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1. Introduction. Proximity control for bundle methods has been known for a
long time, but its use is too often restricted to convex optimization, where its full
strength cannot be gauged. As we shall demonstrate, as soon as the management
of the proximity control parameter follows the lines of a trust region strategy, many
nonconvex and nonsmooth locally Lipschitz functions can be optimized. In contrast, in
the convex case, the proximity control parameter can usually be frozen, which suggests
that under convexity the full picture is not seen, and something of the essence is
missing to understand this mechanism. The method we discuss here will be developed
in the context of a specific application, because that is where the motivation of our
work arises from, but we will indicate in which way the method can be generalized to
much larger classes of functions.

The application we have in mind is optimizing the H∞-norm, which is structurally
of the form

f(x) = sup
ω∈[0,∞]

λ1 (F (x, ω)) ,(1)

where F : Rn × [0,∞] → Sm is an operator with values in the space Sm of m × m
symmetric or Hermitian matrices, equipped with the scalar product X •Y = Tr(XY ),
and where λ1 denotes the maximum eigenvalue function on Sm. We assume that F
is jointly continuous in the variable (x, ω) and of class C2 in the variable x, so that
F ′′(x, ω) is still jointly continuous. Here derivatives always refer to the variable x.
Our exposition will show how these hypotheses can easily be relaxed. The program
we wish to solve is

min
x∈Rn

f(x)(2)

where f has the form (1).
The approach presented here was originally developed in the context of eigen-

value optimization, and [8] gives an overview of the history. The bases for the present
extension to the semi-infinite case were laid in [4, 1, 56, 11, 5, 6]. Our method is
inspired by Helmberg and Rendl’s spectral bundle method [25], where large semidef-
inite programs arising as relaxations of quadratic integer programming problems are
developed. Helmberg and Rendl optimize a convex eigenvalue function of the form
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λ1(A(x)), where A : Rn → Sm is affine. This method has also antecedents in classical
bundling, like Lemaréchal [35, 36, 37, 39] or Kiwiel [32, 33, 31]. Extensions of the
convex case to include bound constraints are given in [23].

Optimization of the H∞-norm is an important application in feedback control
synthesis, which has been pioneered by E. Polak and co-workers. See for instance
[42, 43, 52] and the references given there. Our own approach to optimizing the H∞
norm is developed in [4, 1, 5].

The structure of the paper is as follows. After some preparation in sections 2 and
3, the core of the algorithm is explained in section 5. The algorithm is presented in
section 6. Convergence proofs for the inner and outer loop follow in sections 7 and 8.

2. Preparation. Observe that our objective function has the form

f(x) = max
ω∈[0,∞]

f(x, ω),(3)

where each f(x, ω) = λ1 (F (x, ω)) is a composite maximum eigenvalue function. Re-
call that the maximum eigenvalue function λ1 : Sm → R is the support function of
the compact convex set

C = {Z ∈ Sm : Z � 0,Tr(Z) = 1},

where � 0 means positive semidefinite. In other words,

f(x) = max
ω∈[0,∞]

max
Z∈C

Z • F (x, ω).(4)

Due to compactness of C and [0,∞], the suprema in (4), are attained. This suggests
introducing an approximation of f in a neighbourhood of x, which is

φ(y, x) = max
ω∈[0,∞]

λ1 (F (x, ω) + F ′(x, ω)(y − x))(5)

= max
ω∈[0,∞]

max
Z∈C

Z • (F (x, ω) + F ′(x, ω)(y − x))

where the derivative F ′(x, ω) refers to the variable x. As (5) uses a Taylor expansion
of the operator F in a neighbourhood of x, we expect φ(y, x) to be a good model of
f for y near x. This is confirmed by the following

Lemma 1. Let B ⊂ Rn be a bounded set. Then there exists a constant L > 0
such that

|f(y)− φ(y, x)| ≤ L‖y − x‖2

for all x, y ∈ B.
Proof. By Weil’s theorem we have

λm(E) ≤ λ1(A+ E)− λ1(A) ≤ λ1(E)

for all matrices A,E ∈ Sm. We apply this with A = F (y, ω) and A+ E = F (x, ω) +
F ′(x, ω)(y − x). Now observe that by hypothesis on F there exists L > 0 such that

sup
z∈B

sup
ω∈[0,∞]

‖F ′′(z, ω)‖ ≤ L.

This proves E = O(‖y−x‖2), uniformly over x, y ∈ B and uniformly over ω ∈ [0,∞].

2



The following is a specific property of the H∞-norm, which can be exploited
algorithmically. A proof can be found in [13] or [11].

Lemma 2. The set Ω(x) = {ω ∈ [0,∞] : f(x) = f(x, ω)} is either finite, or
Ω(x) = [0,∞]. We call Ω(x) the set of active frequencies.

For later use let us mention a different way to represent the convex model φ(y, x).
We introduce the notations

α(ω,Z) = Z • F (x, ω) ∈ R, g(ω,Z) = F ′(x, ω)?Z ∈ Rn.

and we let

G = co {(α(ω,Z), g(ω,Z)) : ω ∈ [0,∞], Z ∈ C} ,

where co(X) is the convex hull of X. Then we have the following equivalent repre-
sentation of the model:

φ(y, x) = max{α+ g>(y − x) : (α, g) ∈ G}.(6)

3. Tangent program. Suppose x is the current iterate of our algorithm to be
designed. In order to generate trial steps away from x, we will recursively construct
approximations φk(y, x) of φ(y, x) of increasing quality. Using the form (6) we will
choose suitable subsets Gk of the set G and define

φk(y, x) = max{α+ g>(y − x) : (α, g) ∈ Gk}.(7)

Clearly φk ≤ φ, and a suitable strategy will assure that the φk get closer to the model
φ as k increases. Once the model Gk is formed, a new trial step yk+1 is generated by
solving the tangent program

min
y∈Rn

φk(y, x) + δk

2 ‖y − x‖2,(8)

where δk > 0 is the proximity control parameter, which will be adjusted anew at each
step k. Here we make the implicit assumption that solving (8) is much easier than
solving the original problem.

Suppose the solution of (8) is yk+1. Following standard terminology in nonsmooth
optimization, yk+1 will be called a serious step if it is accepted to become the new
iterate x+. On the other hand, if yk+1 is not satisfactory and has to be rejected, it is
called a null step. In that case, a new model Gk+1 is built, using information from the
previous Gk, and integrating information provided by yk+1. The proximity parameter
is updated, δk → δk+1, and the tangent program is solved again. In other words, the
construction of the Gk in (7) is recursive.

In order to guarantee convergence of our method, we have isolated three basic
properties of the sets Gk. The most basic one is certainly that φk(x, x) = φ(x, x) =
f(x), and this is covered by the following:

Lemma 3. Let ω0 ∈ Ω(x) be any of the active frequencies at x. Choose a nor-
malized eigenvector e0 associated with the maximum eigenvalue f(x) = λ1(F (x, ω0))
of F (x, ω0), and let Z0 := e0e

>
0 ∈ C. If (α(ω0, Z0), g(ω0, Z0)) ∈ Gk, then φk(x, x) =

φ(x, x) = f(x). �

A second more sophisticated property of our model φk(·, x) is that it is improved
at each step by adding suitable affine support functions of φ(·, x), referred to as
cutting planes. Suppose a trial step yk+1 away from x is computed via (8), based on
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the current model φk(·, x) with approximation Gk and proximity control parameter
δk. If yk+1 fails because the progress in the function value is not satisfactory (null
step), we add an affine support function of φ(·, x) to the next model φk+1(·, x). This
will assure that the bad step yk+1 will be cut away at the next step k + 1, hopefully
paving the way for something better to come. What we have in mind is made precise
by the following:

Lemma 4. Let ωk+1 ∈ [0,∞] and Zk+1 ∈ C be where the maximum (5) for the
solution yk+1 of (8) is attained, that is,

φ(yk+1, x) = Zk+1 •
(
F (x, ωk+1) + F ′(x, ωk+1)(yk+1 − x)

)
.

If (α(ωk+1, Zk+1), g(ωk+1, Zk+1)) ∈ Gk+1, then we have φk+1(yk+1, x) = φ(yk+1, x).
We need yet another support function to improve the model, and this is usually

called the aggregation element. The idea is as follows. As we keep updating our
approximation and Gk, we expect our model φk(·, x) to get closer to f . The easiest
way to assure this would seem to let the sequence increase: Gk ⊂ Gk+1, so that
previous attempts (null steps) are perfectly memorized. However, this would quickly
lead to overload. To avoid this, we drive φk toward φ in a more sophisticated way by
a clever use of the information obtained from the null steps. As we have seen, adding
a cutting plane avoids the last unsuccessful step yk+1. This could be considered a
reality check, where φk is matched with φ. What is further needed is relating φk+1

to its past, φk, and this is what aggregation is about.
According to the definition of yk+1 as minimum of the tangent program (8) we

have 0 ∈ ∂φk(yk+1, x) + δk(yk+1 − x). The way φk is built (7) shows that this may
be written as

0 =
r∑

i=1

τ∗i g
∗
i + δk(yk+1 − x)(9)

for certain τ∗i ≥ 0 summing up to 1, and (α∗i , g
∗
i ) ∈ Gk. We let

α∗ =
r∑

i=1

τ∗i α
∗
i , g∗ =

r∑
i=1

τ∗i g
∗
i ,(10)

and keep (α∗, g∗) ∈ Gk+1. Notice that this pair belong indeed to G by convexity, and
because Gk ⊂ G.

Altogether, we have now isolated three properties, which our approximations Gk

have to satisfy:
(G1) Gk contains at least one pair (α(ω0, Z0), g(ω0, Z0)), where ω0 ∈ Ω(x) is an

active frequency, Z0 = e0e
>
0 for a normalized eigenvector e0 of F (x, ω0) asso-

ciated with λ1 (F (x, ω0)).
(G2) For every null step yk+1, Gk+1 contains a pair (α(ωk+1, Zk+1), g(ωk+1, Zk+1)),

where ωk+1, Zk+1 satisfy φ(yk+1, x) = Zk+1•[F (x, ωk+1)+F ′(x, ωk+1)(yk+1−
x)].

(G3) If δk(x − yk+1) ∈ ∂φk(yk+1, x) for a null step yk+1, then Gk+1 contains the
aggregate pair (α∗, g∗) satisfying (9) and (10).

As we shall see, these properties guarantee a weak form of convergence of our method.
Practical considerations, however, require richer sets Gk which in general are no longer
finitely generated. The way these are built is explained in the next section. To
conclude, we state the consequences of the three axioms in the following

Lemma 5. Axioms (G1) - (G3) guarantee that φk(x, x) = φ(x, x) = f(x), that
φk+1(yk+1, x) = φ(yk+1, x), and that φk+1(yk+1, x) ≥ φk(yk+1, x).
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4. Solving the tangent program. Our numerical experience shows that it is
useful to generate approximations Gk larger than what is required by the minimal
axioms (G1) - (G3). More precisely, we will keep the procedures in (G2) and (G3),
but improve on (G1).

Consider the case where the set Ω(x) of active frequencies is finite. We let Ωk be
a finite extension of Ω(x), enriched along the lines discussed in [4]. For every ω ∈ Ωk,
we allow all sets Zω ∈ C of the form

Zω = QωYωQ
>
ω , Yω � 0, Tr(Yω) = 1,(11)

where the columns of Qω are an orthonormal basis of some invariant subspace of
F (x, ω), containing the eigenspace associated with the maximum eigenvalue. This
assures axiom (G1), because ω0 ∈ Ωk at all times, and because e0 belongs to the span
of the columns of Qω0 . Similarly, to force (G2), for every null step yk+1 we simply
have to keep ωk+1 ∈ Ωk+1 and let the normalized eigenvector ek+1 of F (x, ωk+1) +
F ′(x, ωk+1)(yk+1 − x) associated with λ1 be in the span of the columns of Qωk+1 .
Then

Gk = {(α(ω,Zω), g(ω,Zω)) : ω ∈ Ωk, Yω � 0,Tr(Yω) = 1} ∪ {(α∗, g∗)},(12)

where (α∗, g∗) is the aggregate from the previous sweep k − 1. Notice that co(Gk) 6⊂
co(Gk+1) in general, because the active frequencies change at each step.

Let us now pass to the more practical aspect on how setting up and solving the
tangent program (8) at each step. Writing the tangent program in the form

min
y∈Rn

max
(α,g)∈co(Gk)

α+ g>(y − x) +
δk
2
‖y − x‖2

we can use Fenchel duality to swap the min and max operators. The then inner
infimum over y is unconstrained and can be computed explicitely, which leads to
y = x− δ−1

k g. Substituting this back gives the following form of the dual program

max
(α,g)∈co(Gk)

α− 1
2δk
‖g‖2.

This abstract program takes the following more concrete form if we use the sets Gk

in (12):

maximize
∑

ω∈Ωk

Yω •Q>ωF (x, ω)Qω + τα∗ − 1
2δk

∥∥∥∥∥ ∑
ω∈Ωk

F ′(x, ω)?
[
QωYωQ

>
ω

]
+ τg∗

∥∥∥∥∥
2

subject to τ ≥ 0, Yω � 0
τ +

∑
ω∈Ωk

Tr(Yω) = 1

The reader will recognize this as a semidefinite program. The return formula takes
the explicit form

yk+1 = x− 1
δk

(∑
ω∈Ωk

F ′(x, ω)?
[
QωY

∗
ωQ

>
ω )
]
+ τ∗g∗

)
,(13)

where (Y ∗, τ∗) is the dual optimal solution.
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Finally, if we assume that the multiplicity of each maximum eigenvalue is 1, we
may further simplify the dual program. This is most often the case in practice. Indeed,
in this case the matrices Zω = eωyωe

>
ω are of rank 1, so in particular yω = 1 is scalar.

In other words, we have a finite set of αω = e>ωF (x, ω)eω and gω = F ′(x, ω)?eωe
>
ω ,

ω ∈ Ωk, to which we add the aggregate element (α∗, g∗), and where ωk required for
the last cutting plane is included in Ωk to assure (G2). Arranging this finite set into
a sequence r = 1, . . . , Rk, we can write φk as

φk(y, x) = max
r=1,...,Rk

αr + g>r (y − x),

where Rk = |Ωk|+ 1.
Solving the tangent program at stage k can now be obtain by convex duality. We

have the primal form of (8):

min
y∈Rn

max
r=1,...,Rk

αr + g>r (y − x) + δk

2 ‖y − x‖2.

Standard convex duality shows that the concave dual of this is

maximize
Rk∑
r=1

τrαr −
1

2δk

∥∥∥∥∥
Rk∑
r=1

τrgr

∥∥∥∥∥
2

subject to
Rk∑
r=1

τr = 1

0 ≤ τr ≤ 1, r = 1, . . . , Rk

with unknown variable τ . The return formula to recover the solution of the primal
from the solution of the dual is

yk+1 = x− 1
δk

Rk∑
r=1

τ∗r gr,

where τ∗ is the optimal solution of the dual.

5. Management of the proximity parameter. At the core of our method
is the management of the proximity control parameter δk in (8). In order to decide
whether the solution yk+1 of (8) can be accepted as the new iterate x+, we compute
the control parameter

ρk =
f(x)− f(yk+1)

f(x)− φk(yk+1, x)
,

which relates our current model φk(·, x) to the truth f . If φk(·, x) is a good model of
f , we expect ρk ≈ 1. But we accept yk+1 already when ρk ≥ γ, (serious step), where
the reader might for instance imagine γ = .25. We say that the agreement between
f and φk is good when ρk ≥ Γ, where Γ = .75 makes sense, and we call it bad when
ρk < γ. So we accept steps which are not bad. Notice that bad includes in particular
those cases where ρk < 0. As the denominator in ρk is always > 0, ρk < 0 corresponds
to those cases where yk+1 is not even a descent step for f .

The question is what we should do when yk+1 is bad (null step). Here we compute
a second control quotient

ρ̃k =
f(x)− φ(yk+1, x)
f(x)− φk(yk+1, x)
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which compares the models φ and φk. Introduce a similar parameter γ̃ ∈ (0, 1), where
γ < γ̃, but typically only slightly. We say that agreement between φ and φk is bad
if ρ̃k < γ̃, and not bad otherwise. Our decision is now as follows. If ρk < γ and also
ρ̃k < γ̃, then we keep the proximity control parameter unchanged and rely on cutting
planes and aggregation, being reluctant to increase δk prematurely. Instead we rely
on driving φk closer to φ, hoping that this will also bring it closer to f . On the other
hand, when ρk < γ, but ρ̃k ≥ γ̃, then we are in a more delicate situation where φk is
already reasonably close to φ, yet our trial steps do not work because φ itself is far
from the truth f . Here it will not do to solely keep driving φk closer to φ. We also
need to bring φ(·, x) closer to f . This could only be achieved by tightening proximity
control, that is, by increasing δk. This is what is done in step 7 of the algorithm.
Notice however that even here we continue driving φk toward φ via cutting planes
and aggregation, so this process is never stopped.

Finally, if a serious step is accepted with ρk > Γ, we can take confidence in
our model, and this is where we relax proximity control by reducing δk for the next
sweep. This is arranged in step 4 of the algorithm. It may therefore happen that
by a succession of such successful steps δk approaches 0. This in indeed the ideal
case, which in a trust region context corresponds to the case where the trust region
constraint becomes inactive.

Even though it is well-known, it is useful to compare the proximity control model
(8) to the trust region approach

minimize φk(y, x)
subject to ‖y − x‖ ≤ tk

(14)

where tk is the trust region radius. Indeed, as is well-known (see e.g. [28, II, Prop.
2.2.3, p. 291]) solutions of (8) and (14) are in one-to-one correspondence in the sense
that if yk+1 solves (14) such that the constraint is active with Lagrange multiplier
λk > 0, then yk+1 solves (8) with δk = λk. Conversely, if yk+1 solves (8) with
proximity parameter δk, then it solves (14) with tk = ‖yk+1−x‖. It is now clear that
increasing δk corresponds to decreasing tk, and conversely.

Remark. In [12] and [41] the authors discuss tangent program (8) with δk‖x‖2
replaced by more general quadratic forms x>Qkx. While this is covered by our con-
vergence theory, the interesting point is that in the cited work the quadratic term is
rather interpreted as a substitute of the Hessian of the objective f . In consequence,
BFGS updates are proposed for Qk � 0. The idea behind this strategy is to speed up
convergence in the neighbourhood of the optimum. Since the authors consider convex
objectives only, they do not consider the trust region point of view, which is central
in our work. The question is then, are these two approaches contradictory? It turns
out that we can combine the two ideas by solving a tangent program of the form

min
y∈Rn

φk(y, x`) +
1
2
(y − x`)>Q`(y − x`) +

δk
2
‖y − x`‖2

where x` are the iterates of the outer loop, yk+1 those of the inner loop. We manage
δk as before, while Q` is fixed in the inner loop, and updated after every serious
step. The additional quadratic term can be integrated in the proofs of section 7.
For the convergence of the outer loop in section 8, additional hypotheses implying
boundedness of the sequence Q` and (Q`)−1 will be required, just as in the two cited
references.
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6. The algorithm. In this section we present our algorithm.

Proximity control algorithm for minx∈Rn maxω∈[0,∞] f(x, ω)

Parameters 0 < γ < γ̃ < Γ < 1.
0. Initialize outer loop. Choose initial x such that f(x) <∞.
1. Outer loop. Stop at the current x if 0 ∈ ∂f(x). Otherwise compute Ω(x)

and continue with inner loop.
2. Initialize inner loop. Choose initial approximation G1, which contains at

least (α(ω0, Z0), g(ω0, Z0)), where ω0 ∈ Ω(x) and e0 is normalized eigenvector
associated with λ1(F (x, ω0)). Possibly enrich G1 as in (12) via finite extension
Ω1 ⊃ Ω(x). Initialize δ1 > 0. If old memory element for δ is available, use it
to initialize δ1. Put inner loop counter k = 1.

3. Trial step. At inner loop counter k for given Gk and proximity parameter δk,
solve tangent program

min
y∈Rn

φk(y, x) +
δk
2
‖y − x‖2.

The solution is yk+1.
4. Test of progress. Check whether

ρk =
f(x)− f(yk+1)

f(x)− φk(yk+1, x)
≥ γ.

If this is the case, accept trial step yk+1 as the new iterate x+ (serious step).
Compute new memory element:

δ+ =

{
δk
2

if ρk > Γ

δk otherwise
and go back to step 1. If ρk < γ continue with step 5 (null step).

5. Cutting plane. Select a frequency ωk+1 where φ(yk+1, x) is active and pick
a normalized eigenvector ek+1 associated with the maximum eigenvalue of
F (x, ωk+1) + F ′(x, ωk+1)(yk+1 − x). Assure Ωk+1 ⊃ Ω(x) ∪ {ω0, ωk+1} and
that ek+1 is among the columns of Qωk+1 , e0 among the columns of Qω0 .
Possibly enrich Gk+1 as in (12) by adding more frequencies to Ωk+1.

6. Aggregation. Compute aggregate pair (α∗, g∗) via (9), (10) based on yk+1,
and keep (α∗, g∗) ∈ Gk+1.

7. Proximity control. Compute control parameter

ρ̃k =
f(x)− φ(yk+1, x)
f(x)− φk(yk+1, x)

.

Update proximity parameter δk as

δk+1 =
{
δk, if ρ̃k < γ̃
2δk if ρ̃k ≥ γ̃

Increase inner loop counter k and go back to step 3.

7. Finiteness of inner loop. We have to show that the inner loop terminates
after a finite number of updates k with a new iterate yk+1 = x+. This will be proved
in the next two Lemmas.

Lemma 6. Suppose the inner loop creates an infinite sequence yk+1 of null steps
with ρk < γ. Then there must be an instant k0 such that the control parameter ρ̃k

satisfies ρ̃k < γ̃ for all k ≥ k0.
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Proof. Indeed, by assumption none of the trial steps yk+1 passes the acceptance
test in step 4, so ρk < γ at all times k. Suppose now that ρ̃k ≥ γ̃ for an infinity of
times k. Then according to step 7 the proximity parameter δk is increased infinitely
often, meaning δk →∞.

Using the fact that yk+1 is the optimal solution of the tangent program gives
0 ∈ ∂φk(yk+1, x) + δk(yk+1 − x). Using convexity of φk, we deduce that

−δk(yk+1 − x)>(x− yk+1) ≤ φk(x, x)− φk(yk+1, x)

Using φk(x, x) = f(x), assured by keeping ω0 ∈ Ωk and Z0 ∈ Ck at all times (Lemma
3), we deduce

δk‖yk+1 − x‖2

f(x)− φk(yk+1, x)
≤ 1.(15)

Now we expand

ρ̃k = ρk +
f(yk+1)− φ(yk+1, x)
f(x)− φk(yk+1, x)

≤ ρk +
L‖yk+1 − x‖2

f(x)− φk(yk+1, x)
(using Lemma 1)

≤ ρk +
L

δk
(using (15))

Since L/δk → 0, we have lim sup ρ̃k ≤ lim sup ρk ≤ γ < γ̃, which contradicts ρ̃k ≥ γ̃
for infinitely many k.

So far we know that if the inner loop turns forever, this implies that ρk < γ and
ρ̃k < γ̃ from some counter k0 onwards. We show that this cannot happen, by proving
the following

Lemma 7. Suppose ρk < γ and ρ̃k < γ̃ for all k ≥ k0. Then 0 ∈ ∂f(x).
Proof. 1) Step 7 of the algorithm tells us that we are in the case where the

proximity parameter is no longer increased, and remains therefore constant. Let us
say δ := δk for all k ≥ k0.

2) For later use, let us introduce the function

ψk(y, x) = φk(y, x) + δ
2‖y − x‖2.

As we have seen already, the necessary optimality condition for the tangent program
imply

δ‖yk+1 − x‖2 ≤ f(x)− φk(yk+1, x).

Now remember that in step 6 of the algorithm, and according to axiom (G3), we have
kept the aggregate pair (α∗, g∗) ∈ Gk+1. By its definition (9), (10) we have

φk(yk+1, x) = α∗ + g∗>(yk+1 − x).

Defining a new function

ψ∗k(y, x) := α∗ + g∗>(y − x) + δ
2‖y − x‖2

we therefore have

ψ∗k(yk+1, x) = ψk(yk+1, x) and ψ∗k(y, x) ≤ ψk+1(y, x),(16)
9



the latter because (α∗, g∗) ∈ Gk+1, so that this pair contributes to the new models
φk+1, ψk+1. Notice that ψ∗k is a quadratic function. Expanding it at yk+1, therefore
gives

ψ∗k(y, x) = ψ∗k(yk+1, x) +∇ψ∗k(yk+1, x)(y − yk+1) + δ
2 (y − yk+1)>(y − yk+1),

where ∇ψ∗k(y, x) = g∗ + δ(y − x) and ∇2ψ∗k(y, x) = δI. We now prove the formula

ψ∗k(y, x) = ψ∗k(yk+1, x) + δ
2‖y − yk+1‖2.(17)

Indeed, we have but to show that the first-order term in the above Taylor expansion
vanishes at yk+1. But this term is

∇ψ∗k(yk+1, x)>(y − yk+1) =

=
[
g∗ + δ(yk+1 − x)

]>
(y − yk+1)

= g∗>(y − yk+1) + δ(yk+1 − x)>(y − yk+1)
= δ(x− yk+1)>(y − yk+1) + δ(yk+1 − x)>(y − yk+1) (using (9),(10))
= 0,

and so formula (17) is established. Therefore

ψk(yk+1, x) ≤ ψ∗k(yk+1, x) + δ
2‖y

k+2 − yk+1‖2 (using (16) left)

= ψ∗k(yk+2, x) (using (17))
≤ ψk+1(yk+2, x) (using (16) right)
≤ ψk+1(x, x) (yk+2 is minimizer of ψk+1)
= f(x).

This proves that the sequence ψk(yk+1, x) is monotonically increasing and bounded
above by f(x), so it converges to some limit ψ∗ ≤ f(x). Since the term δ

2‖y
k+2 −

yk+1‖2 is squeezed in between two terms with the same limit ψ∗, we deduce δ
2‖y

k+2−
yk+1‖2 → 0. Since the sequence yk is bounded, namely,

‖yk+1‖ ≤ ‖x‖+ δ−1
1 max

ω∈[0,∞]
‖F ′(x, ω)?‖,

by formula (13), we deduce using a geometric argument that

‖yk+2 − x‖2 − ‖yk+1 − x‖2 → 0.(18)

Recalling the relation φk(y, x) = ψk(y, x)− δ
2‖y − x‖2, we finally obtain

φk+1(yk+2, x)− φk(yk+1, x)
= ψk+1(yk+2, x)− ψk(yk+1, x)− δ

2‖y
k+2 − x‖2 + δ

2‖y
k+1 − x‖2 → 0,(19)

which converges to 0 due to convergence of ψk(yk+1, x) proved above, and property
(18).

3) Let ek+1 be the normalized eigenvector associated with the maximum eigen-
value of F (x, ωk+1)+F ′(x, ωk+1)(yk+1−x), which we pick in step 5 of the algorithm.
Then gk = F ′(x, ωk+1)∗ek+1e

>
k+1 is a subgradient of φk+1(·, x) at yk+1. That means

g>k (y − yk+1) ≤ φk+1(y, x)− φk+1(yk+1, x).
10



Using φk+1(yk+1, x) = φ(yk+1, x) from Lemma 5 therefore implies

φ(yk+1, x) + g>k (y − yk+1) ≤ φk+1(y, x).(20)

Now observe that

0 ≤ φ(yk+1, x)− φk(yk+1, x)
= φ(yk+1, x) + g>k (yk+2 − yk+1)− φk(yk+1, x)− g>k (yk+2 − yk+1)
≤ φk+1(yk+2, x)− φk(yk+1, x) + ‖gk‖‖yk+2 − yk+1‖ (using (20))

and this term tends to 0 because of (19), boundedness of gk, and because yk+1 −
yk+2 → 0. We conclude that

φ(yk+1, x)− φk(yk+1, x) → 0.(21)

4) We now show that φk(yk+1, x) → f(x), and therefore also φ(yk+1, x) → f(x).
Suppose on the contrary that η := f(x) − lim supφk(yk+1, x) > 0. Choose 0 < θ <
(1− γ̃)η. It follows from (21) that there exists k1 ≥ k0 such that

φ(yk+1, x)− θ ≤ φk(yk+1, x)

for all k ≥ k1. Using ρ̃k < γ̃ for all k ≥ k1 gives

γ̃(φk(yk+1, x)− f(x)) ≤ φ(yk+1, x)− f(x)
≤ φk(yk+1, x) + θ − f(x).

Passing to the limit implies γ̃η ≥ η − θ, contradicting the choice of θ. This proves
η = 0.

5) Having shown φ(yk+1, x) → f(x), we now argue that we must have yk+1 → x.
This follows from the definition of yk+1, because

ψk(yk+1, x) = φk(yk+1, x) + δ
2‖y

k+1 − x‖2 ≤ ψk(x, x) = f(x).

Since φk(yk+1, x) → f(x) by part 4), we have indeed yk+1 → x. To finish the proof,
observe that 0 ∈ ∂ψk(yk+1, x) implies

δ(x− yk+1)>(y − yk+1) ≤ φk(y, x) − φk(yk+1, x)
≤ φ(y, x)− φk(yk+1, x)

for every y. Passing to the limit implies

0 ≤ φ(y, x)− φ(x, x),

because the left hand side converges to 0 in vue of yk+1 → x. Since ∂φ(x, x) = ∂f(x),
we are done.

8. Convergence of outer loop. All that remains to do now is piece things
together and prove global convergence of our method. We have the following

Theorem 8. Suppose x1 ∈ Rn is such that {x ∈ Rn : f(x) ≤ f(x1)} is compact.
Then every accumulation point of the sequence xj of serious iterates generated by our
algorithm is a critical point of f .

Proof. Let xj be the sequence of serious steps. We have to show that 0 ∈ ∂f(x̄)
for every accumulation point x̄ of xj . Suppose at the jth stage of the outer loop the

11



inner loop accepts a serious step at k = kj . Then xj+1 = ykj+1. By the definition of
yk+1 as minimizer of the tangent program (8) this means

δkj

(
xj − xj+1

)
∈ ∂φkj

(xj+1, xj).

By convexity this can be re-written as

δkj

(
xj − xj+1

)> (
xj − xj+1

)
≤ φkj

(xj , xj)− φ(xj+1, xj) = f(xj)− φkj
(xj+1, xj),

the equality φkj (x
j , xj) = f(xj) being true by Lemma 3. Since xj+1 = ykj+1 was

accepted in step 4 of the algorithm, we have

f(xj)− φkj (x
j+1, xj) ≤ γ−1

(
f(xj)− f(xj+1

)
.

Altogether

δkj
‖xj − xj+1‖2 ≤ γ−1

(
f(xj)− f(xj+1)

)
.

Summing over j = 1, . . . , J − 1 gives

J−1∑
j=1

δkj
‖xj − xj+1‖2 ≤ γ−1

J−1∑
j=1

f(xj)− f(xj+1) = γ−1
(
f(x1)− f(xJ)

)
.

By hypothesis, f is bounded below on the set of iterates, because the algorithm is of
descent type on the serious steps. This implies convergence of the series

∞∑
j=1

δkj
‖xj − xj+1‖2 <∞.

In particular δkj
‖xj − xj+1‖2 → 0. We claim now that gj = δkj

(
xj − xj+1

)
→ 0.

Suppose on the contrary that there exists an infinite subsequence j ∈ N of N
where gj = δkj

‖xj − xj+1‖ ≥ η > 0. Due to summability of δkj
‖xj − xj+1‖2 we must

have xj − xj+1 → 0 in that case. That in turn is only possible when δkj → ∞. We
now construct another infinite subsequence N ′ of N such that δkj →∞, j ∈ N ′, and
such that the doubling rule to increase δk in step 7 of the inner loop of the algorithm
was applied at least once before xj+1 = ykj+1 was accepted. To construct N ′, we
associate with every j ∈ N the last j′ ≤ j where the δ-parameter was doubled while
the inner loop was turning, and we let N ′ consists of all these j′, j ∈ N . It is possible
that j′ = j, but in general we can only assure that

2δkj′−1
≤ δkj′ and δkj′ ≥ δkj′+1

≥ · · · ≥ δkj
,

so that N ′ is not necessarily a subset of N . What counts is that N ′ is infinite, that
δkj

→∞, (j ∈ N ′), and that the doubling rule was applied for each j ∈ N ′.
Let us say that at outer loop counter j ∈ N ′ it was applied for the last time in

the inner loop at δkj−νj for some νj ≥ 1. That is, we have δkj−νj+1 = 2δkj−νj , while
the δ parameter was frozen during the remaining steps before acceptance in the inner
loop, i.e.,

δkj = δkj−1 = · · · = δkj−νj+1 = 2δkj−νj .(22)
12



Recall from step 7 of the algorithm that we have ρk < γ and ρ̃k ≥ γ̃ for those k where
the step was not accepted and the doubling rule was applied. That is,

ρkj−νj
=

f(xj)− f(ykj−νj+1)
f(xj)− φkj−νj

(ykj−νj+1, xj)
< γ

and

ρ̃kj−νj
=

f(xj)− φ(ykj−νj+1, xj)
f(xj)− φkj−νj

(ykj−νj+1, xj)
≥ γ̃.

By (22) we now have

1
2δkj

(
xj − ykj−νj+1

)
∈ ∂φkj−νj

(ykj−νj+1, xj).

Using φkj−νj
(xj , xj) = f(xj) and the subgradient inequality for φkj−νj

(·, xj) at
ykj−νj+1 gives

1
2δkj

(
xj − ykj−νj+1

)> (
xj − ykj−νj+1

)
≤ φkj−νj

(xj , xj)− φkj−νj
(ykj−νj+1, xj)

= f(xj)− φkj−νj (y
kj−νj+1, xj).

This could also be written as

δkj
‖xj − ykj−νj+1‖2

f(xj)− φkj−νj
(ykj−νj+1, xj)

≤ 2.(23)

Substituting (23) into the expression ρ̃kj−νj
gives

ρ̃kj−νj
= ρkj−νj

+
f(ykj−νj+1)− φ(ykj−νj+1, xj)
f(xj)− φkj−νj

(ykj−νj+1, xj)

≤ ρkj−νj +
L‖xj − ykj−νj+1‖2

f(xj)− φkj−νj
(ykj−νj+1, xj)

≤ ρkj−νj
+

2L
δkj

(using (23)).

Since ρkj−νj < γ and L/2δkj → 0, (j ∈ N ′), we have lim supj∈N ′ ρ̃kj−νj ≤ lim supj∈N ′ ρkj−νj ≤
γ, contradicting ρ̃kj−νj

≥ γ̃ > γ for all j ∈ N ′.
Let us pick a convergent subsequence xj → x̄, j ∈ N . We wish to prove 0 ∈ ∂f(x̄).

Observe that the sequence xj+1 is also bounded, so passing to a subsequence of N if
necessary, we may assume xj+1 → x̃, j ∈ N . In general it could happen that x̃ 6= x̄.
Only when δkj , j ∈ N , are bounded away from 0 can we conclude that xj+1−xj → 0.

Now as gj = δkj (x
j −xj+1) is a subgradient of φkj (·, xj) at ykj+1 = xj+1 we have

g>j h ≤ φkj
(xj+1 + h, xj)− φkj

(xj+1, xj)

≤ φ(xj+1 + h, xj)− φkj
(xj+1, xj) (using φkj

≤ φ)

for every test vector h. Now we use the fact that ykj+1 = xj+1 was accepted in step
4 of the algorithm. That means

γ−1
(
f(xj)− f(xj+1)

)
≥ f(xj)− φkj

(xj+1, xj).
13



Combining these two estimates gives

g>j h ≤ φ(xj+1 + h, xj)− f(xj) + f(xj)− φkj
(xj+1, xj)

≤ φ(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
.

Passing to the limit (using gj → 0, xj+1 → x̃, xj → x̄, f(x̄) = φ(x̄; x̄), and f(xj) −
f(xj+1) → 0 in the order named) shows

0 ≤ φ(x̃+ h; x̄)− φ(x̄; x̄)

for every h. This being true for every h, we can fix h′ and choose h = x̄ − x̃ + h′,
which then gives

0 ≤ φ(x̄+ h′; x̄)− φ(x̄; x̄).

As this is true for every h′, we have 0 ∈ ∂φ(·; x̄)(x̄), and hence also 0 ∈ ∂f(x̄).
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