed-loop system TP (κ, s).

The constraint violation function for the spectral abscissa is

α(κ) := max
P∈Plin

α(AP (κ)) − αP . (12)

Notice that the original controller synthesis problem has been cast as a multi-

objective optimization program

minimize
κ∈Rq

(ψ(κ), σ(κ), θ(κ), α(κ)) , (13)

to be optimized until all entries of the objective vector (13) become non-

positive.
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For practical reasons it may be useful to distinguish between hard and soft

constraints in (13). For the time-domain constraints we partition the scenario

set Z into disjoint subsets S and H, i.e., Z = S∪H, S∩H = ∅, where S are soft

constraints and H hard constraints. This gives rise to the constraint violation

functions ψS and ψH. A similar division may be applied to the frequency

domain constraints.

The constrained multi-objective optimization problem could then be solved as

minimize
κ∈Rq

f(κ) := max{ψS(κ), σS(κ), θS(κ), αS(κ)}

subject to g(κ) := max{ψH(κ), σH(κ), θH(κ), αH(κ)} ≤ 0 ,

(14)

where objective and constraint now regroup constraint violation functions

from (5), (8), (10) or (12). A solution to program (14), being feasible, neces-

sarily meets the hard constraints, while soft constraints will be achieved only

when the objective function falls below 0. In program (14), the role of indi-

vidual weights for the various specifications is played by tuning parameters lz,

uz, W
P
∞, W P

2 and αP . The strategy adopted here is to select these weights in

close spirit with the aspiration levels approach for multi-objective optimization

(Boyd and Barratt, 1991, p.64). Tuning parameters are adjusted iteratively

based on a few trial-and-error designs. For instance, hard constraints which

are easy to satisfy in one run can be tightened at the next, while violated

constraints which continue to resist may have to be relaxed. One of the ap-

pealing features of this approach is that tuning parameters are closely related

to engineering specifications, so their adjustment can be based on intuition.

The synthesis framework (14) gives the designer the flexibility to handle de-

sign specifications directly as posed in practice. Program (14) is, however, a
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difficult nonconvex and nonsmooth mathematical program with semi-infinite

constraints (5) or (8). Specific nonsmooth optimization techniques have been

developed in Apkarian et al. (2008) to address these problems, and the key

ingredients are recalled in section 3. Standard smooth optimization packages

could be used to solve programs like (14), but this bears the risk of failure if

algorithms encounter so-called dead points; Apkarian and Noll (2006). Even

when used to produce good starting values, smooth optimization should in

the end always be completed by a nonsmooth optimization phase.

3 Key ingredients in Nonsmooth optimization

In this section we recall the key ingredients of the nonsmooth optimization

method used in the experimental section 4. The reader is referred to Apkarian

et al. (2008) for details.

For the sake of clarity we represent (14) in the more abstract form

minimize
κ

f(κ)

subject to g(κ) ≤ 0 .

(15)

where both objective and constraints can contain a mix of frequency and

time domain elements as in (14). To solve the constrained program (15), the

following progress function is introduced, following an idea in Polak (1997):

F (κ+, κ) = max{f(κ+) − f(κ) − µg(κ)+; g(κ+) − g(κ)+}, (16)

where µ > 0 is some fixed parameter (with µ = 1 a typical value). Here κ

represents the current iterate, κ+ is the next iterate or a candidate for the

next iterate. Except the case where κ̄ is a local minimum of the constraint
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violation g(κ̄) > 0, it is shown in Polak (1997) that critical points κ̄ of F (·, κ̄)

will also be critical points of the original program (15). Refer to Polak (1997)

and Apkarian et al. (2008) for an in-depth discussion of this property.

Minimizing the progress function in (16) leads to a so-called phase I/phase II

method. As long as the constraint g(κ) ≤ 0 is not satisfied, the right hand

term in (16) is dominant and reducing it means reducing constraint violation.

This is phase I, which ends successfully as soon as a feasible iterate g(κk) ≤ 0

has been found. Now phase II begins, and from now on iterates stay (strictly)

feasible, while the objective function is minimized at each step. Notice that

the choice of the constant µ > 0 may have an influence on the behaviour of

the method in phase I, Apkarian et al. (2008), but has been fixed it as µ = 1

in the numerical implementation.

The search for a point κ̄ with 0 ∈ ∂1F (κ̄, κ̄) is based on an iterative descent

procedure. Suppose the current iterate κ has 0 6∈ ∂1F (κ, κ). Then it is possible

to further reduce the function F (·, κ) in a neighbourhood of κ, that is, one

can find κ+ such that F (κ+, κ) < F (κ, κ). Replacing κ by κ+, the procedure

is repeated. Unless 0 ∈ ∂1F (κ+, κ+), in which case the search is over, it is

possible to find κ++ such that F (κ++, κ+) < F (κ+, κ+), etc. The sequence

κ, κ+, κ++, . . . so generated is expected to converge to the sought local min-

imum κ̄ of (15) if the reduction is substantial in a sense made precise in the

above references.

Descent steps κ+ away from the current κ are found by solving a tangent

program at κ. Its name derives from the fact that a first-order approximation

F̂ (·, κ) of F (·, κ) is built, which provides a descent direction dκ at κ, that is,

d1F (κ, κ; dκ) < 0, where d1F denotes the directional derivative of F (·, κ) at κ
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in direction dκ. The next iterate is then κ+ = κ+dκ, or possibly κ+ = κ+ξdκ

for a suitable stepsize ξ ∈ (0, 1) found by backtracking.

3.1 Search directions from the tangent program

In order to generate a first-order approximation F̂ (·, κ) of F (., κ) around κ, the

specific structure of our criteria is exploited, and the concept of active times

and active frequencies is needed. For time domain constraints we explain this

for the function ψS = maxz∈S ψz. Consider a scalar-valued scenario z ∈ S.

Then the violation function is of the form ψz(κ) = maxt≥0 ψz(κ, t), where

ψz(κ, t) :=max{[z(κ, t) − uz(κ, t)]+, [lz(t) − z(κ, t)]+}

= max{z(κ, t) − uz(t), lz(t) − z(κ, t), 0} . (17)

Then the set of active times for this entry z ∈ S at κ is the possibly empty

set

Az(κ) := {t ≥ 0 : ψz(κ, t) = ψS(κ)}.

For vector-valued scenarios z ∈ S the definition is applied to each coordinate

of z. Finally the set AψS
(κ) of active times for ψS is simply the union of the

Az(κ), z ∈ S. The definition of AψH
is of course analogue.

Let us now define active frequencies. Consider a function of the form

σS(κ) = max
P∈S

max
ω≥0

σP (κ, ω),

where

σP (κ, ω) := σ
(
W P

∞(jω)TP (κ, jω)
)
− 1 , (18)

for ω ≥ 0, P ∈ Plin. Clearly now S denotes the subset of Plin chosen for soft

constraints. The set of active frequencies for P ∈ S is then the potentially
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empty set

ΩP (κ) := {ω ≥ 0 : σP (κ, ω) = σS(κ)},

while the set ΩσS (κ) of active frequencies of σS at κ is the union of the ΩP (κ),

P ∈ S.

As a rule, the sets AψS
(κ) and ΩσS (κ) are finite or can at least be finitely

generated, and similarly for subscripts H. In order to increase the efficiency

of our method, we will use finite extensions AeψS
(κ) of AψS

(κ) and Ωe
σS

(κ) of

ΩσS (κ), where typically near active times or frequencies are added. For every

t ∈ AeψS
(κ) and ω ∈ Ωe

σS
(κ) we will pick certain subgradients for the tangent

program and store them in a subgradient set G. We shall now explain how to

pick these subgradients for the model functions ψS and σS .

To begin with, consider a time domain function ψS = maxz∈S ψz. Clarke’s

formula for the subdifferential of a max-function applies and gives the repre-

sentation

∂ψS(κ) = conv ∪ {∂ψz(κ, t) : t ∈ Az(κ), z ∈ S},

where the specific structure of the ψz for a scalar z ∈ S gives

∂ψz(κ, t) =






{∇z(κ, t)}, if z(κ, t) > uz(t)

conv{∇z(κ, t)}, 0} if z(κ, t) = uz(t)

{0} if lz(κ) < z(κ, t) < uz(κ)

conv{−∇z(κ, t)}, 0} if z(κ, t) = lz(t)

{−∇z(κ, t)} if z(κ, t) < lz(t).

Therefore, for every active t ∈ Az(κ) we store a pair (φt,Φt) with φt :=
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ψz(κ, t) = ψS(κ) and Φt ∈ ∂ψz(κ, t) in the set GψS
(κ). For t ∈ Aez(κ) \ Az(κ)

the same pair (φt,Φt) is stored in GψS
(κ), even though φt = ψz(κ, t) < ψS(κ)

in this case. In this way first-order approximations of ψz(κ + dκ, t) in the

neighbourhood of κ are obtained: ψz(κ+ dκ, t) ≈ αt + ΦT
t dκ if (φt,Φt) ∈ GψS

.

Consequently, the desired first-order approximation for ψS around κ is

ψS(κ + dκ) ≈ max
(φt,Φt)∈GψS (κ)

φt + ΦT
t dκ. (19)

Notice that the term on the right is the upper envelope of affine functions

and is therefore convex as a function of dκ. If only the sets Az(κ) were used

to build this model, then all these affine lines would be generalized tangents

to the graph of ψS at κ. Having enlarged Az(κ) into Aez(κ) makes that some

of the lines in the model pass strictly below ψS(κ), so do not contribute at

κ. However, they can quickly become active as we move from κ to a nearby

κ+ dκ, hence their significance for the local model (19).

Building a first-order approximation of σS(κ + dκ) around κ is slightly more

involved, because the largest singular value functions σP (κ, ω) are nonsmooth

in κ even for fixed ω and P . Instead of working with the maximum sin-

gular value σ(WT ) as in (6), it will be convenient to work with the max-

imum eigenvalue λ1(WTTHWH). We therefore introduce the symmetriza-

tion SP (κ, s) := (W P
∞(s)TP (κ, s))(W P

∞(s)TP (κ, s))H and consider λS(κ) :=

σS(κ)2 = maxP∈S maxω≥0 λ1 (SP (κ, jω)).

A first-order approximation of λP (κ + dκ, jω) in the neighbourhood of κ is

given by (Apkarian and Noll, 2006; Simões et al., 2008)

λP (κ + dκ, jω) ≈ sup
Yw≥0,

Tr(Yw)=1

QwYwQ
H
w • (SP (κ, jω) + S ′

P (κ, jω)dκ) − 1 (20)
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where S ′
P (κ, jω) is the Fréchet derivative of SP (·, jω) at κ, and Qω is an

orthonormal basis of the eigenspace of λ1 (SP (κ, jω)) at κ. Define

φg := QωYωQ
H
ω • SP (κ, jω) − 1, Φg := S ′

P (κ, jω)⋆QωYωQ
H
ω

and store the pairs (φω,Φω) in the set GσS (κ) for all ω ∈ Ωe
σS

(κ). As previously

observed, enlarging Ω into Ωe gives the model some robustness. Notice, how-

ever, a difference with the model building of ψ. The pairs in GσS are indexed

by Yω ranging over the set of matrices {Yω : Yω � 0,Tr(Yω) = 1}, which is

infinite if dim(Yω) > 1. If we keep all these subgradients, our tangent program

will be a small size semidefinite program. However, in Apkarian et al. (2008)

we have shown that one can get by with a finite set of subgradients, so tangent

programs will turn out to be small to medium size convex quadratic programs,

which can be solved very efficiently.

The function θ(κ) being smooth, we can keep the choice of (φθ(κ),Φθ(κ)) sim-

ple by taking (θ(κ),∇θ(κ)). Enlarging is possible, but not mandatory due to

smoothness. Similarly, for the spectral abscissa we can usually limit ourselves

to the function value and a single subgradient, which can be computed as

outlined in Bompart et al. (2007).

The tangent model of F (., κ) at κ is now constructed by assembling the first-

order approximations of all the branches of the max-function in (16). With the

above preparation, suppose finitely many pairs (φf ,Φf ) ∈ Gf (κ) and (φg,Φg) ∈

Gg(κ) have been constructed for objective and constraint. Then a first-order

approximation of the progress function is
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F̂ (κ+ h, κ) := max

{

max
(φf ,Φf )∈Gf (κ)

φf − f(κ) − µg(κ)+ + ΦT
f h,

max
(φg ,Φg)∈Gg(κ)

φg − g(κ)+ + ΦT
g h

}

, (21)

where h is the displacement in the controller parameter space R
q. This gives

the tangent program

minimize
h∈Rq

F̂ (κ+ h, κ) + δ
2
‖h‖2, (22)

with δ > 0 a fixed parameter. It is worth noting that an equivalent formulation

for (22) is the following

minimize
t, h∈Rq

t+ δ
2
‖h‖2

subject to φf − f(κ) − µg(κ)+ + ΦT
f h ≤ t, ∀(φf ,Φf) ∈ Gf(κ) ,

φg − g(κ)+ + ΦT
g h ≤ t, ∀(φg,Φg) ∈ Gg(κ) .

(23)

When the eigenvalue multiplicity of all maximum eigenvalue functions equals

1, one can select Yw = 1 in (20). Then (23) is a standard convex quadratic

program (CQP), and can be efficiently solved using currently available codes.

Current state-of-the-art CQP codes solve problems involving several hundreds

of variables and constraints in less than a second. Note that the quadratic

term in (22) can be used to capture second-order information, or it may be

interpreted as a trust region radius management parameter. The reader is

referred to (Apkarian and Noll, 2006), (Apkarian et al., 2008) and (Simões

et al., 2008) for more elaborate variations of the present technique, and to

Polak (1997) for a general view on phase I/phase II methods. The key facts

about (22) or (23) have been established in Apkarian and Noll (2006) and are

stated here without proof:
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• The fact that the extended sets contain the active sets ensures that the

solution to (22) is a descent direction of F (., κ) at κ. If h = 0 then 0 ∈

∂1F (κ, κ), and the search is over. Clearly, a stopping test may be based on

the smallness of the solution h to the tangent program.

• The direction h can be used in an Armijo line search (J.E. Dennis, Jr. and

Schnabel, 1996) defined by a step ξ in direction h with:

F (κ+ ξ h, κ) − F (κ, κ) < γξF ′(., κ)(κ; h),

where 0 < γ < 1, which terminates after finitely many steplength trials

ξ ∈ (0, 1].

Both items use the fact that ∂1F̂ (κ, κ) = ∂1F (κ, κ). Having described the

main features of the algorithm, its pseudo-code is as follows:

Algorithm 1. Nonsmooth algorithm for program (15)

Parameters: δ > 0, 0 < β < 1, 0 < γ < 1.

1: initialize. Select initial κ1. Put counter j = 1.

2: stopping test. At counter j, stop if 0 ∈ ∂1F̂ (κj, κj) and return κj . Oth-

erwise continue.

3: compute descent direction. At counter j solve tangent programs (22)

or (23)

min
h∈Rq

F̂ (κj + h, κj) + δ
2
‖h‖2.

Solution is the search direction hj .

4: line search. Find ξ = βν , ν ∈ N, satisfying the Armijo condition

F (κj + ξhj, κj) − F (κj, κj) ≤ γξF ′(·, κj)(κj, hj) < 0.

5: update. Put κj+1 = κj + ξhj, increase counter j by 1 and loop back to

step 2.

18



3.2 Implementation details

Similarly to iterative feedback tuning (IFT), the proposed technique relies on

simulations to compute function values as well as trajectory gradients for

time-domain constraints. A comprehensive discussion on how this can be done

is presented in Hjalmarsson (2002), Hjalmarsson et al. (1998) and Bompart

et al. (2008). This is generally the costly part of the technique since dim κ = q

simulations for each scenario may be required in order to form the trajectories

gradients. Simulations serving to compute trajectory gradients for nonlinear

plants require the auxiliary nonlinear system






∂ẋ
∂κj

(t) = ∂f

∂x
(x, u, w, t) ∂x

∂κj
(t) + ∂f

∂u
(x, u, w, t) ∂u

∂κj
(t)

∂z
∂κj

(t) = ∂g1
∂x

(x, u, w, t) ∂x
∂κj

(t) + ∂g1
∂u

(x, u, w, t) ∂u
∂κj

(t)

∂y

∂κj
(t) = ∂g2

∂x
(x, u, w, t) ∂x

∂κj
(t) + ∂g2

∂u
(x, u, w, t) ∂u

∂κj
(t)

, (24)

where κj is the j-th free design variable. As in practice the plant trajectories

are only inspected on a finite horizon, the half-line t ≥ 0 should be replaced

with t ∈ [0, T ] everywhere in the text.

Nonlinear simulations can be performed using a general-purpose ordinary dif-

ferential equation solver, like in the MATLAB function SIM. For LTI systems,

however, it is computationally more efficient to use the classical discrete state-

propagation approach as in the MATLAB function LSIM. This method is par-

ticularly appealing here because the simulation scenarios for a given plant in

the family only differ by their input signals and consequently the dynamic

equation

ẋ = Ax+B1w +B2u
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needs only be discretized once to get the simulation dynamics

xk+1 = Adxk +Bd
1wk +Bd

2uk .

A reduction in execution time is then achieved since the data Ad, Bd
1 and Bd

2

can be recycled for each scenario and the rest of the computation amounts to

simple matrix vector products. Notice further that the outlined procedure is

amenable to parallel computing because scenarios are typically independent.

Another important question is how to build the extension sets Aez and Ωe
P

which determine the tangent program (22) and thereby the behaviour of the

nonsmooth algorithm. To construct Aez, different strategies are used for soft

and hard constraints, see Figure 2. In the soft constraints case, Aez contains the

set of active times plus some extra samples for which constraints are violated,

represented in the figure by ‘×’ symbols. This is easily obtained by decimating

samples provided by the numerical integrator. In the hard constraint case, Aez

is built similarly, but includes also extrema satisfying the constraints envelope,

represented by ‘∗’ symbols. The idea here is to feed the tangent program with

first-order information about ψ even during phase II. In return this helps

preventing iterates getting stuck on the feasibility boundary. The set Ωe
P (κ)

includes active frequencies plus some extra nearly active frequencies, see Figure

3.

4 Applications

The simulations and computations for the case studies presented in this section

have been performed with the Matlab environment running on a 2.4GHz Core

2 Quad processor with 4Gb RAM. The code has been developed essentially

using Matlab, with Fortran being used for the CQP tangent problem (22) to

minimize the main performance bottlenecks.

20



4.1 Tracking and decoupling control for a satellite launcher

In our first example, a tracking and decoupling controller is designed for the

Brazilian satellite launcher vehicle VLS during the atmospheric flight phase.

This case study has been initially investigated in Oliva and Leite Filho (2002).

For the sake of completeness, the nonlinear equations for the vehicle are re-

produced below:

v̇ =Yvv − g sin(θ) sin(φ) + g cos(θ) sin(ψ) cos(φ) + Yrr + pw + Yβyβy

ẇ =Zww − g sin(θ) cos(φ) − g cos(θ) sin(ψ) sin(φ) + Zqq − pv + Zβzβz

ṗ =Lpp+ Lqrqr + Lβrβr

q̇ =Mww +Mqq +Mprpr +Mβzβz

ṙ =Nvv +Nrr +Npqpq +Nβyβy

θ̇ =cos(φ) sec(ψ)q − sin(φ) sec(ψ)r,

ψ̇ =sin(φ)q + cos(φ)r

φ̇ =p− tan(ψ) cos(ψ)q + tan(ψ) sin(φ)r

where v is the sideslip velocity, w is the z-body axis vehicle velocity, p, q, r are

respectively the roll, pitch and yaw rates, and θ, ψ, φ are the attitude angles

in pitch, yaw and roll, respectively. Variations of the x-body velocity need not

be considered since there is no thrust control on the vehicle. The motion is

controlled by deflections βz, βy and βr of pitch, yaw and roll nozzle actuators,

respectively. Coefficients of the nonlinear equations vary with flight time, but

are supposed to be fixed here: Yv = −0.0162, Yr = −87.9, Yβy = −10.87,

Zw = −0.0162, Zq = 87.9, Zβz = 10.87, Lp = −0.0289, Lqr = 0, Lβr = 25.89

Mw = 0.0022, Mq = 0.0148, Mpr = 0.8333, Mβz = 4.08, Nv = −0.0022,

Nr = 0.0151, Npr = −0.9231, Nβy = 4.08.
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Fig. 4. closed-loop system block diagram representation

The design objective is to synthesize a stabilizing controller where each at-

titude angle in the nonlinear model must track as closely as possible a step

reference signal. The control law is a standard feedback with integral action

in order to eliminate the steady-state tracking error, and is depicted in figure

4, where

z =





θ

ψ

φ





, r =





θref

ψref

φref





, u =





βz

βy

βr





, yTx =




q θ r ψ p φ




T

.

States w and v are not available for feedback. The controller variables to be

determined are the static gains Kx ∈ R
3×6 and Ki ∈ R

3×3 in Figure 4.

A difficulty of the problem is that the launcher has strongly coupled responses

when performing angular maneuvers, and consequently the tracking controller

must also achieve decoupling between the three tracking channels. Available

techniques to solve such tracking and decoupling problems include for in-

stance the LQ and eigenstructure assignment techniques for linear systems

investigated in Oliva and Leite Filho (2002). Nonetheless, this kind of prob-

lem fits nicely into the multi-scenario framework with appealing advantages.

First, realistic time-domain performance criteria such as rise-time and over-
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shoot, coupling amplitude limitations, as well as control amplitude and rate

constraints are easily handled using the proposed nonsmooth method. This is

in contrast with the existing approaches, where such performance specifica-

tions must be addressed indirectly by an iterative trial-and-error adjustment

of auxiliary design variables such as modes and eigenvector structures for the

eigenstructure assignment method or such as the quadratic weights Q and

R with the LQ method. Moreover, the nonsmooth design technique does not

assume full state measurement as is the case for the latter methods. Oliva and

Leite Filho (2002) assume full state measurement and cancel out gains corre-

sponding to unmeasured states afterwards which bears the risk of performance

deterioration or even of a loss of stability. And last but not least, time-domain

criteria can be imposed on the actual nonlinear model, thus leading to more

realistic results.

The present tracking and decoupling problem is easily described by three

distinct test scenarios being applied to the single model defined by the dashed

box in Figure 4. Each test scenario consists in a unit step command applied to

one of the reference inputs, while the other two are kept to zero. Altogether,

one has 3 test inputs w = r1, r2 or r3 described as follows:

r1(t) =





σ(t)

0

0





, r2(t) =





0

σ(t)

0





, r3(t) =





0

0

σ(t)





, (25)

where σ(t) stands for the unit step. Design specifications for each scenario

are good tracking performance for the corresponding attitude angle, limited

couplings with the other two angles, and control effort and rate limitations.
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All these performance criteria translate into time-domain envelope constraints

as illustrated by dashed lines in Figures 5 to 7.

Exploiting the particular structure of the feedback configuration, it is readily

established that control rate constraints can be turned into simple bounds

on the integral gains. To see this, consider, for instance, a unit pitch step

represented by the case r(t) = r1(t). With zero initial condition for the plant

states and integrators, the pitch control rate β̇z(t) attains its largest amplitude

at the initial instant t = 0+:

max
t≥0

|β̇z(t)| = |β̇z(0
+)| = |Kxẏx(0

+) +Kiẏi(0
+)|

= |Ki(r(0
+) − z(0+))| = |Kir(0

+)| = |K1,1
i |,

where K1,1
i is the (1, 1) entry of Ki in Figure 4. Hence, the pitch control rate

will be bounded by directly limiting the gain K1,1
i of the controller. Gains K1,2

i

and K1,3
i are usually smaller. A similar reasoning applies to K2,2

i and K3,3
i for

yaw and roll control rate limitations, respectively.

Additionally, internal stability and robustness specifications are defined for

the closed-loop system considering a linear coupled model of the launcher, ob-

tained by the linearization the original nonlinear equations. Firstly, the largest

singular value of the complementary sensibility function T := GK(I +GK)−1

is bounded at the high-frequency band in order to achieve robustness against

unmodelled flexible and vibrational modes. Secondly, the linear closed-loop

system is enforced to be internally stable via the spectral abscissa criterion

(11). The idea here is that reaching closed-loop stability with the linearized

model is likely to increase the stability domain of the actual nonlinear closed-

loop system, although it still must be checked a posteriori.
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Design specifications may be summarized as:

• good tracking performance: piecewise constant envelopes in the left column

of Figure 5;

• coupled response limitation: upper and lower bounds in the right column of

Figure 5;

• control effort limitation: see Figure 6, where only the controls presenting

the largest amplitudes are depicted;

• control rate limitation: the constraints |K1,1
i | < 4, |K2,2

i | < 4 and |K3,3
i | < 1

are enforced. See Figure 7, where only the controls with the largest rates

have been depicted.

• robustness against high-frequency unmodeled dynamics: see Figure 8,

σ(GK(I +GK)−1) ≤ 0.4, for ω ≥ 100 rad/s.

• internal stability for the linear closed-loop system.

In this study the spectral abscissa constraint was considered as hard, while

all other constraints were viewed as soft. Since nonlinear simulations are com-

putationally more expensive than using LSIM, it seems to be a good strategy

to perform an initial synthesis considering the linearized model also for time-

domain constraints, and then to use that designed controller as the seed for a

definitive synthesis with the nonlinear model. The nonsmooth algorithm finds

a locally optimal solution for the initial linear problem after 493 iterations

within 4.7 minutes cputime. The locally optimal solution for the final non-

linear problem is found after 300 iterations within 240 minutes cputime. The

final constraints violation falls below 2× 10−4, so all design specifications are

attained.
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The final controller is

[
Ki Kx

]
=





4.0002 0.62315 −0.2718 −1.3421 −3.6319 −0.23305 −0.52236 0.14273 0.19974

−0.60671 3.8959 −0.2111 0.23207 0.50359 −1.3144 −3.553 0.077188 0.22132

0.01865 −0.044744 1.0002 −0.02392 −0.011085 −0.0008793 0.046795 −0.41614 −0.96903




.

(26)

The time-domain closed-loop responses with the nonsmooth controller (26)

and the nonlinear model are shown in Figures 5 to 7, while Figure 8 gives

the closed-loop frequency-domain response. Also depicted are the closed-loop

responses for the LQ controller in Oliva and Leite Filho (2002). In the design

fast tracking responses are intended for pitch and yaw steps, leading to an

increase of both control effort and rate. The LQ controller in contrast exhibits

unsatisfactory decoupling of nonlinear system responses. In conclusion it may

be emphasized that the proposed technique solves the design specifications

as posed in practice, without taking recourse to delicate tuning of auxiliary

design parameters.

4.2 Reliable flight controller

In the next example, a reliable flight control system is designed for an F-

16 aircraft performing high angle-of-attack maneuvers subject to wind gusts.

This problem has been studied in Liao et al. (2002) from where the model

data are borrowed. The primary design goal is to synthesize a stabilizing con-

troller achieving tracking performances for the stability axis roll rate µ̇rat, the

angle-of-attack α and the sideslip angle β of the aircraft. The control system
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Fig. 5. Step responses: nonsmooth (solid) and LQ (dash-dot) controllers

configuration is again that of Figure 4, with zT = [ µ̇rat α β ]. All the aircraft

states are assumed available for feedback:

xT = yTx =




u w q v p r



 , (27)
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where p, q, r are respectively the roll, pitch and yaw rates, and v, w and u

are the y, z and x-body axis velocities. The aircraft model also includes an

exogenous disturbance wg which represents vertical wind gusts. The control

vector is given as

uT =




δhr δhl δar δal δr



 , (28)

where δhr, δhl, δar, δal and δr are the deflections of the right and left stabilators,

the right and left ailerons and the rudder, respectively, which yields Kx ∈ R
5×6

and Ki ∈ R
5×3.

Given that the combat aircraft evolves in critical high angle-of-attack flight

conditions, kinematics and inertial coupling phenomena become important

and the control law must achieve substantial decoupling of the various chan-

nels. Additionally, the solution must guarantee closed-loop stability and sat-

isfactory performance for any of the operational modes in table 1 in order to

be a reliable controller. The linearized models P 0
lin and P 3

lin are given in Liao

et al. (2002).
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Table 1

Nominal and failure modes for the F-16 aircraft

mode type description

nominal operation: P (s) = P 0(s),

failure of the right stabilator: P (s) = P 0(s) × diag(0, 1, 1, 1, 1),

failure of the left stabilator: P (s) = P 0(s) × diag(1, 0, 1, 1, 1),

failure of the right aileron: P (s) = P 0(s) × diag(1, 1, 0, 1, 1),

failure of the left aileron: P (s) = P 0(s) × diag(1, 1, 1, 0, 1),

75% impairment of the stabilators: P (s) = P 3(s).

Note that the controller must achieve adequate performance not only in the

nominal mode, but also when any of the failures in Table 1 occurs. This

leads to 3 scenarios for each mode in order to assess tracking and decoupling

properties for µ̇rat, α and β, leading to a total of 18 scenarios. Clearly this a

complicated problem involving multiple plant modes as well as multiple test

inputs. It is readily incorporated in the general framework of section 2. In order

to guarantee stability and robustness against the possible failures, a spectral

abscissa constraint (11) is introduced for each closed-loop system associated

with the various operational modes in table 1.

Another design specification is satisfactory vertical wind gust load alleviation

in the nominal mode. Wind gusts are usually modelled as unit-intensity zero-
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mean gaussian white-noise n̂, driven by a Dryden filter (Aouf et al., 2000)

Gw(s) = 2.5046
s+ 0.1517

(s+ 0.2628)2
,

so that wg = Gwn̂. The RMS vertical gust velocity is 5 m/s. Having connected

the filter Gw(s) to the disturbance input wg of the aircraft model, a bound

constraint is imposed on the H2 norm of the nominal transfer from n̂ to the

regulated output z.

Control rates are limited to 15◦/s for a unit step, using once again the strategy

of limiting the integral gains Ki. In this application all entries of Ki have been

constraint to |Kk,l
i | ≤ 15 , k = 1 . . . 5, l = 1 . . . 3.

The nonsmooth technique finds a locally optimal solution after 949 iterations

corresponding to 39 minutes of cputime. The final controller found by the

nonsmooth algorithm is

[
Ki Kx

]
=





−1.145 −3.934 −0.2693 −0.06981 0.8754 22.34 0.003559 3.392 −4.083

−1.145 −3.934 −0.2693 −0.06981 0.8754 22.34 0.003559 3.392 −4.083

−15 0.003514 1.798 0.1032 −0.03847 2.971 −0.7699 58.32 6.262

15 −0.003514 −1.798 −0.1032 0.03847 −2.971 0.7699 −58.32 −6.262

−5.004 −0.3631 15 0.1545 0.009585 8.99 −2.486 13.7 110.5





.

(29)

Figures 10 to 12 show the closed-loop responses with the nonsmooth controller

(29) for each of the seven operational modes, together with the closed-loop

responses under 25% and 50% impairment of the stabilators. The synthesized

controller guarantees good closed-loop nominal behaviour, but also closed-

loop stability with limited performance deterioration in the event of extreme

failures, indicating that a reliable design has been obtained. The worst per-
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formance degradation corresponds to the angle-of-attack tracking response

under 75% impairment of the stabilators, a rather critical situation, see the

central plot in Figure 11. As expected, closed-loop responses remain satisfac-

tory under 25% and 50% impairment of the stabilators, even though these

scenarios have not been explicitly included in the synthesis requirements. As

can be seen in Figure 9, the nonsmooth control also attains acceptable wind

gust load alleviation, despite the severe gain constraint. Finally, all spectral

abscissa constraints were formulated as hard constraints and consequently are

met at the optimum, which means that the closed-loop system remains stable

in all operational modes.
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Fig. 10. Closed-loop responses for a stability-axis roll rate step command (nominal:

solid)
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5 Conclusion

In practical applications designers prefer feedback controllers that perform

well not only in the nominal operational mode, but possibly for a collection of

scenarios representing performance specifications in time-domain. Moreover,

the controller should also meet frequency-domain specifications which are rou-

tinely required in closed-loop. In this paper we have presented and discussed

a non-smooth optimization technique which allows to address this challenging

class of synthesis problem quite successfully. This leads to a highly flexible de-

sign tool which allows to go beyond what can be achieved with BMI- and LMI-

techniques or with simple tuning heuristics. As a by-product, our approach

also furnishes a detailed analysis of each closed-loop performance specification,

revealing possible design difficulties. Multi-scenario time-domain design under

frequency-domain constraints is a very challenging problem for which only lo-

cally optimal solutions can be computed. Despite this principled obstacle, our

contribution shows by way of case studies that the local convergence theory

on which our method is based produces good results in practice and can with

some right be considered an efficient design tool.
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