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Abstract

In this paper we present an interior point method for large scale Signorini
elastic contact problems. We study the case of an elastic body in frictionless
contact with a rigid foundation. Primal and primal-dual algorithms are de-
veloped to solve the quadratic optimization problem arising in the variational
formulation. Our computational study confirms the efficiency of the interior
point methods for this class of optimization problems.

1 Introduction

In this paper we are interested in numerical resolution of contact problems in linear

elasticity. Such problems arise in mechanical engineering, when an elastic body is in

frictionless contact with a rigid foundation. Due to their importance for applications,

there exists a considerable quantity of work dedicated to the numerical resolution of

contact problems [3, 4, 12, 14, 1, 24, 23]. The various aspects included approximations

by finite elements and the resolution of optimization problem. The use of increasingly

finer meshes generates problems with a large number of variables. That is why

complex techniques like domain decomposition [23, 18], multigrid methods [17] are

widely used in computational mechanics.

The quadratic penalty method and projection method are to date the most

popular optimization techniques for contact problems. The augmented Lagrangian

method is often used. And even the Uzawa algorithm is still widely used. Domain

decomposition techniques allow computations in a parallel environment. Krause and

Wohlmuth [18] have tested an algorithm using an iterative Gauss-Seidel solver for
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nonlinear contact problems. Successive Over relaxation (SOR) methods with pro-

jection and Gauss-Seidel [24] are also used. Algorithms based on these methods

converge very slowly when the mesh gets fine. Penalty methods generate zigzagging

which fails convergence. To remedy this phenomenon, one has to take recourse to ac-

tive constraint strategies. Last but not least, in all these approaches ill-conditioning

occurs. This is caused by the choice of the penalty parameter. Preconditioning are

proposed to deal with this insufficiency.

The application of optimization techniques in contact mechanics has been the

object of many studies [1, 2, 14]. The optimization problem arising in frictionless

contact is a convex program with inequality constraints. Interior point methods

have proved efficient for this class of problems. Some authors have proven polyno-

mial convergence [19, 10, 22]. Here we propose an interior point method which uses

a truncated Newton technique. This approach is particularly suited for large scale

problems, arising from very fine meshes. We prove global and local quadratic conver-

gence. One of the first applications of interior point methods in mechanical contact

was in shape optimization [2]. The interior approach maintains strict feasibility at

each iteration, which is convenient since it guarantees non penetration. Another

advantage of interior point methods is that active and inactive constraints need not

be distinguished. Despite these advantages, interior point methods are still very lit-

tle used for applications in mechanical contact. Kloosterman et al. [16] combined

barrier methods with the augmented Lagrangian technique. Christensen et al. [6]

compare potential reduction interior point method with nonsmooth Newton method

in frictional contact.

This article is organized in the following way: In the first section we present the

mathematical formulation of contact problem without friction. We give a classical

theorem on existence and unicity of solution for the equivalent variational problem.

We introduce also a primal and primal-dual method for the resolution of the opti-

mization problem. Section 3 describes the algorithmic resolution by interior point

techniques after discretization of the problem. Finally, section 4 provides numerical

results.

The following notation is used throughout the paper. The scalar product on

L2(E) is denoted by 〈·, ·〉E. Rp, Rp
− denote the p-dimensional Euclidean space and

the negative orthant of Rp, respectively. The set of all p×p matrices with real entries

is denoted by Rp×p. The i-th component of a vector u ∈ Rp is denoted by ui. The

diagonal matrix corresponding to a vector u is denoted by diag(u) or U and the

vector whose i-th component is 1/ui is denoted by u−1 or 1/u. Given u and v in

Rp, u ≤ v means ui ≤ vi for every i = 1, . . . , p, uv and u/v denote the vector whose

i-th component is uivi and ui/vi respectively. For a vector u, the Euclidean norm is

denoted by ‖ · ‖ and uT denotes the transpose vector. We denote the vector of all

ones by e. Its dimension is always clear from the context.
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Figure 1: Elastic body coming to contact with a rigid foundation

2 Contact problem and variational formulation

Let Ω be a bounded domain of Rd, d = 2 or 3 with boundary Γ. The body is

unilaterally supported by a frictionless rigid foundation (see figure 1). The boundary

Γ is splited into three disjoint parts, ΓF , ΓD and Γc. The portion where the body

force f and the surface traction p are applied is ΓF . The body is fixed along ΓD

and the contact surface is Γc. We suppose that ΓD has positive surface measure. A

displacement u is admissible if the following condition is satisfied

un − g ≤ 0 on Γc, (1)

where g is the initial gap and n denotes the outward unit vector normal to Ω on Γc.

This is the non penetration condition. We denote by ε(u) = 1
2
(∇u +∇>u) the lin-

earized strain tensor and by σ(u) the stress tensor. The mathematical formulation of

the contact problem is a free boundary problem also called Signorini’s problem: Find

a displacement u in Ω, solution of the following system of equalities and inequalities

div σ(u) + f = 0 in Ω, (2a)

σ(u) · n = p on ΓF , (2b)

u = 0 on ΓD, (2c)

σt = 0 on Γc, (2d)

〈un − g, σn〉Γc = 0 (2e)

un − g

σn

≤ 0

≤ 0

}
on Γc. (2f)

where σt, σn denote the tangential and normal component of the stress vector on Γc

respectively. We have σ(u) = Aε(u), where A is the Hooke elasticity tensor, having
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classical symmetry and coercivity properties. Equation (2a) is the equilibrium con-

dition, (2c) and (2d) are boundary conditions and (2e - f) are the unilateral contact

condition. A thorough study of existence and uniqueness of solutions for the Signorini

problem is given in Fichera [13]. Kikuchi and Oden [14] use convex optimization

theory to solve the problem and describe numerical computations by finite element

approximations. A variational formulation of (2) is considered by Kinderlehrer and

Stampacchia in their book [15]. In fact, the Stampacchia’s minimum theorem may

be applied to the Signorini problem. Before recalling these results, let us give some

useful notations and definitions. We define the Sobolev space

V = {v ∈ H1(Ω)d : v = 0 on ΓD},

with its usual norm ‖ · ‖V . The set of admissible displacements is

K = {v ∈ V : vn − g ≤ 0 on Γc},

which is a closed convex subset of V . Let us denote by a and f the following bilinear

and linear forms

a(u, v) =

∫

Ω

σ(u) : ε(v) dx ∀u, v ∈ V,

f(v) =

∫

Ω

fv dx +

∫

ΓF

pv ds ∀v ∈ V.

Observe that f : V → R is a continuous linear functional with respect to ‖ · ‖V .

Similarly, the bilinear form a : V × V → R is continuous, symmetric, and V -elliptic

provided that ΓD has non empty interior in ∂Ω and the usual coercivity property of

Hooke tensor due to Korn’s inequality. We define the energy functional by

J(u) =
1

2
a(u, u)− f(u). (3)

The contact problem is equivalent to the following variational inequality: find u ∈ K

such that

a(u, v − u) ≥ f(v − u) for all v ∈ K. (4)

Now we are in the position to recall Stampacchia’s minimum theorem.

Theorem 2.1 (Stampacchia’s minimum theorem [15]). Let a(u, v) be a con-

tinuous and V -elliptic bilinear form, K closed convex and non empty. If f ∈ V ∗

then there exists a unique u ∈ K such that

a(u, v − u) ≥ f(v − u) for all v ∈ K.
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Moreover, if the bilinear form is symmetric, then u is characterized as being the

unique minimizer of the energy functional:

J(u) = min
v∈K

J(v).

This theorem shows that a solution to the contact problem exists and is unique.

It also establishes a relation between the Signorini problem and convex optimization

theory. Thus we consider the following optimization problem :

min
v∈K

J(v). (5)

An approximate solution can be found using suitable optimization algorithm. An

approach based on projection method and penalty method is proposed in [23].

Carstensen et al [4] handle inequality constraints with a quadratic penalty function

defined by

ϕε(v) =
1

2ε

∫

Γc

|v+
n |2 ds,

where ε is a penalty parameter and vn
+ = max(0, v · nc − g). The constrained

problem is transformed into an unconstrained penalty problem

min
v∈V

Jε(v) = J(v) + ϕε(v). (6)

Invoking the optimality conditions for this optimization problem we obtain an equiv-

alent cast: find uε solution to the following equation

a(u, v) + c+
ε (u, v) = f(v) for all v ∈ V, (7)

where c+
ε (u, v) =

1

ε
〈un

+, vn〉Γc . A solution to (7) may be computed by a homotopy

approach for the family of problems depending on the parameter ε tending to 0, and

where each individual problem is solved by Newton’s method. However, ill condition-

ing appears in the linear systems when computing the Newton step. In the projection

method, the projection on K is computationally very expensive, especially when the

problem dimension is large. Other approaches based on the augmented Lagrangian

have been proposed, see for instance [5]. This strategy combines the penalty method

with Lagrange multipliers method. The algorithm has a main iteration including

an inner step, in which the Lagrange multiplier is kept constant or supposed to be

known. In the main or external iteration, the multiplier is updated. This method

is the well known Uzawa algorithm. Non differentiable methods like generalized

Newton are also used [1].
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2.1 Barrier methods

The use of barrier methods in contact mechanics is relatively recent [16]. This ap-

proach handles the constraints using a logarithmic barrier function. The problem

becomes

min
v∈V

J(v)− ε

∫

Γc

log(−c(v)) ds (8)

and a solution u of (8) is characterized by

a(u, v)− 〈λ(u), vn〉Γc = f(v) ∀v ∈ V

where λ(u) = ε/c(u) is the Lagrange multiplier estimate. This equation is nonlinear

and solved by Newton’s method. The barrier function is defined as

ψε(v) = −ε

∫

Γc

log(−c(v)) ds

Our present approach uses this formulation, also called a primal method. There are

other proposals for the choice of the barrier function. For example in [16] the authors

use

ψε(v) = −ε

∫

Γc

λ̄ log

(
1 +

c+(v)

ε

)
ds

where λ̄ is a fixed Lagrange multiplier estimate. The function Jε(v) = J(v) + ψε(v)

is continuous convex and twice differentiable. The solution of (8) converges strongly

to the solution of the Signorini problem as ε tends to zero. Methods with logarithmic

penalty terms require a feasible starting point, which may sometimes pose a problem.

The cost to find such a feasible iterate may exceed that of the entire optimization

process. To circumvent this difficulty, one may add slack variables and modify the

constraints. The optimization problem then becomes

min
v∈V, q∈L2(Γc)

J(v) + ϕ(q)

vn − g + q = 0
(9)

where ϕ is defined by

ϕ(q) =

{
0, if q ≥ 0 a.e. Γc;

+∞, otherwise.

The new logarithmic barrier function is

ψε(q) = −ε

∫

Γc

log(q) ds
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Thus the associated barrier problem is

min
v∈V, q∈L2(Γc)

J(v) + ψε(q)

vn − g + q = 0

The drawback of this approach is that it increases the problem size. Nonetheless, for

the contact problems considered here this technique is suited because the number of

slack variables equals the number of contact nodes, which is one order of magnitude

below the total number of decision variables. As a result, we can say that the addition

of slack variables has little incidence on the problem size. Let L be the Lagrangian

of the constrained optimization problem (5),

L(u, λ) = J(u)− 〈un − g, λ〉Γc

We know that u solves (5) if there exists λ ∈ L∞(Γc) such that

a(u, v)− 〈λ, vn〉Γc = f(v) ∀v ∈ V (10a)

〈un − g, λ〉Γc = 0

un − g ≤ 0

λ ≤ 0



 on Γc (10b)

This system expresses the first order optimal conditions or Karush Kuhn Tucker

conditions. We say that (u, λ) is a Karush Kuhn Tucker (KTT) point when it

satisfies (10). Since J(u) is strictly convex on K, the KKT conditions are necessary

and sufficient for optimality. Thus if (u, λ) is a KKT point, then u satisfies (5). We

remark a similarity between (10b) and the last term (2e) in the strong formulation

of Signorini’s problem . A straightforward result using Green’s formula states that

λ is the normal component of the stress vector on Γc, at least in a week sense. Thus

we can say that the present method is a mixed method. The nonlinear system (10)

is equivalent to

a(u, v)− 〈λ, vn〉Γc = f(v) ∀v ∈ V (11a)

(un − g)λ = 0

un − g ≤ 0

λ ≤ 0



 on Γc (11b)
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The primal-dual interior point method consists in solving the following perturbed

Karush Kuhn Tucker system

a(u, v)− 〈vn, λ〉Γc = f(v) ∀v ∈ V (12a)

(un − g)λ = ε

un − g ≤ 0

λ ≤ 0



 on Γc (12b)

Using a sequence of decreasing values for ε towards zero, the solution of this nonlinear

system converges to (u, λ) [26]. Where u is the solution of (4) and λ the optimal

Lagrange multiplier.

The success of the interior point methods began in linear programming. Early

work proposing extensions to convex programming was published by Nestorov and

Nemirovskii [22]. Polynomiality of the interior point algorithm was established in

[22, 19]. Our method to solve (2) is based on an interior point algorithm for the

discretized contact problem by finite element approximation.

3 Description of the interior point method

We consider a standard finite element method to discretize the convex quadratic

optimization problem arising in the variational formulation. Error estimation is not

addressed. This question is widely treated in the literature, see for instance [3, 4] and

the references there. Let {Σh}h>0 be a family of triangulations of Ω, Vh the standard

conforming linear finite element space over Σh and Ih : C(Ω̄h) → Vh the standard

linear Lagrange interpolant. Denote by Vh and Kh the usual finite element subspaces.

The approximations of the bilinear, the linear form and the energy functional are

respectively given by ah, fh and Jh. The discrete problem is formulated as follows

minimize Jh(v) =
1

2
ah(v, v)− fh(v)

subject to v ∈ Kh

(13)

Let {pk, k = 1, . . . S} be the nodes of Σh and {ϕk, k = 1, . . . S} the nodal basis of

Vh. Considering the properties of the nodal basis a straightforward calculation leads

to the complete discretized problem

minimize Jh(v) =
1

2
vT Qv − bT v

subject to c(v) = Av ≤ d, v ∈ Rn
(14)
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where Jh : Rn −→ R, Q is a symmetric positive definite matrix of order n, A ∈ Rm×n,

b ∈ Rn and d ∈ Rm. We always denote by K = {v ∈ Rn : Av − d ≤ 0} the set of

admissible displacements. The relative interior of K is denoted by ri(K). Several

studies on interior point methods in quadratic programming are available [9, 22, 19].

3.1 Primal algorithm

The main idea of interior point methods is to change the constrained problem into

a succession of unconstrained problems using a logarithmic barrier penalty function.

This was initially introduced by Fiacco and McCormick [10]. Let µ be a positive

parameter. We define the barrier problem as follows

min
v∈R

ψ(v, µ) = Jh(v)− µ

m∑
i=1

log((d− Av)i) (15)

We define Λ = diag(λi, i = 1, · · · ,m), C = diag(ci(x), i = 1, · · · ,m) and e =

(1, . . . 1) a vector of Rm which has all is components equals to one. The gradient and

the Hessian of the barrier objectif function are given by

∇ψ(v, µ) = Qv − b− AT λ, λ = µ/c(v) (16)

H = ∇2ψ(v, µ) = Q + AT ΛC−1A (17)

Let v(µ) be an optimal solution . We define λ(µ) ∈ Rn as

λ(µ) = µ/c(v(µ)) (18)

and observe that (v(µ), λ(µ)) satisfies the perturbed Karush-Kuhn-Tucker system

Qv − b− AT λ = 0, (19a)

λi(Av − d)i = µ, i = 1, · · · ,m (19b)

Av − d, λ ≤ 0. (19c)

In fact, as µ → 0+, we expect (v(µ), λ(µ)) to converge to a Karush-Kuhn-Tucker

point (v∗, λ∗) for (14). Indeed, (v∗, λ∗) is expected to satisfy the first order optimality

condition. This is the primal approach with ψ(v, µ) as merit function. In the primal-

dual approach, v and λ are treated as independent variables, and Newton’s method

is applied to the perturbed system with merit function φ(v, λ, µ) given by

φ(v, λ, µ) =
1

2
‖F (v, λ, µ)‖2
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where F : Rn+m −→ Rn+m is defined by

F (v, λ, µ) =

(
Qv − b− AT λ

CΛe− µe

)
(20)

We denote by (v(µ), λ(µ)) the solution of the primal-dual problem (19), (v(µ))µ>0

defines the primal central path and (v(µ), λ(µ))µ>0 the primal dual central path. By

reducing µ gradually the central path leads us towards the solution of the primal

problem or a KKT point, solution of the primal dual problem.

Algorithm 3.1 (Primal interior point algorithm).

Constants ε∗, ζ∗ > 0 , δ ∈ (0, 1), γ ∈ (0, 1) and τ ∈ (0, 1) are given

Choose vo ∈ ri(K) and ζo, µo > 0

Loop. Put counter k = 0.

Initialize inner loop with ṽ0 = vk.

Inner loop. Put counter ` = 0.

Solve H∆ṽ` = −∇ψ(ṽ`, µk).

Use backtracking linesearch to compute σ ∈ (0, 1) such that

ṽ` + σ∆ṽ` ∈ ri(K) and ψ(ṽ` + σ∆ṽ`, µk)− ψ(ṽ`, µk) ≤ τσ∆ṽT
` ∇ψ(ṽ`, µk)

Update ṽ`+1 = ṽ` + σ∆ṽ`

if(‖∇ψ(ṽ`+1, µk)‖ < ζk) then stop inner loop

continue inner loop increase counter `.

if (‖∇ψ(ṽ`+1, µk)‖ < ζ∗ and µk < ε∗) then stop

Update vk+1 = ṽ`+1, µk+1 = γµk and ζk+1 = δζk

Continue loop increase counter k.

The major computational load of the algorithm lies in the resolution of a linear

system. The solution of this system is the Newton step denoted by ∆v. We have

H∆v = −∇ψ(v, µ) (21)

From the theoretical point of view one needs to solve this system exactly in order

to have a convergent algorithm. In practice one is satisfied with an inexact solution

such that ‖H∆v + g‖ ≤ η‖g‖, with η a positive constant selected rather small and

g is the gradient of the barrier function. The constant η determines the size of the

residual. Iterative methods of the Krylov family are well adapted to compute this
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type of truncated solutions. For example the conjugated gradient (CG) or Lanczos

method are often used. R. Felkel [9] proposes a interior points method using Lanczos

with partial re-orthonormalization. Nash and Sofer [21] try an approach using the

CG.

3.2 Primal-dual algorithm

The primal dual technique is more efficient than purely primal methods. We apply

Newton’s method to solve the nonlinear system (19) with (v, λ) as unknown variables.

Given µ > 0 we solve the following equivalent non-linear system

F (v, λ, µ) = 0 (22)

We denote by (∆v, ∆λ) the Newton step computed at each iterate. We have

( ∇2Q −AT

ΛA C

)(
∆v

∆λ

)
= −

(
Qv − b− AT λ

CΛe− µe

)
(23)

We can solve this system by means of direct or iterative method. In the large-scale

case it may be prohibitive to use a direct solver. Iterative method like GMRES or

CG can be used. In the last case the system must be symmetric. A symmetric form

may be obtained by premultiplying the (2, 1) block by −Λ−1. In our method we

applied the iterative method to the reduced system

H∆v = −Qv + b + µAT C−1e (24a)

∆λ = −λ− C−1ΛA∆v + µC−1e (24b)

where H = Q + AT ΛC−1A is the condensed primal-dual matrix. This matrix is

symmetric and positive definite. Here we give a summary of the main algorithm.

Algorithm 3.2 (Primal-dual interior point algorithm).

Constants ε∗ > 0, η, τ ∈ (0, 1)

Choose v0 ∈ ri(K), λ0 ∈ Rm
− , w0 = (v0, λ0) and µ0 > 0

Loop . Put counter k = 0.

If φ(wk, µk) < ε∗ then stop

Compute the Newton direction ∆wk = (∆vk, ∆λk) from (24)

Use backtracking to find σ ∈ (0, 1) such that

φ(wk + σ∆wk, µk)− φ(wk, µk) ≤ τσ∆wT
k∇φ(wk, µk)
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and

wk + σ∆wk ∈ ri(K)× Rm
−

Update wk+1 = wk + σ∆vk, µk+1 = ηµk

Continue loop. Increase counter k.

The iterative method we use is the Lanczos method with partial reorthogonal-

ization [11]. So we compute an approximated solution following the idea of the

truncated Newton method. Let η be a positive real in (0, 1) the primal step satisfies

‖H∆v + ḡ‖ ≤ η‖ḡ‖, with ḡ = ∇J(v)− µAT C−1e (25)

Contrary to the primal approach we do not have an inner iteration. One can thus

hope to have a faster algorithm. In both cases the Newton step is computed by

an iterative method like CG or Lanczos. The feasible initial point is not obvious

in both cases. The easiest way to deal with this problem consists in relaxing the

feasible constraints, see for instance [9]. We get the following set:

Sς = {v ∈ Rn : Av − d + ς ≥ 0, with ς ≥ 0}
Here ς is a parameter which we decrease towards 0 along with µ. A radical solution

to make available a feasible initial point is the slack variables technique.

3.3 Inexact Newton step

In this section we focus on the resolution of the barrier subproblem by iterative

methods. At each iteration the barrier subproblem is solved approximately using

the truncated Newton method. This is a powerful tool for solving large scale un-

constrained optimization problem. An interesting reference on this subject is the

paper of R. S. Dembo and T. Steihaug [8] and the recent survey [20]. The particular-

ity of their method is the choice of iterative method for solving the primal Newton

system (21) or the primal dual reduced system (24). The conjugate gradient tech-

nique is almost always used with preconditioning to speed up the convergence rate.

Convergence of the method was studied by R. S. Dembo et al in [7]. Here we are

interested in solving the linear system

∇2ψ(v, µ)π = −∇ψ(v, µ) (26)

where π ∈ Rn. The truncated Newton method computes a descent direction ∆v

solution of (26) that satisfies

‖∇2ψ(v, µ)∆v +∇ψ(v, µ)‖ ≤ η‖∇ψ(v, µ)‖, (27)
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for a positive parameter η called forcing parameter. Then we compute v+ = v+α∆v

the new estimate of the solution. If the stopping test is verified we stop, otherwise

we repeat the previous operations. The update formula for v does not guarantee

feasibility. To reach this goal we compute an initial step size

α0 = min(1, σᾱ), 0 < σ < 1

where

ᾱ = min

{
(d− Av)i

(A∆v)i

: (A∆v)i > 0

}
(28)

Then the algorithm generates a sequence of strictly feasible primal points. The

algorithm for the barrier subproblem stops when we have found a primal dual point

(ṽ, ỹ) such that

‖∇ψ(ṽ, µ)‖ ≤ ζ (29)

where ζ is a fixed tolerance parameter. After computing the new barrier parameter

µ, the next barrier subproblem is solved in the same way as described above with ṽ

as initial guess. The same approach can be applied to the primal-dual problem on

the reduced primal-dual system (24a).

4 Numerical experiments

This section provides numerical results for a small set of test problems. We imple-

mented in Fortran 90 the primal algorithm with the following parameters: ε∗ = 10−9,

ζ∗ = 10−9, τ = 0.01, δ = 0.5 and γ = 0.5. The initial values were ζ0 = 1500, µ0 = 1.

If the number of iterations in the truncated Newton method is less than 3 in three

successive steps of the main iteration we reduce γ by the rule

γk+1 = max{0.54, 0.99γk}

If the number of inner iterations (truncated Newton method) per main iteration

exceeds 3

γk+1 = min{0.99, 1.05γk}
and we set

µk+1 = γk+1µk

The problems were generated by the finite element tools GETFEM++ [25] for

the computation of linearly elastic structures in contact with a rigid foundation.

Physical parameters are given by d the dimension of the problem. The discretized

parameters are given by κ the degree of Lagrange finite element and nx the number

of spatial steps. We generate the problems for different values of d, κ and nx. These
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Problems d κ nx n m
A 2 1 4 50 5
B 3 1 4 375 25
C 3 2 4 1995 81
D 3 2 8 13203 289
E 3 1 10 3993 121
F 3 3 10 24783 441
G 2 1 20 882 21
H 2 2 20 3362 41
I 2 3 20 7742 61
J 2 1 100 20402 101
K 2 1 50 5202 51
L 3 1 20 27783 441
M 2 1 10 242 11

Table 1: Set of problems

problems sorted in the size from 50 to 27783 variables and from 5 to 441 constraints

(see Table 1).

In table 2, ngr, nfct and it are respectively the number of gradient evaluations,

the number of fonction evaluations and the total number of main iterations. Gener-

ally, the number of function evaluations is equal to the number of gradient evalua-

tions. In our tests the number of main iterations did not exceed 19. The largest part

of cpu time is used to solve the barrier subproblem. At the beginning, one iteration

is usually enough to solve this subproblem, but the number of iterations increases

gradually and reaches a peak, then decreases when a neighborhood of attraction of

the solution is approached. An illustration of this phenomenon for problems J, K,

G and M is given by Figure 2. The results obtained for the total time of resolution

shows rather disparate characteristics (see Table 2). The time obtained for problem

L, which has 27783 variables, is less than that necessary to solve the problem J with

20402 variables. It is also noted that the algorithm is slower on problem I. One makes

the same remark with problem D. These instabilities are related to the conditioning

of the stiffness matrix. The condition number of the stiffness matrix is classically of

order O(n2
x). Problems L and J were solved for the same values of κ (κ = 1), but

the condition number of L is better than that of J. Conditioning also depends on

the value of the degree of Lagrange finite elements. If κ increases, the conditioning

becomes worst. This should explains the result observed for I and D.
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Problems n m ngr nfct it optimal value cpu times
A 50 5 45 84 19 -0.1407047 0.09
B 375 25 59 62 19 -0.0597285072 0.39
C 1995 81 42 42 14 -0.372374397 11.14
D 13203 289 47 47 15 -0.753245045 177.11
E 3993 121 49 49 16 -0.350213401 15.17
F 24783 441 ∗ ∗ ∗ ∗ ∗
G 882 21 82 82 18 -0.755060513 1.58
H 3362 41 171 171 16 -1.89351901 38.0199
I 7442 61 330 330 15 -3.05307295 448.19
J 20402 101 224 224 14 -4.15773494 490.660
K 5202 51 134 134 15 -2.03452994 56.889
L 27783 441 49 49 16 -0.819527298 167.669
M 242 11 67 67 18 -0.339076629 0.30

Table 2: Numerical results
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Figure 2: Number of inner iterations for different main iterations
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(a) nx = 10 (b) nx = 20

(c) nx = 50 (d) nx = 100

Figure 3: Deformed configurations : An elastic solid is submitted to an artificial non
constant volumic force in order to have a serie of contact zone. The problem’s dimension
and the degree of Lagrange finit element are fixed (d = 2 and κ = 1). In (a) deformation
for problem M (nx = 10), (b) deformation for problem G (nx = 20), (c) deformation for
problem K (nx = 50) and (d) deformation for problem J (nx = 100).

5 Conclusion

We have proposed an interior point algorithm for the contact problem. The non-

linear optimization program arising from the logarithmic barrier function is twice

differentiable and solved via a truncated Newton method. The method we proposed

is particularly suited for contact problems with a large number of degrees of free-

dom. Indeed, the truncated Newton technique makes it possible to avoid spending

too much time in the resolution of the barrier subproblem. Moreover, storage of the

stiffness matrix is not required. Only a result of a matrix vector product is needed.

Numerical results were presented on some examples and confirmed the fast con-

vergence of our algorithm for large scale problems.
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Périaux, J. and Stein, E., John Wiley and Sons.

[3] F. B. Belgacem, P. Hild and P. Laborde, Extension of the motar finite element

method to a variational inequality modeling unilateral contact, Mathematical

Models and Methods in Applied Sciences.

[4] C. Carstensen, O. Scherf and P. Wriggers, Adaptive finite elements for elastic

bodies in contact, SIAM J. Sci. Comput., 20 (1999), pp. 1605-1626.

[5] Z. Chen, On the augmented Lagrangian approach to Signorini elastic contact

problem, Numer. Math., 88 (2001) pp. 641–659.

[6] P. W. Chistensen, A. Klarbring, J. S. Pang and N. Strömberg, Formulation and

comparison of algorithms for frictional contact problems, Int. J. Numer. Meth.

Eng. 42, 145-173 (1998).

[7] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM

J. Num. Anal., 19 (1982) pp. 400-408.

[8] R. S. Dembo and T. Steihaug, Truncated-Newton algorithms for large-scale

unconstrained optimization, Math. Programming, 26 (1983) pp. 190-212.

[9] R. Felkel, An interior-point method for large-scale QP problems, Preprint Nr.

1850, TU Darmstadt, Fachbereich Mathematik, 1996.

[10] A. V. Fiacco and G. P. McCormick, Nonlinear programming : sequential Uncon-

strained Minimization Techniques, John Wiley and sons, New York. Republished

by SIAM, Philadelphia, 1990.

[11] G. H. Golub and C. F. Van Loan, Matrix computation, Johns Hopkins Univ.

Press, third edition, 1996.

[12] J. Haslinger, I. Hlavacek and J. Necas, Numerical Methods for unilateral Prob-

lems in Solid Mechanics, in Handbook of Numerical analysis IV, P. G. Ciarlet

and J. L. Lions eds., Elsevier Science B. V. 1996.

17



[13] G. Fichera, Boundary value problems of elasticity, Handbuch des Physik VI a/2,

Springer, Pages 391-424, Dunod Paris 1972.

[14] N. Kikuchi and J. T. Oden, Contact problems in Elasticity : A study of varia-

tional Inequalities and Finite Element methods, SIAM, Philadelphia, PA, 1988.

[15] D. Kinderleher and G. Stampacchia, An introduction to variational inequalities

and their application, Academic Press, 1980.

[16] G. Kloosterman, R. M. J. Van Damme, A. H. Van der Boogard and J. A.

Huetink, A geometrical-base contact algorithm using barrier method, Interna-

tional Journal for Numerical Methods in Engineering, 51:865-882, 2001.

[17] R. Kornhuber and R. Krause, Adaptative multigrid methods for Signorini prob-

lem in linear elasticity, Comp. Visual. Sci. 4, 9-20, 2001.

[18] R. Krause, B. Wohlmuth, Nonconforming domain decomposition techniques for

linear elasticity, East-West J. Numer. Anal. 8, 177-206, 2000.

[19] D. C. Monteiro and I. Adler, Interior Path Following Primal-dual Algorithm

Part II: Convex Quadratic Programming, Math. Prog., A, 44, pp. 43-66, 1989.

[20] S. G. Nash A Survey of Truncated-Newton Methods, Journal of Computational

and Applied Mathematics, 12 (2000), pp. 45-59.

[21] S. G. Nash and A. Sofer, On the complexity of a pratical interior-point method,

SIAM J. Optim. vol. 8, pp.833-849, 1998.

[22] Y. Nesterov and A. S. Nemirovskii, Interior-point Polynomial Algorithms in

Convex Programming, SIAM, Philadelphia, 1994.

[23] J. Schoberl, Solving the Signorini Problem on the Basis of domain decomposition

techniques, Computing, 60:323-344, 1998.

[24] M. Raous P. Chabrand and F. Lebon, Numerical methods for frictional contact
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