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CONTROLLER DESIGN VIA NONSMOOTH MULTIDIRECTIONAL
SEARCH∗
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Abstract. We propose an algorithm which combines multidirectional search (MDS) with non-
smooth optimization techniques to solve difficult problems in automatic control. Applications in-
clude static and fixed-order output feedback controller design, simultaneous stabilization, H2/H∞-
synthesis, and much else. We show how to combine direct search techniques with nonsmooth descent
steps in order to obtain convergence certificates in the presence of nonsmoothness. Our technique
is efficient when small and medium size controllers for plants with large state dimension are sought.
Our numerical testing includes several benchmark examples. For instance, our algorithm needs 0.41 s
to compute a static output feedback stabilizing controller for the Boeing 767 flutter benchmark prob-
lem [E. E. J. Davison, IFAC Technical Committee Reports, Pergamon Press, Oxford, 1990], a system
with 55 states. The first static controller without performance specifications for this system was
obtained in [J. Burke, A. Lewis, and M. Overton, SIAM J. Optim., 15 (2003), pp. 751–779].

Key words. NP-hard design problems, static output feedback, fixed-order synthesis, simultane-
ous stabilization, mixed H2/H∞-synthesis, pattern search algorithm, moving polytope, nonsmooth
analysis, spectral bundle method, ε-subgradients, bilinear matrix inequality (BMI)

AMS subject classifications. 93B36, 93B40, 93B50, 93B51, 90C22, 90C56, 90C34, 90C26,
49J52, 49J35

DOI. 10.1137/S0363012904441684

1. Introduction. Pattern search or moving polytope methods belong to a large
class of derivative-free optimization methods referred to as direct search (DS) tech-
niques. In this paper, we present a nonsmooth modification of Virginia Torczon’s mul-
tidirectional search (MDS) [66, 67] algorithm and apply it to a broad class of problems
in automatic control. We aim at several nonconvex and even NP-hard problems, for
which LMI techniques or algebraic Riccati equations are impractical. In particular,
we propose algorithmic solutions for static and fixed-order output feedback control,
simultaneous stabilization problems, and mixed H2/H∞-control.

1.1. Direct search methods. The idea of DS methods can be traced back
to the pioneering work of Box [11] and Hook and Jeeves [37], who first coined the
term “direct search.” The MDS algorithm is due to Torczon [66, 67] and is directly
inspired by the work of Spendley, Hext, and Himsworth [63], and the popular method
of Nelder and Mead [55]. MDS significantly revived the interest in DS methods,
because it came with a sound convergence theory [66]. This is in contrast with the
Nelder–Mead algorithm, which may fail to converge even for smooth convex objective
functions; see [52]. Later, Torczon generalized her work to the entire class of DS
techniques [67].
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DS methods compute local minima of unconstrained optimization programs:

minimize f(x), x ∈ R
n,(1)

where f : R
n → R is a C1 function. DS techniques are derivative-free in the sense

that they do not require gradient information in order to compute descent steps.
This is a convenient feature if derivatives or their finite difference approximations are
not available and/or too expensive to compute or when automatic differentiation is
hindered by the presence of for loops in the function evaluation.

However, contrary to what the name suggests, the term derivative-free does not
mean that derivatives do not altogether exist. On the contrary, DS methods are
designed for C1 functions, and their convergence theory is heavily based on differen-
tiability [67]. Problems encountered when search methods are used with genuinely
nonsmooth criteria are discussed in [46].

DS techniques can also be used for constrained optimization programs. The ideas
to attack those range from quadratic or exact penalty techniques over barrier functions
to the augmented Lagrangian method.

1.2. Nonsmoothness. In the present paper, we apply the ideas of MDS to
several constrained and unconstrained optimization problems in automatic control,
where nonsmooth functions like the maximum eigenvalue function, the spectral ab-
scissa, the distance to instability, and the H∞-norm arise naturally. Due to the failure
of convergence under nonsmoothness, DS methods may not be applied in their original
form and additional tools from nonsmooth optimization are required. An algorithm
combining both ideas is what will eventually emerge. Using nonsmooth techniques in
control design is not altogether a new idea; see, e.g., [62, 61, 44, 53, 40]. What has
not been tried before is combining nonsmooth techniques with DS strategies.

The lack of a convergence certificate under nonsmoothness has not prevented
practitioners from applying DS methods in such cases. It is often argued that the
contingency of a failure due to nonsmoothness is a remote one. The argument on
which such reasoning is usually based is that even nonsmooth functions are, as a rule,
almost everywhere differentiable, so that nonsmooth points are never encountered
in practice. Our present work reveals this as an illusory argument. Nonsmoothness
may and will cause failure of DS techniques, as we demonstrate by several striking
examples.

In response, we show how MDS can be combined with nonsmooth descent steps
in order to avoid the typical failure, where simplices shrink and iterates converge to
a nonstationary point, which we also call a dead point. It is crucial to be able to
distinguish dead points from local minima, and this is done by adding a nonsmooth
stopping test to the usual hand tools of MDS. Such a test either indicates success or
allows one to escape from a dead point, keeping the search algorithm moving.

However, this is not the end of the story. Calling for a nonsmooth stopping
test whenever the simplex shrinks below a certain threshold may keep MDS moving,
but it is not strong enough to ensure convergence. In order to get a convergence
certificate in the presence of nonsmoothness, we need to supply MDS with quantified
descent steps similar to those employed by nonsmooth optimization techniques to
ensure convergence. We will refer to these two types of nonsmooth substrata to
MDS as crisis intervention and crisis prevention. While crisis intervention is done
only occasionally, being therefore less costly, crisis prevention is more complex, as it
requires that the nonsmooth technique assists the search during the whole process.
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We will indicate in which way crisis intervention and crisis prevention should be
organized for application in automatic control, but our approach is in principle open
to more general nonsmooth objectives.

We mention that a different approach to integrate nonsmoothness into MDS was
recently proposed by Audet and Dennis [7, 1] for general locally Lipschitz functions.
Their approach and ours are somewhat complementary. While we are more specific
as far as the applications are concerned, our combined method can accommodate
composite functions with the spectral abscissa, which are not even locally Lipschitz
smooth. Also, our intervention technique is applicable to other derivative-free method,
like for instance the wedge algorithm of Marrazzi and Nocedal [51].

The paper is organized as follows. We start with an introductory section 2, where
three nonsmooth criteria are discussed. We proceed with the central sections 3 and 4,
where we indicate why and in which form nonsmoothness arises in automatic control.
In section 5 we briefly recall the mode of operation of MDS, including the possibility
of the two types of intervention steps, by which the failure at dead points can be
avoided. In section 6 we proceed to the implementation of crisis intervention and
crisis prevention for nonsmooth objectives like the maximum eigenvalue function, the
spectral abscissa, and the H∞-norm. Crisis intervention is discussed in section 6,
while the more sophisticated crisis prevention is discussed in section 7. Numerical
experiments to validate the proposed tools and techniques are discussed in section 8
for a rich set of control applications.

1.3. Notation. Notation from convex and nonsmooth analysis are covered by
[35] and [22]. We let S

m denote the set of m × m symmetric matrices, equipped
with the scalar product 〈X,Y 〉 = X · Y = Tr (XY ). Let Mn be the space of real
n× n matrices, Mn,m the space of n×m matrices, equipped with the corresponding
scalar product 〈X,Y 〉 = Tr(XTY ), where XT is the transpose of the matrix X, TrX
its trace. For complex matrices XH stands for its transconjugate. For Hermitian or
symmetric matrices, X � Y means that X−Y is positive definite, X � Y that X−Y
is positive semidefinite. We shall use superscripts for the iteration index, lower scripts
to indicate vector components. Our notation from feedback control is standard and
follows, e.g., [14].

2. Examples of nonsmooth functions in control. In this section we briefly
discuss several nonsmooth functions arising in automatic control applications.

Our first example is the maximum eigenvalue function λ1 : S
m → R, defined on

the space S
m of symmetric m ×m matrices. We will use composite functions of the

form f(x) = λ1 (B(x)), where B : R
n → S

n is usually a bilinear, quadratic, or class
C2-operator. The interest in f = λ1 ◦B stems from the fact that the matrix inequality
B(x) 	 0 is equivalent to the scalar constraint f(x) ≤ 0. Notice that λ1 is convex,
which gives f a lot of structure. For instance, the Clarke subdifferential of f (cf. [22])
is the set

∂f(x) = B′(x)�[∂λ1 (B(x))] = {B′(x)�Z : Z = QY QT, Y � 0,Tr(Y ) = 1},(2)

where the columns of the matrix Q form an orthonormal basis of the eigenspace of
λ1 (B(x)). Here and in what follows, B′(x) denotes the derivative of B at x, understood
as a linear operator R

n → S
m, while B′(x)� denotes its adjoint, mapping S

m → R
n.

A case of special interest is when B is quadratic:

B(x) = A0 +

n∑
i=1

xiAi +

n∑
i,j=1

xixjBij .
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Then B′(x)d =
∑n

i=1 diAi +
∑n

i,j=1 (xidj + xjdi)Bij , and the adjoint is obtained as

(B′(x)�Z)i =

⎛⎝Ai +

n∑
j=1

xjBij + xjBji

⎞⎠ · Z.

Our second example of a nonsmooth function is the pseudospectral abscissa. Fol-
lowing Trefethen [68], the pseudospectral abscissa of a matrix A ∈ Mm is defined
as

αε(A) = max {Reλ : λ ∈ Λε(A)} ,

where Λε is the ε-pseudospectrum of A, that is, the set of all eigenvalues of matrices
A + E with euclidean norm ‖E‖ ≤ ε. For ε = 0 we recover α = α0, the spectral
abscissa, Λ = Λ0 the spectrum of A. Our second class of nonsmooth functions is
now of the form g(x) = α (A(x)) or g(x) = αε (A(x)), where A is a smooth operator
defined for x ∈ R

n with values in the matrix space Mm. Use of this function for static
feedback synthesis was first proposed by Burke, Lewis, and Overton in [17, 18]. We
will discuss this particular application in sections 6 and 8.1. The interest in g = α◦A
is obviously due to the fact that A(x) ∈ Mm is Hurwitz if and only if g(x) < 0. Notice
that g = α ◦ A is smooth at x when α(A(x)) = Reλi(A(x)) for a single eigenvalue,
where complex conjugate pairs are counted once. On the other hand, g is nonsmooth
in general for multiple eigenvalues. What is worse is that neither g = α ◦ A nor
g = αε ◦ A is locally Lipschitz function in general [17], which makes the functions
somewhat delicate to handle.

Notice that function evaluation for αε may be based on the criss-cross method
in [19], a generically globally quadratically convergent algorithm, which bears some
resemblance with the Hamiltonian algorithm [12] to compute the H∞-norm. For
smooth points x, the criss-cross algorithm computes the gradient, while it still gives
a subgradient of αε ◦ A at x if x is a nonsmooth point.

Our third example is the H∞-norm. Notice that the stability requirement αε(A) <
0 is equivalent to the estimate ‖(sI − A)−1‖∞ < ε−1. This means that αε could be
avoided and replaced by composite functions of the H∞-norm.

Consider the H∞-norm of a nonzero transfer matrix function G(s):

‖G‖∞ = sup
ω∈R

σ (G(jω)) ,

where G is stable and σ(X) is the maximum singular value of X. Suppose ‖G‖∞ =
σ (G(jω)) is attained at some frequency ω, where the case ω = ∞ is allowed. Let
G(jω) = UΣV H be a singular value decomposition. Pick u the first column of U , v
the first column of V , that is, u = G(jω)v/‖G‖∞. Then the linear functional

φ(H) = Re
(
uHH(jω)v

)
= ‖G‖−1

∞ Re Tr vvHG(jω)HH(jω)

= ‖G‖−1
∞ Re TrG(jω)HuuHH(jω)

is continuous on the space H∞ of stable transfer functions and is a subgradient of
‖ · ‖∞ at G [13]. More generally, assume the columns of Qu form an orthonor-
mal basis of the eigenspace of G(jω)G(jω)H associated with the largest eigenvalue
λ1

(
G(jω)G(jω)H

)
= σ(G(jω))2, and assume the columns of Qv form an orthonormal



CONTROLLER DESIGN VIA NONSMOOTH MULTIDIRECTIONAL SEARCH 1927

basis of the eigenspace of G(jω)HG(jω), associated with the same eigenvalue; then
for every Yv � 0, Yu � 0 with Tr (Yv) = 1 and Tr (Yu) = 1,

(3)

φ(H) = ‖G‖−1
∞ Re TrQvYvQ

H
v G(jω)HH(jω) = ‖G‖−1

∞ Re TrG(jω)HQuYuQ
H
uH(jω)

are subgradients of ‖ · ‖∞ at G, where Yv and Yu are (complex) Hermitian matrices.
Finally, assume that G(s) is rational, and that there exist finitely many frequencies
ω1, . . . , ωp where the supremum ‖G‖∞ = σ(G(jων)) is attained. Then the subgradi-
ents of ‖ · ‖∞ at G are precisely of the form

φ(H) = ‖G‖−1
∞ Re

p∑
ν=1

TrG(jων)
HQνYνQ

H
ν H(jων),

where the columns of Qν form an orthonormal basis of the eigenspace of G(jων)
G(jων)

H associated with the leading eigenvalue ‖G‖2
∞, and where Yν � 0,

∑p
ν=1

Tr(Yν) = 1. See [22, Prop. 2.3.12 and Thm. 2.8.2] for this.

Suppose now we have a smooth operator G, mapping R
n onto the space H∞ of

stable transfer functions G. Then the composite function n(x) = ‖G(x)‖∞ is Clarke
subdifferentiable at x with

∂n(x) = G′(x)�[∂‖ · ‖∞ (G(x))],

where ∂‖ · ‖∞ is the subdifferential of the H∞-norm above. In section 6 we will
compute this adjoint G′(x)� in a more specific situation. Suitable chain rules for this
case are covered by [22, sect. 2.3].

3. Nonsmoothness in control. In automatic control, difficulties with comput-
ing derivatives arise frequently. This happens, for instance, when design specifications
include time-domain constraints (settling-time, overshoot) and function evaluations
depend on simulations or experiments. But even genuine nonsmoothness arises when
criteria like the maximum eigenvalue function, the spectral abscissa, or the H∞-norm
are optimized. For a large class of problems in robust control theory, these nonsmooth
criteria can be avoided since a smooth reformulation is available. The price to pay
is a significant increase of the number of variables. There are situations where this
becomes the major impediment to currently available optimization codes.

The situation we have in mind occurs for problems where bilinear matrix inequal-
ities (BMIs) arise:

minimize aTx + bTy, x ∈ R
r, y ∈ R

s

subject to A0 +

r∑
i=1

xiAi +

s∑
j=1

yjBj +

r∑
�=1

s∑
k=1

x�ykC�k 	 0,(4)

with a ∈ R
r, b ∈ R

s and Ai, Bj , C�k ∈ S
m given. Typically in (4) the decision vector

splits into x ∈ R
r, which gathers all free components or gains in the controller to be

designed, while y ∈ R
s regroups the Lyapunov variables. All our examples discussed

in section 8 may be brought to this form. In order to understand the problem better,
let us discuss an application of particular importance.
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3.1. Static output-feedback synthesis. It is well known that static output
H2- or H∞-synthesis are NP -hard problems (cf. [56]), which may be cast as BMI-
optimization programs. Given the plant

⎡⎣ ẋ
z
y

⎤⎦ =

⎡⎣ A B1 B2

C1 D11 D12

C2 D21 0

⎤⎦⎡⎣ x
w
u

⎤⎦
with x ∈ R

n1 , u ∈ R
m2 , w ∈ R

m1 , y ∈ R
p2 , z ∈ R

p1 , we ask for a static feedback
control law u = Ky such that the closed-loop system is internally stable and, moreover,
a suitable operator norm of the performance channel w → z is minimized. For the
H∞-norm, the existence of such a K with the norm estimate ‖Tw→z(K)‖∞ < γ is
equivalent to the existence of a Lyapunov matrix Y ∈ S

n1 satisfying Y � 0 and

(5)⎡⎣ (A + B2KC2)
TY + Y (A + B2KC2) Y (B1 + B2KD21) (C1 + D12KC2)

T

∗ −γI (D11 + D12KD21)
T

∗ ∗ −γI

⎤⎦ ≺ 0.

If we optimize the gain γ, we obtain a BMI program (4) with unknown variables
γ ∈ R, K ∈ R

m2×p2 , and Y ∈ S
n1 . We may identify x ∈ R

r with the true decision
variables γ and K, so r = 1 + m2p2, while y ∈ R

s gathers the Lyapunov variables
Y , so s = n1(n1 + 1)/2. If the system size n1 is large, the number of Lyapunov
variables is dominant. A somewhat extreme example is the Boeing 767 under flutter
condition (AC10), treated in section 8, where n1 = 55, while m2 = p2 = 2. Here the
BMI problem has 1490 variables, while there are only 4 true decision parameters (see
[47, 24] for details).

The BMI problem (4) can be handled via smooth techniques by exploiting station-
arity conditions [41] or via interior-point methods [36] and [49, 48]. An alternative is
to use augmented Lagrangian techniques like Mosheyev and Zibulevsky [54]; see also
[45] and [65]. Their approach extends naturally to nonlinear SDPs like (4). Unfortu-
nately, all these approaches lead to large-size optimization problems even for control
problems of moderate sizes due to the presence of Lyapunov variables y. One way to
partly alleviate the difficulty in the nonlinear case is to use the projection lemma [27],
whenever possible, to reduce at least the number of variables in x. The new cast is
then a program with LMI constraints in tandem with nonlinear equality constraints:

min

{
cTy : A0 +

r∑
i=1

yiAi 	 0, h(y) = 0

}
(6)

where h : R
n → R

p represents a finite number of nonlinear equality constraints.
As suggested by our notation, the projection lemma reduces the x part in (4) to
size r = 1 (to size r = 0 for pure stabilization), but gives only a slight reduction
of the number s of Lyapunov variables y. The additional benefit of the projection
lemma is that it avoids the redundancies of the controller state-space representations.
For static output-feedback stabilization (northwest (1, 1) block in inequality (5)), a
controller-free version is as follows: A stabilizing static controller K exists if there
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exist Lyapunov matrices Y1, Y2 ∈ S
n1 such that

NT
Q

(
ATY1 + Y1A

)
NQ ≺ 0,

NT
P

(
AY2 + Y2A

T
)
NP ≺ 0,[

Y1 I
I Y2

]
� 0, Y1Y2 − I = 0,

where NP and NQ are bases of the nullspaces of C and BT, respectively. A version
including H∞-norm performance has the same form and may be found, e.g., in [59].

Different techniques have been developed to solve problems (5), (6) or problems
with more general matrix inequality and equality constraints. Leibfritz and Mustafa
[49, 48] use interior-point techniques in tandem with ideas from sequential quadratic
programming to separate Lyapunov and true decision variables in the tangent pro-
grams. A successive SDP approach is given in [25] and an augmented Lagrangian
approach in [6]. These techniques are supported by local and global convergence
theory [59], but have shown some limitations:

• Our experiments have revealed size limitations to about 1500 variables [5].
This allows solving problems with up to n1 = 40 states.

• The transformation of (4) into (6) is not always possible. Only a restricted
and well-identified class of problems is amenable to the projection lemma.
A prominent case where this is not possible is simultaneous stabilization,
considered in section 8.

In our testing, we have compared the nonsmooth MDS method to the BMI-based
methods in [5, 65] (see the corresponding column in Table 2).

4. Nonsmoothness by avoiding Lyapunov variables. For large systems,
the number s = n1(n1 + 1)/2 of Lyapunov variables y is a serious obstacle to the
BMI-optimization approach (4) or (6). It seems natural to consider alternatives where
Lyapunov variables y can be avoided, so that the optimization concentrates on the true
decision variables x = (γ,K). This is possible if one accepts nonsmooth optimization
programs. Here we propose to replace (5) by the following constrained program:

minimize ‖Tw→z(K, s)‖∞
subject to αε (A + B2KC2) ≤ 0,

K ∈ R
m2×p2 ,

(7)

for fixed ε ≥ 0, where the performance channel w → z is specified by the transfer
function

Tw→z(K, s) = C(K) (sI −A(K))
−1 B(K) + D(K),

A(K) := A + B2KC2, B(K) := B1 + B2KD21, C(K) := C1 + D12KC2,
D(K) := D11 + D12KD21.

(8)

An alternative is the constrained program

minimize ‖Tw→z(K, s)‖∞
subject to

∥∥(sI −A(K))−1
∥∥
∞ ≤ ε−1,

K ∈ R
m2×p2 .

(9)

Notice that in both programs, the controller K has to be stabilizing, or what is the
same, iterates have to be feasible. This requires a feasible initial point K0, which we
compute by the unconstrained optimization program (with ε ≥ 0 fixed):

minimize αε (A + B2KC2) ,K ∈ R
m2×p2 .(10)
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Using (10) for static feedback control has first been proposed in [17, 19].

Remark. Notice an important difference between programs like (7), (9) and pro-
gram (10), used to initialize the others. While all programs encountered are nonconvex
and often exhibit multiple local minima, it is usually satisfactory to accept a local
minimum of the H∞-norm in (7), (9), because the controller K is always stabilizing.
This is different in program (10), where a local minimum K is useless as long as it
satisfies α (A + B2KC2) ≥ 0, because it does not provide a stabilizing controller. In
such a case, we have to restart the algorithm. Notice, however, that this does not
mean that we require the full machinery of a global optimization technique, because
we are not interested in the global minimum of (10). A value α < 0 is all what is
wanted.

Similar nonsmooth formulations can be obtained for various other robust control
problems, such as static and fixed-order stabilization, H2- and H∞-synthesis problems,
simultaneous (multimodel) synthesis problems, control design with fixed structure
controllers, robust synthesis and synthesis problems involving scaling and multipliers,
and linear parameter-varying syntheses, to cite just a few.

Some of these problems are investigated in section 8. Our experiments seem to
indicate that as soon as Lyapunov variables y in (4) dominate, nonsmooth programs
like (7), (9) in conjunction with nonsmooth techniques are very attractive. The MDS
algorithm and more general DS or pattern search techniques, supplemented by non-
smooth techniques, are serious alternatives to BMI- or LMI-based methods. This is
most promising when the number of controller variables x = (γ,K) is small. In our
experiments, small means not more than 30–35 controller variables x. This situation
occurs when simple controllers for large systems are sought. For problems with high-
order controllers, a pure nonsmooth approach is inevitable. This is investigated in [3].

Remark. We end this paragraph by pointing the reader to a very important feature
of optimization programs (7), (9), (10), which seem to invite techniques like MDS.
Namely, in MDS and other search algorithms exact function evaluations can often be
avoided. All that is needed is that we be able to compare the value of the objective
at the different nodes to the current best value. This is in perfect agreement with
function evaluations for αε, λ1 and the H∞-norm, which are all based on iterative
procedures. For instance, the bisection algorithm for the H∞-norm [12] need not
be run to completion, a premature stopping criterion can be exploited to enhance
efficiency. This renders our present approach open to larger problem sizes.

5. The MDS algorithm with nonsmooth steps. In this section we give a
description of the MDS algorithm and indicate in which way a nonsmooth step may
be added to cope with nonsmoothness. For an in-depth discussion of MDS in the
smooth case the interested reader is referred to [66].

The MDS algorithm requires a “seed” or base point v0 and an initial simplex S in
R

n with vertices v0, v1, . . . , vn. The vertices are then relabeled so that v0 becomes the
best vertex, that is, f(v0) ≤ f(vi) for i = 1, . . . , n. The initial S is chosen from one of
three different shapes; see Figure 1. The scaled simplex is used when prior knowledge
on the problem scaling is available, but right-angled and regular simplices are generally
preferred in the absence of information. The algorithm updates the current simplex
S into a new simplex S+ by performing three types of operations, which drive the
search for a better point: reflection, expansion, and contraction; see Figure 2. First
vertices v1, . . . , vn are reflected through the current best vertex v0 to give r1, . . . , rn.
If a reflected vertex ri gives a better function value than v0, the algorithm tries
an expansion step. This is done by increasing the distance between v0 and ri for
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scaledregularright -angled

v2

v2v2

v1

v1

v1 v0v0v0

Fig. 1. Selection of initial simplex.

c2

c1

e1

e2

r2

r1

v2

v1

v0

Fig. 2. Reflection, expansion, and contraction of current simplex.

i = 1, . . . , n and yields new expansion vertices ei for i = 1, . . . , n. The current
simplex S is then replaced by either S+ = {v0, r1, . . . , rn} or S+ = {v0, e1, . . . , en},
depending on whether the best point was among the reflection or expansion vertices.
If neither reflection nor expansion provide a point better than v0, a contraction step
is performed. This is done by decreasing the distances from v0 to v1, . . . , vn. If a
point better than v0 is found among the contraction vertices c1, . . . , cn, the simplex
S is replaced by S+ = {v0, c1, . . . , cn}. To complete one iteration (or sweep) of the
algorithm, v+

0 is taken to be the best vertex of S+.

In the presence of nonsmoothness, we endow the MDS algorithm with a fourth
element. MDS may take a nonsmooth step w away from the current best node v0

under consideration. In our applications, w will typically be the result of a nonsmooth
descent step away from v0, computed at the beginning of each sweep of MDS. If the
sweep produces a new vertex v+

0 better than w, MDS ignores w and keeps moving as
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1. Select initial simplex S = {v0, . . . , vn}, where v0 is the best vertex. Fix an
expansion factor μ ∈ (1,∞) and a contraction factor θ ∈ (0, 1), and an
intervention tolerance ω > 0.

2. Given the current simplex S with best vertex v0, call for a nonsmooth step
w if the size of S is below threshold ω. If w = v0 stop at critical point v0.

3. Perform a reflection step ri = v0 − (vi − v0). Compute f(ri).
4. If improvement f(ri) < f(v0)

perform expansion step ei = (1 − μ)v0 + ri. Compute f(ei).
If improvement f(ei) < f(v0)

put S+ = {v0, e1 . . . , en}. Goto step 5.
else

put S+ = {v0, r1 . . . , rn}. Goto step 5.
else

perform contraction step ci = (1 + θ)v0 − θri. Compute f(ci). Put
S+ = {c0, . . . , cn}.

5. Compare best vertex in S+ to f(w). If w is better, replace S+ by new
simplex containing w as a vertex. Otherwise accept S+. Go back to
step 2 to loop on.

Fig. 3. MDS with nonsmooth steps.

planned. On the other hand, if w is better than all the nodes tested by MDS during
reflection, expansion, and contraction, we include w among the vertices of the new
simplex S+. In that event, we have to decide in which way the old vertices produced
by MDS are recycled, or whether new nodes need to be created. This will obviously
depend on geometrical properties. One possibility is to abandon the worst among the
nodes of S+ found by MDS and add the new node w as best point. If this produces
angles below a certain threshold, one has to (partly) abandon S+ and add new vertices
to avoid bad geometry. In such a case, one can also build a completely new simplex
with right-angled or regular geometry, using w as seed point. In our tests, we have
observed that it is beneficial in such a situation to switch between the geometries
(regular, right angled) in order to give MDS some additional help to move on. But
all these considerations are clearly heuristic, depend on the context, and will need
further testing.

In order to avoid serious slowdown of MDS, the nonsmooth step w is only solicited
when the size of the simplex is below a certain threshold ω. Large S indicate that
MDS is making good progress, so a costly nonsmooth step should be avoided. The
situation we expect is that most of the time the point w is not better than the new
best point v+

0 of S+ found by MDS. In that case, w plays a role similar to the Cauchy
point in trust region methods. That is, it is hardly ever taken as the new iterate, but
gives a convergence certificate. In our case, this will be made precise in Theorem 1.
The different ways in which w may be computed will be explained subsequently. We
sum up the above discussion in the pseudocode shown in Figure 3.

The following sections will show how the nonsmooth steps v0 → w may be com-
puted. From step 2 of the algorithm it is clear that the minimal requirement any
w should satisfy is that 0 �∈ ∂f(v0) should give f(w) < f(v0), so when w = v0, the
algorithm stops with 0 ∈ ∂f(v0).
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The choice of the intervention tolerance ω should be compared to the usual stop-
ping tests for smooth versions of MDS. Modern implementations use the relative size
of the current simplex as a stopping test:

1

max(1, ‖v0‖)
max

1≤i≤n
‖vi − v0‖ < ε,(11)

where v0 is the current best vertex of S = {v0, . . . , vn} and ε > 0 is a prescribed
tolerance. If a crisis intervention strategy is used, ω should be chosen slightly larger
than the size (11). In the case of crisis prevention, an even larger ω is chosen.

The choice of the initial simplex S is a relatively unexplored topic. The conver-
gence proof in [66] requires only that S be nondegenerate, which means that the n+1
points {v0, v1, . . . , vn} defining the simplex must span R

n. Otherwise, MDS would
only search over the subspace spanned by the degenerate simplex.

6. Nonsmooth stopping tests. Our first strategy is crisis intervention and
uses a very small threshold ω. This means that the nonsmooth descent step v0 → w
is called for only when MDS gets stalled. What this essentially amounts to is a
nonsmooth optimality test, which will either show that we are at a local minimum
(or critical point) or give us a descent step v0 → w to escape from the current point
v0, allowing MDS to move on. This strategy is preferable if nonsmooth descent steps
are expensive. During the following we compute these steps for the criteria presented
in section 2 and for the programs in section 4.

6.1. Maximum eigenvalue function. This case is well known. From the for-
mula (2) of the Clarke subdifferential of f = λ1 ◦B we see that 0 ∈ ∂f(x∗) if and only
if the value t of the following semidefinite program is zero:

min{t : QT[B′(x∗)d]Q 	 tI, ‖d‖ ≤ 1}.

On the other hand, when the value is negative, the optimal solution (t, d) of this
SDP gives the steepest descent direction d for f = λ1 ◦ B at x∗. If x∗ is the current
best vertex v0 in MDS, then the nonsmooth stopping test either shows 0 ∈ ∂f(x∗) or
produces w with f(w) < f(x∗) of the form w = x∗ + τd, where τ > 0 is found by a
suitable line search.

6.2. Spectral abscissa. This is a more difficult case. Consider the minimization
program

min
x∈Rn

g(x) = α (F(x)) ,

where F : R
n → Mm is smooth. Since α is not even locally Lipschitz in general, we

need a more elaborate way to obtain a stopping test.
Suppose MDS gets stalled at x∗ and we want to know whether x∗ is a local

minimum of g or a dead point. We use the following lemma.
Lemma 1. Let F ∈ Mm. Then α(F ) ≤ t if and only if there exists Y ∈ S

m,
0 ≺ Y ≺ I, such that FTY + Y F − 2tY 	 0.

For a bounded set of matrices F , the condition number of Y is bounded. The
inequality Y � 0 can therefore be replaced by Y � θI for a fixed small enough θ > 0,
uniformly over all F in that bounded set. Assume now that we have chosen an initial
iterate x0 such that L = {x ∈ R

n : g(x) ≤ g(x0)} is bounded. Since we use a
method of descent type, all our iterates x lie in L, so that the condition number of the
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Lyapunov matrices Y arising at the corresponding F = F(x) are uniformly bounded:
θI 	 Y 	 I for some 0 < θ � 1. This allows us to consider the optimization program

minimize t
subject to Y � θI, Y 	 I,

F(x)TY + Y F(x) − 2tY 	 0,
(P)

with decision vector (x, t, Y ) ∈ R
n × R × S

m. Let x∗ ∈ L. Define F ∗ = F(x∗) and
t∗ = α(F ∗). Correspondingly, compute Y ∗ with θI 	 Y ∗ 	 I such that F ∗TY ∗ +
Y ∗F ∗ − 2t∗Y ∗ 	 0. As a consequence of Lemma 1 we have the following proposition.

Proposition 1. x∗ ∈ L is a local minimum of g = α◦F if and only if (x∗, t∗, Y ∗)
is a local minimum of program (P).

In order to decide whether the latter is the case, we use a general result from [9].
Define f(x, t, Y ) = t and

G(x, t, Y ) =

⎡⎣ Y − I 0 0
0 θI − Y 0
0 0 F(x)TY + Y F(x) − 2tY

⎤⎦ .(12)

Then (P) is equivalent to the abstract program

min f(x, t, Y ) subject to G(x, t, Y ) ∈ S
3m
− .

Assume that Robinson’s constraint qualification [9] is satisfied for this program. Then
if (x∗, t∗, Y ∗) is a local minimum, the tangent program

minimize f ′(x∗, t∗, Y ∗)T(δx, δt, δY )
subject to G′(x∗, t∗, Y ∗)(δx, δt, δY ) ∈ T (S3m

− ,G(x∗, t∗, Y ∗))
(13)

has the unique solution (δx, δt, δY ) = (0, 0, 0). Here T (S3m
− , G) is the Clarke tangent

cone, which according to [9] is T (S3m
− , G) = {Z ∈ S

3m : QTZQ 	 0} if λ1(G) = 0,
where the columns of the matrix Q are an orthonormal basis of the eigenspace of
G associated with the maximum eigenvalue λ1(G) = 0, while T (S3m

− , G) = S
3m if

λ1(G) < 0, T (S3m
− , G) = ∅ if λ1(G) > 0.

It turns out that optimality of (0, 0, 0) in (13) is a condition which may be checked
by solving an SDP. Indeed, observe that

f ′(x∗, t∗, Y ∗)T(δx, δt, δY ) = δt

and

G′(x∗, t∗, Y ∗)(δx, δt, δY ) =

⎡⎣ δY 0 0
0 −δY 0
0 0 δZ

⎤⎦ ,
where as before G′ denotes the differential of the operator G, and where we use the
shorthand notation

Z∗ := F(x∗)TY ∗ + Y ∗F(x∗) − 2t∗Y ∗,

δZ := [F ′(x∗)δx]TY ∗ + F(x∗)TδY + Y ∗[F ′(x∗)δx] + δY F(x∗) − 2t∗δY − 2δtY ∗.

Clearly, the tangent cone in question is

T (S3m
− ,G(x∗, t∗, Y ∗)) = T (Sm

− , Y ∗ − I) × T (Sm
− , θI − Y ∗) × T (Sm

− , Z∗),
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so we have to compute these three tangent cones.

Let Q1 be an orthonormal basis of the eigenspace of Y ∗ − I associated with the
eigenvalue 0, and let Qθ be a basis of the eigenspace of θI − Y ∗ associated with the
eigenvalue 0. Finally, let P be a basis of the eigenspace of Z∗ associated with the
eigenvalue 0. Then the tangent program becomes

minimize δt

subject to QT
1 δY Q1 	 0,

QT
θ δY Qθ � 0,

PTδZP 	 0,

‖δx‖ ≤ 1, |δt| ≤ 1, ‖δY ‖ ≤ 1.

(14)

This is an SDP in the unknown variable (δx, δt, δY ). The decision is now as follows. If
our tangent program reveals (x∗, t∗, Y ∗) as a critical point, we stop and thereby accept
the solution proposed by MDS. Otherwise, δx will show us the way to escape from
the current point x∗. In terms of the MDS algorithm, when x∗ = v0, the nonsmooth
descent step will be w = x∗ + τδx for some τ > 0 found by a line search.

6.3. Stopping test for the H∞-norm. For constrained programs like those
in section 4, the situation is principally the same as in the unconstrained case. When
we get stalled at some iterate K∗, we would like to know whether we have a local
minimum (a KKT point), or whether we could keep making progress by avoiding a
dead point.

In this section, we consider a stopping test for the nonsmooth program (9), which
is based on the frequency domain representation of the H∞-norm.

Suppose we have reached an iterate K∗ such that ‖Tw→z(K
∗)‖∞ = γ∗ and

‖(sI −A(K∗))
−1‖∞ = ε−1. We want to decide whether K∗ is a critical point of

the program

min{‖Tw→z(K)‖∞ : ‖(sI −A(K))−1‖∞ ≤ ε−1}.

This may be based on a nonsmooth stationarity test, which checks whether or not 0 ∈
∂n(K∗)+R+∂m(K∗), where n(K) = ‖Tw→z(K)‖∞, m(K) = max(0, ‖ (sI−A(K))−1

‖∞ − ε−1) (see [22, Thm. 6.1.1, Prop. 3.3.1]). We therefore need to compute the
subdifferentials ∂n(K∗) and ∂m(K∗).

Let us start with ∂n(K∗), which is more general. The subdifferential ∂m(K∗)
will then follow as a special case. Recall that Tw→z(K, s) is of the form

Tw→z(K, s) = C(K)(sI −A(K))−1B(K) + D(K),

where A(K), B(K), C(K), and D(K) are given in (8). Defining F(K, s) = (sI −
A(K))−1, we obtain the derivative T ′

w→z of Tw→z at K∗ as

T ′
w→z(K

∗) δK(s) = D12 δK C2F(K∗, s)B(K∗)(15)

+ C(K∗)F(K∗, s)B2 δK C2F(K∗, s)B(K∗)

+ C(K∗)F(K∗, s)B2 δK D21 + D12 δK D21.

Now let φ = φY be a subgradient of ‖ · ‖∞ at Tw→z(K
∗) of the form (3), specified

by Y � 0, Tr(Y ) = 1 and with ‖Tw→z(K
∗)‖∞ attained at frequency ω. We wish



1936 PIERRE APKARIAN AND DOMINIKUS NOLL

to compute ΦY := T ′
w→z(K

∗)�φY ∈ Mm2,p2
. The adjoint T ′

w→z(K
∗)� acts on φY

through

〈T ′
w→z(K

∗)�φY , δK〉
= 〈T ′

w→z(K
∗)δK, φY 〉

= ‖Tw→z(K
∗)‖−1

∞ Re Tr
(
Tw→z(K

∗, jω)HQY QHT ′
w→z(K

∗)δK (jω)
)

= ‖Tw→z(K
∗)‖−1

∞ Re Tr
[
C2F(K∗, jω)B(K∗)Tw→z(K

∗, jω)HQY QHD12

+C2F(K∗, jω)B(K∗)Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+D21Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+ D21Tw→z(K
∗, jω)HQY QHD12

]
δK.

In consequence, the Clarke subgradients of n = ‖ · ‖∞ ◦ Tw→z at K∗ are of the form

ΦY = ‖Tw→z(K
∗)‖−1

∞ Re
[
C2F(K∗, jω)B(K∗)Tw→z(K

∗, jω)HQY QHD12

+C2F(K∗, jω)B(K∗)Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+D21Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+D21Tw→z(K
∗, jω)HQY QHD12

]T
,

or more simply,

ΦY = ‖Tw→z(K
∗)‖−1

∞ Re
{
G21(K

∗, jω)Tw→z(K
∗, jω)HQY QHG12(K

∗, jω)
}T

,

where

G21(K
∗, jω) := C2F(K∗, jω)B(K∗) + D21,

G12(K
∗, jω) := C(K∗)F(K∗, jω)B2 + D12.

The subdifferential of the function m(.) is obtained through similar calculations.
We first note that up to a constant term, the second component of m(.) is ‖F(K)‖∞,
a simplification of Tw→z(K) with C(K) = I, B(K) = I, and D(K) = 0. Assuming
this time that the supremum is attained at frequency ω′, the Clarke subgradients of
‖F(K)‖∞ at K∗ are of the form

Ψ
Ŷ

:= ‖F(K∗)‖−1
∞ Re

{
C2F(K∗, jω′)F(K∗, jω′)HQ̂Ŷ Q̂HF(K∗, jω′)B2

}T

,

with Ŷ � 0, Tr (Ŷ ) = 1. Since both components of the max function m(·) are
active at K∗, the subdifferential of m at K∗ is the convex hull of the origin with the
subdifferential of ‖F(K)‖∞ at K∗ [22]. Those subgradients are therefore of the form

Ψ
Ŷ

, Ŷ � 0, and Tr (Ŷ ) ≤ 1. These formulae are easily adapted if the first H∞-norm
is attained at frequencies ω1, . . . , ωp, and the second at ω′

1, . . . , ω
′
q.

Suppose ‖Tw→z(K
∗)‖∞ is attained at a single ω, and ‖F(K∗)‖∞ at a single ω′.

Then the optimality test leads to solving the optimization program

min{‖ΦY + Ψ
Ŷ
‖2 : Y � 0,Tr (Y ) = 1, Ŷ � 0 }

which is a low-dimensional SDP. If the value of this program is 0, then K∗ is a critical
point.
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7. Crisis prevention. The nonsmooth stopping tests developed in the previous
section could be adapted to many other programs. We should be aware, however, that
the steps v0 → w they generate are steepest descent steps, which cannot guarantee
convergence under nonsmoothness (see [50] for a discussion). Put differently, even
though the stopping test may allow us to move on, we have no guarantee that an
accumulation point of the sequence so generated would not be another dead point.
In order to exclude this categorically, a more sophisticated strategy, crisis prevention,
is required. Here we get a convergence certificate, which is built on the possibility to
quantify descent.

A well-known tool of convex nonsmooth analysis which allows us to quantify de-
scent is ε-subgradients (see [35, Thm. 1.1.5]). Since our present criteria are nonconvex,
those may not be used directly and some modifications are required (see [57, 58]). But
the idea is essentially the same.

7.1. Quantitative descent for f = λ1 ◦ B. To begin with, let us examine
a strategy suited for eigenvalue optimization, used in the simultaneous stabilization
problem section 8.3. We consider a nonconvex maximum eigenvalue function of the
form

f(x) = λ1 (B(x))(16)

with a bilinear (or more generally C2) operator B. We solve the unconstrained opti-
mization problem:

minimize f(x) = λ1 (B(x)) , x ∈ R
n.

We follow [57, 58], which extends previous work by Cullum, Donath, and Wolfe [23]
and Oustry [60], where affine operators were used, to more general functions f = λ1◦B.
We use an approximation δεf(x) of the ε-subdifferential ∂εf(x) of f at the current
x, called the ε-enlarged subdifferential. We compute the approximate subgradient
g ∈ δεf(x), which gives rise to the so-called steepest ε-enlarged descent direction. Let
us define

δεf(x) =
{
B′(x)�Z : Z = QεY QT

ε , Y � 0, tr(Y ) = 1, Y ∈ S
r(ε)
}
,

where the first r(ε) eigenvalues of B(x) ∈ S
m are those which satisfy λi > λ1 − ε,

and where the columns of the r(ε) ×m-matrix Qε form an orthonormal basis of the
invariant subspace associated with these eigenvalues. Then

∂f(x) ⊂ δεf(x) ⊂ ∂εf(x),

and δεf(x) is an inner approximation of ∂εf(x), which has the advantage of being
computable. Namely, the direction of steepest ε-enlarged descent d is obtained as

d = − g

‖g‖ , g = argmin {‖g‖ : g ∈ δεf(x)} .(17)

The solution g of (17) is the projection of the origin onto the compact convex set
δεf(x). This is in complete analogy with the direction of steepest descent, which
is obtained by projecting the origin onto the subdifferential ∂f(x) = δ0f(x). What
would be the most useful is the direction of steepest ε-descent, obtained by projecting
0 onto ∂εf(x), but this quantity is difficult to compute (see, however, [35] for some
ideas how this may be tried).
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1. Given iterate x, stop if 0 ∈ ∂f(x) = δ0f(x), because x is a critical point.
Otherwise choose ε > 0.

2. Given ε > 0, compute the direction d of steepest ε-enlarged descent by
solving (19). Let (t, d) be the solution.

3. If d = 0 (and hence t = 0), then 0 ∈ δεf(x). Decrease ε and go back to
step 2.

4. If d �= 0, then 0 �∈ δεf(x) and we obtain x+ = x + τd with f(x+) < f(x)
using a line search like in [57]. Let w = x+ be the intervention step for
MDS and quit.

Fig. 4. Quantified descent v0 → w for f = λ1 ◦ B.

Contrary to ∂εf(x), the support function of the compact convex set δεf(x) is
known explicitly. We have (cf. [23, 60, 57])

f̃ ′
ε(x; d) := max{gTd : g ∈ δεf(x)} = λ1

(
QT

ε [B′(x)d]Qε

)
,

where f̃ ′
ε(x; d) is the directional derivative considered in [23, 60]. Therefore, the

direction of steepest ε-enlarged descent is found by solving the program

min
‖d‖≤1

λ1

(
QT

ε [B′(x)d]Qε

)
,(18)

and the solution d = −g/‖g‖ satisfies

−‖g‖ = −dist (0, δεf(x)) = f̃ ′
ε(x; d) < 0.

Notice that (18) is equivalent to the SDP

minimize t
subject to QT

ε [B′(x)d]Qε 	 tI,
‖d‖ ≤ 1.

(19)

A descent direction d for f = λ1 ◦B at x is therefore found as soon as the value of (19)
is negative, and the corresponding d gives even a quantifiable descent in the sense of
Theorem 1 below. The appealing feature of this method is that the size of the LMI
in (18) and (19) is r(ε), which is usually small. An important consequence is that it
can be solved very cheaply if a dual SDP formulation is used. Altogether we have the
crisis prevention method shown in Figure 4.

The possible decrease f(x+) < f(x) is quantified by the following result, whose
proof is given in [57] for a spectral bundle algorithm which generates descent steps as
above. Since the convergence properties of the nonsmooth MDS method hinge on the
properties of the sequence of Cauchy points w, the result carries over to our present
situation.

Theorem 1. Consider the minimization of f = λ1 ◦ B. Suppose x0 is such that
{x ∈ R

n : f(x) ≤ f(x0)} is compact. Let the sequence xk with starting point x0 be
generated by the MDS method with nonsmooth descent step. Suppose at stage k the
parameter εk is chosen according to the ε-management of [57, 58]. Then there exists
a constant C > 0 such that the nonsmooth MDS method achieves a decrease of at
least f(xk+1) − f(xk) ≤ −C Δεk |f̃ ′

εk
(xk; dk)|2, where dk is the direction of steepest

εk-enlarged descent at xk and Δεk = λr(εk) − λr(εk)+1. Moreover, some subsequence

of xk converges to a critical point of f .
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7.2. Quantifiable descent for g = α ◦ F . In this section we discuss the dif-
ficult case of the spectral abscissa. Due to its highly nonsmooth character, quantified
decrease for g = α ◦ F is more difficult to guarantee than for f = λ1 ◦ B.

Let us again take recourse to the SDP formulation of α. Suppose g(x∗) =
α (F(x∗)) = t∗. We wish to decrease the value of g in a neighborhood U of x∗.
Following Lemma 1, for fixed 0 < θ � 1, there exists Y ∗ ∈ [θI, I] such that
λ1 (B(x∗, Y ∗, t∗)) = 0, where we define B(x, Y, t) := F(x)TY + Y F(x) − 2tY 	 0.
Finding Y ∗ amounts to solving an SDP. Now let us introduce

B̃(x, Y, t) =

⎡⎣Y − I 0 0
0 θI − Y 0
0 0 B(x, Y, t)

⎤⎦ .
Then decreasing the value g(x) = t below t∗ is equivalent to decreasing the value t of
the program

minimize t

subject to B̃(x, Y, t) 	 0

below t∗. We obtain such a decrease t < t∗ using Kiwiel’s progress function [43],
which in our situation may be written as

κ(x, Y, t; t∗) = λ1

[
t− t∗ 0

0 B̃(x, Y, t)

]
=: λ1

(
B̂(x, Y, t; t∗)

)
.

We have the following.
Lemma 2. Suppose g(x∗) = α (F(x∗)) = t∗. Then decrease t = g(x) < g(x∗) = t∗

is achieved for some x in a neighborhood U of x∗ if and only if κ(x, Y, t; t∗) < 0 for
suitable Y .

What we are interested in is quantified decrease in the same sense as used before,
so we use the ε-enlarged subdifferential δεκ of the maximum eigenvalue function κ =
λ1 ◦ B̂. The procedure, whose convergence theory is covered by [57], is shown in
Figure 5.

Notice that the costly part here is computing Y ∗. The second SDP in step 3
is of small size, since the corresponding LMI is in the space of r(ε) × r(ε) matrices.
Repeating this step to identify a suitable ε is therefore not expensive. This has
the interesting feature that as long as ε-steepest descent steps are taken, the large
SDP need not be solved at all. This makes a pure nonsmooth descent method seem
attractive. Such an approach is developed in [32] for large SDPs arising as relaxations
of integer programs. Similar to that reference, solving the SDP dual of (7.2) is more
efficient. Finally, we stress that extending the quantified descent step for the spectral
abscissa to a broader class of problems like those in (4) is straightforward and left to
the reader.

Remark. As soon as search directions based on the ε-enlarged subdifferential
are used, a good choice of ε is required. Based on extensive numerical testing, we
have used a very small ε = 1e−9 for stopping tests, while good progress in a descent
step seems to ask for moderate values ε ∈ [0.01 ; 0.1]. This is what has been used in
section 8.

8. Numerical experiments. In this section, we test the MDS algorithm with
nonsmooth descent steps on a wide range of synthesis problems from the literature.
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1. Given g(x∗) = α (F(x∗)) = t∗, quit if the stopping test (14) indicates
a critical point. Otherwise:

2. Solve an SDP to compute Y ∗ such that λ1 (B(x∗, Y ∗, t∗)) = 0. Choose
ε > 0.

3. Given ε > 0, compute d = (δx, δY, δt), the direction of steepest ε-en-
larged descent of κ(·, ·, ·; t∗) at the point (x∗, Y ∗, t∗) by solving the SDP:

minimize ρ

subject to Q̂T
ε

[
B̂′(x∗, Y ∗, t∗; t∗) d

]
Q̂ε 	 ρI,

‖δx‖ ≤ 1, ‖δY ‖ ≤ 1, |δt| ≤ 1.

Here the r(ε) columns of Q̂ε are an orthonormal basis of the invariant

subspace of B̂(x∗, Y ∗, t∗; t∗) associated with its ε-largest eigenvalues.
Let d = (δx, δY, δt) be the solution.

4. If d = 0, then 0 ∈ δεκ(x∗, Y ∗, t∗; t∗). Decrease ε and go back to step 3.
6. Having found d �= 0, decrease the value of κ using a line search as

in [57]. The corresponding step x+ = x∗ + τδx decreases g accordingly.
Let w = x+ be the intervention step for MDS, and quit.

Fig. 5. Quantified descent step v0 → w for g = α ◦ F .

Computations were performed on a (low-level) SUN-Blade Sparc with 256 RAM and a
650 MHz sparcv9 processor. LMI-related computations needed for nonsmooth descent
steps were performed using either the LMI Control Toolbox [28] or our homemade
SDP code [5]. The contraction and expansion parameters were set to θ = 0.5 and
μ = 2.0 throughout.

8.1. Static output-feedback stabilization. We start with static output-
feedback stabilization without any performance specification. Solving (10) is a pure
feasibility problem and somewhat simpler than the problems examined in what fol-
lows. It is used to initialize the constrained problem (9).

In our implementation, the MDS code was stopped as soon as a strictly negative
spectral abscissa was obtained. Restarts were used as soon as the nonsmooth opti-
mality test indicated a local minimum x̄ of g = α ◦ F with positive value g(x̄) > 0.
We also encountered dead points, where the nonsmooth stopping test indicated a way
to move on. What helps in this case is to restart MDS with the new seed proposed by
the spectral bundling step, and change the geometry of the simplex. In all tests, the
initial seed point was chosen to be the origin of the variable space. The vertices of
the initial S are then relabeled so that v0 is the best vertex. Contrary to what might
seem plausible, MDS frequently encounters dead points and fails when run in default
mode without nonsmooth steps. We discuss some of these at the end of this section.

As emphasized in the introductory section, the nonsmooth MDS is fairly insen-
sitive to the number of states, since Lyapunov variables are not involved. A striking
example is the Boeing 767 flutter problem (AC10), which our algorithm solved in
0.41-s cpu, starting from the initial point K = 0. This indicates that this problem
is not as difficult as the size would suggest. (In fact, some of our smaller problems
turned out more difficult.) The nonsmooth MDS technique appears surprisingly ef-
ficient compared to the gradient sampling algorithm proposed in [18], which for this
problem required hours of cpu time and several hundreds of restarts. This example is
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Table 1

Static output-feedback stabilization right-angled simplex.

Problem (n,m, p) Iteration cpu (s) Reference
Transport airplane (9, 1, 5) 3 0.05 [29]
Horisberger’s example (9, 1, 4) 13 0.12 [38]
VTOL helicopter (4, 2, 1) 1 0.01 [42]
Chemical reactor (4, 2, 2) 2 0.02 [39]
Piezoelectric actuator (5, 1, 3) 2 0.17 [21]
AC10 (55, 2, 2) 3 0.41 [47]
HF1 (130, 1, 2) Stable – [47]

also included in the library [47] and has been solved by the technique of [49, 48].

Example. Let us illustrate a typical difficulty related to nonsmoothness of the
spectral abscissa, when MDS stops at an iterate K∗ where several eigenvalues of the
closed-loop spectrum are active. This happens, e.g., in Horisberger’s example with
seed point at the origin and with the regular simplex geometry. When nonsmooth
descent is switched off, MDS eventually hits such a nonsmooth iterate and starts
contracting the simplex. This yields the static (nonstabilizing) gain

K = [−5.9176e−01 7.1864e+00 −3.1396e+01 3.5870e+01 ] ,

with closed-loop spectrum

Λ(A + B2KC2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−6.6646e−01 ± 6.2303e+01j
−3.9851e+00 ± 1.8336e+01j
−7.8086e+00 ± 4.0906e+00j
5.4005e−01 ± 8.3040e−01j

5.4005e−01

.

The question is now whether we are at a dead point or at a local minimum. If the
technique discussed in section 6 is switched on, a nonsmooth descent step v0 → w is
performed, which reduces the spectral abscissa from 5.4005e−01 to 5.183e−01. This
is followed by a number of reflection/expansion/contraction steps of MDS, yielding
the iterate

K = [−2.0595e− 01 6.4949e+ 00 −3.1503e+ 01 3.6173e+01 ]

with closed-loop spectrum

Λ(A + B2KC2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−6.7523e−01 ± 6.2320e+01j
−4.1595e+00 ± 1.8393e+01j
−7.5240e+00 ± 4.9624e+00j
4.7250e−01 ± 3.8239e−01j

4.7250e−01

.

The nonsmooth stopping test now clearly identifies this as a local minimum (a critical
point), since no descent direction exists. At this stage a restart of MDS is inevitable,
because α(A + B2KC2) = 4.7250e−01 > 0.

Our testing has shown that the following simple trick is successful when a restart
is due. We keep the current best point but switch geometries, for instance from regular
to right-angled or vice versa. In the example, we switched from regular to right-angled
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simplices, which generated different search directions. MDS was now successful and
reached a stabilizing gain:

K = [ 3.1794e+01 6.4949e+00 4.3250e+02 5.1173e+01 ] ,

with corresponding spectral abscissa α(A + B2KC2) = −4.1442e−01 < 0.

8.2. Static and fixed-order output-feedback H∞-synthesis. This section
reports experiments with static and fixed-order output-feedback H∞-synthesis. The
out-set is from section 3, the extension to fixed-order problems is standard [6]. We
solve program (9), using the corresponding controllers K0 computed via (10) as initial
value.

Results achieved with nonsmooth MDS are based on the infinite barrier

B(K) =

{
‖Tw→z(s,K)‖∞ if α(A + B2KC2) ≤ −τ,
+∞ otherwise,

(20)

where τ > 0 is some small fixed threshold. The infinite barrier function works sur-
prisingly well with the MDS technique, as also witnessed by [10] in different contexts.
Function evaluation for the H∞-norm is based on the efficient bisection algorithm in
[12]. See also the MATLAB implementation described in [26]. A catalog of results
is displayed in Table 2. The H∞ performance achieved with the MDS method “H∞
MDS” as well as with the spectral quadratic SDP method “H∞ AL” in [5] are de-
scribed. For completeness, in column “H∞ full” the performance of the full-order H∞
controller (computed by LMIs or algebraic Riccati equations) is shown and gives a
lower bound for the H∞-gain.

Table 2

Static and fixed-order H∞-synthesis with MDS algorithm best results with right-angled and
regular simplices stopping tolerance ε = 1e−9.

Problem Order Iteration cpu (s) H∞ MDS H∞ AL H∞ full
Transport airplane Static 37 20 2.34 2.22 1.60
VTOL helicopter Static 10 2.69 0.190 0.157 0.096
Chemical reactor Static 38 16.96 1.183 1.202 1.141
Piezoelectric actuator Static 112 8.62 1.76e−4 3.05e−3 9.63e−5
AC10 Static 72 612 14.22 Intractable 0.052
HF1 Static 11 1100 0.447 Intractable 0.449

The choice of the simplex geometry, right-angled or regular, may influence the
computed solution. Contrary to what might be guessed, the regular geometry is not
always better than the right-angled geometry. We have therefore decided to test both
and report the best result. This is reasonably affordable with regard to cpu time, as
seen in Table 2 even for high-order systems. The initial seed point was the origin in all
examples. As already discussed in [5], the augmented Lagrangian (AL) technique is no
longer operational for systems with roughly more than 40 states. Again, we would like
to stress the good results obtained with the MDS method for the Boeing 767 problem
(AC10). Actually, the projective SDP code of MATLAB ran into difficulties to solve
the LMI problem corresponding to the (convex) full-order problem and diagnosed the
problem as infeasible after more than 4 hours of execution time in default mode.

The computed static controller obtained by the MDS method for the Boeing 767
flutter problems (AC10) is

Kstatic =

[
−0.0966 0.0000
3.1681 0.0000

]
.
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The large-size HF1 problem is taken from the library [47]. It does not require
prior stabilization as the plant is open-loop stable. Hence, K = 0 may serve as
a starting point for the H∞-optimization in Table 2. Here the static gain K =
[ 1.9943 −3.4943 ] is found.

8.3. Simultaneous stabilization problems. Simultaneous stabilization is a
longstanding problem in the automatic control literature. It consists in the search
of a single controller which stabilizes a finite set of plants. This is of great practical
interest in different situations. A system may have several modes of operation, but
the controller is required to stabilize all modes. A more challenging situation is when
the system may be subject to different failures such as actuator/detector breakdown,
which often result in drastic deviations of the plant from its nominal description.
The controller is then required to stabilize normal and abnormal operating modes.
Unfortunately, the simultaneous stabilization problem has no analytical solution for
more than two plants and is classified as NP -hard [8]. Existing techniques usually try
to verify sufficient conditions. If successful, this leads to high-order controllers. Our
experiments indicate that local optimization techniques and in particular DS methods
may be of interest for designing simpler controllers, which is crucial for applications.

For single-input single-output systems {Gi(s), i = 1, . . . , q}, the simultaneous
stabilization problem can be formulated as follows:

• find a controller with transfer function

K(s, x) =
NK(s, x)

DK(s, x)
=

x1s
m + · · · + xms + xm+1

sn + xm+2sn−1 + · · · + xm+ns + xm+n+1
,(21)

where as before x := [x1 · · ·xm+n+1]
T gathers the decision variables,

• such that the closed-loop characteristic polynomials

pi(s, x) := NGi(s)NK(s, x) + DGi(s)DK(s, x)

have only stable roots for i = 1, . . . , q.

This may be addressed by the optimization program

minimize
x∈Rm+n+1

max
i=1,...,q

Re (roots of pi(s, x))(22)

and a simultaneous stabilizing controller is found as soon as the value of this pro-
gram is < 0. Program (22) resembles the static stabilization formulation discussed in
section 8.1 and we follow a similar line of attack.

A challenging variant of this problem is the strong stabilization problem, where
the controller itself is required to be stable. This is incorporated into the cast (22) by
just adding DK(s, x) to the family of plant polynomials.

Table 3

Simultaneous stabilization with MDS right-angled simplex ∗ strong stabilization problem.

Problem Order Iteration cpu (s) Restart Reference
F4e aircraft Static 2 0.71 None [2]
cao Static 13 0.28 None [20]
cao 1 1 0.25 3 [20]
henrion 1 2 0.51 None [34]
bredemann1∗ 1 6 2.05 3 [16, p. 68]
bredemann2∗ 1 3 0.82 3 [15]
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In this testing, the nonsmooth MDS was again successful on a list of applications
from the literature. Restarts have been used with a different initial seed point when an
unsatisfactory local minimum was encountered. Often we obtained simpler controllers
than those previously published and derived from constructive sufficient conditions.
For example, the method in [16] yields a fifth-order controller for example bredemann1,
whereas the MDS technique was able to show that first-order strong simultaneous
stabilization is possible. A similar comment applies to example bredemann2.

An alternative cast for simultaneous stabilization is via Hermite–Fujiwara matri-
ces. In this setting, the nonsmooth program (22) reduces to a finite set of quadratic
matrix inequality constraints [33]:

H(x) :=
m+n+1∑

i=1

m+n+1∑
j=i

xixjHij ≺ 0,

where the decision vector x comprises controller parameters in (21). Here MDS is
applied to the eigenvalue optimization program

min
x

λ1 (H(x)).(23)

We apply MDS to a problem from [33], which consists in the simultaneous stabi-
lization of four plants. Hence, x is required to be strictly feasible for four quadratic
matrix inequalities of the form (23). This problem is of special interest because nu-
merous dead points and unsatisfactory local minima were found if different seed points
were used.

Table 4

Simultaneous stabilization using Hermite–Fujiwara BMI characterization final spectrum of
quadratic SDP results with two starting points and regular simplices.

Seed 1, 1,−1,−1 −1,−1, 1, 1

Final iterate 3.5068, 4.2139, 0.0925, 0.0925 −4.4420, 0.4275, 0.5059, 0.1618

Final spectrum

of quadratic SDP (23)

−1.3846e+03

−1.0473e+03

−8.0116e+02

−3.9982e+02

−3.8359e+02

−2.0603e+02

−1.3928e+02

−8.4586e+01

−2.6890e+00

−1.4544e+00

−7.6821e−01

−6.3137e−01

−2.2926e+03

−3.7468e+02

−3.1919e+02

−2.1174e+01

−6.7302e+00

−6.1145e+00

−2.3900e+00

−2.3453e+00

−5.0609e−02

1.8472e−01

1.8528e−01

1.8528e−01

Controller
3.5068s + 4.2139

9.2540e−02s + 9.2540e−02
none

Example. For the purpose of testing, MDS was first run without nonsmooth steps.
Table 4 shows two scenarios with default MDS. In column 2 the nonsmooth stopping
test from section 7.1 was switched on as soon as MDS got stalled. It reveals that we are
at a dead point and not at a local minimum. While nonsmooth steps v0 → w allowed
MDS to move on, crisis intervention ultimately did not lead to a stabilizing controller
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in this case. The procedure gets again stalled and this time achieves convergence to
an infeasible local minimum.

Example (continued). In a second testing, we examined this case more closely.
As it is too late to shut the stable door after the horse has gone, we opted to used
the ε-descent nonsmooth technique of section 7.1 in order to avoid failure. We call
for a nonsmooth step as soon as the MDS simplex shrinks below ω = 0.1 in relative
size. Starting with the same initial point, the simultaneous stabilization problem is
now satisfactorily solved in a few iterations: four MDS iterations and a single call for
the nonsmooth intervention technique of section 7.1. The evolution of the maximum
eigenvalue of the quadratic SDP in (23) as a function of the iteration index is the
five-element sequence

{6.5072e+01, 1.5172e+01, 5.1720e+00, 2.868e+00, −1.4778e+00} ,

where the nonsmooth descent step v0 → w corresponds to the decrease from
5.1720e+00 to 2.868e+00. Note that since sole stabilization is of interest, the al-
gorithm has been stopped as soon as the maximum eigenvalue was found negative.
The associated first-order controller solution is described by the transfer function

K(s) =
4.9843s− 4.2577

4.2783e−01s + 6.2861e−01
.

Example (continued). In our third experiment, we assess the performance of the
nonsmooth descent technique alone. We no longer sample the space using MDS.
Instead we follow descent steps v0 → w proposed by the nonsmooth technique in
section 7.1. This option corresponds to a pure spectral bundle method [57]. With the
same starting point causing failure of the default MDS, the problem is now solved in
seven calls according to the sequence

{65.0718, 43.0862, 39.8725, 20.1852, 19.9853, 3.5719, 2.8877, −0.0228} .

The resulting stabilizing controller is

K(s) =
0.6029s + 1.115

0.03361s + 0.1064
.

All controllers computed in this application have significantly different pole/zero pat-
terns, but all stabilize the four-plant family.

8.4. Mixed H2/H∞ state-feedback synthesis. Mixed H2/H∞-synthesis
with state- or output-feedback is one of those archetype problems which cannot be
simplified using the projection lemma and resist to linearizing changes of variable like
[30]. What remains are special BMI techniques or algorithmic approaches like the one
we propose here. The mixed H2/H∞ state-feedback synthesis problem is as follows.
Given a synthesis state-space representation⎧⎨⎩

ẋ = Ax + B1,2w2 + B1,∞w∞ + B2u,
z2 = C1,2x + D12,2u,
z∞ = C1,∞x + D11,∞w∞ + D12,∞u,

the goal is to compute a state-feedback control law u = Kx such that
• the closed-loop system is asymptotically stable, i.e., α(A + B2K) < 0,
• the H2-norm of the channel ‖Tw2→z2(K, s)‖2 is minimized subject to an H∞-

norm constraint on the channel ‖Tw∞→z∞(K, s)‖∞ ≤ γ.



1946 PIERRE APKARIAN AND DOMINIKUS NOLL

An example of this type is given in [31], and we reexamine it here using our
nonsmooth MDS. We proceed as follows. First a state-feedback gain satisfying both
stability and the H∞ constraint is computed as in section 8.2. In a second phase, the
H2-norm is added and minimized, using an infinite barrier

(24)

B(K) =

{
‖Tw2→z2(K, s)‖2 if α(A + B2K) ≤ −τ and ‖Tw∞→z∞(K, s)‖∞ ≤ γ,
+∞ otherwise,

now maintaining the constraints of phase 1.
With data imported from [31] and γ = 2, MDS computed a gain K in 25 MDS

iterations within 11.1 s of cpu time. The solution found is

K = [ 1.8236, 2.5648e−01, −2.0453e−01 ]

with ‖Tw2→z2(K, s)‖2 = 7.502e−01. The H∞-norm constraint was of course active at
this point. Note en passant that this result outperforms those achieved via the spectral
augmented Lagrangian method in [65], which gave ‖Tw2→z2(K, s)‖2 = 0.8384, and
the successive linearization approach in [31], which found ‖Tw2→z2(K, s)‖2 = 0.8930.
Since this problem has multiple local minima, this fact does not imply that any one
of those methods is better than any other, except perhaps for cases where a solution
without optimality certificate is presented. The solution in [65] is a local minimum,
and we checked optimality of our present K by adapting the nonsmooth frequency
domain test for program (9) from section 6. This requires not much extra work, as
the H2-norm is smooth (see [13]). We observed that the H∞-norm is attained at a
single frequency, which seems to be rather the rule than the exception.

9. Conclusion. We have proposed a new algorithmic strategy for difficult and
even NP -hard synthesis problems in automatic control, which are inaccessible via
convexity methods. Our algorithm combines DS methods like Torczon’s MDS with
spectral bundle techniques, imported from nonsmooth optimization, in order to cope
with typical nonsmooth criteria in control like the spectral abscissa, the maximum
eigenvalue function, or the H∞-norm. Our approach is a serious alternative to non-
linear programming algorithms based on bilinear matrix inequalities, as long as the
number of controller decision variables is not too large. Since our approach avoids
Lyapunov variables, it may be used to design small- or medium-size controllers even
for very large systems, as witnessed by the Boeing 767 and Heat Flow (HF1) bench-
mark examples, systems with 55 and 130 states, respectively. As soon as the number
of controller gain parameters gets sizable, the search method is often too slow, and
pure nonsmooth approaches like spectral bundling perform better. How those should
be organized for control applications is discussed in [3]. In a similar vein, a pure non-
smooth and frequency-domain approach for solving multidisk problems is proposed
in [4]. A nonsmooth spectral bundle method for solving state-space BMI programs is
developed in [64].

Our approach combines MDS with suitable nonsmooth descent steps. This gives
a convergence certificate toward critical points, an important feature lacking in all the
heuristic approaches proposed to date. We have observed that MDS is fairly insensi-
tive to noise corrupting the function evaluation. This makes it particularly useful in
control applications, where objective functions typically result from iterative proce-
dures to compute the H∞- or H2-norm. We have noticed that in the neighborhood
of nonsmooth surfaces, gradient directions behave irregularly and are often distorted
and unreliable, while progress is still achievable with MDS.
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In conclusion, we believe the proposed framework is very versatile and can accom-
modate a vast array of design problems, expanding on those discussed in this paper.
Structured feedback design is near at hand, while robust control is currently under
investigation.
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