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This paper describes a nonsmooth optimization technique allowing to design a lateral flight control
law for a highly flexible aircraft. Flexible modes and high-dimensional models pose a major challenge
to modern control design tools. It is shown that the nonsmooth approach offers potent and flexible
alternatives in this difficult context. More specifically, the proposed technique is used to achieve a mix of
frequency domain as well as time-domain requirements for a set of different load conditions.
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1. Introduction

The synthesis of flight control laws for modern aeronautics and
space applications remains a challenging task whenever aeroser-
voelastic phenomena significantly affect the control bandwidth.
Such phenomena are especially critical when demanding specifica-
tions including performance and robustness constraints of different
natures must be achieved. Performance specifications, for instance,
are normally related to control objectives like tracking and decou-
pling and are naturally expressed in terms of time-domain con-
straints such as limited overshoot, short settling- or rise-times,
small steady-state error and amplitude limitation. Flexible modes,
on the other hand, are frequently dealt with via frequency-domain
criteria or modal specifications (prescribed damping ratios). A fur-
ther complication is related to structural constraints imposed on
the controller. Simpler controllers are generally sought to facilitate
on-board implementation and management.

The classical approach in which a control law is designed for
the rigid dynamics and a low-pass filter is inserted a posteriori to
avoid or reduce spillover effects is no longer a valid scheme for
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such applications. The reason is that in order to meet appropri-
ate level of performance, the controller bandwidth should overlap
with the frequency range of flexible modes which represents a core
issue of such problems.

Traditional H2 or H∞ syntheses [20] do not provide suitable
answers to these difficulties. First of all, time-domain specifications
should be addressed indirectly via nontrivial tuning of weight-
ing filters. Secondly, these methods produce full-order controllers
and therefore rely on model reduction techniques to derive simple
controllers which are always prone to failure. Finally, frequency-
domain constraints have to be defined for the entire frequency
range considering a single performance channel although in prac-
tice each such constraint is relevant only in a particular frequency
band and for an individual performance channel. The multiband
synthesis method in [12] is one of the few reported in the litera-
ture that can handle band-restricted frequency-domain constraints
but it relies on a fairly conservative convexifying procedure in
which the poles of the controller have to be fixed a priori.

Design methods based on the Youla parametrization [7] offer
some flexibility to handle both time- and frequency-domain speci-
fications. The resulting controllers however suffer from substantial
order inflation and are hardly amenable to numerical implementa-
tion.

Different approaches have been reported in the literature trying
to exploit eigenstructure assignment methods to design problems
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involving lightly-damped flexible modes [13,17,14]. Eigenstructure
assignment methods are interesting because time-domain specifi-
cations can be captured through modal shaping. Unfortunately, as
noted in [13], determining appropriate eigenspaces associated with
flexible modes remains an inherent difficulty.

Nonsmooth optimization techniques have been used recently
to solve a number of difficult structured controller design prob-
lems involving time- or frequency-domain specifications [2,3,18,6,
8,11]. The nonsmooth design method considered here bears the
following appealing features. First, time-domain specifications are
addressed directly, thus dispensing with the use of auxiliary tuning
parameters such as weighting filters. Moreover, frequency-domain
constraints such as those related to flexible modes are easily in-
corporated within the same framework. Secondly, such techniques
remain operational even for large size plants, and thus allow to
short-circuit risky model reduction phases. Finally, they encompass
arbitrary controller structures which make them methods of choice
when implementation constraints are important.

The central aim of the present work is to illustrate the effi-
ciency and the flexibility of nonsmooth design methods in solving
difficult structured control design problems like large size flexible
transport aircraft.

The paper is organized as follows. Section 2 discusses the multi-
objective control design problem, while Section 3 outlines the key
ingredients of the proposed nonsmooth optimization technique.
The difficult design problem of lateral flight control for a highly
flexible aircraft subject to turbulence and multiple load conditions
is addressed in Section 4.

2. Multi-objective controller design via nonsmooth optimization

To begin with, consider the synthesis interconnection given by
the standard form in Fig. 1 with u ∈ R

m2 and y ∈ R
p2 and where

the multivalued plant P (s) takes values in a finite family of linear
plants P := {P 1, . . . , P p} representing, for instance, multiple oper-
ating conditions or faulty modes. Each plant P ∈ P is described by
a minimal state-space realization of the form⎡
⎣ ẋ(t)

z(t)

y(t)

⎤
⎦ =

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦

⎡
⎣ x(t)

w(t)

u(t)

⎤
⎦ , (1)

where plant indexing has been removed for simplicity. In order to
address practical controller structures we introduce a state-space
parametrization of the form

κ ∈ R
q → K(κ) :=

[
AK (κ) B K (κ)

C K (κ) D K (κ)

]
(2)

with corresponding frequency-domain representation

K (s, κ) = C K (κ)
(
sI − AK (κ)

)−1
B K (κ) + D K (κ),

where AK ∈ R
k×k . In the above description, κ designates the de-

cision vector of design variables in the controller. Note the case
of a static controller (k = 0) is a particular instance. The mapping
K : R

q → R
(m2+k)×(p2+k) is assumed to be continuously differen-

tiable but otherwise arbitrary.
Performance specifications are given in most cases in terms

of time-domain constraints like limited overshoot, short settling-
or rise-times, but also amplitude limitation in order to guarantee
decoupling properties or to avoid reaching operational limits of
the system. Such time-domain constraints are achieved by direct
shaping closed-loop system responses to fixed test input signals.
More specifically, it is assumed that each plant in the family P
in feedback loop with the controller K (s, κ) is subject to one or
several input signals w selected in a finite signal generator set
Fig. 1. Closed-loop synthesis interconnection.

Fig. 2. Envelope constraints on the step response.

W := {w1, . . . , wd}. This gives rise to a finite family of closed-
loop responses z ∈ Z , where Z := {z1, . . . , zr}. Each instance in Z
is called a scenario. Practically speaking, the signal generator set
is made of typical deterministic test inputs such as steps, ramps,
sinusoids, etc.

The above description is flexible enough to reflect situations in
which a single plant is submitted to various test signals as in the
case when decoupling properties must be examined, or when the
response to a given test signal is to be considered for multiple
operating conditions or faulty modes. The proposed set-up also ac-
cepts more complicate formulations where each plant in the family
P is tested against several inputs.

The goal is to compute κ ∈ R
q such that the closed-loop time

responses z ∈ Z obtained with controller K(κ) meet envelope con-
straints of the form

lz(t) � z(t) � uz(t), ∀t � 0, ∀z ∈ Z, (3)

where lz and uz are lower and upper bounds for z and are as-
sumed piecewise constant in the sequel. These bounds are illus-
trated as dashed lines in Fig. 2 for a step following specification
(αz stands for a coordinate of z).

On the other hand, design specifications including attenuation
of exogenous bounded-energy disturbances or robustness against
unstructured uncertainties are known to be better addressed by
frequency-domain criteria involving bounds on the maximum sin-
gular value norm of suitable closed-loop transfers. Therefore, in
addition to the constraints in (3), the designed controller K(κ) is
required to achieve prescribed bounds for a finite set of closed-
loop transfers∥∥Fl

(
P (s), K (s, κ)

)∥∥
I P

� γP , γP > 0, ∀P ∈ P ∞ ⊂ P, (4)

where Fl(·,·) denotes the traditional lower Linear Fractional Trans-
formation, and ‖.‖I P denotes the peak value of the transfer func-
tion maximum singular value norm on a prescribed frequency in-
terval I P :∥∥Fl

(
P (s), K (s, κ)

)∥∥
I P

:= sup
ω∈I P

σ
(

Fl
(

P ( jω), K ( jω,κ)
))

.

The frequency band I P is typically a closed interval I P = [ωP
1 ,ωP

2 ],
or more generally, a finite union of intervals I P = [ωP

1 , ωP
2 ] ∪ · · · ∪

[ωP
q ,ωP

q+1], where right interval tips may take infinite values. Al-
ternatively, a dynamic weight W P (s) can be included in (4) if
necessary
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∥∥W P (s)Fl
(

P (s), K (s, κ)
)∥∥

I P
� 1, ∀P ∈ P ∞ ⊂ P (5)

to stress the relative importance of each channel.
Finally, the most fundamental specification for a closed-loop

system is internal stability. Thus, the sought controller K(κ) must
also guarantee negative upper bounds on the closed-loop spectral
abscissas (maximum real part of closed-loop eigenvalues)

α
(

A P (κ)
)
� αP , αP < 0, ∀P ∈ P, (6)

where A P (κ) is the state matrix of the closed-loop system
Fl(P (s), K (s, κ)).

In summary, the considered multi-objective controller design
problem may be stated as: find controller variables κ ∈ R

q such
that constraints (3)–(6) are satisfied. In what follows this problem
is addressed through a nonsmooth optimization technique. Notice,
initially, that the time-domain constraints in (3) are automatically
met if the function

ft(κ) := max
z∈Z

max
t�0

{[
z(κ, t) − uz(t)

]
+,

[
lz(t) − z(κ, t)

]
+
}

(7)

is non-positive, where the notation [.]+ applied to a vector
v ∈ R

n is defined as [v]+ = max{0,maxi=1,...,n vi}. Similarly, the
frequency-domain constraints in (4) and the spectral constraints
in (6) are satisfied if the functions

f∞(κ) := max
P∈P ∞

‖Fl(P (s), K (s, κ))‖I P

γP
− 1 (8)

and

gα(κ) := max
P∈P

(
α

(
A P (κ)

) − αP
)

(9)

are non-positive, respectively.
Our nonsmooth design method is thus based on solving the

max-type optimization problem

minimize
κ∈Rq

f (κ) := max
{

ft(κ), f∞(κ)
}

subject to gα(κ) � 0. (10)

Note that a feasible solution κ∗ to (10) also solves the original
multi-objective design problem whenever the final objective value
f (κ∗) is non-positive. Program (10) is nonconvex, nonsmooth and
semi-infinite, and therefore represents a challenging mathematical
programming problem. Instead of using alternative smooth formu-
lations which can be very expansive computationally (see [15] for
an example), a specialized nonsmooth optimization technique with
global convergence properties and allowing to solve (10) directly
has been developed in [3]. Global convergence refers here to the
convergence towards a locally optimal solution from an arbitrary,
even remote, starting point. In case f (κ∗) is positive, a restart with
a different seed will be required if the specification set (3)–(6) is to
be kept unchanged because the proposed technique only provides
local solutions.

Program (10) can be seen as a Chebyshev norm-based scalar-
ization of the original multi-objective design problem in which the
role of individual weights for the various specifications is played
by the tuning parameters lz , uz , γP and αP . The strategy adopted
here to select these weights is close in spirit to the aspiration lev-
els’ approach for multi-objective optimization [7, p. 64]. The tuning
parameters are then adjusted iteratively based on a few trial-and-
error designs: satisfied constraints can be strengthened while vi-
olated constraints can be relaxed. Indeed, one of the appealing
features of the present design method is that tuning parameters
are closely related to engineering specifications, so that their ad-
justment is fairly straightforward.

The design framework described by program (10) and the non-
smooth optimization technique discussed below is flexible enough
to accommodate an even richer set of specifications. The reader is
referred to [4] for further examples. At this stage it is important
to emphasize that program (10) does not involve any Lyapunov
variables as would be the case if LMI formulations were used. The
size of such variables grows quadratically with the plant dimension
which is a major impediment for application to realistic problems.
As we shall see later the proposed nonsmooth method remains at
ease even for high-order plants.

3. Nonsmooth optimization technique

In this section, the key ingredients of the nonsmooth optimiza-
tion technique are briefly presented. Proofs for the main results are
available in Refs. [3,2].

Initially, a strictly feasible point for program (10) is found us-
ing the results in [5]. For αP close to zero in (9), this is essentially
equivalent to finding a controller K (s, κ) that simultaneously sta-
bilizes in closed-loop all the models in P . Next, program (10) is
solved based on a simplified form of the progress function intro-
duced by Polak [16]:

F
(
κ+, κ

) = max
{

f
(
κ+) − f (κ); gα

(
κ+)}

, (11)

where κ represents the current iterate and κ+ represents the next
iterate or a candidate to become the next iterate.

The key fact about the progress function (11) is that a critical
point κ∗ of F (·, κ∗) will also be a critical point of the original pro-
gram (10) [16,3]. A critical point κ∗ of F (·, κ∗) is a point such that
0 ∈ ∂1 F (κ∗, κ∗), where ∂1 F (κ∗, κ∗) denotes the Clarke subdifferen-
tial [9] of F (·, κ∗) with respect to the first variable at κ∗ . The fol-
lowing iterative procedure is used to determine such a point. Sup-
pose the current iterate κ is such that 0 /∈ ∂1 F (κ,κ), which implies
that it is possible to reduce the function F (·, κ) in a neighborhood
of κ , that is, to find κ+ such that F (κ+, κ) < F (κ,κ). Replacing
κ by κ+ , the procedure is repeated. Unless 0 ∈ ∂1 F (κ+, κ+), in
which case a critical point has been attained, it is possible again
to find κ++ such that F (κ++, κ+) < F (κ+, κ+), etc. The sequence
κ,κ+, κ++, . . . so generated is expected to converge to the sought
local minimum κ∗ of (10).

The initial κ being strictly feasible, all consecutive iterates will
remain inside the feasibility region and, consequently, inside the
stability region. To realize that, notice that F (κ,κ) = 0, so the left
hand term in (11) is active at κ . Since the new κ+ is such that
F (κ+, κ) < F (κ,κ) = 0, one necessarily has g(κ+) � F (κ+, κ) < 0,
which means that κ+ is also strictly feasible. Moreover, this also
means that the objective is minimized, since f (κ+) − f (κ) �
F (κ+, κ) < 0. By forcing iterates to remain in the stability region,
one guarantees that the algorithm will progress in a region where
function f∞ in (8) is well defined.

The descent step κ+ away from the current κ is found using
a first-order estimate of a local minimizer for F (·, κ). To that end,
a first-order convex approximation F̂ (·, κ) of F (·, κ) around κ is
built, and the following program is solved at κ :

minimize
dκ∈Rq

F̂ (κ + dκ,κ) + δ

2
‖dκ‖2, δ > 0. (12)

Let dκ denote the solution of the tangent program (12). Then κ +
dκ represents a first-order estimate of a local minimizer for F (·, κ).
In particular, dκ provides a descent direction for the progress func-
tion F (·, κ) at κ . The next iterate is then κ+ = κ + dκ , or possibly
κ+ = κ +ρ dκ for a suitable stepsize ρ ∈ (0,1) found by an Armijo
backtracking line search [10] and such that

F (κ + ρ dκ,κ) − F (κ,κ) � ζρ F ◦(κ,dκ) < 0, (13)

where 0 < ζ < 1 and F ◦(κ,dκ) denotes the generalized directional
derivative of F (·, κ) at κ in the direction dκ . The Armijo condition
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guarantees global convergence of the algorithm to a F. John [16]
point which is a local minimum in general. Finally, 0 ∈ ∂1 F (κ,κ)

if dκ = 0, so dκ = 0 is a necessary optimality condition for the
original program (10) which may be used in practice as a stopping
criterion.

The nonsmooth algorithm may be summarized as follows:

Algorithm 1 Nonsmooth algorithm for program (10).
Parameters: δ > 0, 0 < β,ζ < 1.
1: Initialize. Choose closed-loop stabilizing κ .
2: Stopping test. If 0 ∈ ∂1 F̂ (κ,κ) then stop. Otherwise continue.
3: Compute descent direction. Solve tangent program (12)

min
dκ

F̂ (κ + dκ,κ) + δ

2
‖dκ‖2.

Solution is the search direction dκ .
4: Line search. Find ρ = βν , ν ∈ N, satisfying the Armijo condition

F (κ + ρ dκ,κ) − F (κ,κ) � ζρ F ◦(κ,dκ) < 0.

5: Update. Put κ ← κ + ρ dκ . Loop back to step 2.

In order to build the first-order approximation F̂ (·, κ) of F (·, κ)

used in (12), one need initially to gather first-order information
on the various specifications represented by ft , f∞ and gα . For
the spectral abscissa specification in gα , the subdifferential of the
function ∂(α ◦ A P )(κ) has been given in [5]. Subgradients com-
putation involves only basic linear algebra operations and there-
fore can be performed very efficiently. The subdifferential of the
maximum singular value norm appearing in f∞ shares a similar
structure [2,18]. Finally, subgradients’ computation for ft relies on
closed-loop simulations which can be performed very efficiently
for LTI systems [6]. With these preparations, program (12) can be
equivalently formulated as a standard convex quadratic program
(CQP), which can be efficiently solved using currently available
state-of-the-art codes. The quadratic term in (12) can be used to
capture second-order information or may be interpreted as a trust
region radius management parameter.

4. Application to lateral flight control design of a highly flexible
aircraft

4.1. Problem description

The nonsmooth method outlined above is used in this section
to design a flight controller for the lateral motion of a large carrier
aircraft in which flexibility has been intentionally degraded to a
highly critical level in order to build a difficult control problem and
to test the efficiency of various modern techniques. It is a realistic
challenging problem which has been initially presented in [1].

The design specifications for this application are particularly
tight. Besides good-handling qualities in time domain, the flight
controller must also achieve improved comfort during turbulence
despite the presence of lightly-damped flexible modes. An addi-
tional difficulty here is that the location of the flexible modes in
the complex plane changes with the distribution of the mass in-
side the plane, as one can notice by comparing both loci depicted
in Fig. 8. Consequently, the closed-loop system must also be robust
with respect to changes in the load condition.

Six linearized models of the lateral motion of the aircraft
around equilibrium points are considered here. They correspond
to six distributions of the mass inside the plane under the same
flight condition. Each model is described by a 68th-order state-
space representation whose state vector contains 4 rigid states
(yaw angle β , roll rate p, yaw rate r and roll angle φ), 36 states
corresponding to 18 flexible modes, 20 secondary states repre-
senting the dynamics of servocontrol surfaces and aerodynamic
Fig. 3. Closed-loop interconnection for flexible aircraft.

lags, and 8 states modeling turbulence as exogenous disturbance.
There are two control inputs, aileron deflection δl and rudder de-
flection δn , and one exogenous disturbance input v representing
gusts. The linearized models are available on-line to download at
http://www.cert.fr/dcsd/cdin/alazard/AIAA_JGCD/index.html.

For the sake of comparison, the same six measurements used
in [1] are also used here, which are the roll rate p6 and angle
φ6 measured at the center of the plane, the yaw rates r1 and r11
at the front and the rear of the aircraft, respectively, and the lat-
eral accelerations ny7 and ny9 measured at two different points
of the fuselage (11 location points are regularly spaced from 1 at
the front to 11 at the rear of the fuselage). This set of measure-
ments was selected according to observability properties of the
rigid model and first flexible modes (in an increasing order of pul-
sation) with respect to sensors location along the fuselage.

The design specifications defined for this problem can then be
summarized as follows:

[S1] flying quality requirements materialized by time-domain tem-
plates on the step responses with respect to β and φ,

[S2] large Dutch roll damping ratio,
[S3] no degradation, or preferably improvement in damping ratios

of flexible modes,
[S4] improved comfort during turbulence. The comfort perfor-

mance index is measured on the frequency response of trans-
fers between the gust v and lateral accelerations at the front
ny1, the middle ny6 and the rear ny11 of the fuselage,

[S5] robustness with respect to the various loading conditions,
[S6] to facilitate on-board implementation a reduced-order con-

troller order is desirable.

4.2. Nonsmooth synthesis

The adopted control configuration and the corresponding syn-
thesis interconnection are depicted in Fig. 3, where G(s) represents
the aircraft transfer matrix for a given load condition, u = [δl δn]T

is the control input, y = [ny7 ny9 p6 r1 r11 φ6]T is the measured
output and r := [βr φr]T is the reference vector. Different outputs
will be selected so as to form the regulated output vector z ac-
cording to the various criteria.

Using the flexibility provided by parametrization (2), the feed-
back controller K (s, κ) is chosen as a 10th-order state-space sys-
tem, thereby ensuring controller simplicity as required by speci-
fication [S6]. For comparison, it should be noticed that the least
controller order achieved in [1] using model reduction techniques
was 20. Additionally, the feedback controller is forced to be strictly
proper (D K (κ) ≡ 0 in (2)) in order to improve robustness with re-
spect to high frequency flexible modes and to achieve better noise
attenuation. The feedforward controller F ∈ R

2×2 is selected as a
static matrix gain to facilitate implementation.

The first time-domain specification in [S1] imposed on the final
closed-loop system is the steady-state constraint

lim
t→∞

[
β(t)
φ(t)

]
=

[
1 0

−1 1

]
lim

t→∞

[
βr(t)
φ (t)

]
. (14)
r

http://www.cert.fr/dcsd/cdin/alazard/AIAA_JGCD/index.html
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Fig. 4. Evolution of closed-loop βr step responses (dashdot: initial stabilizing controller, solid: final controller, thin dashed: intermediate iterates).

Fig. 5. Evolution of closed-loop φr step responses (dashdot: initial stabilizing controller, solid: final controller, thin dashed: intermediate iterates).
This constraint can be addressed through appropriate selection of
the pre-filter gain F . Notice that in accordance to the final value
theorem, (14) implies that

Fl
(
Gβφ(0),−K (0, κ)

)
F =

[
1 0

−1 1

]
, (15)

where Gβφ(s) is the open-loop transfer matrix from [uT uT ]T to
[[β φ] yT ]T . Therefore, (14) will be automatically met if F is de-
rived through

F = Fl
(
Gβφ(0),−K (0, κ)

)−1
[

1 0
−1 1

]
, (16)

assuming existence of the inverse matrix. In practice, (16) can be
written equivalently as

F = Fl
(
M, K (0, κ)

) [
1 0

−1 1

]
, (17)

where matrix M is such that

Fl
(
M, K (0, κ)

) = Fl
(
Gβφ(0),−K (0, κ)

)−1
.

Existence of matrix M is guaranteed by the fact that the open-loop
transfer matrix from u to [β φ] is non-singular [20]. The feedfor-
ward gain F is thus uniquely determined by the design variables
vector κ via the continuously differentiable parametrization (17),
which can be easily incorporated into the proposed nonsmooth
method. Consequently, both feedback and feedforward controllers
will be designed simultaneously by the nonsmooth technique.

As discussed in Section 2, the time-domain templates translat-
ing flying quality requirements in [S1] are handled directly within
the nonsmooth method. Two basic scenarios are initially consid-
ered. In the first scenario, a unit step is applied to reference βr

while v and φr are considered to be zero, and appropriate enve-
lope constraints are imposed on the relevant outputs. Fig. 4 depicts
the envelope constraints imposed on rigid β and φ for this sce-
nario, as well as the evolution of the system responses throughout
the optimization sequence, starting from the initial stabilizing con-
troller. Notice that constraints such as minimal phase response for
φ can be addressed easily via time-domain templates. The sec-
ond scenario consists in a unit step being applied to φr while the
other two inputs are kept to zero. The corresponding envelope con-
straints imposed on rigid β and φ are depicted in Fig. 5.
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Fig. 6. Magnitudes of the transfers from v to lateral accelerations (dashdot: open-loop plant, solid: final closed-loop).

Fig. 7. Largest singular value of the sensibility function (dashdot: initial stabilizing controller, solid: final controller) and W −1
P (dash).
In order to improve performance robustness with respect to
load variation, as required by [S5], the above scenarios are consid-
ered for two extreme load conditions: the lightest and the heaviest
models. In the framework of Section 2, this means that the plant
family P will consist of two models which we refer to by light
and heavy. Correspondingly, two different test inputs as discussed
previously will be applied to both plants. This results in a total
of four scenarios which must be adequately controlled. The main
idea here is that by ensuring similar system responses even under
extreme load variations, satisfactory closed-loop system behavior
can also be expected for intermediate conditions. If, however, fi-
nal closed-loop system response proves to be unsatisfactory for
a given intermediate load condition, one may alternatively restart
the design but this time taking the critical intermediate scenario
into account via an enriched plant family P . Analogously, con-
straints are imposed via (9) on the closed-loop spectral abscissas
with both light and heavy models to achieve stability robustness
requirements.

The feedforward gain F is not dependent on load conditions,
so a nominal model has to be defined in (16): the light model
has been selected to play this role. Notice, however, that the case
of an adaptive gain could also be easily handled: the only change
necessary would be to consider in (16) the transfers Gβφ accord-
ingly.
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Fig. 8. Root-locus analysis (‘x’: open-loop, ‘+’: closed-loop).
Improvement in comfort during turbulence is obtained by min-
imizing, in the flexible modes frequency range, the magnitude of
the transfer functions from the exogenous disturbance v to the
lateral acceleration measured at three distinct points of the fuse-
lage: front (ny1), center (ny6) and rear (ny11). Fig. 6 shows the
corresponding transfer magnitudes for the uncontrolled plant and
the corresponding achieved closed-loop frequency responses. Hor-
izontal dashed lines in Fig. 6 materialize bounds which have been
prescribed via γP in (8). These frequency-domain constraints have
been defined for both light and heavy models in order to improve
robustness with respect to load variations.

Finally, norm constraints (5) are imposed on the sensibility
function S = (I + G y K )−1, G y(s) being the open-loop transfer from
u to y, for both light and heavy models. In addition to increasing
the stability margin, these constraints allow to increase the damp-
ing ratios of the Dutch roll and the flexible modes. The largest
singular value of S is depicted in Fig. 7 for both light and heavy
loads. The dashed lines in Fig. 7 represent the corresponding de-
sired norm-bounds defined via dynamic weights W P in (5).

It is well known that pole-zero cancellations is a critical issue
when designing controllers with frequency-domain techniques. In-
corporating various load conditions in the synthesis is a simple
device to overcome cancellations of flexible modes. In the same
vein, the possibility to work with low-order controllers (order 10
as compared to the plant order of 68) is another favorable feature
to prevent pole/zero cancellations. The H2/PRLQG [19] criterion
used in [1] to increase the damping ratios of flexible modes is
another potential option which requires constructing a linear frac-
tional representation to model parametric uncertainty in flexible
modes. This route has not been followed here as LFT models sug-
gest using μ-synthesis as design tool with the difficulties discussed
above in terms of controller order and structure.
All computations and simulations have been performed within
the Matlab environment. The nonsmooth algorithm has been de-
veloped in Matlab language, with Fortran being used for some key
components like the CQP tangent program (12) in order to enhance
computational performance. One of the main assets of the pro-
posed design method is the possibility of integrating specifications
directly as they appear in the design specifications, as it signifi-
cantly facilitates tuning the specification weights. Indeed, only a
few optimization-weight adjustment loops have been necessary in
order to find a satisfactory solution. The nonsmooth algorithm re-
quired 432 iterations in 122 minutes on a 2.4 GHz Core 2 Quad
processor with 4 Gb RAM to find the final controller at the last
stage. Small execution times become important when repeated
tunings are necessary to achieve adequate design requirements, as
in the case with realistic design problems like the one considered
here.

Fig. 8 depicts the position of closed-loop poles in the complex
plane as the controller gain is varied from 0 to 100%. As required,
the Dutch roll damping ratio has been significantly increased, as
well as the damping ratios of the first flexible modes.1 Addition-
ally, no critical damping ratio degradation is observed.

Closed-loop system responses for six different load conditions
are depicted in Fig. 9, more precisely the rigid yaw angle β to-
gether with the roll rate p6, the yaw rate r6 and the roll angle φ6

measured at the center of the airplane. System responses meet the
flying quality requirements and robust performance has been ob-
tained. Additionally, the closed-loop system satisfies comfort and
damping ratio requirements for all load conditions.

1 The flexible mode at 0.146 ± 10.6 j is uncontrollable.
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Fig. 9. Closed-loop system responses under different load configurations.
5. Conclusion

This paper has focused on the design of a flight controller for
the lateral motion of a highly flexible aircraft subject to exoge-
nous disturbances and different load conditions. A reduced-order
feedback controller as well as a static feed-forward controller have
been designed simultaneously without recourse to risky order re-
duction schemes. The study case is a challenging application as
it involves a 68th-order plant, several operating conditions and
stringent time- and frequency-domain specifications in addition to
structural constraints on the controller. The proposed nonsmooth
optimization technique has been shown to hold promise in solv-
ing a set of concurrent constraints and in achieving turbulence
attenuation and robustness with respect to flexible mode uncer-
tainties.

The proposed approach is local in nature which means optimal-
ity certificates are local as opposed to the indisputable global cer-
tificate. As corroborated by the challenging application discussed
here, this is a minor weakness widely offset by the flexibility to di-
rectly cope with multiple specifications. Specifications are indeed
handled as stated in practice by designers thus bypassing conser-
vative embeddings as is usually the case with more traditional
techniques.
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