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Abstract

Multiband frequency domain synthesis consists in the minimization of a finite family of closed-loop transfer functions on prescribed frequency
intervals. This is an algorithmically difficult problem due to its inherent nonsmoothness and nonconvexity. We extend our previous work on
nonsmooth H∞ synthesis to develop a nonsmooth optimization technique to compute local solutions to multiband synthesis problems. The
proposed method is shown to perform well on illustrative examples.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We present a new algorithmic approach to multifrequency
band feedback control synthesis. We consider simultaneous
minimization of a finite family of closed-loop performance
functions

f (K)= max
i=1,...,N

‖Twi→zi (K)‖Ii
, (1)

where K is the feedback controller, Twi→zi (K, ·) the ith
closed-loop performance channel, and ‖Twi→zi (K)‖Ii

the
peak value of the transfer function maximum singular value
norm on a prescribed frequency interval Ii :

‖Twi→zi (K)‖Ii
= sup

�∈Ii

�(Twi→zi (K, j�)).

Typically, each Ii is a closed interval or a finite union of inter-
vals. For a single channel, i = 1 and I1 = [0,∞], minimizing
f (K) reduces to standard H∞ synthesis.
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The present approach to multiband synthesis expands on
(Apkarian & Noll, 2006a,b,c; Noll & Apkarian, 2005), where
this idea was laid down for standard H∞ synthesis. It leads to
efficient algorithms, because a substantial part of the compu-
tations is carried out in the frequency domain, where the plant
state dimension only mildly affects cpu times. Our method
avoids the difficulties of bilinear matrix inequalities, where the
presence of Lyapunov variables, whose number grows quadrat-
ically with the state-space dimension, quickly leads to large size
optimization programs as systems get sizable. We have iden-
tified this as the major source of breakdown for most existing
codes.

Multiband control design is of great practical interest mainly
for two reasons:

• Very often design criteria are expressed as frequency domain
constraints on limited frequency bands.
• In the traditional approach, weighting functions are used to

specify frequency bands. But the search for suitable weight-
ing functions is often critical and increases the controller
order.

Despite its importance, only few methods for multiband syn-
thesis have been published. In Iwasaki and Hara (2005), the
authors develop an extension of the KYP Lemma (Rantzer,
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1996) to handle band restricted frequency domain constraints.
The resulting problem is nonconvex even in state-feedback.

There exist classical loop-shaping methods, like QFT
(Horowitz, 1982), which exploit graphical tools and interfaces,
but to work satisfactorily an advanced level of intuition is
required. QFT is no longer suited under additional structural
constraints on the controller.

Similar comments apply to methods based on the Youla
parametrization, which lead to high-order controllers (Boyd &
Barratt, 1991). Classical Bode, Nyquist and Nichols plots to
design simple controllers such as PID and phase lag (Bode,
1945; Franklin, Powell, & Emami-Naeni, 1986) are limited to
SISO systems, even though some generalizations to MIMO
systems have been tried (MacFarlane & Postlethwaite, 1977).
Altogether we believe that frequency band synthesis warrants
a fresh investigation based on recent progress in optimization.

In contrast with H∞ (Apkarian & Noll, 2006b) and multidisk
syntheses (Apkarian & Noll, 2006c), multiband design leads
to an additional difficulty. Closed-loop stability with controller
K has to be built into a mathematical programming constraint.
Two possibilities to model this constraint will be discussed, for
more details see Apkarian and Noll (2006b, c). In the sequel
each Twi→zi is a smooth operator defined on the open domain
D ⊂ R(m2+k)×(p2+k) of kth order stabilizing controllers

K :=
[
AK BK

CK DK

]
, AK ∈ Rk×k ,

with values in the infinite dimensional space RH∞.

2. Multiband frequency domain design

We consider a plant P in state-space form

P(s) :
[
ẋ

y

]
=

[
A B

C D

] [
x

u

]
(2)

together with N concurring performance specifications, repre-
sented as plants P i(s) in state-space form as

P i(s) :
⎡
⎢⎣

ẋi

zi

yi

⎤
⎥⎦=

⎡
⎢⎢⎣

Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 Di
22

⎤
⎥⎥⎦

⎡
⎢⎣

xi

wi

ui

⎤
⎥⎦ , i = 1, . . . , N ,

(3)

where xi ∈ Rni
is the state of P i , ui ∈ Rm2 the control,

wi ∈ Rmi
1 the vector of exogenous inputs, yi ∈ Rp2 the vector

of measurements and zi ∈ Rpi
1 the ith performance vector.

Without loss of generality, it is assumed that D=0 and Di
22=0

for all i.
Multiband synthesis requires designing an output feedback

controller ui =K(s)yi for plants (3) with:

• Internal stability: The controller K stabilizes the original
plant P in closed loop.

• Performance: Among all internally stabilizing controllers,
K minimizes the worst case performance function f (K)=
maxi=1,...,N‖Twi→zi (K)‖Ii

.

We assume that the controller K has the form

K(s)= CK(sI − AK)−1BK +DK, AK ∈ Rk×k , (4)

where the case k = 0 of a static controller is included. The
synthesis problem may then be represented as

minimize f (K)= max
i=1,...,N

‖Twi→zi (K)‖Ii

subject to K stabilizes (A, B, C), K ∈ D. (5)

Note that structural constraints on the controller are easily han-
dled by restricting K to suitable subspaces.

Remark 1. A difficulty in (5) is that D = {K :K stabilizes
(A, B, C)} is not a constraint in the sense of mathematical
programming. An element K on the boundary �D is not a
valid solution. Since an optimization algorithm for (5) will
converge to K ∈ �D, we have to modify this constraint to
avoid numerical failure.

3. Model I: distance to instability

In this section we present a first systematic way to build a
constraint which guarantees closed-loop stability. For simplic-
ity we work with static controllers. The case of dynamic con-
trollers simply follows from standard augmentation of the plant
(Apkarian & Noll, 2006b).

We start by introducing a stabilizing channel s �→
Tstab(K, s) := (sI − (A + BKC))−1 for (2). Then K sta-
bilizes P in closed loop iff Tstab(K) is stable. The stability
domain D in (5) is then

D= {K ∈ Rm2×p2 : ‖(sI − (A+ BKC))−1‖∞<+∞}.
We then replace D by the smaller closed set

Db = {K ∈ Rm2×p2 : ‖(sI − (A+ BKC))−1‖∞�b},
where b > 0 is some large constant, and consider the following
program:

minimize f (K)= max
i=1,...,N

‖Twi→zi (K)‖Ii

subject to g(K) := ‖Tstab(K)‖∞�b. (6)

The distance to instability of a stable matrix A is defined as

�(A)= inf{‖X‖F : A+X instable}.
It is easy to see that

�(A)�� ⇔ ‖(sI − A)−1‖∞�1/�.

That means, our natural choice is b = 1/�.
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How do we solve program (6)b numerically? We consider
the homotopy program

min
K∈Rm2×p2

max

{
max

i=1,...,N
‖Twi→zi (K)‖Ii

, �‖Tstab(K)‖∞
}

=min
K

max{f (K), �g(K)} =: min
K

f�(K), (7)

where � > 0 is called the homotopy parameter.

Lemma 2. Let K� be a local minimum of (7)� which
is nondegenerate in the sense that it is neither a critical
point of f alone, nor a critical point of g alone. Then K�
is a Karush–Kuhn–Tucker point of program (6)b(�) with
b(�)= g(K�)= f (K�)/�.

Proof. As K� is nondegenerate, the necessary optimality con-
ditions for (7)� give 0 < t� < 1 such that

0 ∈ t��f (K�)+ (1− t�)��g(K�) and

f (K�)= �g(K�).

Let us now write the Karush–Kuhn–Tucker conditions for (6)b:
there exists a Lagrange multiplier �b such that

0 ∈ �f (Kb)+ �b�g(Kb), g(Kb)− b�0,

�b �0, �b(g(Kb)− b)= 0.

We see that the solution K� of (7)� solves (6)b if

b(�)= g(K�), �b(�) = ((1− t�)�)/t�.

This proves the claim. �

Lemma 3. Let Kb be a local minimum of program
(6)b which is nondegenerate in the sense that it is not a
Karush–Kuhn–Tucker point of f alone. Then Kb is a critical
point of program (7)�(b) with �(b)= f (Kb)/g(Kb).

Proof. We compare the necessary optimality conditions. Read-
ing the formulas backwards, we get

�(b)= f (Kb)/g(Kb).

Then reading �b = (1− t�)�/t� backwards leads to

t�(b) = �(b)

�b + �(b)
= f (Kb)

f (Kb)+ �bg(Kb)
∈ (0, 1). �

Remark 4. There is a local one-to-one correspondence be-
tween (6)b and (7)� in the sense that Kb =K�(b) and K� =
Kb(�). To find Kb for b=�−1 it suffices to find �(b)=�(�−1)

and solve (7)�(�−1)
. Using (7)� to solve model (6)b is basi-

cally a homotopy method, because the parameter b(�) is grad-
ually driven toward its final value b by adjusting �. Notice that
the problem may become ill-conditioned when b is chosen too
large.

4. Model II: shifting poles

Let us consider a second possibility to fix a closed subset ofD
based on the shifted H∞ norm, (Boyd & Barratt, 1991, p. 100):
‖H(·)‖∞,�=‖H(·+�)‖∞. For � < 0, condition ‖H‖∞,� <+∞
guarantees that the poles of H(s) lie to the left of Rs = � < 0.
This means that for every � < 0, the closure D

�
of the open

domain

D� = {K ∈ Rm2×p2 : ‖(sI − (A+ BKC))−1‖∞,� <+∞}
is a tractable constraint set, because D

� ⊂ D. Indeed, elements
K ∈ �D� still have R��� < 0 for the poles � of A+ BKC,
hence these K are closed-loop stabilizing. This suggests the
optimization program

minimize f (K)= max
i=1,...,N

‖Twi→zi (K)‖Ii

subject to K ∈ D
�
. (8)

Having prepared its rationale, let us discuss an algorithm for
(8)�. The situation is slightly more complicated than for model
I, because D

�
is not easily represented as a constraint set in the

sense of nonlinear programming. What we have, though, is a
barrier function for D�. Putting

h�(K)= ‖Tstab(K)‖∞,�,

where Tstab(s) := (sI − (A + BKC))−1 is the stabilizing
channel for plant P, we see that

D� = {K ∈ Rm2×p2 : h�(K) <+∞}.
We may then consider the following family of programs:

min
K∈Rm2×p2

max{f (K), �h�(K)} =: min
K∈Rm2×p2

f�,�(K), (9)

where f�,a(K) is the barrier function. We link (8) to (9).

Lemma 5. Let K�,� be a local minimum of (9)�,� which is
nondegenerate in the sense that it is neither a critical point
of f alone, nor a critical point of h� alone. Let K� be an
accumulation point of the sequence K�,� as �→ 0. Suppose
min�∈R+�(j�I − (ABKaC − �I )) is attained on a finite set
of frequencies. Then K� is a critical point of program (8)�.

Proof. (1) The KKT conditions for (8)� at K� give a subgra-
dient G ∈ �f (K�) such that −G is in the Clarke normal cone
N
D

�(K�) of D
�

at K�; cf. (Bonnans & Shapiro, 2000).
(2) The KKT conditions for (9)�,� say that there exists

0 < t�,� < 1 such that f (K�,�)= �h�(K
�,�) and

0 ∈ t�,��f (K�,�)+ (1− t�,�)� �h�(K
�,�). (10)

We introduce the level sets

D�(�)= {K ∈ Rm2×p2 : h�(K)�h�(K
�,�)}.

There are now two cases. Either h�(K
�,�)→∞ as �→ 0, or

there exists a subsequence for which these values are bounded.
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In the latter case, f (K�,�)=�h�(K
�,�) gives f (K�,�)→ 0,

hence f (K�)= 0. This case is excluded, because here K� is
a global minimum of f alone.

(3) Now assume that h�(K
�,�) → ∞, so that the D�(�)

grow as �→ 0. Then ∪�>0D
�(�)=D�. By (10) there exists a

subgradient G�,� ∈ �f (K�,�) such that

−(1− t�,�)�G�,�/t�,� ∈ �h�(K
�,�).

In other words, the negative subgradient −G�,� of f at K�,�

is a direction in the normal cone ND�(�)(K
�,�) to the level

set D�(�) at K�,�. Passing to a subsequence, we may assume
G�,� → G�. By upper semi-continuity of the Clarke (1983)
subdifferential, G� ∈ �f (K�). We now show that G� is in the
normal cone N

D
�(K�), because then the necessary optimality

condition in step (1) is satisfied.
(4) Let us introduce the following function:

	�(K)=
{−h�(K)−2 if h�(K) <∞,

0 else.

Then D�= {K : 	�(K) < 0}, and D�(�)= {K : 	�(K)� −
1/h�(K

�,�)2}. Notice, however, that D
� �= {K : 	�(K)�0}.

That means, we cannot directly conclude via upper semi-
continuity of the Clarke subdifferential of 	�, as we did for
�f . This complicates this proof.

We show that 	� is locally Lipschitz. Since h� is locally
Lipschitz, this is true inside D�. Only points K ∈ �D� might
cause problems. But

	�(K)= − h�(K)−2

= − 1/ max
�∈R+

�((j�I − A− BKC + �I )−1)2

= − min
�∈R+

�(j�I − A− BKC + �I )2

and this is locally Lipschitz, because for fixed �, the minimum
eigenvalue of an Hermitian matrix is locally Lipschitz. This
also shows that 	� has value 0 outside D

�
, which is therefore

not the level set of 	� at level 0.
Using upper semi-continuity of the Clarke subdifferential

lim sup�→0�	�(K
�,�) ⊂ �	�(K

�) implies

lim sup
�→0

ND�(�)(K
�,�) ⊂ 
�(K

�),

where 
�(K) is the convex cone generated by the compact
convex set �	�(K), because the normal cone to D�(�) is gen-
erated by the subdifferential of 	� at K�,�. Recall the diffi-
culty: our proof is not finished because 
�(K

�) is not identical
with the Clarke normal cone N

D
�(K�) to D

�
at K�.

Let us show that 
�(K
�) is pointed, that is, 
�(K

�) ∩
−
�(K

�)= {0}. This follows as soon as we show that ±G ∈
�	�(K

�) implies G= 0.
By hypothesis, the minimum singular value at K� is attained

on a finite set of frequencies. This implies that 	� is Clarke

regular atK�. Hence the Clarke directional derivative coincides
with the Dini directional derivative:

�	�(K
�)= {G : ∀D〈G, D〉�	′�(K�;D)

= lim inf
t→0+

t−1(	�(K
� + tD)− 	�(K

�))}.

But 	�(K
�) = 0 so for fixed � > 0 we can find t� > 0 such

that 〈G, D〉� t−1
� 	�(K

�+ t�D)+ ���, the latter since 	� �0.
We have shown 〈G, D〉��, and since � was arbitrary, we have
〈G, D〉�0. Now we use the fact that −G is also a subgra-
dient. Repeating the argument gives −〈G, D〉�0. Altogether,
〈G, D〉 = 0, and since D was arbitrary, G= 0.

(5) Having shown that 
�(K
�) is pointed, it follows that the

convex hull of lim sup�→0ND�(�)(K
�,�) is pointed, because

by (4) it is contained in 
�(K
�). Now we use Proposition 4.1

and Theorem 2.3 in Cornet and Czarnecky (1999) to deduce that
lim sup�→0ND�(�)(K

�,�) ⊂ N
D

�(K�). In the terminology
of that paper, this is referred to as normal convergence. That
completes the proof. �

Remark 6. (1) The above reasoning carries over to dynamic
controllers via the augmentation (Apkarian & Noll, 2006b). (2)
f�,� in (9) and f� in (7) have almost identical structure, so the
algorithms for both models are similar. (3) Normal convergence
defined in Cornet and Czarnecky (1999) is a suitable concept to
describe approximation of mathematical programs. If the con-
straint set is represented as the level set of a locally Lipschitz
operator, normal convergence is satisfied. However, in our case,
the limiting set D

�
is not a level set, which complicates the sit-

uation. Academic counterexamples where normal convergence
fails can be constructed; see Cornet and Czarnecky (1999).

The method of this section is a barrier method, because � is
fixed from start, while � is driven to 0 to give convergence. So
� plays a role similar to the barrier parameter in interior-point
methods. As our experiments show, this requires a final �>−�,
so ill-conditioning may occur only when � is chosen too small.

5. Algorithms for multiband control design

In this section we develop tools and present algorithms to
solve models I via (7)� and II via (9)�,�.

5.1. Subdifferential of the barrier function

Computation of the Clarke subdifferential of f� and f�,� is
central for our approach. The foundations for the results here
are given in Apkarian and Noll (2006b) for the H∞ norm and
in Apkarian and Noll (2006c) for multidisk synthesis. In order
to unify the presentation, we introduce a common terminology
for both cases. For f� at fixed � > 0, we introduce a new closed-
loop transfer channel:

TwN+1→zN+1(K)= �Tstab(K),

so that f�(K) = maxi=1,...,N+1‖Twi→zi (K)‖Ii
when we

set IN+1 = [0,∞]. Similarly, for f�,� at fixed � > 0, � < 0,
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we introduce the (N + 1)st channel in the form

TwN+1→zN+1(K, s)= �Tstab(K, s + �),

so that again f�,�(K) = maxi=1,...,N+1‖Twi→zi (K)‖Ii
with

IN+1 = [0,∞].
As formulas for the Clarke subdifferential of f�,� are easily

inferred from those of f�, we will restrict the discussion to
f�. We introduce the simplifying closed-loop notation in state
space

Ai (K) := Ai + Bi
2KCi

2, Bi (K) := Bi
1 + Bi

2KDi
21,

Ci (K) := Ci
1 +Di

12KCi
2, Di (K) := Di

11 +Di
12KDi

21,

(11)

and in frequency domain[
Twi→zi (K, s) Gi

12(K, s)

Gi
21(K, s) �

]

:=
[
Ci (K)

Ci
2

]
(sI −Ai (K))−1[Bi (K) Bi

2]

+
[
Di (K) Di

12

Di
21 �

]
.

Here, for i =N + 1, we define the plant

P N+1(s) :
⎡
⎢⎣

ẋN+1

zN+1

yN+1

⎤
⎥⎦=

⎡
⎢⎣

A I B

I 0 0

C 0 0

⎤
⎥⎦

⎡
⎢⎣

xN+1

wN+1

uN+1

⎤
⎥⎦ , (12)

where xN+1 ∈ Rn, n is the dimension of A, uN+1 ∈ Rm2 ,
wN+1 ∈ Rn, yN+1 ∈ Rp2 , and zN+1 ∈ Rn.

Let us introduce the notion of active frequencies. For a given
controller K, active channels or specifications are obtained
through the index set I�(K)

{i ∈ {1, . . . , N + 1} : ‖Twi→zi (K)‖Ii
= f�(K)}. (13)

Moreover, for each i ∈ I�(K), we consider the set of active
frequencies

�i
�(K)= {� ∈ Ii : �(Twi→zi (K, j�))= f�(K)}.

We assume that �i
�(K) is a finite set, indexed as

�i
�(K)= {�i

� : �= 1, . . . , pi}, i ∈ I�(K). (14)

The set of all active frequencies is ��(K). Now:

Theorem 7. Assume K stabilizes P N+1 in (12), i.e., K ∈ D.
With (13) and (14), let the columns of Qi

� form an orthonormal
basis of the eigenspace of Twi→zi (K, j�i

�)Twi→zi (K, j�i
�)

H

associated with the largest eigenvalue �(Twi→zi (K, j�i
�))

2.
Then, the Clarke subdifferential of f� at K is the compact and
convex set

�f�(K)={
Y : Y := (Y 1
1 , . . . , Y 1

p1 , . . . , Y
q

1 , . . . , Y
q
pq ) ∈ Bp},

where

Bp =
{

(Yi) : Yi = Y H
i , Yi�0,

∑
i

Tr(Yi)= 1

}
,

and p :=∑
i∈I�(K)p

i , q the number of elements in I�(K),


Y = f�(K)−1
∑

i∈I�(K)

∑
�=1,...,pi

R{Gi
21(K, j�i

�)

× Twi→zi (K, j�i
�)

HQi
�Y

i
� (Q

i
�)

HGi
12(K, j�i

�)}T. (15)

The formula also applies to f�,� when suitably adapted.

Proof. The proof is based on the representation of the Clarke
subdifferential of finite maximum functions (Clarke, 1983), and
is omitted for brevity. The reader is referred to Apkarian and
Noll (2006b, 2006c) and Noll and Apkarian (2005) for related
cases. �

5.2. Solving the subproblem

We describe an extension of the nonsmooth technique devel-
oped in Apkarian and Noll, 2006a,b for H∞ synthesis, and in
Apkarian and Noll (2006c) for multidisk problems. The method
is convergent and has been tested on a variety of sizable prob-
lems.

As before, we consider minimization of f� for fixed �, and
minimization of f�,� for fixed �, �. We define

f�(K, �) := max
i=1,...,N+1

{�(Twi→zi (K, j�)) : � ∈ Ii},

so that f�(K) = max�∈[0,∞]f�(K, �). Minimizing f� is
then a semi-infinite program for the family f�(·, �). Clearly,
f�(K, �)�f�(K) for � ∈ [0,∞] and f�(K, �) = f�(K)

for � ∈ ��(K), the set of active frequencies. By Theorem 7,
the subdifferential of f�(K, �) is the set of subgradients


Y,� := f�(K, �)−1
∑

i∈I�(K)

R{Gi
21(K, j�)

× Twi→zi (K, j�)HQi
�Y i

�(Qi
�)HGi

12(K, j�)}T,

where I�(K) is the index set of active models at frequency �:

{i ∈ {1, ..., N + 1} : � ∈ Ii, �(Twi→zi (K, j�))= f�(K, �)}.
Here the columns of the matrix Qi

� form an orthonormal basis
of the eigenspace of Twi→zi (K, j�)Twi→zi (K, j�)H associ-
ated with its largest eigenvalue, and∑
i∈I�(K)

Tr Y i
� = 1, Y i

� = (Y i
�)H�0.

An important feature of our technique is to allow finite ex-
tensions of the set of active frequencies: �e,�(K) ⊇ ��(K).
In Section 5.3 we show how �e,�(K) is constructed. The
idea is as follows: at the current K only a finite set of



P. Apkarian, D. Noll / Automatica 43 (2007) 724–731 729

f�(·, �), � ∈ ��(K) is active. Therefore, minimizing f� in a
neighborhood of K is reduced to minimizing this finite fam-
ily. The subgradients of f at K only depend on these active
f�(·, �), � ∈ ��(K). As we move away from the current K
to a nearby K′, other functions f�(K′, �′), �′ /∈��(K), will
become active, of course. If this happens too early, the descent
step proposed by the local model will be poor. By choosing an
enlarged set �e,�(K), including some frequencies �′ outside
��(K), we render the step from K to the new K′ more robust.

For any such finite extension �e,�(K), and for fixed � > 0,
we introduce a corresponding optimality function

�e,�(K) := inf
H∈Rm2×p2

sup
�∈�e,�(K)

sup∑
i∈I�(K) Tr Y i

�=1, Y i
��0

− f�(K)+ f�(K, �)+ 〈
Y,�, H 〉
+ 1

2�‖H‖2F . (16)

When �e,�(K) = ��(K), we write ��(K). Since ��(K) ⊂
�e,�(K), we have ��(K)��e,�(K) for any extensions.
��(K) and �e,�(K) are called optimality functions because
they share the following property: �e,�(K)�0 for all K, and
�e,�(K)= 0 implies that K is a critical point of f� (Apkarian
& Noll, 2006b). Similar optimality functions have been used in
the work of Polak (1987, 1997) and Polak and Wardi (1982).
They can be used to generate descent steps. In order to do this,
we show that optimality function (16) has a tractable dual form.

Proposition 8. The dual formula for �e,�(K) is

�e,�(K)= sup∑
�∈�e,�(K)��=1, �� �0

sup∑
i∈I�(K) Tr Y i

�=1, Y i
��0

×
∑

�∈�e,�(K)

��(f�(K, �)− f�(K))

− 1

2�

∥∥∥∥∥∥
∑

�∈�e,�(K)

��
Y,�

∥∥∥∥∥∥
2

F

. (17)

The associated optimal descent direction in the controller space
is given as

H(K) := −1

�

∑
�∈�e,�(K)

��
Y,�. (18)

Proof. The proof is essentially covered by the results in
Apkarian and Noll (2006c) and is omitted for brevity. �

Remark 9. The appealing feature of the dual program (17) is
that it is a small size SDP, or even a convex QP when singular
values are simple. It is worth noticing that band restricted norms
‖·‖Ii

and peak frequencies � ∈ ��(K) are easily computed via
an extension of the bisection algorithm in Boyd, Balakrishnan,
and Kabamba (1989).

Proposition 8 suggests the following descent scheme for the
subproblems for given K and �, respectively, �, �.

Nonsmooth descent algorithm for the subproblem:

• Fix � > 0, 0 < ϑ < 1, 0 < � < 1.
1. Initialization: Find a controller K which stabilizes the plant

P in (2).
2. Generate frequencies: Given the current K, compute f�(K)

and obtain active frequencies ��(K). Select a finite enriched
set of frequencies �e,�(K) containing ��(K).

3. Descent direction: Compute �e,�(K) and the solution (�, Y )

of SDP or convex QP (17). If �e,�(K) = 0, stop, because
0 ∈ �f�(K). Otherwise compute descent direction H(K)

given in (18).
4. Line search: Find largest t = ϑk such that f�(K +

t H(K))�f�(K) + t���(K) and such that K + tH(K)

remains stabilizing.
5. Step: Replace K by K+ tH(K), increase iteration counter

by one, and go back to step 2.

Remark 10. Results in Apkarian and Noll, 2006b, c can be
used to prove convergence to a critical point 0 ∈ �f�(K�) for
fixed �, starting from an arbitrary K ∈ D. Convergence of the
overall scheme follows when we combine this with Lemmas
2, 3 and 5. The subproblems become ill-conditioned when �
gets too small, shown by a large number of iterations or even
failure to reach criticality. This can be avoided by choosing �
(in model I) and � (in model II) moderately small.

5.3. Enriched sets of frequencies

Choosing an extended set of frequencies �e,� in step 2 is a
key ingredient for the success of our technique and is beneficial
mainly for two reasons:

• It renders the algorithm less dependent on the accuracy within
which peak frequencies in �� are computed. A consequence
is that the computed search direction behaves more smoothly.
• It captures more information on the frequency responses

� �→ �
(
Twi→zi (K, j�)

)
on their associated intervals Ii .

This leads to better step lengths.

5.4. Combined algorithm

We assemble the elements of the previous sections into an
algorithm. Here a difference between models (7) and (9) occurs.
In (7)b we have to drive � to the specific value b(�) = �−1,
where � > 0 is our prior threshold for the distance to instability
(homotopy method). In model (9)�, we fix threshold � < 0 for
the poles � in closed loop, that is R��� < 0, but drive � to 0
(barrier method). In both cases we start with a moderate size
� to solve (7)�, respectively, (9)�,�. Then we update � to �+
and use the solution K�,� as initial for the next subproblem.
Different strategies to steer the parameter � are discussed in
the experimental section. We also discuss to what precision the
early subproblems need to be solved, and how a successive
refinement should be organized.
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6. Numerical experiments

We consider the double integrator G(s)=s−2, one of the most
fundamental plants in control. Multiband design specifications
are borrowed from George (2004) and involve sensitivity S :=
(I + GK)−1 and complementary sensitivity T := GK(I +
GK)−1. Multiband constraints are

• disturbance rejection and tracking

|S(j�)|�0.85 for � ∈ I1 := [0, 0.5], rad/s,

• gain-phase margins

|S(j�)|�1.30 for � ∈ I2 := [0.5, 2], rad/s,

• bandwidth

|T (j�)|�0.707 for � ∈ I3 := [2, 4], rad/s,

• roll-off

|w(j�) T (j�)|�1.0 for � ∈ I4 := [4, ∞], rad/s,

where w(s) is the weighing function

w(s) := 0.2634s2 + 1.659s + 5.333

0.0001s2 + 0.014s + 1
.

This problem is cast as a multiband H∞ synthesis problem in
form (5):

min{f (K) : K stabilizes G(s)},
with the definition

f (K) := max{ 1
0.85‖S‖I1 ,

1
1.30‖S‖I2 ,

1
0.707‖T ‖I3 , ‖w(s)T ‖I4}.

As explained in Section 2, the stability constraint could be
represented either as distance to instability constraint, using the
homotopy function:

minimize f�(K) := max{f (K), �‖Tstab(K)‖∞}
(model I) where � is the homotopy parameter, and where
Tstab(K, s)= (sI − (A+BKC))−1 is the stabilizing channel
for the plant, or as a barrier approach (model II), where

minimize f�,�(K) := max{f (K), �‖Tstab(K)‖∞,�}
for a threshold � < 0, restricting poles � of the closed-loop
system to R��� < 0, and for the barrier parameter � > 0. In
particular, it will be interesting to see the relationship between
� and −�.

6.1. Model I: numerical difficulties with a single solve

To emphasize numerical difficulties with small homotopy pa-
rameters we report experiments for various values of �, assum-
ing that the corresponding �-values are known. All experiments
are started from the same stabilizing K of order k = 1.

Table 1
Numerical difficulties when solving directly for ��

� � Multiband performance Iter

0.68 10 0.09 0.42 1.43 1.44 26
0.35 1 0.17 1.06 1.07 2.84 32a

0.07 0.01 1.44 1.17 0.25 1.44 > 200
1.3e− 4 1e− 3 0.20 0.51 1.13 7.57 5a

aFailure to achieve descent.

Table 2
Designs with algorithm models I and II

(�,�) Multiband performance

Init (−0.76, 0.26) 0.091 0.28 2.41 42.37
Mod. I (−6.322e− 5, 0.84 0.84 0.31 0.84

1e− 5)

Mod. II (−1.02e− 5, 0.84 0.84 0.31 0.84
7.32e− 8)

In model I the value �=10−5 is fixed, in model II the value R�=−�=10−5

is imposed.

The experiment confirms that it is not a good idea to solve
program (7) directly for the “correct” value �� giving b(��)=
�−1 = b, because numerical difficulties arise.

Column 2 in Table 1 gives those values � = �� needed to
achieve the distance to instability � in column 1. Column 3
gives the achieved multiband performances. Column 4 gives
the number of inner iterations to reach convergence. Underlined
values give the final (max) multiband performance showing that
adequate performance was not achieved. The conclusion of this
first experiment is that a homotopy search in the parameter � is
required. Steering � directly or too quickly to the correct value
�� causes failure.

6.2. Design with algorithms I and II

The above difficulties can be avoided by decreasing � gradu-
ally. In Table 2 we used the update �← �/3. Our stopping test
for the subproblems uses the criticality measure �e,�(K)�0
in (17) and is defined as �e,�(K) > − �s with the updating
rule �s ← max(1e − 4, �s/2) and the initialization �s = 10. In
this form, we require less computations in the early iterations,
while accuracy is gradually increased as we get closer to a local
solution.

Design with algorithm I: According to Section 3, we have set
b to a large value, b = 105, which corresponds to the distance
to instability � = 10−5. The parameter � is decreased as long
as ‖(sI − (A+BKC))−1‖∞< b. Results are given in Table 2.

Design with algorithm II: Here the strategy is different as
we require a minimum stability degree using the shifted H∞
norm in Section 4. Based on the idea −� ≈ �, we set � =
−1e − 5. The barrier parameter � is driven to zero with the
same updating rule as long as � > 1e − 8. Both algorithms I
and II are initialized with the same stabilizing controller, see
Table 2. “(�, �)” gives initial and final closed-loop spectral
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abscissa and distance to instability. The last column shows the
achieved multiband performances. “�” gives the final values of
the homotopy, respectively, barrier parameter, “iter” the total
number of inner iterations to meet our termination criterion.
Controllers obtained with algorithms I and II both meet all
design requirements since all band restricted performances are
below unity. This represents 20% improvements over the results
in George (2004). It is also instructive to see both techniques
terminate at a nonsmooth local minimum where three among
the four band restricted performances coincide.

7. Conclusion

Multiband H∞ synthesis is a practically important problem
for which convincing approaches are lacking. We have pre-
sented a new approach to this difficult problem using methods
from nonsmooth optimization.
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