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SUMMARY

This work deals with computing the worst-case stability and the worst-case H∞ performance of Linear
Time-Invariant systems subject to mixed real parametric and complex dynamic uncertainties in a compact
parameter set. Our novel algorithmic approach is tailored to the properties of the non-smooth worst-case
functions associated with stability and performance, and this leads to a fast and reliable optimization
method, which finds good lower bounds of µ. We justify our approach theoretically by proving a local
convergence certificate. Since computing µ is known to be NP-hard, our technique should be used in tandem
with a classical µ upper bound to assess global optimality. Extensive testing indicates that the technique is
practically attractive. Copyright © 2016 John Wiley & Sons, Ltd.
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1. PROBLEM SPECIFICATION

Consider an LFT and LTI plant with real parametric or dynamic complex uncertainties Fu(P,∆) as

in Figure 1, where

P (s) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ = Ax + Bδwδ + B2w

zδ = Cδx + Dδδwδ + Dδww

z = Czx + Dzδwδ + Dzww

(1)

and x ∈ Rn is the state, w ∈ Rm1 a vector of exogenous inputs, and z ∈ Rp1 a vector of regulated

outputs. The uncertainty channel is defined as

wδ = ∆zδ, (2)

where the uncertain matrix ∆ has the block-diagonal form

∆ = diag [∆1, . . . ,∆m] ∈ Cr×c (3)

with blocks ∆i in one of the following categories:

• ∆i ∶= δiIri , δi ∈ R for real parametric uncertainties,

• ∆i ∈ C
pi×qi for complex dynamic uncertainties.
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2 P. APKARIAN & D. NOLL

Without loss we assume that ∆ evolves in the 2-norm unit ball ∆ = {∆ ∶ σ(∆) ≤ 1}. This means

δi = [−1, 1] for real parameters, and σ(∆i) ≤ 1 for complex blocks.

Assessing robust stability of the uncertain system (1)-(2) over ∆ can be based on maximizing the

spectral abscissa of the system A-matrix over ∆, that is,

α∗ =max{α(A(∆)) ∶ ∆ ∈∆}, (4)

where

A(∆) = A +Bδ∆(I −Dδδ∆)−1Cδ, (5)

and where the spectral abscissa of a square matrix A is defined as α(A) =max{Reλ ∶
λ eigenvalue of A}. Since A is stable if and only if α(A) < 0, robust stability of (1)-(2) over ∆

is certified as soon as α∗ < 0, while a destabilizing ∆∗ ∈∆ is found as soon as α∗ ≥ 0.

Our second problem is similar in nature, as it allows to verify whether the uncertain system (1)-(2)

satisfies a robust H∞ performance over ∆. This can be tested by computing the worst-case scenario:

h∗ = max{∥Twz(∆)∥∞ ∶ ∆ ∈∆}, (6)

where ∥ ⋅ ∥∞ is the H∞-norm, and where Twz(∆, s) is the transfer function z(s) =
Fu(P (s),∆)w(s), obtained by closing the loop between (1) and (2) in Figure 1.

Note, however, that a decision in favor of robust stability over ∆ based on α∗ < 0 in (4), or a

decision in favor of robust performance ∥Twz(∆)∥∞ ≤ h∗ in (6), is only valid when global maxima

over ∆ are computed. Unfortunately, global optimization of (4) and (6) is known to be NP-hard

[1, 2], and it is therefore of interest to develop fast and reliable local solvers to compute lower bounds

of α∗ and h∗. Computing upper and lower bounds is useful in its own right. Upper bounds give

conservative estimates of the size of allowable uncertainties, while lower bounds indicate critical

uncertain scenarios, where the system looses stability or performance. Note that when these bounds

are close then little information has been lost in analyzing the system robustness.

Systems featuring only real uncertain parameters have been frequently studied in the literature. In

contrast, the case of mixed real and complex uncertainties (3) is less explored. This is in large parts

due to the non-smooth character of the underlying optimization problems (4) and (6). In particular,

as soon as one of the complex constraints σ(∆i) ≤ 1 is active at the optimum, the maximum singular

value σ(∆i) generally has multiplicity greater than one, which creates an annoying non-smoothness.

Standard NLP solvers designed for smooth optimization problems will then encounter numerical

difficulties, which lead to deadlock or convergence to non-optimal points. For instance, Halton et

al. [3] report this type of phenomenon and observe that convergence fails in the vast majority of

cases.

Pioneering approaches to computation of mixed-µ lower bounds are the power iteration algorithm

(PIA) of [4, 5], and the gain-based algorithm (GBA) of [6]. As reported in [7], PIA is highly efficient

for purely complex problems, but experiences typical difficulties for mixed uncertainties. In [8] the

authors demonstrate that GBA can be considered a valid workaround in these cases, provided it

is used in tandem with a suitable regularization technique. Yet another attractive alternative for

parametric robust stability (3) is the pole migration technique (PMT) of [9]. PMT is based on a

continuation method, which traces pole trajectories as functions of the uncertainty. The difficulty

in PMT is pole coalescence, which may be rather intricate to handle. Among a plethora of papers

dedicated to computing the worst-case H∞-norm we also mention [10], which proposes a coordinate

ascent technique with line search driven by Hamiltonian bisection. The authors observe that the

approach is computationally demanding in the case of mixed uncertainties.

Using non-smooth optimization to compute lower bounds is not entirely new. A first attempt

was made in [11], where the authors compute worst-case uncertainties via non-smooth optimization

to achieve singularity in the loop transfer. Their approach is often exceedingly slow and prone

to complications or failure, as the determinant is not a reliable indicator of singularity. Finally, a

combined Hamiltonian and gradient-based approach is proposed in [12].

In this work we present a novel approach to worst-case stability and H∞ performance, which has

the following two key elements:

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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ROBUSTNESS WITH MIXED PARAMETRIC AND DYNAMIC UNCERTAINTIES 3

i. A non-smooth ascent algorithm tailored to objective functions like those in (4) and (6). We

prove that iterates converge to a locally optimal solution from an arbitrary starting point.

ii. Experimental testing. We demonstrate the efficiency of our algorithm for mixed uncertainties,

and indicate that sole complex or real uncertainties no longer require special handling.

We also emphasize that programs (4) and (6) are particularly useful in an inner relaxation technique

to solve robust control design problems [13]. Both programs can be understood as oracles for

generating bad scenarios, which are successively taken into account in the controller design task

to improve robustness.

Figure 1. Robust system interconnection

2. APPROACH

Programs (4) and (6) are NP-hard when solved to global optimality, and it is therefore of avail

to develop fast and reliable local optimal solvers to compute good lower bounds. Those may be

used within a global optimization strategy to obtain global certificates. Even though the use of local

optimization techniques generally alleviates the difficulty, a new complication arises in the present

context due to the non-smooth character of both optimization programs. This concerns not only

the objectives of (4) and (6), but also the semi-definite constraints σ(∆j) ≤ 1, a fact which further

complicates matters.

Algorithmic ways to address the local minimization of the spectral abscissa α and the H∞-norm

∥Twz∥∞ have been studied in the literature at least since [14, 15] and [16]. However, here we are

facing the relatively new problem of maximizing these criteria, or in the more standard terminology

of local optimization, of minimizing −α, and the negative H∞-norm −∥Twz∥∞. Not unexpectedly,

this leads to completely different challenges. A first analysis of this type of problem was presented

in [13], and in that reference a tailored bundle method was proposed. Here we shall investigate

a trust-region algorithm, which has the advantage that step-sizes can be controlled more tightly,

and that a suitable polyhedral norm, better adapted to the structure of the problem, can be used. In

contrast, the traditional bundle approach is somewhat fused on the Euclidean norm.

As in [13], bundling is required in response to the non-smoothness of the criteria, but for

this to take effect, we first have to deal with the non-smooth constraints σ(∆j) ≤ 1. We propose

to reduce them to simpler box-constraints by a change of variables. Even though this turns out

arduous technically, it is ultimately beneficial as it avoids the use of penalization techniques such

as augmenting constraints [17, 18], exact penalization [19], or the progress function techniques of

[20], [21, Chapter 2], as those approaches often exhibit slow convergence.

In the sequel, we first deal with the semi-definite constraints ∆ ∈∆. Our new trust-region

algorithm is presented in section 4. Convergence aspects of the algorithm are covered in Section 5.

Suitable stopping criteria and subgradient computation for worst-case functions −α and −∥Twz∥∞
are addressed in section 6. The numerical assessment with comparisons is developed in section 7.
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4 P. APKARIAN & D. NOLL

3. SEMIDEFINITE CONSTRAINTS

In this section we discuss the semidefinite constraints σ(∆i) ≤ 1 arising from the complex blocks

in (4) and (6). We show how those can be reduced to more convenient box constraints by way of

a change of variables. This is made possible by the following key result [22, 5], which we slightly

extend to our context.

Lemma 1. Consider an uncertainty structure ∆ = diag [∆1, . . . ,∆m] ∈ Cr×c with real and complex

blocks as in (3). Suppose ∆∗ solves program (4) globally. Then there exist a matrix ∆# ∈ Cr×c such

that σ(∆#) ≤ σ(∆∗) ≤ 1, with the same structure (3), but with rank one complex blocks, and which

also solves (4) globally.

Proof

If ∆∗ solves program (4) globally, then we have α(A(∆∗) − α∗I) = 0, where α∗ is the value of

(4). Therefore the A-matrix A(∆∗) − α∗I is unstable at ∆∗ ∈∆. From the definition of µ in [5],

this is equivalent to the existence of a frequency ω0 such that det(I −M(jω0)∆∗) = 0, where

we define M(s) ∶= Cq(sI − (A − α∗I))−1Bp +Dpq. Alternatively, the singularity condition can be

expressed as the existence of a vector x /= 0 with M(jω0)∆∗x = x. Now partition x conformable to

the structure of ∆, that is,

x = [ xT
1 , x

T
2 , . . . , x

T
m ]T .

Then construct ∆# as follows. Let the real blocks of ∆# be those of ∆∗, and replace the complex

blocks of ∆∗ by the dyads:

∆
#
i ∶=
⎧⎪⎪⎨⎪⎪⎩

yi
x
H
i

∥xi∥
with yi ∶=

∆
∗

i xi

∥xi∥
, if xi ≠ 0

0 if xi = 0 .
(7)

It is readily verified that ∆∗x =∆#x, and that σ(∆#) ≤ σ(∆∗) ≤ 1. We thus have found a ∆# of

appropriate structure, with rank one complex blocks, and such that det(I −M(jω0)∆#) = 0. We

infer that A(∆#) − α∗I is unstable, so α(A(∆#)) ≥ α∗. Since α∗ is the global maximum of (4), we

have α(A(∆#)) = α∗, and so ∆# also solves program (4) globally. Note that when ∆∗ corresponds

to ill-posedness of (5), then ω0 becomes infinite.

Remark 1. A similar result holds for worst-case performance, since (6) can be regarded as an

augmented stability problem. This follows essentially from The Main Loop Theorem in [23]. Note

that in the local versions of (4) and (6) optimization may of course also be restricted to rank one

blocks, even though this might eliminate some local maxima.

For ease of notation we define the set S∆ of ∆’s where complex blocks have dyadic structure,

that is,

• ∆j ∶= δjIrj , δi ∈ [−1, 1] for real uncertain parameters,

• ∆j ∶= yjx
H
j ∈ C

pj×qj with ∥yj∥ ≤ 1, ∥xj∥ ≤ 1 for complex dynamic uncertainties.

Programs (4) and (6) can then, without changing values, be recast as

α∗ = max
∆∈S∆

α(A(∆)), h∗ = max
∆∈S∆

∥Twz(∆)∥∞ . (8)

So far we have replaced the non-smooth constraints σ(∆j) ≤ 1 by vector complex ball constraints

∥yj∥ ≤ 1 and ∥xj∥ ≤ 1. In a second step we shall now use polar coordinates to represent yj and xj .

We first re-parameterize as follows:

∆j = ρj (vj ○ eiθv
j )(uj ○ e

iθ
u
j )H , i ∶=

√
−1 , (9)

where ○ denotes the Hadamard element-by-element matrix product, and

eiθ
v
j ∶=

⎡⎢⎢⎢⎢⎢⎣

eiθ
v
j,1

⋮

e
iθ

v
j,pj

⎤⎥⎥⎥⎥⎥⎦
, eiθ

u
j ∶=

⎡⎢⎢⎢⎢⎢⎣

eiθ
u
j,1

⋮

e
iθ

u
j,qj

⎤⎥⎥⎥⎥⎥⎦
,
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ROBUSTNESS WITH MIXED PARAMETRIC AND DYNAMIC UNCERTAINTIES 5

with

ρj ∈ [0, 1] , θvj ∈ [0, 2π]pj , θuj ∈ [0, 2π]qj (10)

and ∥vj∥ = 1 and ∥uj∥ = 1. The constraints on vj and uj are now simplified to box constraints using

spherical coordinates:

vj ∶= vj(φv) ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(φv
j,1)

sin(φv
j,1) cos(φv

j,2)
⋮

sin(φv
j,1) . . . sin(φv

j,pj−2
) cos(φv

j,pj−1
)

sin(φv
j,1) . . . sin(φv

j,pj−2
) sin(φv

j,pj−1
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and similarly for uj ∶= uj(φu
j ). The constraints are now

φv
j ∈ [0, π]pj−2 × [0, 2π] , φu

j ∈ [0, π]qj−2 × [0, 2π] . (11)

To summarize, we have represented the semidefinite constraint σ(∆j) ≤ 1 by box-constraints (10)

and (11) using the non-linear change of variables

∆j = ρj (vj(φv
j ) ○ eiθv

j )(uj(φu
j ) ○ eiθu

j )H .

During the following, we shall denote the independent variables as x. That means xj = δj for a

real uncertain block ∆j , and xj = (ρj , φv
j , θ

v
j , φ

u
j , θ

u
j ) for a complex block ∆j . We write the box-

constraints as x ∈ B, where xj = δj ∈ [−1, 1] for real blocks, and where xj satisfies (10) and (11)

for a complex block. Altogether we have turned programs (4) and (6) into the non-smooth box-

constrained optimization programs

α∗ = max
x∈B

α(A(∆(x))), h∗ =max
x∈B
∥Twz(∆(x))∥∞ , (12)

where ∆(x) represents the change of variables above, and where the non-smoothness is now solely

due to the non-smoothness of the functions −α and −∥ ⋅ ∥∞. This latter aspect will be systematically

addressed in the following sections.

4. TRUST REGION ALGORITHM

In order to solve the robust analysis problem we employ a novel trust-region algorithm suited among

others for the nonsmooth criteria arising in the applications (6) and (4). For the sake of generality

we consider an abstract optimization problem of the form

minimize f(x)
subject to x ∈ B

(13)

where f is potentially non-smooth and non-convex, and where B ⊂ Rn is a simply structured

closed convex set. The applications we have in mind include f(x) = −∥Twz(∆(x))∥∞ and f(x) =
−α(A(∆(x))) from programs (6) and (4), where x ∈ B represents the box constraints derived in

section 3. As we shall see, in these applications it is justified to further assume that the objective

f is locally Lipschitz and strictly differentiable at the points z of a dense full measure subset of

B. This property allows us to state the following trust-region algorithm (see algorithm 1), which

resembles its classical alter ego in smooth optimization. Convergence, as we shall see, requires

stronger hypotheses, which we shall discuss in section 5.

Motivated by the classical trust-region approach, we define the trust-region tangent program

Tg(xj , Rk) for (13) at the current iterate xj and with the current trust-region radius Rk as follows:

minimize f(xj) +∇f(xj)T (y − xj)
subject to y ∈ B, ∥y − xj∥ ≤ Rk

(14)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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6 P. APKARIAN & D. NOLL

Algorithm 1. First-order trust-region method for (13)

Parameters: 0 < γ < Γ < 1, 0 < θ < 1, M > 1.

▷ Step 1 (Initialize). Put outer loop counter j = 1, choose initial guess x1 ∈ B such that f

is strictly differentiable at x1, and initialize memory trust-region radius as R♯1 > 0.

◇ Step 2 (Stopping). If xj is a Karush-Kuhn-Tucker point of (13) then exit, otherwise go to

inner loop.

▷ Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize trust-

region radius as R1 = R
♯
j .

▷ Step 4 (Cauchy point). At inner loop counter k and trust region radius Rk > 0 compute

the solution yk of the tangent program Tg(xj , Rk) in (14).

▷ Step 5 (Trial step). Find trial point zk ∈ B of strict differentiability of f such that

∥xj − zk∥ ≤M∥xj − yk∥ and

∇f(xj)T (xj − zk) ≥ θ∇f(xj)T (xj − yk).
▷ Step 6 (Acceptance). If

ρk =
f(xj) − f(zj)
∇f(xj)T (xj − zk) ≥ γ,

then accept zk as the next serious iterate xj+1 = zk, quit inner loop and goto step 7. Otherwise

reduce trust-region radius Rk+1 =
1

2
Rk, increment inner loop counter k, and continue inner

loop with step 4.

◇ Step 7 (Update trust-region). If ρk ≥ Γ upon acceptance of zk then define memory

trust-region as R♯j+1 = 2Rk. Otherwise R♯j+1 = Rk. Increment outer loop counter j and loop on

with step 2.

Any optimal solution of (14) in step 4 of the algorithm will be denoted yk and will serve as a

reference point to generate trial-step. In classical trust-region methods yk is sometimes called the

Cauchy step.

We observe that in contrast with the classical situation our objective f is nonsmooth, so that

its gradient ∇f exists only on a dense set. However, we have to assure that ∇f(xj) exists at the

serious iterates xj of our method. Fortunately, under the assumption that f is almost everywhere

strictly differentiable on B, it is possible to arrange that the serious iterates xj ∈ B generated by the

algorithm are points of strict differentiability of f , so that the tangent program (14) is well-defined.

Since yk ∈ B is typically not a point of differentiability of f , let alone of strict differentiability,

we have to enlarge the set of possible trial points as follows. Fixing M > 1 and 0 < θ < 1, we accept

a point of strict differentiablility zk ∈ B of f as a trial step if

∥zk − xj∥ ≤M∥yk − xj∥, (15)

and if in addition the estimate

∇f(xj)T (xj − zk) ≥ θ∇f(xj)T (xj − yk) (16)

is satisfied. Note that there exists a full neighborhood of yk on which (15) and (16) are satisfied.

Hence under the hypothesis that f is almost everywhere strictly differentiable on B, it is always

possible to find a point of strict differentiability zk ∈ B arbitrarily close to yk , where in consequence

the properties (15) and (16) are satisfied.

The meaning of estimate (16) is that the model predicted progress at zk is at least the θ-fraction of

the model predicted progress at yk. Here y ↦ f(xj) +∇f(xj)T (y − xj) serves as local first-order

model of f in the neighborhood of xj , the latter being a point of strict differentiability of f .

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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ROBUSTNESS WITH MIXED PARAMETRIC AND DYNAMIC UNCERTAINTIES 7

Remark 2. Typical parameter values in algorithm 1 are γ = 0.05, Γ = 0.9, θ = 0.01, M = 2. Instead

of R+ = 1

2
R one may use R+ = 1

4
R and instead of R+ = 2R other rules like R+ = 2.5R.

Let us continue to explain the elements of Algorithm 1. Observe that acceptance in step 6 is based

on the usual Armijo test [21]. The tangent program in step 4 reduces to an LP if a polyhedral norm is

used. In the applications (4) and (6), B is a box aligned with the coordinate axes, so that the natural

choice of vector norm is ∥ ⋅ ∥∞, and in that case the solution yk of the tangent program can even be

computed explicitly, which makes our algorithm extremely fast.

Remark 3. By Rademacher’s theorem every locally Lipschitz function is almost everywhere

differentiable, but algorithm 1 requires dense strict differentiability on the set B. While there exist

pathological examples of locally Lipschitz functions which are nowhere strictly differentiable, see

e.g. the lightning function of [24], all functions of practical interest have this property. Sufficient

conditions for almost everywhere or dense strict differentiability are for instance semi-smoothness

in the sense of [25], or essential smoothness as discussed in [26]. In particular, the functions −α and

−∥Twz∥∞ in which we are interested here have this property.

5. CONVERGENCE

In this section we discuss the convergence aspects of algorithm 1. As was already stressed, obtaining

local optimality or criticality certificates is the best we can hope to achieve with reasonable effort

for problems which are known to be NP-hard if solved to global optimality. From a practical point

of view, our approach is satisfactory since we find the global optima in the vast majority of cases.

During the following our motivation is to present an algorithmic approach, which is as close as

possible to the classical trust-region method used in smooth optimization. In doing this we a wary of

the fact that in general it is not possible to apply smooth algorithms to nonsmooth criteria without

putting convergence at stake. For instance, [32] shows that the steepest descent method may fail

for a convex nonsmooth function when combined with linesearch as globalization technique, [27]

shows that the same happens when trust-regions are used. Being able to use trust-regions therefore

hinges on the specific structure of programs (4) and (6), where the objectives have nonsmoothness

which resembles that of a concave function. As we shall see, this is type of nonsmoothness nicely

captured by the class of so-called upper-C1 functions, which we discuss in subsection 5.1.

5.1. Convergence for upper-C1 functions

Algorithm 1 can be regarded as a special case of a more general bundle trust-region algorithm

analyzed in [27, 28], where the locally Lipschitz function f is approximated by its so-called standard

model

φ♯(y,x) = f(x) + f○(x,y − x) = f(x) + max
g∈∂f(x)

gT (y − x),
a natural extension of the first-order Taylor expansion of nonsmooth functions f . If f is strictly

differentiable at x, then the standard model φ♯ coincides indeed with the first-order Taylor

polynomial, because in that case the Clarke subdifferential reduces to ∂f(x) = {∇f(x)}. We may

now see algorithm 1 as a simpler instance of the main algorithm of [27], where the standard model

is used, where the working models φ♯k coincide with φ♯, and where in addition trial points zk are

chosen as points of strict differentiability of f . Convergence of the algorithm now hinges on the

following

Definition 1. The standard model φ♯ of f is said to be strict at x0 if for every ǫ > 0 there exists δ > 0
such that f(y) ≤ φ♯(y,x) + ǫ∥y − x∥ for all x,y ∈ B(x0, δ), the ball with center x0 and radius δ. ∎

Example 1. The function f(x) = x2 sinx−1 with f(0) = 0 on the real line is a pathological example,

which is differentiable, but not strictly differentiable at x = 0. In consequence, its standard model φ♯

is not strict at 0.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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8 P. APKARIAN & D. NOLL

We can further explain strictness of the standard model in the case where f is strictly differentiable

on a full measure subset. In that case no reference to the standard model φ♯ is needed.

Lemma 2. Suppose f is almost everywhere strictly differentiable. Then strictness of its standard

model at x0 is equivalent to the following condition: For every ǫ > 0 there exists δ > 0 such that for

all x,y ∈ B(x0, δ), with x a point of strict differentiability of f , we have

f(y) − f(x) − ∇f(x)T (y − x) ≤ ǫ∥y − x∥. (17)

Proof

We observe that φ♯(y,x) = f(x) +∇f(x)T (y − x) as soon as x is a point of strict differentiability

of f . Therefore the condition in Definition 1 implies f(y) − f(x) ≤ ∇f(x)T (y − x) + ǫ∥y − x∥ for

all x ∈ B(x0, δ) ∩ Sf and y ∈ B(x0, δ), where Sf is the set of points of strict differentiablity of f .

Conversely, we know from [29, Thm. 2.5.1] that the Clarke directional derivative may be written

as f○(x,y) = lim sup{∇f(x′)Ty,x′ → x,x′ ∈ Sf}, because Sf has by assumption a complement

of measure zero. Now for any x′ ∈ B(x0, δ) ∩ Sf and y ∈ B(x0, δ) we have f(y) − f(x′) ≤
∇f(x′)T (y − x′) + ǫ∥y − x′∥, hence by taking the limit superior x′ → x, we obtain f(y) − f(x) ≤
f○(x,y) + ǫ∥y − x∥. Here we use local boundedness [29] of the Clarke subdifferential, which

implies boundedness of ∇f(x′) as x′ → x.

Definition 2 (Spingarn [30]). A locally Lipschitz function f ∶ Rn → R is lower-C1 at x0 ∈ R
n if

there exist a compact space K, a neighborhood U of x0, and a function F ∶ Rn ×K → R such that

f(x) = max
y∈K

F (x,y) (18)

for all x ∈ U , and F and ∂F /∂x are jointly continuous. The function f is said to be upper-C1 if −f

is lower-C1. ∎

Lemma 3. Suppose the locally Lipschitz function f is upper-C1, then it is almost everywhere strictly

differentiable.

Proof

This follows with Borwein and Moors [26] if we observe that an upper-C1 function is semi-

smooth.

This shows that our algorithm is applicable to upper-C1 functions. In fact, since B ∖ Sf is of

measure zero, an arbitrarily small random perturbation of the solution yk of the tangent program will

with probability 1 provide a trial point zk ∈ B ∩ Sf satisfying (15) and (16). The crucial observation

is now that upper-C1 functions behave favorably in a minimization method, as for this class iterates

xj are moving away from the non-smoothness. It is therefore of interest to note the following

Lemma 4. Consider the stability set D = {x ∶ Tzw(∆(x)) is internally stable}. Then x ↦
∥Tzw(∆(x))∥∞ is locally Lipschitz and lower-C1 on D, so that f ∶ x ↦ −∥Tzw(∆(x))∥∞ is upper-

C1 on D. ∎

For the proof we refer to [13]. For the spectral abscissa the situation is more complicated, as α

may in general even fail to be locally Lipschitz [15]. The following was proved in [13].

Lemma 5. Suppose all active eigenvalues at x0 are semi-simple, then f(x) = −α(A(∆(x))) is

locally Lipschitz in a neighborhood of x0. If in addition all active eigenvalues are simple, then f is

upper-C1 at x0. ∎

The interest in the upper-C1 property is due to the following fact, a proof of which can be found

e.g. in [31, 32, 33].

Proposition 1. Suppose f is locally Lipschitz and upper-C1 in a neighborhood of x. Then its

standard model φ♯ is strict at x. ∎

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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The consequence is the following

Theorem 1. The sequence xj ∈ B ∩ Sf of iterates generated by algorithm 1 for program (6)

converges to a unique KKT-point.

Proof

As a consequence of Lemma 4 and the main theorem in [27] every accumulation point x∗ of

the sequence xj is a KKT-point. Convergence to a single critical point x∗ then follows from the

Łojasiewicz property of f(x) = −∥Twz(∆(x))∥∞, which was established in [27, Theorem 1], and

which hinges on the analytical dependence of Twz on x.

While this represents an ironclad convergence certificate for program (6), the situation for the

spectral abscissa (4) is more complicated. We have the following weaker result.

Theorem 2. Let xj ∈ B ∩ Sf be the sequence of iterates generated by algorithm 1 for the

minimization of f(x) = −α(A(∆(x))) over B. Suppose that for at least one accumulation point

x∗ of the xj all active eigenvalues of A(∆(x∗)) are simple. Then the sequence converges in fact to

this accumulation point, which in addition is then a KKT-point.

Proof

By hypothesis there exists at least one accumulation point x∗ of the xj in which every active

eigenvalue is simple. By Lemma 5, f is locally Lipschitz and upper-C1 at x∗, and now application

of the result of [27] shows that x∗ is a critical point of (4). A priori the method of proof of [27] does

not imply criticality of the remaining accumulation points x̃ of the sequence xj , but in a second

stage we now argue that f has the Łojasiewicz property [27], and that gives convergence of the xj

to a single point, which must be x∗, and which is therefore a KKT-point.

5.2. Approximate standard model

The convergence result for (4) is not as satisfactory as the result obtained for (6) for two reasons.

Firstly, as observed in [15] already, α is not even guaranteed to be locally Lipschitz everywhere.

Typical examples where this fails are when a derogatory eigenvalue is active. Secondly, local

Lipschitz behavior of f(x) = −α(A(∆(x))) is guaranteed when all active eigenvalues at x are

semi-simple, but the upper-C1 property needs the stronger hypotheses of Proposition 4, and one

would at least hope for a convergence result in the case where all active eigenvalues are semi-simple.

All this is in strong contrast with what is observed in practice, where f = −α behaves consistently

like an upper-C1 function. In order to explain this somewhat better by theoretical results, we shall in

the following outline an approximate convergence result, which works under a weaker assumption

than in Theorem 2

We say that f is ǫ-concave at x0 if there exists a neighborhood B(x0, δ) of x0 such that

f(y) ≤ f(x) + f○(x,y − x) + ǫ∥y − x∥
for all x,y ∈ B(x0, δ). Note that ǫ-concavity for every ǫ > 0 is the same as the upper-C1 property,

but here we fix ǫ, so that a much weaker condition is obtained. Now we have the following

Theorem 3. Suppose at least one of the accumulation points x∗ of the sequence xj of iterates

generated by algorithm 1 is an ǫ-concave point for f . Then the entire sequence xj converges in

fact to x∗, and x∗ is approximately optimal in the sense that min{∥g∥ ∶ g ∈ ∂f(x∗) +NB(x∗)} ≤ ǫ′,
where NB(x∗) is the normal cone to B at x∗ ∈ B. Here ǫ′ depends in the following way on ǫ: There

exists a constant σ > 0, which depends only on the trust-region norm ∥ ⋅ ∥, such that

ǫ′ =
Mǫ

σθ(1 − γ) , (19)

where θ,M, γ are the parameters used in algorithm 1. In particular, if ∥ ⋅ ∥ = ∣ ⋅ ∣ is the Euclidean

norm, then σ = 1.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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10 P. APKARIAN & D. NOLL

Proof

We follow the proof of [27, Theorem 1], but specialize the model φ to the standard model

φ♯(⋅,x) = f(x) + f○(x, ⋅ − x). Using the fact that f is almost everywhere strictly differentiable, we

iterate on trial points zk of strict differentiablity of f , which means that all serious iterates xj are

also points of strict differentiability of f . This reduces the algorithm in [27] to our present algorithm

1, where the test quotient ρ̃k required in [27] becomes redundant because it automatically equals 1.

The difference with [27] is that ǫk in Lemma 3 and ǫj in part 5) of the proof of Theorem 1 of [27]

are now held fixed as ǫk = ǫ and ǫj = ǫ. Since ρ̃k = 1 and ρ̃kj−νj = 1, while ρk < γ, one concludes for

the η arising in that proof that η = ∥∇f(xj)∥ ≤ ǫ/(σθM−1(1 − γ)) in Lemma 3, and similarly in the

proof of Theorem 1 of [27]. Here θ,M, γ are the constants used in algorithm 1, while σ is found in

[27, Lemma 1] and depends only on the trust-region norm. Note that convergence to a single limit

point x∗ follows again from the Łojasiewicz property of f = −α, for which we refer to [13].

Remark 4. The result is even quantitative and should be understood in the following sense. Suppose

the user applies algorithm 1 to (4) under the weaker hypothesis of ǫ-concavity of f = −α, where the

ǫ > 0 remains unknown to the user. Since ǫ cannot be made arbitrarily small, a systematic error

remains, but by way of formula (19), users will know in the end that they converged to an ǫ′-optimal

solution x∗, where ǫ′ is of the same order as the inevitable error ǫ. Indeed, for the euclidean norm

σ = 1, so we can arrange ǫ′ ≈ Θǫ, where Θ > 1, but Θ ≈ 1. It suffices to choose M = 1, 0≪ θ < 1,

0 < γ ≪ 1. This further corroborates our approach chosen in algorithm 1 for (4).

6. STOPPING CRITERIA AND COMPUTING SUBGRADIENTS

6.1. Stopping criteria

Stopping the algorithm based on a rigorous convergence result can be organized as follows. If the

trust-region management finds a new serious iterate xj+1 such that

∥xj+1 − xj∥
1 + ∥xj∥ < tol1,

∥PB(−∇f(xj+1))∥
1 + ∣f(xj+1)∣ < tol2,

where PB is the orthogonal projection on B, then we decide that xj+1 is optimal. On the other hand,

if the inner loop has difficulties finding a new serious iterate and if 5 consecutive trial steps zk with

∥zk − xj∥
1 + ∥xj∥ < tol1,

∥PB(−∇f(xj))∥
1 + ∣f(xj)∣ < tol2

occur, then we decide that xj was already optimal.

6.2. Computing subgradients

Computing subgradients is a key element in our approach, since the use of automatic differentiation

is not suited due nonsmoothness, and since the criteria are computed iteratively. Subgradients also

provide important information on the problem structure, and they underscore potential difficulties

such as semi-infiniteness, non-smoothness, etc. Subgradient information is also a central ingredient

of the solver, as our technique is of trust-region type and will solve a tangent problem built from

subdifferential information at every iteration. Since subgradients are used repeatedly in the solver,

it is essential to establish efficient formulas. Finally, the subgradient set or Clarke’s subdifferential

is the only means to certify the computed value is a locally optimal solution, based on the criteria

of section 6.1.

Subgradients of α(A(∆(x))) and ∥Twz(∆(x))∥∞ with respect to x in (12) are now derived

using chain rules [29, 13, 16], while subgradients of −α and −∥Twz∥∞ are readily derived using the

general rule ∂(−f)(x) = −∂f(x), see [29].

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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By virtue of the block-diagonal structure of ∆, it is enough to consider each block separately. The

whole subgradient is then obtained by piecing the blockwise subgradients together. As subgradients

with respect to real parametric blocks xj = δj have already been described in [13], we focus on

complex blocks. For simplicity we suppress the block index j during the following, so that ∆(x)
becomes a mapping ∆(ρ, φv, θv, φu, θu) from [0, 1] × [0, π]p−2 × [0, 2π] × [0, 2π]p × [0, π]q−2 ×
[0, 2π] × [0, 2π]q to C

p×q . From the expression (9), derivatives of ∆ with respect to ρ, v, θv , u and

θu are obtained as
∆′ρdρ = (v ○ eiθv)(u ○ eiθu)Hdρ

∆′vdv = ρ (dv ○ eiθv)(u ○ eiθu)H
∆′θvdθv = iρ (v ○ eiθv

○ dθv)(u ○ eiθu)H
∆′udu = ρ (v ○ eiθv)(du ○ eiθu)H
∆′θudθu = −iρ (v ○ eiθv)(u ○ eiθu

○ dθu)H .

(20)

Introducing the Jacobians Jv and Ju of v(φv) and u(φu) as mappings [0, π]p−2 × [0, 2π]→ R
p and

[0, π]q−2 × [0, 2π]→ R
q , respectively, we have

∆′φvdφv = ρ ((Jvdφv) ○ eiθv)(u ○ eiθu)H
∆′φudφ

u = ρ (v ○ eiθv)((Judφu) ○ eiθu)H ,
(21)

which gives all the partial derivatives ∂∆/∂x. Using (5), this gives the derivatives of A(∆(x)) with

respect to x, and similarly, of the transfer function Twz(∆(x)) with respect to x.

In order to proceed, we now have to discuss subgradients of α with respect to A, and of the

H∞-norm with respect to the transfer function as an argument, and this is where non-smoothness

re-enters the scene. We have the following useful

Definition 3. An eigenvalue λl(A(∆)) is active at ∆ ∈ S∆ if α(A(∆)) = Reλl(A(∆)). A

frequency ω0 ∈ [0,∞] is active at ∆ ∈ S∆ if ∥Twz(∆)∥∞ = σ(Twz(∆, iω0)). ∎

During the following we exploit the fact that our algorithm does not require computing the entire

subdifferential at an iterate x. It is sufficient to compute just one subgradient, and that can be

achieved by picking active elements. Moreover, the computation simplifies for points xj os strict

differentiability of f .

Suppose the eigenvalue λl(∆) is active, that is, α(A(∆)) = Reλl. Following [27], we introduce

column matrices Vl and Ul of right and left eigenvectors of A(∆) associated with the eigenvalue λl,

such that UH
l Vl = I . A subgradient G∆ of α(⋅) at ∆ with respect to ∆ as a free matrix variable and

with regard to the scalar product ⟨G,H⟩ = Tr(GHT ) on matrix space, is then obtained as

G∆ = ReΨ(Yl)
with

Ψ(Yl) ∶= (I −Dδδ∆)−1CδVlYlU
H
l Bδ(I −∆Dδδ)−1 , (22)

where Yl is an arbitrary Hermitian matrix such that Yl ⪰ 0, TrYl = 1, and with size the multiplicity

of λl. The corresponding first-order term ⟨G∆, d∆⟩ is

⟨G∆, d∆⟩ = ReTr (Ψ(Yl) d∆T ) . (23)

Similarly, let ω0 be a peak frequency of ∥Twz(∆)∥∞, so that ∥Twz(∆)∥∞ = σ(Twz(∆, iω0)).
Introduce column matrices Uω0

and Vω0
of left and right singular vectors associated with

σ(Twz(∆, iω0)) from the SVD and define the transfer functions

[ ∗ Tzδw(∆)
Tzwδ
(∆) Tzw(∆) ] ∶= [

0 I

I ∆
] ⋆ P ,

where ⋆ stands for the Redheffer product [34]. Then a subgradient G∆ of ∥Twz(∆)∥∞ at ∆ with

respect to ∆ as a free matrix variable is given as

G∆ = ReΨ(Yω0
),

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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12 P. APKARIAN & D. NOLL

with

Ψ(Yω0
) ∶= Tzδw(∆, jω0)Vω0

Yω0
UH
ω0
Tzwδ
(∆, jω0) , (24)

where Yω0
is an arbitrary Hermitian matrix such that Yω0

⪰ 0, TrYω0
= 1, and with dimension the

multiplicity of σ(Twz(∆, iω0)). Here the first-order term is

⟨G∆, d∆⟩ = ReTr (Ψ(Yω0
) d∆T ) . (25)

Subgradients of α(A(∆(x))) and ∥Twz(∆(x))∥∞ with respect to x = (ρ, φv, θv, φu, θu) are then

obtained by explicitly calculating (23) and (25), where partial derivatives of ∆ with respect to x are

given in (20) and (21). For the functions α(⋅) or ∥Twz(⋅)∥∞, subgradients gT
x

at ∆ are obtained as

gTρ dρ =Re{(u ○ eiθu)H Ψ(Y ) (v ○ eiθv)} dρ
gTφvdφv=ρRe{(u ○ eiθu)H Ψ(Y ) diag(eiθv)}Jv dφv

gTθvdθv =−ρ Im{(u ○ eiθu)H Ψ(Y ) diag(v ○ eiθv)} dθv
gTφudφ

u=ρRe{(v ○ eiθv)T Ψ(Y )T diag(e−iθu)}Ju dφu

gTθudθ
u=ρ Im{(v ○ eiθv)T Ψ(Y )T diag(u ○ e−iθu)} dθu .

(26)

Here the operator diag(⋅) applied to a vector a builds a diagonal matrix with a on the main diagonal,

and Ψ(Y ) stands short for either Ψ(Yl) or Ψ(Yω0
). The whole subdifferential is generated by

varying Yl or Yω0
over the spectraplex

{Y = Y H ∶ Y ⪰ 0, TrY = 1} . (27)

Remark 5. Note that subgradients (26) substantially simplify for scalar, single-input and/or single-

output complex blocks:

ρeiθ, ρv(φv)eiθv

, (u(φu)eiθu)H .

Simplifications also occur when the active eigenvalue or the maximum singular value at the peak

frequency σ(Twz(∆, iω0)) is simple. In that case we may choose Y = 1 to obtain the usual gradient

for differentiable functions.

Remark 6. The readers will also easily convince themselves that for real active eigenvalues or for

active frequencies ω = 0,∞ in the H∞-norm the expression P (iω) is real, and in that case it suffices

to search over real blocks ∆. Then the complex blocks may be reduced to

∆j = ρj vj(φv
j )uj(φu

j )T .

In contrast to what is sometimes tacitely assumed in the literature, the occurrence of multiple

active frequencies at the solution yk of the tangent program is not unusual. This typically happens

when ∥Twz(∆)∥∞ results from a robust control design scheme. We state the general case as

Proposition 2. Suppose α(A(∆(x))), or ∥Twz(∆(x))∥∞, is attained at N active semi–simple

eigenvalues l = 1, . . . ,N , or at N active frequencies ω1, . . . , ωN , which means α(A(∆(x))) = Reλl,

or ∥Twz(∆(x))∥∞ = σ(Twz(∆, iωl)) for l = 1, . . . ,N . For α(A(∆(x))) define column matrices Ul

and Vl of left and right eigenvectors such that UH
l Vl = I . Alternatively, for ∥Twz(∆(x))∥∞ define

column matrices of left and right singular vectors Ul and Vl associated with σ(Twz(∆(x), iωl))
from the SVD. Then Clarke subgradients gT

x
of α(.) or ∥Twz(.)∥∞ with respect to x =

(ρ, φv, θv, φu, θu) at ∆ = ∆(x) are obtained as

gTρ dρ = Re{(u ○ eiθu)H Ω(Y ) (v ○ eiθv)}dρ
gTφvdφ

v = ρRe{(u ○ eiθu)H Ω(Y ) diag(eiθv)}Jvdφv

gTθvdθ
v = −ρ Im{(u ○ eiθu)H Ω(Y ) diag(v ○ eiθv)}dθv

gTφudφ
u = ρRe{(v ○ eiθv)T Ω(Y )T diag(e−iθu)}Judφu

gTθudθ
u = ρ Im{(v ○ eiθv)T Ω(Y )T diag(u ○ e−iθu)}dθu

(28)
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with the definition

Ω(Y ) ∶= N

∑
l=1

Ψ(Yl) ,
where Ψ(Yl) is defined in (22) or (24), and with Y ∶= (Y1, . . . , YN) an N -tuple of Hermitian

matrices of appropriate sizes ranging over the set

Y = {(Y1, . . . , YN) ∶ Y H
l = Yl, Yl ⪰ 0,

N

∑
l=1

TrYl = 1}.
Proof

We use the fact [29] that the entire Clarke subdifferential is obtained as the convex hull of the

subdifferentials of all active branches considered separately. Hence the set Y in the proposition is

obtained as the convex hull of spectraplexes in (27). For the H∞-norm, we use the fact that either

there is a finite set of active frequencies, or the system is all-pass. In the first case (28) gives a

full characterization of the Clarke subdifferential, in the second case it provides a finitely generated

subset of the subdifferential.

Computation of the Jacobians Jv and Ju in (28) can be based on a column-oriented algorithm.

This is readily inferred from the identity

v(φv) =
⎡⎢⎢⎢⎢⎢⎢⎣

cos(φv
1)

sin(φv
1)

sin(φv
1)
⋮

⎤⎥⎥⎥⎥⎥⎥⎦
○

⎡⎢⎢⎢⎢⎢⎢⎣

1

cos(φv
2)

sin(φv
2)
⋮

⎤⎥⎥⎥⎥⎥⎥⎦
○

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

cos(φv
3)
⋮

⎤⎥⎥⎥⎥⎥⎥⎦
○ . . .

The product rule for derivatives immediately yields the Jacobians Jv and Ju.

7. NUMERICAL TESTING

Our numerical assessment of the proposed technique is for worst-case H∞ performance. A variety

of problems from different engineering fields are shown in Table I. The characteristics of each

test case are the system order n and the mixed uncertainty structure of ∆. Real parametric blocks

are encoded by negative integers, −3 = −31 stands for δjI3 and −53 refers to 3 real blocks with

repetition of order 5, that is diag(δ1I5, δ2I5, δ3I5). Complex full block encoding follows the same

convention when they are square, that is, 72 specifies diag(∆1,∆2), where ∆1 and ∆2 are both in

C
7×7. Non-square complex blocks are described by their row and column dimensions, i.e., 6 × 2

refers to ∆j ∈ C
6×2. The values achieved by algorithm 1 are shown as h∗ in column 3 of table II,

computed in t∗ seconds CPU given in column 5.

These results are compared to those obtained using the lower-bound of routine WCGAIN from

[35]. Note that WCGAIN uses power iteration in tandem with a line search to compute the lower

bound. The achieved values and execution times are given in columns h and t, respectively. The

symbol ’Inf’ in the table means instability has been detected over σ(∆) ≤ 1.

Our testing indicates that both techniques deliver very consistent results in the mixed case, except

in test 41, where WCGAIN does not detect the instability. Test cases where instability is detected

through h∗ =∞ obviously correspond to global solutions of program (12).

Computing upper bounds h using WCGAIN reveals that the results are generally tight. In other

words, the computed worst-case uncertainties are global solutions to program (6), except in test

cases 9 and 19, where the gap between lower and upper bounds is too large to conclude. Note that

this does not necessarily indicate a failure of our method, as the gap may be attributed either to

conservatism of the upper bound, or to failure of any of the lower bounds to reach a global solution.

The good agreement of both solvers is somewhat in contrast with our previous analysis in [28],

where WCGAIN turned out more fragile for sole real parametric uncertainties. In that case our local

technique proved more reliable, and certification based on WCGAIN was then no longer possible due

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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to the discrepancy. In the present study our technique is generally faster that WCGAIN, except in a

few test cases like 17, 21, 28, 31 and 34. As expected, WCGAIN turns out an excellent technique for

pure complex problems like in test cases 15 and 17, but may suffer when real parametric uncertainty

or large ∆’s are present, as witnessed by 24, 26 and for the four-disk and missile examples.

Table I. Benchmark problems for worst-case H∞ performance.

♯ Benchmark n Structure

1 Beam1 11 −1, 1, 5
2 Beam2 11 −4, 3
3 Beam3 11 −4, 1, 2

4 Beam4 11 1
7

5 Beam5 11 −17

6 DC motor1 7 5

7 DC motor2 7 −4, 1
8 DC motor3 7 −2, 1, 2

9 DC motor4 7 1
5

10 DC motor5 7 −15

11 DVD driver1 10 5,−3,−6

12 DVD driver1 10 −4, 13, 22, 1 × 2, 2 × 1
13 DVD driver1 10 −4, 3 × 2, 2 × 3, 3 × 1, 1 × 3, 1

14 DVD driver1 10 7
2

15 Dash pot1 17 1
6

16 Dash pot2 17 −4, 12

17 Dash pot3 17 3 × 2, 2 × 3, 1

18 Four-disk system1 16 −1,−35,−14

19 Four-disk system2 16 1, 3
5
,−4

20 Four-disk system3 16 −10, 10

21 Four-tank system1 12 1
4

22 Four-tank system2 12 2,−2
23 Four-tank system3 12 −3, 1

24 Hard disk driver1 22 −3, 24,−14

25 Hard disk driver2 22 −13,−24,−14

26 Hard disk driver3 22 3, 4,−8

27 Hydraulic servo1 9 −18

28 Hydraulic servo2 9 1
8

29 Hydraulic servo2 9 −8

30 Hydraulic servo2 9 −4, 22

31 Mass-spring1 8 1
2

32 Mass-spring2 8 −12

33 Mass-spring2 8 2

34 Filter1 8 1

35 Filter2 8 −1
36 Satellite1 11 1,−6, 1
37 Satellite2 11 −1,−6,−1
38 Satellite3 11 2 × 3, 3 × 2,−3

39 Missile1 35 −13,−63

40 Missile2 35 1, 2,−63

41 Missile3 35 3, 6,−62

42 Missile4 35 3,−18
43 Missile5 35 −10, 11
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Table II. Results for worst-case H∞-norm on ∆

running times t and t
∗in seconds.

♯ h h∗ h t t∗

1 Inf Inf Inf 19.869 1.798

2 Inf Inf Inf 15.984 1.670

3 Inf Inf Inf 16.979 1.101

4 0.062 0.062 0.062 11.395 11.030

5 0.060 0.060 0.060 9.748 0.706

6 Inf Inf Inf 5.930 1.016

7 0.836 0.839 Inf 16.453 2.573

8 1.582 1.583 Inf 17.810 8.961

9 0.949 0.951 163515.72 24.981 9.610

10 0.818 0.819 0.818 7.442 0.665

11 Inf Inf Inf 59.624 0.521

12 Inf Inf Inf 33.545 0.575

13 Inf Inf Inf 31.010 1.746

14 Inf Inf Inf 12.177 0.626

15 0.299 0.301 0.299 9.464 10.197

16 0.282 0.282 0.282 19.172 4.753

17 0.301 0.301 0.301 7.863 15.592

18 0.071 0.072 0.071 204.361 0.982

19 0.178 0.177 Inf 115.389 63.185

20 Inf Inf Inf 440.717 3.219

21 0.532 0.532 0.532 5.212 10.043

22 0.532 0.532 0.532 10.613 3.319

23 0.529 0.530 0.529 12.806 3.143

24 0.003 0.003 0.003 75.132 12.053

25 0.003 0.003 0.003 92.369 0.894

26 Inf Inf Inf 175.733 1.218

27 0.053 0.053 0.053 5.530 0.864

28 0.055 0.055 0.055 7.958 12.136

29 0.053 0.053 0.053 31.387 0.863

30 0.055 0.055 0.055 18.113 5.814

31 16.674 16.741 16.676 2.256 4.795

32 0.684 0.684 0.684 1.639 0.498

33 Inf Inf Inf 1.395 0.773

34 0.247 0.248 0.247 3.525 6.679

35 0.241 0.242 0.241 2.231 0.753

36 0.015 0.015 0.015 43.517 6.409

37 0.015 0.015 0.015 39.991 1.100

38 Inf Inf Inf 10.879 1.512

39 0.173 0.173 0.173 1173.349 1.208

40 Inf Inf Inf 1067.826 0.674

41 2738.454 Inf Inf 682.161 1.820

42 Inf Inf Inf 5497.893 0.595

43 Inf Inf Inf 961.395 1.344

8. CONCLUSION

We have presented a non-smooth optimization algorithm to compute local solutions for two NP-hard

problems in stability and performance analysis of systems with mixed real and complex parametric

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2016)
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uncertainty. The local solver exploits subgradient information of the criteria, uses a novel nonsmooth

trust-region technique to generate a sequence of iterates, which converges to a critical point from

an arbitrary starting point, and performs fast and reliably on the given test set. The test bench

features systems with up to 35 states, with up to 11 real or complex uncertainties, and with up

to 18 repetitions. The results were certified by comparison with the function WCGAIN of [35].
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