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1. Introduction 

Let (f~, A, #) be a a-finite measure space, and let LPad(~2, ..4,/~) (for 1 <_ p < co) 

be the space of classes of measurable functions u : f~ ~ I~ d having 

Up 

We consider an integral functional f of the form 

f (u)  = ~ ¢(x ,u(x))#(dx) ,  u e LPe (1.t) 

defined on the space L~e,  where q5 : i2 × tR d ---+ N is A ®/3~d measurable. While 
our results concerning first and second epiderivatives (Sections 3 and 4) apply to 

functionals (1.1) which may take on the value +oo, a discussion of the classical 
first and second derivatives requires f to be finite everywhere. This is the case e.g. 
when ¢ satisfies a growth condition of the form 

[qh(x,u)l < C[ul p + g(x) . u + h(x) (1.2) 

for some C>0,  9 c L~'a (1/p + 1/p' = 1), and h E L 1. Further, when f is finite 
everywhere, we assume for convenience that f is a continuous function on the 
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space L~d, which is the case e.g. when ¢(x, u) is continuous in u and satisfies the 
growth condition (1.2) (see [19, p. 93]). One might even assume that f is locally 
Lipschitz on LPe, which is true for instance when the integrand satisfies a uniform 

Lipschitz condition of the form 

I¢(x ,  - ¢ ( x ,  < C ( x ) .  - vl (1.3) 

for all u, v E X d, a function C(.) in L~'+, and for almost all x C fL For p = 1, 

C(x)  = C is a constant, and in this case condition (1.3) is necessary and sufficient 

for f to be (locally) Lipschitz. The score of our present investigation lies in studying 
p 

the differentiability properties of the functionals f considered as functions on LRe. 
Naturally, we first focus on the case where the integrand ¢(x, u) satisfies some 

smoothness condition. There are several questions here, for instance, if ¢(x, u) is 
of  class C 1 in u, under what conditions will f be of class C 1 as a function on L~d? 

Which is the right notion of differentiability to be employed, Fr~chet or G~teaux? 

Concerning second-order differentiability, if ¢(x, u) is of class C 2 in u, what are 

the second order differentiability properties of f as a function on the space LVd? 
And again, which is the right notion of second-order differentiability? 

In the case of a convex functional (1.1) it is known that if the integrand ¢ (x, u) is 
of class C 1 in u, then f is itself of  class C 1 in the sense that V f  exists everywhere as 

! 

a FrEchet derivative, and is norm to norm continuous as an operator L[~ ~ LP~d (cf. 
[ 19]). Naturally, the same observation pertains to an even wider class of functionals 

(1.1) which are common in various applications such as variational problems, 

control, or Hamiltonian mechanics, namely when f + g is convex for some function 

g of class C 1. Without the presence of convexity, stronger assumptions are needed to 

guarantee even the differentiability of f at u. For instance, a necessary requirement 

for f to be differentiable at u is of  course that x --+ V¢(x,  u(x))  be an element of 

~ , but this is not sufficient in general. The natural condition to guarantee Frdchet 

differentiability of the functional (t.1) at every u is that the integrand satisfies the 

uniform Lipschitz condition (1.3). See [19, 38, 33, 29] for a discussion. After all, 

the first-order differentiability theory of integral functionals (1.1) has been under 

discussion for a long time, and is basically well-understood. 
Concerning second-order differentiability of the functional (1.1), the situation 

turns out to be considerably more complicated. To begin with, we observe that 

for 1 < p < 2, the convex functional f = t1" lip on the space L p is nowhere 

second-order differentiable when this notion is understood in the sense that the 

difference quotient 

V f ( u  + th) - V f ( u )  (1.4) 
t 
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be convergent in norm (resp. weakly) for every fixed vector h (as t --+ 0). The 

reason for this failure is that second-order differentiability in the quoted sense 

requires the function f to be Lipschitz smooth (as defined in [20], see also [14, 13, 

16~), and this conditions fails for the norms I1" LLp, 1 _< p < 2, As LI" is an integral 
functional on LPad, we infer that even smoothness of the type Coo for the integrand 

need not imply second-order smoothness of the functional (1.1). Indeed, we may 

adjust the integrand near the origin by replacing I • I p by a convex C °o function 

showing the mentioned behaviour. This shows in particular that the situation in the 

spaces L p for 1 _< p < 2 is very different from the Hilbert space case p = 2, since 
in a space L 2, a convex integral functional with C 2 integrand is at least densely 

twice differentiable (see [291 and [131). 
In Hilbert space p = 2, for historical reasons, let us quote the following scenario 

from the classical work by Palais and Smale [32] on infinite-dimensional Morse 

Theory. The authors consider integral functionals (1.1) (or more generally inte- 

gral functionals depending on a differential operator as for instance discussed in 

[29]) having smooth integrand. In order to build a theory in analogy to the finite- 

dimensional case, they wish to deal with smooth functionals (1.1), and they claim 

that the following growth condition (stated here in terms of the functional (1.1)) 
should guarantee the latter to be of class C2: 

02¢(X, U) I < C < OO 
O u i 0 2 z j  I - -  

(1.5) 

for i , j  = 1, . . .  ,d, all u E ~d, and almost all x. Although this is a natural idea, 

our analysis of the functionals (1.1), (1.2) satisfying the condition (1.5) obtained 

in [29] shows that the statement quoted from [32] is only correct when class C 2 

is understood in the following weak sense: the difference quotient (1.4) converges 

pointwise in norm, in other terms, V f  is G,~teaux differentiable, and the Hessian 
operator ~72f is norm to weakly continuous. Examples presented in [29] show that 

the difference quotient (1.4) may fail to converge uniformly over IIhlL2 < 1 for all 
u, i.e., V f  is not Fr6chet differentiable at any u, and that V2f  may fail to be norm 

to norm continuous throughout. 

Suppose now in the case p = 2 we have an integral functional with smooth 

integrand, but not necessarily satisfying (1.5). Is it true that f is second-order 
differentiable in the G,Steaux sense at those u E L~d where the boundedness 
condition (1.5) is satisfied? Surprisingly, even for convex f ,  this need not be the 

case, i.e., the difference quotient (1.4) need not even converge pointwise weakly. 
Nevertheless, in this situation, we wish to have a kind of substrate for the classical 
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second derivative, which we would then call a generalized second derivative. 
Indeed, the obvious candidate for a generalized Hessian operator Hu of  f at u is 

l(Huh, h } = 1 /  (V2¢(x,u(x))h(x) ,h(x)} #(dx), (1.6) 

which is bounded symmetric and linear as a consequence of (1.5). This idea is made 
precise by employing the theory of graphical convergence. Namely, in the above 
situation, we can prove that the second difference quotient o f f  at u epi-converges to 
the quadratic form (1.6), (see Section 2), or equivalently, that the difference quotient 
(1.4) proto-converges to the limit H~, a concept of convergence which is usually 
weaker than pointwise type convergence of (1.4). This concept of a generalized 
differentiability has been proposed by R.T. Rockafellar [34, 35, 36], see also [30], 
in finite dimensions, and we will show here that a similar approach is successful in 
the second-order theory of the integral functionals of type (1.1). In contrast with 
the situation in finite dimensions, however, there are several different notions of 
graphical convergence, such as epi, Mosco or Attouch-Wets convergence, each 
running for the mandate of replacing pointwise type convergence notions, and one 
of our issues here is to clarify which of them has to be elected to allow for a 

reasonable theory. 
We end by observing that formula (i.6) for the generalized Hessian provides 

useful information even for p ¢ 2. In this case, for H~ to be fully defined, it is 
necessary that the operator V2¢( ., u(.)) maps LP~ into L~'d. As we can easily see, in 
the casep = 1, and when (f~, ,4, #) has no atoms, this is certainly impossible unless 

the Hessian operators are zero almost everywhere, which tells us roughly that there 
is no reasonable second order differentiability theory for integral functionals on L 1 

spaces. 

2. Notions of Differentiability 

In this section we recall various notions of first and second-order differentiability 

and discuss their interrelation. 
Let f be a real-valued (or more generally extended real-valued) continuous 

function defined on a Banach space E.  For fixed x and y* E E* we consider the 

first and second order difference quotients of f at x: 

.noindent 6L~,t(h) = f ( x  + th) - f ( x )  
t 

f ( x  + th) - f ( x )  - (y*,th) 
A i , ~ , y . , t ( h  ) = t 2 , ( 2 . 1 )  
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considered for every fixed t ~ 0 as functions of h E E. Here y* will be the 

gradient V f ( x )  of f at x, or more generally a subgradient y* E Of(x) in the sense 
of convex analysis when f is convex. 

While first-order differentiability of f is described by the pointwise convergence 

behaviour of the first difference quotient ~f,x,t a s  t ---. 0, one would naturally wish to 

describe the second-order differentiability properties of f by using the convergence 

of  the difference quotient (I.4) of  V f  at x to a bounded and symmetric linear 

operator Hx, called the Hessian of f at x, and noted V2f(x) .  There are at least 

four different notions of convergence of the pointwise type, which might be used 
for (1.4). 

DEFINITION 2.1. If (1.4) converges pointwise in h with respect to the norm, resp. 
pointwise in h and in the weak star topology, then f is said to be second-order 

Gateaux differentiable, resp. second-order weak star G,~teaux differentiable, at x. 

On the other hand, if (1.4) converges uniformly on the ball IIhl[ < 1 and in norm 

resp. uniformly on the ball I[hll < 1 and in the weak star topology, then f is said to 
be second-order Fr6chet differenfiable at x, resp. second-order weak star Fr6chet 

differentiable, at x. [] 

There is a different approach to second-order differentiability which is motivated 
by the situation of convex analysis. Here one wishes to discuss second-order notions 

without having a first-order derivative at all points in a neighbourhood x. Namely, 

consider convergence of the second-order difference quotient (2.1), for instance, 

pointwise, or uniform convergence on compact, resp. bounded, sets. 

DEFINITION 2.2. We write x E D~ if the second-order difference quotient (2.1) of 

f at x converges uniformly on compact sets to some purely quadratic limit function 

qx : E --~ 1~ having domain dom(qz) = E.  That is, Ay, x,y, t --~ qx uniformly on 
compact sets as t --~ 0. [] 

It is clear that, at least for f locally Lipschitz, x E D} implies that f is 
differentiable at x, so Of(x) is singleton. In [13] it was proved that for a convex 

f ,  x E D} implies the even stronger fact that f is Fr6chet differentiable at x. 
Recall here that a function q: E -+ R U {oo} is called purely quadratic if its 

domain is a linear subspace of E,  and q admits a representation of the form 

q(h) = ½(Th, h), h E dora(q) 

with a closed and symmetric linear operator T: dom(q) --~ E*. (A characterization 
of the convex purely quadratic functions in terms of the graph of Oq has been 

obtained in [13] in the case of a Hilbert space. For an extension to the setting of 
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Banach spaces see [28].) In contrast, a function q (tully defined or not) is called 
quadratic if q(Ah) = AZq(h), and convergence Af,<u,,t --+ q for quadratic limit 
functions might as well be used for a definition of second-order differentiability 
(see, for instance, [34, 35]). Notice, for instance, that for a function f :  E2 
1L convergence Af,  x,v.,t ~ q with quadratic but not purely quadratic q having 
dora(q) = I~ 2 implies that the second partial derivatives fx~zj at x = (zl,  z2) exist, 

but that f.~x~ (x) ¢ f~2zl (x). 
The interrelation between the convergence of (1.4), resp. (2.1), has been dis- 

cussed by many authors, mostly in the finite-dimensional case (see [15, 7, 22, 13, 
11, 34]). We just mention the result obtained in [13, §2] for convex f in any Banach 
space, which states that pointwise convergence of the second difference quotient 
(2.1) corresponds to second-order weak star Gfiteaux differentiability, while uni- 
form convergence of (2.1) on bounded sets corresponds to second-order Frdchet 
differentiability of f .  It is clear that this is no longer true in the nonconvex case, as 

for instance shown by the example f ( x )  = x 3 cos( i /x) .  
Let us now focus on first and second-order differentiabitity notions which 

are based on graphical type convergence of the difference quotients (2.1). We 
shall discuss here the notions of norm epi convergence, Mosco convergence, and 

Attouch-Wets convergence. 
Let fr~, f be real-valued (or more generally extended real-valued) functions 

defined on the Banach space E. The sequence (fn) is said to epi converge to the 

limit f if the following conditions (c~), (/3) are satisfied: 

(c~) Given any x C E,  there exist xn --+ x (norm) such that fn(xn) -+ f ( x ) .  

(/3) Given any x E E,  a sequence nk /7 oc of indices, and a sequence xk ~ x 

(norm), we have f (x) ___ lim i n f k ~  f ~  (xk). 

The sequence (fr~) is said to Mosco converge to the limit f if conditions (o!) and 

(/3) are satisfied, where: 

(/3) Given any x C E,  a sequence nk /'~ to  of indices, and a sequence xk --~ x 

(weakly), we have f ( x )  <_ lim infk-+oo fnk (xk). 

We use the notations fr~ -5~ f and fr~ --~ f .  Clearly Mosco convergence implies 
epi convergence. Notice that the constant sequence f~ = f fails to converge to 
the limit f unless f is weakly lower semi-continuous. This explains why Mosco 
convergence is usually restricted to the context of convex functions. Here, however, 
we shall give credit to Mosco convergence in a more general setting. Similarly, epi 
convergence requires the functions fm  f to be lower semi-continuous in the norm 
topology, but this is a reasonable requirement even in the nonconvex case. We refer 
to [2, 4, 17, 37, 13] for a discussion of these notions. 
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Concerning the concept of Attouch-Wets convergence or equivalently, conver- 
gence with respect to the epi distance, we have to recall the following notions. 
Let C, D be subsets of E, then the excess of C, D is defined as ex(C, D) := 
sup~ec d(x, D). For p > 0 let 

hausp( C, D ) = max{ ex( Cp, D ), ex( D p, C)},  

where C o = C N B(O, p). Notice that for bounded sets C, D and p large enough, 
this is just the usual Hausdorff distance of the sets C and D. Now the sequence (f,~) 
is said to be Attouch-Wets convergent to the limit f ,  henceforth noted f~ ~ f ,  if 
for all p > 0 sufficiently large, we have 

hausp(epi fn, epi f)  --~ 0. (2.2) 

See [3] and [5] for details on this notion of graphical convergence. Let us mention 
here that fn 5_~ f implies fn  _E~ f when f is weakly (sequentially) lower semi- 
continuous, and implies fn -~ f when f is lower semi-continuous in norm. 

It seems natural to apply these notions of convergence to the first and second- 
order difference quotients (2.1) of a function f.  As it turns out, the result of this 
investment is quite different on the first and second-order level. While graphical 
convergence of b'y,x,t (as t ~ 0) does not really provide much new insight (see 
Section 3), we wilt see that graphical convergence of Ay,x,v.,t in fact does (see 
Section 4). Let us mention that, in infinite dimensions, a systematic account on the 
use of graphical second-order notions in the context of differentiability has been 
developed quite recently by J.M. Borwein and D. Noll [13], D. Noll [29], and also 
[23], [28], [17], [27], [24]. 

3. First-Order Theory 

In this paragraph we discuss graphical convergence notions for the first-order 
difference quotient. As it turns out, these coincide with pointwise type convergence 
under fairly reasonable side conditions, in particular when the function f under 
consideration is locally Lipschitz, and therefore do not provide much new insight. 
Namely, we have the following (more or less standard) result (compare with [18 
Thm. 2.18]). 

PROPOSITION 3.1. Let f be a locally Lipschitz function on a Banach space E. 
Let x C E, and suppose ~ y,z,t ~ 6 as t ~ O. Then ~ y,z,t --+ 6 pointwise and hence 
uniformly on compact sets. Conversely, pointwise convergence 6Lx,t --+ ~ implies 

epi convergence ~ y,x,~ ~ & Moreover, in these cases, the limit function ~ is fully 
defined. 
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Proo f  Due to the local Lipschitz assumption, pointwise convergence (st -+ 
implies uniform convergence on compact sets, and hence epi convergence. Notice 
here that, due to the local Lipschitz assumption, fit is uniformly bounded, and hence 
(5 is fully defined. This proves the first part. Now suppose Ot --~ ~ for a lower semi- 
continuous extended real-valued limit function (5. Let h and a sequence tr~ --+ 0 be 

fixed. Using condition (a) find hn --~ h (norm) such that b't~ (h~) --+ (5(h). As f is 
Lipschitz in a neighbourhood of x, with constant C say, we find 

l(st,(h,~) - St~(h) I <_ Cllh~ - hll 

for n large enough. This proves 5t,~ (h) --* (5(h). Moreover, the local Lipschitz 
condition again guarantees that ~t is uniformly bounded and so 5 is fully defined. 

[] 

This generalizes a result obtained in [35] for the class of convex functions. Con- 
cerning Mosco convergence of the first difference quotient, we have the following 

result. 

PROPOSITION 3.2. Let  f be a locally Lipschitz function on a Banach space 17. 

Let  x E 17, then the foUowing statements are equivalent: 

(1) f is weakly Hadamard  differentiable at x; 

(2) ~Sf,z,t -~+ (Vf (x ) ,  .) as t ~ O. 

Proo f  Recall that weak Hadamard differentiability of f at x means that 6f,x,t 
converges to (Vf (x ) , - )  uniformly on weakly compact sets as t ~ 0. Now it is 

clear that condition (/~) of Mosco convergence of (sf,~,t gives the estimate 

l iminf  (~:,z,t~(h~) - ( V f ( x ) , h ~ ) )  >_ 0 (3.1) 

for every fixed tr~ ~ 0 and h~ converging weakly. But replacing tn by - t ~  and hn 

by - h n  gives rise to a similar estimate, which by 5f:,-t ,~ ( - h ~ )  = -(s:,~,t~ (h , )  
is the reverse estimate to (3.1). This shows (1) and (2) being in fact equivalent. [] 

Let us now consider Attouch-Wets convergence of the first difference quotient. 

The following no longer comes as a surprise. 

PROPOSITION 3.3. Let  f be a locally Lipschitz function on a Banach space E. 
Let  z E E,  then the fol lowing statements are equivalent: 

(1) 6f ,x , t  ~ (Y*, ") as  t --+ 0," 
(2) f is Frdchet differentiable at x with gradient y*. 
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Proof  Observe that ~t a-gw ~ := (Y*, "} implies ~t e d and hence implies 

pointwise convergence by Proposition 3.1. Suppose now that convergence fails to 

be uniform on the unit ball. Find II h,,~ II -< 1 and tn ~ 0 such that 

]6t~(hn) - 5(hn)l  > e (3.2) 

for some e > 0 and all n. By assumption we have ex((epiSt~)p, epi6) -+ 0 for an 
appropriate p, so using the fact that f is locally Lipschitz, we find h i such that 

[[hn - h~ll + let,~ (h~) - 5(h~) - anl --+ 0 (n -~ c~) (3.3) 

for certain cr~ > 0. On the other hand, ex((epi 5)p, epi 6t~) --~ 0 provides a 
sequence h~ such that 

- -  - -  (~  t" K I l ' ~  Ilh•+ h; ll÷l+(h,d (n-- ,+)  (3.4) 

for certain ~-n >_- 0. Now (3.2), (3.3), (3.4), and the fact that ~ ( h n )  - ~(h~n) -+ 0 
(because of Ilh,~ - h'~LL ~ o) combine to give the estimate l iminf  l~St~(hn) - 
6t,~(h~) I >_ e, and this in tandem with ] Ih~  - h~ l l  - ~  0 contradicts the local 
Lipschitz behaviour of f at x. Hence 6t converges uniformly on the unit ball. 
As for the converse, the fact that uniform convergence on bounded sets implies 
Attouch-Wets convergence is straightforward but a little tedious. [] 

The reader might observe here that the proofs of Proposition 3. I and 3.3 did not 
really use the linearity of the limit function 6 so they still apply when we consider 
only one-sided limits (t --+ 0+), as for instance in [34, 35, 36]. On the contrary, 
using two-sided limits turned out to be essential for the implication (2) ~ (1) in 
the proof of Proposition 3.2. Another observation is of course that we did not in 
all places need the fact that f is locally Lipschitz. It would have been sufficient 
to assume that the difference quotient is bounded in a neighbourhood of 0. Let us 
further observe that the question on when Mosco convergence of ~y,x,t coincides 
with epi convergence resp. with Attouch-Wets convergence has been decided by J. 
Borwein, M. Fabian and J. Vanderwerff [10, 12]. Namely, Mosco convergence and 
epi convergence coincide iff every weak star convergent sequence in E* is Mackey 
convergent, while on the other hand, Mosco convergence of 6L~,t coincides with 
Attouch-Wets convergence iff E is sequentially reflexive, which is to say that every 
Mackey convergent sequence in E* is convergent in the dual norm. Equivalently, 
E must not contain a copy of gl- In particular, this is the case for Asplund spaces. 
(See [9]). 

For the remainder of this paragraph we consider first order epi derivatives of 
integral functionals (1.1). We no longer assume the functional f to be locally 
Lipschitz, trying to express the convergence 6f,~,t --~ 6 in terms of the integrand. 
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It becomes clear by looking at easy examples that the boundedness condition (1.5) 
at a point u does not by itself guarantee epi differentiability of f at u, although 
the Hessian type operator (1.6) is defined. What is needed in addition is a uniform 
boundedness below condition on the integrand. 

PROPOSITION 3.4. Let f be an integral functional (1.1), (1.2) on the space LPd, 
(1 < p < oo). Let u E L~d, and suppose ¢(x, .) is Frdchet differentiable at u(x) 
for almost all x. Suppose the difference quotient St(x, .) := 5¢(x .),u(z),t of  ¢(x, .) 
at u( x ) satisfies the following condition: 

¢) + c1¢1 + ¢ + go( ) o (3.5) 

for some C > O, gl E LP'd and go E L 1, all O < It] < 1, ~ E Nd and almost all 

x. Then, (a) f is epi differentiable at u, i.e., 5y,u,t ~ (Vf(u) ,  .). Here V f ( u )  is 
defined by V f (u ) ( x )  = VC(z, u(x)). 

Moreover, (b) for p = 1, and if  (f~, A,  #) has no atoms, condition (3.5) is also 
necessary for f to be epi differentiable at u. 

Proof (a) We have to check conditions (a) and (/3) for the epi convergence. 
Concerning condition (o~), notice that it suffices to find a dense subset • of LPd 
such that 5t :--- 5y,u,t converges pointwise on ~5. Now, by assumption, for almost 
every x we find t(x) > 0 such that 

(3.6) 

for all 1~[ _< 1 and all It[ < t(x). We may assume here that the function x -+ t(x) is 
measurable. Let Ek = {x E f2 : t(x) > 1/k},  then f~\U Ek is anull set. Letthe f2~ 
be an increasing sequence with union f~ such that #(f~k) < oo. Now let ~k,m,~ be 
the set of all h E LP,~ such that h(x) = 0 for x ¢ Ek tA f~,~ and having Ilhll  _< n. 
Let ~ be the union of all ~k,,~,~, then ff is certainly dense. We show that St(h) --+ 
5(h) = (Vf(u) ,  h) for h E gek,,~,n. Indeed, the estimate (3.6) shows that the 
St(x, h(x) ) have common integrable majorant n " xEkna~ + (V¢(x, u(x ) ), h(x) ), 
whence dominated convergence gives 

l i m / a  St(x, h(x)) #(dx) 

=/ f~  lim St(x, h(x)) #(dx) 

= ( V f ( u ) , h  i =: 5(h), 

thus completing the proof of condition (a). 
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Concerning condition (/3), let tn -+ 0 and hn -+ h (norm) be fixed, Condition 

(3.5) allows for applying Fatou's Lernma, which gives 

l iminf fo  (St,~ (x,h~(x))  + Clh~(x)l p + gl(x) .  h~(x) + go(x)) #(dx) >>. 

a l iminf (St, (x, hn(x) ) + Clh~(x)l p + 

+ h (x) + g0(x)) (3.7) 

Now we fix a subsequence for which the liminf is attained, and then pass to another 

subsequence hn, which converges almost everywhere. As a consequence, the liminf 

of the integrand on the right hand side of (3.7) then equals V¢(x,  u(x)) • h(x) + 
Cih(x)lP + 91(x)" h(x) + go(x). This ends the proof of condition (/3). 

(b) We prove a little more on route. Assume that in an arbitrary Banach space 

E,  we have 5f,u,t -~ 5 with a lower semi-continuous limit function 5, and where f 
is assumed continuous at u. Then we find a > 0 and to > 0 such that 

5f,u,t(h) + a[Ihll >_ 0 (3.8) 

is satisfied for all llhll ~ 1, Itt < to. Indeed, assuming the contrary, we find 

tt l -< to, Ilh ll _< 1 such that 

for all n. First assume libel [ -+ O, at least for a subsequence. Find Pn --~ oo such 
that pnhn -+ O, but np~]lhnlI ~ oo. Then we have 

PnStn ( hn ) = 6tn/p,~ (pnhn ) -+ -c>o, (3.9) 

a contradiction, since t~/p~ --~ 0 and pnh~ ~ O, whence the limit inferior of 
(3.9) ought to be minorized by 5(0) > - c ~  as a consequence of condition (,3) 
of epi convergence. Next consider the case where llh~H > e > 0 for all n. Then 

5tn (h~) --~ - c ~ ,  and since f is assumed continuous at u, this implies tn -~ 0. Now 
find cr~ -+ 0 such that ncrn ---+ oo and tn/crn -~ O. Then we have 

a contradiction, since by condition (/3) of epi convergence the limit inferior of this 
expression ought to be minorized by 5(0) > -cx~, as above. This proves (3.8). 

Now let us consider the case p = 1. We claim that here (3.8) implies the 
estimate (3.5), (with p = 1). Indeed, assume the set of x E f~ where (3.5) (with 
gl = 0, g0 = 0) is violated has positive measure. Then we find ~7 > 0 and some 

E I~ d such that the set {x E ~2 : 5t(x,~) + C]~[ < - ~ }  has positive measure. 
Choose a subset A of this set having 0 < #(A) < to/[~l, (# has no atoms!), and 
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define h = ~ • XA. Then (3.8) is violated for h, a contradiction. This proves the 
claim, and hence the necessity of (3.5) for the epi convergence of 8t in the case 

p = l .  [] 

Notice that the above argument, carried out in the case p = 1, relies on the fact 

that the norm tt • ftl is an integral functional. This is not the case for the tl " lip for 
p > 1, whence we do not know whether condition (3.5) is necessary in these cases. 

4. Second-Order  Theory - Convex Case 

In this section we discuss Mosco convergence and Attouch-Wets convergence of 

the second-order difference quotient (2.1) of a convex function f .  We show that 

both notions may be analyzed with the help of the Young-Fenchel conjugate. Here 

our main interest lies in studying integral funcfionals, so we focus on the Hilbert 

space case. Let us first recall the following result, obtained in [13], which deals 
with Mosco convergence of the second-order difference quotient (2.1). 

PROPOSITION 4.1. Let f be a continuous convex function on a separable Hilbert 

space H. L e t x  E H, y ~ Of(x),  9 = f + 111. ]12. Then the following statements 

are equivalent: 

(1) A f,~,y,t U+ q for  a purely quadratic convex limit function q; 
(2) Ag,x,x+y,t -~ q + 1 ]1 . 112 for a purely quadratic convex function q; 

(3) g* is second-order differentiable at x + y; 

(4) Vg* is norm Gdteaux differentiable at x + y; 
(5) The resolvent operator Jy, = (id + Of*)-1 is norm Gdteaux differentiable 

a t x  + y .  

Moreover, in these cases, the following are equivalent: 

(a) Statement 1. is true with dora(q) = H; 

(b) g* is second-orderdifferentiable at x + y, and IIV2g*(x + Y)II < 1; 

(c) Jr.  is norm GSteaux differentiable at x + y, and IIVJf* (x + Y)tl < 1. 

Remarks. (1) Here second-order differentiability of g* at x + y  is to be understood 
in the sense that x + y ¢ D~,, which by convexity is equivalent to pointwise norm 
convergence of the difference quotient (1 I t )(Vg* (x + y + th) - Vg* (x + y)) as 

--+ 0, (cf. [131). 
(2) It is important to observe here that the statement dom(q) = H does not 

imply that x E D } ,  i.e., the limit in (a) is not necessarily pointwise. See [13, 
§3] for counterexamples. This means that second-order Mosco differentiability 
does in fact represent a concept of generalized second-order differentiability which 
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deserves being studied at equal rights with classical second-order notions. In [13], 
we proposed the notation x E GD} for statement (a) above. 

(3) As we have seen in the previous section, on the first-order level, graphical 
convergence of 6f,~,t plus an extra condition, saying that f be locally Lipschitz 
at x, already implies pointwise type convergence of 6f,x,t. In second-order theory, 
we may ask for a similar extra condition which allows for improving graphical 
convergence of Af,x,v,t to get pointwise type convergence. This condition has 
been singled out in [13], and in terms of the function f it says that f has to be 
Lipschitz smooth at x. More formally, there must exist C > 0 and r / >  0 such that 

t f (x  + h) - f (x )  - (Vf (x ) ,  h>l <_ Glib11 z 

is satisfied for all llhll <_ n. However, while the local Lipschitz behaviour of f 
is a fairly general condition, this is not the case for Lipschitz smoothness, which 
explains to some extent why graphical convergence plays a more important role 
on the second order level. 

Let us now establish a result similar to Proposition 4.1 providing a dual version 
for Attouch-Wets convergence of the second-order difference quotient. As we will 
see, in contrast with Mosco convergence, this will show that the use of Attouch- 
Wets convergence on the second-order level is much more limited. This is in 
contrast with the situation on the first-order level, where Attouch-Wets convergence 
is quite useful. Before getting started, we recall the following notion from [13]. 
A convex function f is said to be strongly second-order differentiable at x, if the 
second order difference quotient (2.1) converges uniformly on bounded sets to a 
purely quadratic and fully defined limit. 

THEOREM 4.2. Let f be a continuous convex function on a separable Hilbert 

space H. L e t x  ~ H, Y E Of(x),  g = f + I1t" II 2. Then the following statements 
are equivalent: 

aw 
(1) A f #,y,t --+ q ]'or a purely quadratic convex q; 

aw 
(2) Ag,<x+u,t --+ q + ½1[" ll2forapurely quadratic convex q," 
(3) g* is strongly second-order differentiable at x + y; 
(4) Vg* is Frdchet differentiable at x + y; 

(5) Jy. is Frdchet differentiabIe at x + y. 

Moreover, in these cases, the following are equivalent 

(a) Statement (I) is true with dom(q) =' H; 

(b) f is strongly second-order differentiable at x; 

(c) g* is strongly second-order differentiable at x + y and II V2g * (x + y)[I < 1; 
(d) J f .  is Frgchet differentiable at x + y, and we have IIVJy. (x + y)II < 1. 
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Proof  Let us first prove (1) ¢=~ (2). As above, g = f + Ill" 112. Observe that 
the Attouch- Wets topology is induced by the family of pseudo-metrics 

d)~(¢,~) = 1¢1(0 ) -¢1 (0 ) ]  ~- sup t i d e ( x ) -  JC(x)ll, 
IfxlJ_<A 

A > O, (see [5]). Now we are dealing with second-order difference quotients, or 
rather, with functions ¢, ¢ satisfying ¢1 (0) = ¢1 (0) = O, and for these, we obtain 
the following useful relation: 

1¢~, d~(¢ + Ill" 1I 2, ¢ + 1t1" II 2) = d~ (½¢, 2 J 

which uses the equality J¢+ ½ fl.lf2 (h) = J½¢(lh). From this it becomes clear that 
a w  

A f,x,y,t  --+ q is equivalent to 

Ag,x,x+y,t = Af,x,y,t + A½H.[12,~,x,t = Af,~,y,t + Ill" II 2 ~ q + I l l '  Ir 2, 

proving the equivalence of (1) and (2). 
Next observe that (2) ¢=> (3). Indeed, according to [3], Attouch-Wets con- 

vergence A/,~,y,t a w q is equivalent to uniform convergence A/,z,y,t  [] Ill • 1t 2 --' 
q [] ½ II 112 on bounded sets. Now observe that A / o  ½111[ 2,x+y,y,t -= Af ,x ,Y ,  t [73 l I1" N 2, 

and recall Moreau's identity 

~x~[] ~jH[2,~+,~,y,t +/'g*,x+y,~,~ = Ill" II 2, 

(cf. [26]). Then Ag,,~+y,y,t converges uniformly on bounded sets to the fully defined 
purely quadratic convex limit q* [] 111. fr 2, which is just statement (3). An alternative 
reasoning to obtain the equivalence of (2) and (3) would be the following. Notice 
that (2) is equivalent to the statement Ag.,x+y,x,t a_.__~ (q + 1 I1" If2) * = q* [] l N ' ft 2, 
since Attouch-Wets convergence is invariant under Young-Fenchel conjugation 
(see [5, 3]). But now observe that 9* is Lipschitz smooth at x + y, and hence 
Ag.,~+y,~,t is uniformly bounded (see [13]), and hence equi-Lipschitzian, and this 
implies uniform convergence of Ag.,~+y,z,t on bounded sets. 

The equivalence of (3) and (4) is just [13, Theorem 3.1], which relates conver- 
gence of the second-order difference quotient of f to convergence of the first-order 
difference quotient of Of. Finally, the equivalence of (4) and (5) is immediate from 
Moreau's identity Vg* + Jr* = id. (Notice that Vg* = J/ . )  

Let us now prove the additional statement. The equivalence of (a), (c) and 
(d) follows from the corresponding part of Proposition 4.1, since Attouch-Wets 
convergence implies Mosco convergence. So we are left to prove that statement 
(d) implies (b). But this is a consequence of Lemma 7.4(3) in [13], which tells 
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that in the case of Fr6chet differentiability of JI* at x + y, [[VJI. (x + y)II < 1 is 
equivalent to saying that the one-sided Lipschitz constant 

b = b(df., x + y) = lim sup 
, ~ 0  0<llhL[<~ 

(Js* + v + h) - Ji*(  + y),h) 
rlhll 2 

of J r ,  at x + y satisfies b < 1 (see [13, §7]). The latter, when combined with state- 
ment (3), implies pointwise convergence zXLx,y,t --+ q [13, Theorem 7.5], which 
in tandem with Attouch-Wets convergence of Af,x,y,t gives uniform convergence 
on bounded sets. This ends the proof of the addendum. [] 

Remarks. (1) In two places we used the following fact: Suppose fr~ a-Zw f ,  and 
that the sequence (fn) is locally equi-Lipschitzian. Then convergence is uniform on 
bounded sets, and f is fully defined. The reasoning is as in the proof of Proposition 
3.3. 

(2) Theorem 4.2 shows that the use of Attouch-Wets convergence for second- 
order difference quotients is limited. Namely, even in a separable Hilbert space, 
a locally Lipschitz operator T : H --+ H cannot in general be expected to have 
points of Fr6chet differentiability, while by the work of N, Aronszajn [1], F. Mignot 
[25] and others, it is known that such T has sufficiently many points of G,Steaux 
differentiability. 

(3) Theorem 4.2 has an application to the differentiability of the metric projec- 
tion Pc onto a closed convex set in Hilbert space. It gives the main step towards 
proving the fact that Pc is Fr6chet differentiable at a point x ¢ C if and only if the 
boundary of C is second-order Attouch-Wets smooth at Pcx.  See [31] for details. 

EXAMPLE. We produce a convex integral functional f on the Hilbert space 
L2[0, 1] where J j .  is nowhere Fr6chet differentiable, and hence Af,x,w t for no x 
and y E Of(x) is Attouch-Wets convergent. 

Let C = {x E L z : Ilxllo~ <_ 1}, and let Pc be the orthogonal projection onto 
C. Then, according to [21, §5], Pc is nowhere Frdchet differentiable. Let f be the 
support function of the set C, then it follows that J r ,  = Pc ,  whence f is as desired. 
Notice that f is in fact an integral functional, namely, f = it " lla, considered as a 
function on L 2. 

An even better example which is of class C 1,1 is obtained by taking the function 
f l  = f [] ½11" II 2, which by the Moreau identities has Frgchet derivative V f l  = 
Jr* = Pc,  and which is given by the formula (cf. [21]): 

Ix Xl 2 f (x) = L - ½tLx Pcx l l  2. 
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Indeed, f l  is everywhere Lipschitz smooth, hence Attouch-Wets convergence of 
Ayl,~,t at any z would imply uniform convergence on bounded sets, hence Fr6chet 
differentiability of V f l  at z, which was seen to be impossible. 

5. Second-Order Theory - General Case 

Dealing with nonconvex functions, it is clear that Mosco convergence and Attouch- 
Wets convergence have to be replaced by a more flexible notion of graphical 
convergence which does not essentially rely on the weak lower semi-continuity 
of the function f under consideration. It turns out that the right choice is epi 
convergence with respect to the norm topology. The following characterization 
of second-order epi differentiability for integral functionals (1.1), (1.2) on Hilbert 
space L2~ was obtained in [29]. 

THEOREM 5.1. Let f be an integral functional on Lid satisfying (1.1), (1.2). Let 
u E Leaa be fixed satisfying u(x) C D~(~,.) for almost all x. Then the following 
statements are equivalent." 

e 

(1) f is second-order epi differentiable at u, i.e., Af,~,~,t --+ q for a purely 
quadratic and fully defined limit function q, (v(x) : V¢(x,  u(x) ) ); 

(2) The eigenvalues of  the Hessian matrices V2¢(x, u(x)) are essential- 
ly uniformly bounded, and moreover, the second-order difference quotients 
A t (x  , .) = A¢(x,.),u(z),v(x), t of  the ¢(x, .) at u(x) satisfy the following uni- 

form boundedness below condition." 
At(z, + al l 2 >_ 0 (5.1) 

for some o~ > O, all It] < 1, ~ C ]~d and almost all x. 

Moreover, in these cases, q is given by 

q(h) = ½ f a  (Va¢(x '  u(x))h(x) ,  h(x)} # (dx). (5.2) 

The proof, which may be found in [29], proceeds in a way similar to the proof 
of Proposition 3.4. Notice that in [29] we used this result as a basic tool to discuss 
the second-order differentiability properties of the integral functionals (1.1), (1.2) 
having smooth integrand. 

Notice that Theorem 5.1 adjusts the result by R.S. Palais and S. Smate (cf. [32]) 
mentioned in the introduction. A corrected version of their result was also given in 
I.V. Skrypnik (cf. [6, p. 25]), stating that the only integral functionals of class C 2 
are those having integrand a polynomial of degree < 2. See [8] for a proof of this 
fact and the related Theorem of Vainberg. 

As a consequence of Theorem 5.1, we obtain the important fact that Mosco 
convergence and epi convergence of the second-order difference quotients coincide 
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when f is a convex  integral functional on an L2-space. This is strongly in contrast 

with the first order theory, where Mosco convergence certainly coincides with 

Attouch-Wets convergence when the space is reflexive. 

C O R O L L A R Y  5.2. Let f be a convex integral functional on L2d, Let u C L2e be 
fixed. Then the following statements are equivalent: 

(1) V2qi(z, u(:c)) exists for almost all ac, with eigenvalues being essentially 

bounded," 

(2) A L,,,v,t ,k~ q for a purely quadratic and fully defined q; 

(3) A f,u,v,t _P+ q for  a purely quadratic and fully defined q. 

Moreover, in these cases, q has the form (5.2). 

Proof Notice that (1) and (2) are equivalent as a consequence of  Theorem 5.1, 

since the uniform boundedness  below condition (5.1) is automatically satisfied 

with any o~ > 0, as q5 is convex,  and hence A t ( z  , .) >>_ 0 almost everywhere.  Since 

clearly (3) implies (2), it remains to observe that (1) and (3) are equivalent. This 

was proved in [13] using duality techniques based on Proposition 4.1. [] 

We do not know whether  Corollary 5.2 remains valid for more general classes 

of  continuous convex  functions defined on a separable Hilbert space. 
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