
1

Parametric robust structured control design
Pierre Apkarian, Minh Ngoc Dao, and Dominikus Noll

Abstract—We present a new approach to parametric robust
controller design, where we compute controllers of arbitrary
order and structure which minimize the worst-case H∞ norm
over a pre-specified set of uncertain parameters. At the core
of our method is a nonsmooth minimization method tailored to
functions which are semi-infinite minima of smooth functions.
A rich test bench and a more detailed example illustrate the
potential of the technique, which can deal with complex problems
involving multiple possibly repeated uncertain parameters.

Index Terms—Real uncertain parameters, structured H∞-
synthesis, parametric robust control, nonsmooth optimization,
local optimality, inner approximation.

I. INTRODUCTION

PARAMETRIC uncertainty is among the most challenging
problems in control system design due to its NP-hardness.

Albeit, being able to provide solutions to this fundamental
problem is a must for any practical design tool worthy of this
attribute. Not surprisingly, therefore, parametric uncertainty
has remained high up on the agenda of unsolved problems
in control for the past three decades.

It is of avail to distinguish between analysis and synthesis
techniques for parametric robustness. Analysis refers to as-
sessing robustness of a closed-loop system when the controller
is already given. If the question whether this given controller
renders the closed loop parametrically robustly stable is solved
exhaustively, then it is already an NP-hard problem [1].
Parametric robust synthesis, that is, computing a controller
which is robust against uncertain parameters, is even harder,
because it essentially involves an iterative procedure where at
every step an analysis problem is solved. Roughly, we could
say that in parametric robust synthesis we have to optimize a
criterion, a single evaluation of which is already NP-hard.

For the analysis of parametric robustness, theoretical and
practical tools with only mild conservatism and acceptable
CPUs have been proposed over the years [2]. In contrast, no
tools with comparable merits in terms of quality and CPU
are currently available for synthesis. It is fair to say that the
parametric robust synthesis problem has remained open. The
best currently available techniques for synthesis are the µ tools
going back to [3], made available to designers through the
MATLAB Robust Control Toolbox. These rely on upper bound
approximations of µ and follow a heuristic which alternates

P. Apkarian is with the Control System Department, ONERA, 2, av. Ed.
Belin, 31055, Toulouse, France - Tel: +33562252784, Fax: +33562252564,
Pierre.Apkarian@onera.fr

M. N. Dao is with the Department of Mathematics and Informatics, Hanoi
National University of Education, Vietnam, and also with the Institut de
Mathématiques de Toulouse, 118 route de Narbonne F-31062, Toulouse,
France - Tel: +33561557656, Fax: 33561557599, minhdn@hnue.edu.vn

D. Noll is with the Institut de Mathématiques de Toulouse, 118 route de Nar-
bonne F-31062, Toulouse, France - Tel: +33561558622, Fax: 33561557599,
noll@mip.ups-tlse.fr

between analysis and synthesis steps. When this works, it gives
performance and stability certificates, but the approach may
turn out conservative, and the computed controllers are often
too complicated for practice.

The principal obstruction to efficient robust synthesis is the
inherent nonconvexity and nonsmoothness of the mathematical
program underlying the design. These obstacles have to some
extent been overcome by the nonsmooth approaches [4], [5],
[6] for control. These techniques allow to address multi-model
and multi-objective structured control design as discussed
in [7], [8], [9], [10], [11]. These have become available
to designers through synthesis tools like HINFSTRUCT or
SYSTUNE from [12]. However, these methods can no longer
be used for the substantially harder parametric robust synthesis
problem, and this has been an incentive for our present work,
where we investigate new classes of optimization programs
involving upper-C1 stability and performance criteria.

In order to understand our approach, it is helpful to distin-
guish between inner and outer approximations of the robust
control problem on a set ∆ of uncertain parameters. Outer
approximations relax the problem over ∆ by choosing a larger,
but more convenient, set ∆̃ ⊃ ∆, the idea being that the
problem on ∆̃ becomes accessible to computations. If solved
successfully on ∆̃, this provides performance and robustness
certificates for ∆. Typical tools in this class are the upper
bound approximation µ of the structured singular value µ
developed in [13], the DK-iteration function DKSYN of [12],
or LMI-based approaches like [14]. The principal drawback
of outer approximations is the inherent conservatism, which
increases significantly with the number of uncertainties and
their repetitions, and the fact that failures occur more often.

Inner approximations are preferred in practice and relax
the problem by solving it on a smaller typically finite subset
∆a ⊂ ∆. This avoids conservatism and leads to acceptable
CPUs, but has the disadvantage that no immediate stability
or performance certificate for ∆ is obtained. Our principal
contribution here is to show a way how this shortcoming can
be avoided. We present an efficient technique to compute an
inner approximation with structured controllers with a local
optimality certificate such that robust stability and performance
are achieved over ∆ in the majority of cases. We then also
show how this can be certified a posteriori over ∆, when
combined with outer approximation for analysis. The new
method we propose is termed dynamic inner approximation,
as it generates the inner approximating set ∆a dynamically.
The idea of using inner approximations, and thus multiple
models, to solve robust synthesis problems is not new and
was employed in different contexts, see e.g. [15], [16], [17].

To address the parametric robust synthesis problem we use a
nonsmooth optimization method tailored to minimizing a cost
function, which is itself a semi-infinite minimum of smooth

2

functions. This is in contrast with previously discussed nons-
mooth optimization problems, where a semi-infinite maximum
of smooth functions is minimized, and which have been dealt
with successfully in [9]. At the core of our new approach
is therefore understanding the principled difference between
a min-max and a min-min problem, and the algorithmic
strategies required to solve them successfully. Along with the
new synthesis approach, our key contributions are
• an in-depth and rigorous analysis of worst-case stability

and worst-case performance problems over a compact
parameter range.

• the description of a new resolution algorithm for worst-
case programs along with a proof of convergence in the
general nonsmooth case.

Note that convergence to local minima from an arbitrary,
even remote, starting point is proved. Convergence to a global
minimum is as a rule unrealistic in terms of CPU due to the
NP-hardness of the problems.

The paper is organized as follows. Section II states the
problem formally, and Subsection II-B presents our novel
dynamic inner approximation technique and the elements
needed to carry it out. Section III highlights the principal
differences between nonsmooth min-min and min-max prob-
lems. Sections IV-A and IV-B examine the criteria which
arise in the optimization programs, the H∞-norm, and the
spectral abscissa. Section V presents the optimization method
we designed for min-min problems and Subsections V-B, V-C
are dedicated to convergence analysis. Section VI-A presents
an assessment and a comparison of our algorithm on a bench
of test examples. Section VI-B gives a more refined study of
a challenging missile control problem.

NOTATION

For complex matrices XH denotes conjugate transpose. For
Hermitian matrices, X � 0 means positive definite, X �
0 positive semi-definite. We use concepts from nonsmooth
analysis covered by [18]. For a locally Lipschitz function
f : Rn → R, ∂f(x) denotes its (compact and convex) Clarke
subdifferential at x ∈ Rn. The Clarke directional derivative at
x in direction d ∈ Rn can be computed as

f◦(x, d) = max
g∈∂f(x)

gT d .

The symbols Fl, Fu denote lower and upper Linear Frac-
tional Transformations (LFT) [19]. For partitioned 2×2 block
matrices, ? stands for the Redheffer star product [20].

II. PARAMETRIC ROBUSTNESS

A. Setup

We consider an LFT plant as in Fig. 1 with real parametric
uncertainties Fu(P,∆) where

P (s) :





ẋ = Ax + Bpp + Bww + Bu
q = Cqx + Dqpp + Dqww + Dquu
z = Czx + Dzpp + Dzww + Dzuu
y = Cx + Dypp + Dyww + Du

(1)

and x ∈ Rnx is the state, u ∈ Rm2 the control, w ∈ Rm1 the
vector of exogenous inputs, y ∈ Rp2 the output, and z ∈ Rp1
the regulated output. The uncertainty channel is defined as
p = ∆q where the uncertain matrix ∆ is without loss assumed
to have the block-diagonal form

∆ = diag [δ1Ir1 , . . . , δmIrm] (2)

with δ1, . . . , δm representing real uncertain parameters, and ri
giving the number of repetitions of δi. We assume without loss
that δ = 0 represents the nominal parameter value. Moreover,
we consider δ ∈ ∆ in one-to-one correspondence with the
matrix ∆ in (2).

PARAMETRIC ROBUST STRUCTURED CONTROL DESIGN 3

The symbols Fl, Fu are used to denote lower and upper Linear Fractional Transfor-
mations (LFT) [15]. For partitioned 2 ⇥ 2 block matrices, the symbol ? stands for the
Redheffer star product [16].

2. Parametric robustness

We consider an LFT plant with real parametric uncertainties Fu(P,�) where

(1) P (s) :

8
>><
>>:

ẋ = Ax + Bpp + Bww + Bu
q = Cqx + Dqpp + Dqww + Dquu
z = Czx + Dzpp + Dzww + Dzuu
y = Cx + Dypp + Dyww + Du

and x 2 Rnx is the state, u 2 Rm2 the control, w 2 Rm1 the vector of exogenous inputs,
y 2 Rp2 the output, and z 2 Rp1 the regulated output. The uncertainty channel is
defined as p = �q where the uncertain matrix � is without loss assumed to have the
block-diagonal form

� = diag [�1Ir1 , . . . , �mIrm](2)

with �1, . . . , �m representing real uncertain parameters, and ri giving the number of repe-
titions of �i. We assume without loss that � = 0 represents the nominal parameter value.
Moreover, we consider � 2 � in one-to-one correspondence with the matrix � in (2).

Figure 1. Robust synthesis interconnection

∆

P
z w

K(κ)

Figure 2. Robust synthesis interconnection

Given a compact convex set � ⇢ Rm containing � = 0, the parametric robust structured
H1 control problem consists in computing a structured output-feedback controller u =
K(⇤)y with the following properties:

(i) Robust stability. K(⇤) stabilizes Fu(P,�) internally for every � 2 �.
(ii) Robust performance. Given any other robustly stabilizing controller K() with

the same structure, the optimal controller satisfies

max
�2�

kTzw (�, ⇤) k1  max
�2�

kTzw (�, ) k1.

Here Tzw(�, ) := Fl (Fu(P,�(�)), K()) denotes the closed-loop transfer function of the
performance channel w ! z of (1) when the control loop with controller K() and the
uncertainty loop with uncertainty � are closed.

Fig. 1: Robust synthesis interconnection

Given a compact convex set ∆ ⊂ Rm containing δ = 0,
the parametric robust structured H∞ control problem consists
in computing a structured output-feedback controller u =
K(κ∗)y with the following properties:

(i) Robust stability. K(κ∗) stabilizes Fu(P,∆) internally
for every δ ∈∆.

(ii) Robust performance. Given any other robustly stabiliz-
ing controller K(κ) with the same structure, the optimal
controller satisfies

max
δ∈∆
‖Tzw (δ, κ∗) ‖∞ ≤ max

δ∈∆
‖Tzw (δ, κ) ‖∞.

Here Tzw(δ, κ) := Fl (Fu(P,∆(δ)), K(κ)) is the closed-loop
transfer function of the performance channel w → z of (1)
when the control loop with K(κ) and the uncertainty loop
with ∆ are both closed.

We recall that according to [5] a controller

K(κ) :

{
ẋK = AK(κ)xK + BK(κ)y
u = CK(κ)xK + DK(κ)y

(3)

in state-space form is called structured if AK(κ), BK(κ), . . .
depend smoothly on a design parameter κ varying in a design
space Rn or in some constrained subset of Rn. Typical
examples of structure include PIDs, reduced-order controllers,
observer-based controllers, or complex control architectures
combining controller blocks such as set-point filters, feed-
forward, washout or notch filters, and much else [9]. In
contrast, full-order controllers are state-space representations
with the same order as P (s) without particular structure, and
are sometimes referred to as unstructured, or as black-box
controllers.

3

Parametric robust control is among the most challenging
problems in linear feedback control. The structured singular
value µ developed in [19] is the principled theoretical tool to
describe problem (i), (ii) formally. In the same vein, based on
the spectral abscissa

α(A) = max{Re(λ) : λ eigenvalue of A}
of a square matrix A, criterion (i) may be written as

max
δ∈∆

α (A(δ, κ∗)) < 0, (4)

where A(δ, κ) is the A-matrix of the closed-loop transfer
function Tzw(δ, κ).

If the uncertain parameter set is a cube ∆ = [−1, 1]m,
which is general enough for applications, then the same
information is obtained from the distance to instability in the
maximum-norm

d∗ = min{‖δ‖∞ : α (A(δ, κ∗)) ≥ 0}, (5)

because criterion (i) is now equivalent to d∗ > 1. It is known
that the computation of any of these elements, µ, (4), or (5) is
NP-complete, so that their practical use is limited to analysis
of small problems, or to the synthesis of tiny ones. Practical
approaches have to rely on intelligent relaxations, or heuristics,
which use either inner or outer approximations.

In the next chapters we will develop our dynamic inner
approximation method to address problem (i), (ii). We solve
the problem on a relatively small set ∆a ⊂ ∆, which we
construct iteratively.

B. Dynamic inner approximation

The following static inner approximation to (i), (ii) is near
at hand. After fixing a sufficiently fine approximating static
grid ∆s ⊂∆, one solves the multi-model H∞-problem

min
κ∈Rn

max
δ∈∆s

‖Tzw (δ, κ) ‖∞. (6)

This may be addressed with the methods of [5], [11], [21],
and the software tools HINFSTRUCT and SYSTUNE [22], [7],
[8], [12], but has a high computational burden due to the large
number of scenarios in ∆s, which makes it prone to failure.
Straightforward gridding becomes very quickly intractable for
sizable dim(δ).

Here we advocate a different strategy, which we call dy-
namic inner approximation, because it operates on a substan-
tially smaller set ∆a ⊂ ∆ generated dynamically, whose
elements are called the active scenarios, which we update
a couple of times by applying a search procedure locating
problematic parameter scenarios in ∆. This leads to a rapidly
converging procedure, much less prone to failure than (6). The
method can be summarized as shown in Algorithm 1.

The principal elements of Algorithm 1 will be analyzed
in the following sections. We will focus on the optimization
programs v∗ in step 4, α∗ in step 3, and d∗, h∗ in step 6,
which represent a relatively unexplored type of nonsmooth
programs, with some common features which we shall put into
evidence here. In contrast, program v∗ in step 2 is accessible
to numerical methods through [5] and can be addressed with

Algorithm 1. Dynamic inner approximation for parametric
robust synthesis over ∆

Parameters: ε > 0.
. Step 1 (Nominal synthesis). Initialize the set of

active scenarios as ∆a = {0}.
. Step 2 (Multi-model synthesis). Given the cur-

rent finite set ∆a ⊂ ∆ of active scenarios, compute a
structured multi-model H∞-controller by solving

v∗ = min
κ∈Rn

max
δ∈∆a

‖Tzw (δ, κ) ‖∞.

The solution is the structured H∞-controller K(κ∗).
� Step 3 (Destabilization). Try to destabilize the

closed-loop system Tzw (δ, κ∗) by solving the destabi-
lization problem

α∗ = max
δ∈∆

α (A(δ, κ∗)) .

If α∗ ≥ 0, then the solution δ∗ ∈∆ destabilizes the loop.
Include δ∗ in the active scenarios ∆a and go back to step
2. If no destabilizing δ was found then go to step 4.

. Step 4 (Degrade performance). Try to degrade the
robust H∞-performance by solving

v∗ = max
δ∈∆
‖Tzw (δ, κ∗) ‖∞.

The solution is δ∗.
� Step 5 (Stopping test). If v∗ < (1 + ε)v∗ degra-

dation of performance is only marginal. Then exit, or
optionally, go to step 6 for post-processing. Otherwise
include δ∗ among the active scenarios ∆a and go back
to step 2.

� Step 6 (Post-processing). Check robust stability (i)
and performance (ii) of K(κ∗) over ∆ by computing
the distance d∗ to instability (5), and its analogue h∗ =
min{‖δ‖∞ : ‖Tzw(δ, κ∗)‖∞ ≥ v∗}. Possibly use µ-
tools from [12] to assess d∗, h∗ approximately. If all δ∗

obtained satisfy δ∗ 6∈∆, then terminate successfully.

tools like HINFSTRUCT or SYSTUNE available through [12],
or HIFOO available through [10]. Note that our approach is
heuristic in so far as we have relaxed (i) and (ii) by computing
locally optimal solutions, so that a global stability/performance
certificate is only provided in the end as a result of step 6.

III. NONSMOOTH MIN-MAX VERSUS MIN-MIN PROGRAMS

A. Classification of the programs in Algorithm 1

Introducing the functions a±(δ) = ±α (A(δ)), the problem
of step 3 can be equivalently written in the form

minimize a−(δ) = −α (A(δ))
subject to δ ∈∆

(7)

for a matrix A(δ) depending smoothly on the parameter δ ∈
Rm. Here the dependence of the matrix on controller K(κ∗)
is omitted for simplicity, as the latter is fixed in step 3 of the
algorithm. Similarly, if we introduce h±(δ) = ±‖G(δ)‖∞,

4

with G(s, δ) a transfer function depending smoothly on δ ∈
Rm, then problem of step 4 has the abstract form

minimize h−(δ) = −‖G(δ)‖∞
subject to δ ∈∆

(8)

where again controller K(κ∗) is fixed in step 4, and therefore
suppressed in the notation. In contrast, the H∞-program v∗ in
step 2 of Algorithm 1 has the form

minimize h+(κ) = ‖G(κ)‖∞
subject to κ ∈ Rn (9)

which is of the more familiar min-max type. Here we
use the well-known fact that the H∞-norm may be
written as a semi-infinite maximum function h+(κ) =
maxω∈[0,∞] σ (G(κ, jω)). The maximum over the finitely
many δ ∈∆a in step 2 complies with this structure and may
in principle be condensed into the form (9), featuring only a
single transfer G(s, κ). In practice this is treated as in [11].

Due to the minus sign, programs (7) and (8), written in the
minimization form, are now of the novel min-min type, which
is given special attention here. This difference is made precise
by the following

Definition 1 (Spingarn [23]). A locally Lipschitz function f :
Rn → R is lower-C1 at x0 ∈ Rn if there exist a compact space
K, a neighborhood U of x0, and a mapping F : Rn×K→ R
such that

f(x) = max
y∈K

F (x, y) (10)

for all x ∈ U , and F and ∂F/∂x are jointly continuous. The
function f is said to be upper-C1 if −f is lower-C1. �

We expect upper- and lower-C1 functions to behave quite
differently in descent algorithms. Minimization of lower-C1

functions, as required in (9), should lead to a genuinely non-
smooth problem, because iterates of a descent method move
toward the points of nonsmoothness. In contrast, minimization
of upper-C1 functions as required in (7) and (8) is expected
to be better behaved, because iterates move away from the
nonsmoothness. Accordingly, we will want to minimize upper-
C1 functions in (7) and (8) in much the same way as we
optimize smooth functions in classical nonlinear programming,
whereas the minimization of lower-C1 functions in (9) requires
specific techniques like nonconvex bundle methods [24], [25],
[5]. See Fig. 2 for an illustration.

Remark 1 (Distance to instability). Note that the computation
of the distance to instability d∗ defined in (5) for step 6 of
Algorithm 1 has also the features of a min-min optimization
program. Namely, when written in the form

minimize t
subject to −t ≤ δi ≤ t, i = 1, . . . ,m

−α (A(δ)) ≤ 0
(11)

with variable (δ, t) ∈ Rm+1, the Lagrangian of (5) is

L(δ, t, λ, µ±) = t+

m∑

i=1

µi− (−t− δi)+µi+(δi−t)−λα (A(δ))

for Lagrange multipliers λ ≥ 0 and µ± ≥ 0. In particular, if
(δ∗, t∗, λ∗, µ∗±) is a Karush-Kuhn-Tucker point of (11), (see

[18, Prop. 6.6.4], or [26, Sect. 3.3.1]), then the local minimum
(δ∗, t∗) we are looking for is also a critical point of the
unconstrained program

min
δ∈Rm,t∈R

L(δ, t, λ∗, µ∗±),

which features the function a− and is therefore of min-min
type. Therefore, in solving (5), we expect phenomena of min-
min type to surface rather than those of a min-max program.
A similar comment applies to the computation of h∗ in step
6 of the algorithm.

Remark 2 (Well-posedness). Yet another aspect of Algorithm
1 is that in order to be robustly stable over the parameter set
∆, the LFTs must be well-posed in the sense that (I−∆D)−1

exists for every δ ∈∆, where D is the closed-loop D-matrix.
Questioning well-posedness could therefore be included in
step 3 of the algorithm, or added as posterior testing in step
6. It can be formulated as yet another min-min program

minimize −σ((I −∆D)−1)
subject to δ ∈∆

(12)

where one would diagnose the solution δ∗ to represent an ill-
posed scenario as soon as it achieves a large negative value.
Program (12) exhibits the same properties as minimizing h− in
Section IV-A and is handled with the same novel techniques.

For programs v∗ in step 4, α∗ in step 3, and d∗, h∗

in step 6 of Algorithm 1, well-posedness (12) is a pre-
requisite. However, we have observed that it may not be
necessary to question well-posedness over ∆ at every step,
since questioning stability over ∆ has a similar effect. Since
the posterior certificate in step 6 of the algorithm covers also
well-posedness, this is theoretically justified.

Remark 3. Our notation makes it easy for the reader to
distinguish between min-min and min-max programs. Namely,
minimizations over the controller variable κ turn out the min-
max ones, while minimizations over the uncertain parameters
δ lead to the min-min type.

Remark 4. Note that min-min programs (7), (8) require only
smoothness of A(δ), respectively, G(δ). This is practical in
problems where LFT representations are not readily available.

B. Highlighting the difference between min-max and min-min

In this section we look at the typical difficulties which
surface in min-max and min-min programs. This is crucial
for the understanding of our algorithmic approach. Consider
first a min-max program of the form

min
κ∈Rn

max
i∈I

fi(κ), (13)

where the fi are smooth. When the set I is finite, we may
simply dissolve this into a classical nonlinear programming
(NLP) using one additional dummy variable t ∈ R:

minimize t
subject to fi(κ) ≤ t, i ∈ I.

The situation becomes more complicated as soon as the set I
is infinite, as is for instance the case in program v∗ in step 2 of

5

Algorithm 1. The typical difficulty in min-max programs is to
deal with this semi-infinite character, and one is beholden to
use a tailored solution, as for instance developed in [5], [25],
[24]. Altogether this type of difficulty is well-known and has
been thoroughly studied.

In contrast, a min-min program

min
δ∈Rn

min
i∈I

fi(δ) (14)

cannot be converted into an NLP even when I is finite. The
problem has disjunctive character, and if solved to global
optimality, min-min programs lead to combinatorial explosion.
On the other hand, a min-min problem has some favorable
features when it comes to solely finding a good local mini-
mum. Namely, when meeting a nonsmooth iterate δj , where
several branches fi are active, we can simply pick one of
those branches and continue optimization as if the objective
function were smooth. In the subsequent sections we prove that
this intuitive understanding is indeed correct. Our experimental
section will show that good results are obtained if a good
heuristic is used.

The above considerations lead us to introduce the notion of
active indices and branches for functions f(δ) defined by the
inner max and min in (13) and (14).

Definition 2. The set of active indices for f at δ is defined as

I(δ) := {i ∈ I : fi(δ) = f(δ)} .
Active branches of f at δ are those corresponding to active
indices, i.e, fi, i ∈ I(δ).

nonsmoothness

synthesis: min-max analysis: min-min

Fig. 2: Minimization of a minimum (right) may require deciding
along which branch to proceed, hence the potentially combinatorial

character of (14). Minimizing a maximum (left) requires
simultaneous minimization of active branches, hence the non
smoothness and the potentially semi-infinite character of (13).

IV. COMPUTING SUBGRADIENTS

In this section we briefly discuss how the subgradient
information needed to minimize h− and a− is computed.

A. Case of the H∞-norm

We start by investigating the case of the H∞-norm h±. We
recall that function evaluation is based on the Hamiltonian
algorithm of [27], [28] and its further developments [29].

Computation of subgradients of h− in the sense of Clarke can
be adapted from [5], see also [30]. We assume the controller
is fixed in this section and investigate the properties of h−
as a function of δ. To this aim, the controller loop is closed
by substituting the structured controller (3) in (1), and we
obtain the transfer function M(κ) := Fl(P,K(κ)). Substantial
simplification in Clarke subdifferential computation is then
obtained by defining the 2× 2-block transfer function

[
∗ Tqw(δ)

Tzp(δ) Tzw(δ)

]
:=

[
0 I
I ∆

]
? M , (15)

where the dependence on κ has now been suppressed, as the
controller will be fixed to κ∗ after step 2. It is readily seen that
Tzw coincides with the closed-loop transfer function where
both controller and uncertainty loops are closed.

Now consider the function h−(δ) := −‖Tzw(δ)‖∞,
which is well defined on its domain D := {δ ∈ Rm :
Tzw(δ) is internally stable}. We have the following

Proposition 1. The function h− is everywhere Clarke subd-
ifferentiable on D. The Clarke subdifferential at δ ∈ D is the
compact and convex set

∂h−(δ) =

{
φY : Y = (Yω), ω ∈ Ω(δ), Yω � 0,

∑
ω∈Ω(δ) Trace(Yω) = 1

}
,

where the i-th entry of φY is Trace
(
∆T
i ΦY

)
with ∆i =

∂∆/∂δi, and

ΦY = −
∑

ω∈Ω(δ)

Re
(
Tqw(δ, jω)PωYωQ

H
ω Tzp(δ, jω)

)T
.

Here Ω(δ) is the set of active frequencies at δ, Qω is a
matrix whose columns are the left singular vectors associated
with the maximum singular value of Tzw(δ, jω), Pω is the
corresponding matrix of right singular vectors, and Yω is an
Hermitian matrix of appropriate size.

Proof: Computation of the Clarke subdifferential of h−
can be obtained from the general rule ∂(−h) = −∂h, and
knowledge of ∂h+, see [5]. Note that in that reference the
Clarke subdifferential is with respect to the controller and
relies therefore on the Redheffer star product

P ?

[
K(κ) I
I 0

]
.

Here we apply this in the upper loop in ∆, so we have to use
the analogue expression (15) instead.

Remark 5. In the case where a single frequency ω0 is active
at δ and the maximum singular value σ of Tzw(δ, jω0) has
multiplicity 1, h− is differentiable at δ and the gradient is

∂h−(δ)

∂δi
= −Trace Re

(
Tqw(δ, jω0)pω0

qHω0
Tzp(δ, jω0)

)T
∆i,

where pω0 and qω0 are the unique right and left singular vectors
of Tzw(δ, jω0) associated with σ(Tzw(δ, jω0)) = h+(δ).

6

Proposition 2. Let D = {δ : Tzw(δ) is internally stable}.
Then h+ : δ 7→ ‖Tzw(δ)‖∞ is lower-C1 on D, so that
h− : δ 7→ −‖Tzw(δ)‖∞ is upper-C1 there.

Proof: Recall that the maximum singular value has the
variational representation

σ(G) = sup
‖u‖=1

sup
‖v‖=1

∣∣uTGv
∣∣ .

Now observe that z 7→ |z|, being convex, is lower-C1 as a
mapping R2 → R, so we may write it as

|z| = sup
l∈L

Ψ(z, l)

for Ψ jointly of class C1 and L compact. Then

h+(δ) = sup
jω∈S1

sup
‖u‖=1

sup
‖v‖=1

sup
l∈L

Ψ
(
uTTzw(δ, jω)v, l

)
, (16)

where S1 = {jω : ω ∈ R ∪ {∞}} is homeomorphic with the
1-sphere. This is the desired representation (10), where the
compact space K is obtained as K := S1×{u : ‖u‖ = 1}×{v :
‖v‖ = 1}×L, F as F (δ, jω, u, v, l) := Ψ

(
uTTzw(δ, jω)v, l

)

and y as y := (jω, u, v, l).

B. Case of the spectral abscissa

For the spectral abscissa the situation is more complicated,
as a± is not locally Lipschitz everywhere. Recall that an eigen-
value λi of A(δ) is called active at δ if Re(λi) = α (A(δ)).
We use I(δ) for the indices of active eigenvalues. Let us write
the LFT describing A(δ) as A(δ) = A + C∆(I − D∆)−1B,
where dependence on controller parameters κ is again omitted
and considered absorbed into the state-space data A, B, etc.

Proposition 3. Suppose all active eigenvalues λi, i ∈ I(δ) of
A(δ) at δ are semi-simple. Then a±(δ) = ±α (A(δ)) is Clarke
subdifferentiable in a neighborhood of δ. The Clarke subdif-
ferential of a− at δ is ∂a−(δ) = {φY : Y = (Yi)i∈I(δ), Yi �
0,
∑
i∈I(δ) Trace(Yi) = 1}, where the i-th entry of φY is

−Trace ∆i
TΦY with ∆i = ∂∆/∂δi, and

ΦY =
∑

i∈I(δ)

Re
(
(I −D∆)−1CViYiUHi B(I −∆D)−1

)T
.

Here Vi is a column matrix of right eigenvectors, UHi a
row matrix of left eigenvectors of A(δ) associated with the
eigenvalue λi, and such that UHi Vi = I.

Proof: This follows from [31]. See also [32]. A very
concise proof that semi-simple eigenvalue functions are locally
Lipschitz could also be found in [33].

When every active eigenvalue is simple, Yi reduces to a
scalar yi and a fast implementation is possible. We use the
LU-decomposition to solve for ũi and ṽi in the linear systems

ũHi (I −∆D) := uHi B, (I −D∆)ṽi := Cvi .

Given the particular structure (2) of ∆, subgradients with
respect to the kth entry are readily obtained as a sum over i ∈
I(δ) of inner products of the form yiRe ũi(J(k))H ṽi(J(k)),
where J(k) is a selection of indices associated with the

rows/columns of δk in ∆(δ). Similar inner products arise in
the computation of H∞ norm subgradients.

It was observed in [31] that a± may fail to be locally
Lipschitz at δ if A(δ) has a derogatory active eigenvalue.

Proposition 4. Suppose every active eigenvalue of A(δ) is
simple. Then a− is upper-C1 in a neighborhood of δ.

Proof: If active eigenvalues are simple, then a+ is the
maximum of C1 functions in a neighborhood of δ. The result
follows from a− = −a+.

V. ALGORITHM FOR MIN-MIN PROGRAMS

In this section we present our descent algorithm to solve
programs (7) and (8). We consider an abstract form of the
min-min program with f a general objective function of this
type:

minimize f(δ)
subject to δ ∈∆

(17)

As we already pointed out, the crucial point is that we want
to stay as close as possible to a standard algorithm for smooth
optimization, while assuring convergence under the specific
form of upper nonsmoothness in these programs.

Algorithm 2. Descent method for min-min programs

Parameters: 0 < γ < Γ < 1, 0 < θ < Θ < 1.
. Step 1 (Initialize). Put outer loop counter j = 1,

choose initial guess δ1 ∈∆, fix memory stepsize t]1 > 0.
� Step 2 (Stopping). If δj is a Karush-Kuhn-Tucker

point of (17) then exit, otherwise go to inner loop.
. Step 3 (Inner loop). At current iterate δj call the

step finding Subroutine (Subroutine 1) started with last
memorized stepsize t]j to find a step tk > 0 and a new
serious iterate δj+1 such that

ρk =
f(δj)− f(δj+1)

f(δj)− φ]k(δj+1, δj)
≥ γ.

� Step 4 (Stepsize update). If ρk ≥ Γ then update
memory stepsize as t]j+1 = θ−1tk, otherwise update
memory stepsize as t]j+1 = tk. Increase counter j and
go back to step 2.

In order to understand Algorithm 2 and its step finding
subroutine (Subroutine 1), we recall from [34], [21] that

φ](η, δ) = f(δ) + f◦(δ, η − δ)
is the standard model of f at δ, where f◦(δ, d) is the Clarke
directional derivative of f at δ in direction d [18]. This model
can be thought of as a substitute for a first-order Taylor
expansion at δ and can also be represented as

φ](η, δ) = f(δ) + max
g∈∂f(δ)

gT (η − δ), (18)

where ∂f(δ) is the Clarke subdifferential of f at δ. In the
subroutine we generate lower approximations φ]k of φ] using
finite subsets Gk ⊂ ∂f(δ), putting

φ]k(η, δ) = f(δ) + max
g∈Gk

gT (η − δ).

7

We call φ]k the working model at inner loop counter k.

Subroutine 1. Descent step finding for min-min programs

Input: Current serious iterate δ, last memorized stepsize
t] > 0. Flag.

Output: Next serious iterate δ+.
. Step 1 (Initialize). Put linesearch counter k = 1,

and initialize search at t1 = t]. Choose subgradient g0 ∈
∂f(δ). Put G1 = {g0}.

. Step 2 (Tangent program). Given tk > 0, a finite
set of Clarke subgradients Gk ⊂ ∂f(δ), and the corre-
sponding working model φ]k(·, δ) = f(δ)+max

g∈Gk
gT (·−δ),

compute solution ηk ∈∆ of the convex quadratic tangent
program

(TP) min
η∈∆

φ]k(η, δ)+ 1
2tk
‖η−δ‖2.

� Step 3 (Armijo test). Compute

ρk =
f(δ)− f(ηk)

f(δ)− φ]k(ηk, δ)

If ρk ≥ γ then return δ+ = ηk successfully to Algorithm
2. Otherwise go to step 4

. Step 4 (If Flag = strict. Cutting and
aggregate plane). Pick a subgradient gk ∈ ∂f(δ)
such that f(δ) + gTk (ηk− δ) = φ](ηk, δ), or equivalently,
f◦(δ, ηk − δ) = gTk (ηk − δ). Include gk into the new set
Gk+1 for the next sweep. Add the aggregate subgradient
g∗k into the set Gk+1 to limit its size.
� Step 5 (Step management). Compute the test quo-

tient

ρ̃k =
f(δ)− φ]k+1(ηk, δ)

f(δ)− φ]k(ηk, δ)
.

If ρ̃k ≥ γ̃ then select tk+1 ∈ [θtk,Θtk], else keep tk+1 =
tk. Increase counter k and go back to step 2.

Remark 6. Typical values are γ = 0.0001, γ̃ = 0.0002, and
Γ = 0.1. For backtracking we use θ = 1

4 and Θ = 3
4 .

A. Practical aspects of Algorithm 2

The subroutine of the descent Algorithm 2 looks compli-
cated due to step 4, but as we now argue, it reduces to a
standard backtracking linesearch in the majority of cases. Note
that if f is certified upper-C1, then we completely dispense
with step 4 and keep Gk = {g0}, which by force reduces the
subroutine to a linesearch along a projected gradient direction.
This is what we indicate by flag = upper in step 4 of the
subroutine.

If f is known to have a strict standard model φ] in (18),
without being certified upper-C1, which corresponds to flag
= strict, then step 4 of the subroutine is in principle needed.
However, even then we expect the subroutine to reduce to a
standard linesearch. This is clearly the case when the Clarke
subdifferential ∂f(δ) at the current iterate δ is singleton,

because φ]k(η, δ) = f(δ)+∇f(x)T (η−δ) is then independent
of k, so ρk ≥ γ reads

f(ηk) ≤ f(δj) + γ∇f(δj)T (ηk − δj),

which is the usual Armijo test [26]. Moreover, ηk is then a step
along the projected gradient P∆−δ(−∇f(δ)), which is easy to
compute due to the simple structure of ∆. More precisely, for
∆ = [−1, 1]m and stepsize tk > 0, the solution η of tangent
program (TP) in step 2 can be computed coordinatewise as

min
{
γiη + (2tk)−1η2 +

(
γi − δit−1

k

)
η : −1 ≤ η ≤ 1

}
,

where γi := ∂f(δ)/∂δi. Cutting plane and aggregate plane in
step 4 become redundant, and the quotient ρ̃k in step 5 is also
redundant as it is always equal to 1.

Remark 7. There is only one case in which step 4 is fully
executed, and that is when f is not certified upper-C1, and in
addition the subgradient g0 ∈ ∂f(δ) in step 1 of Subroutine
1 does not satisfy f(δ) + gT0 (ηk − δ) = φ](ηk, δ). In that rare
event step 4 requires computation of a new subgradient gk ∈
∂f(δ) which does satisfy f(δ) + gTk (ηk − δ) = φ](δ, ηk − δ).
From here on the procedure changes. The sets Gk+1 may now
grow, because we add gk into Gk+1. This corresponds to what
happens in a bundle method. The tangent program (TP) is now
solved numerically using a QP-solver. Fortunately we may
limit the number of elements of Gk+1 using the aggregate
subgradient of Kiwiel [35], so this is still very fast.

Remark 8. For the spectral abscissa f(δ) = a−(δ), which is
not certified upper-C1, we use this cautious variant, where the
computation of gk in step 4 may be required. For f = a− this
leads to a low-dimensional semidefinite program.

Remark 9. The stopping test in step 2 of Algorithm 2 can be
delegated to Subroutine 1. Namely, if δj is a Karush-Kuhn-
Tucker point of (17), then ηk = δj is solution of the tangent
program (TP). This means we can use the following practical
stopping tests: If the inner loop at iterate δj finds δj+1 ∈ ∆
such that

‖δj+1 − δj‖
1 + ‖δj‖ < tol1,

|f(δj+1)− f(δj)|
1 + |f(δj)| < tol2,

then we decide that δj+1 is optimal and stop. That is, the (j+
1)st inner loop is not started. On the other hand, if the inner
loop at δj has difficulties finding a new iterate and provides
five consecutive unsuccessful backtracks ηk such that

‖ηk − δj‖
1 + ‖δj‖ < tol1,

|f(ηk)− f(δj)|
1 + |f(δj)| < tol2,

or if a maximum kmax of linesearch steps k is exceeded,
then we decide that δj was already optimal and stop. In our
experiments we use tol1 = 10−4, tol2 = 10−4, kmax = 50.

B. Convergence analysis for the negative H∞-norm

Algorithm 2 was studied in much detail in [34], and we
review the convergence result here, applying them directly to
the functions a− and h−. The significance of the class of
upper-C1 functions for convergence lies in the following

8

Proposition 5. Suppose f is upper-C1 at δ̄. Then its standard
model φ] is strict at δ̄ in the following sense: For every ε > 0
there exists r > 0 such that the one-sided Taylor type estimate

f(η) ≤ φ](η, δ) + ε‖η − δ‖ (19)

is satisfied for all δ, η ∈ B(δ̄, r).

Proof: The following, even stronger property of upper-
C1 functions was proved in [36], see also [37], [34]. Suppose
δk → δ̄ and ηk → δ̄, and let gk ∈ ∂f(δk) be arbitrary. Then
there exist εk → 0 such that

f(ηk) ≤ f(δk) + gTk (ηk − δk) + εk‖ηk − δk‖ (20)

is satisfied.

Theorem 1 (Worst-case H∞ norm on ∆). Let δj ∈∆ be the
sequence generated by Algorithm 2 with standard linesearch
for minimizing program (8). Then the sequence δj converges
to a Karush-Kuhn-Tucker point δ∗ of (8).

Proof: The method of proof of [21, Theorem 6.6] shows
that every accumulation point of the δj ∈∆ is a critical point
of (8), because of the one-sided Taylor estimate (19). However,
the proof in [21] still needs the extended version of Subroutine
1, which we want to avoid.

Now, using the stronger hypothesis that f is upper-C1,
we find indeed that the full construction of the step finding
subroutine is not needed, because regardless how the cutting
planes are chosen, the working models always satisfy a one-
sided Taylor estimate f(ηk) ≤ φ]k(ηk, δk) + εk‖ηk− δk‖ with
εk → 0 as ηk, δk → δ. This freedom allows us to simplify
the step finding Subroutine 1 to a standard linesearch, while
maintaining the convergence argument of [21]. More details
are given in [36].

Since h− is upper-C1 on D by Proposition 2, the above
applies to h−. Note that hypotheses assuring boundedness of
the sequence δj used in [21], [34], [36] are not needed here,
since ∆ is bounded.

Convergence to a single critical point is now assured through
[34, Cor. 1], because G in (8) depends analytically on δ, so h−
is a subanalytic function, and hence satisfies the Łojasiewicz
inequality [38]. Subanalyticity of h− can be derived from the
following fact [39]: If F : Rn × K → R is subanalytic, and
K is subanalytic and compact, then f(δ) = miny∈K F (δ, y) is
subanalytic. We apply this to the negative of (16).

Remark 10. The lightning function f : R→ R in [40] is an
example which has a strict standard model but is not upper-
C1. It is Lipschitz with constant 1 and has ∂f(x) = [−1, 1]
for every x. The standard model of f is strict, because for all
x, y there exists ρ = ρ(x, y) ∈ [−1, 1] such that

f(y) = f(x) + ρ|y − x| ≤ f(x) + sign(y − x)(y − x)

≤ f(x) + f◦(x, y − x) = φ](x, y − x),

using the fact that sign(y−x) ∈ ∂f(x). At the same time f is
certainly not upper-C1, because it is not semi-smooth in the
sense of [41]. This shows that the class of functions f with a
strict standard model offers a scope of its own, justifying the
effort made in the step finding subroutine.

C. Convergence analysis for the negative spectral abscissa

While we obtained an ironclad convergence certificate for
the H∞-programs (8), and similarly, for (12), theory is
more complicated with program (7). In our numerical testing
a−(δ) = −α (A(δ)) behaves consistently like an upper-C1

function, and we expect this to be true at least if all active
eigenvalues of A(δ∗) are semi-simple. We now show that a−
has a strict standard model as a rule.

Since A(δ) depends analytically on δ, the eigenvalues
are roots of a characteristic polynomial pδ(λ) = λm +
a1(δ)λm−1 + · · · + am(δ) with coefficients ai(δ) depending
analytically on δ. For fixed d ∈ Rm, every eigenvalue λν(t)
of A(δ∗ + td) has therefore a Newton-Puiseux expansion of
the form

λν(t) = λν(0) +

∞∑

i=k

λν,i−k+1t
i/p (21)

for certain k, p ∈ N, where the coefficients λν,i = λν,i(d)
and leading exponent k/p can be determined by the Newton
polygon [42]. If all active eigenvalues of a−(δ) = −α(A(δ))
are semi-simple, then a− is Lipschitz around δ∗ by Proposition
3, so that necessarily k/p ≥ 1 in (21). It then follows
that either a′−(δ∗, d) = 0 when k/p > 1 for all active
ν, or a′−(δ∗, d) = −Reλν,1 ≤ a◦−(δ∗, d) for the active
ν ∈ I(δ∗) if k/p = 1. In both cases a− satisfies the strictness
estimate (19) directionally, and we expect a− to have a strict
standard model. Indeed, for k/p = 1 we have a−(δ∗ + td) ≤
a−(δ∗) + a◦−(δ∗, d)t − Reλν,2t

(p+1)/p + o(t(p+1)/p), while
the case k/p > 1 gives a′−(δ∗, d) = 0, hence a◦−(δ∗, d) ≥ 0,
and so a−(δ∗ + td) ≤ a−(δ∗) − Reλν,1t

k/p + o(tk/p) ≤
a−(δ∗)+a◦−(δ∗, d)t−Reλν,1t

k/p+o(tk/p). As soon as these
estimates hold uniformly over ‖d‖ ≤ 1, a− has indeed a strict
standard model, i.e., we have the following

Lemma 1. Suppose every active eigenvalue of A(δ∗) is semi-
simple, and suppose the following two conditions are satisfied:

lim
t→0

sup
‖d‖≤1

sup
ν∈I(δ∗),k/p=1

∞∑

i=k+1

Reλν,i−k+1(d)ti/p−1 ≥ 0

lim
t→0

sup
‖d‖≤1

sup
ν∈I(δ∗),k/p>1

∞∑

i=k

Reλν,i−k+1(d)ti/p−1 ≥ 0.

(22)
Then the standard model of a− is strict at δ∗, i.e., a one-sided
Taylor estimate of the form (19) is satisfied. �

Even though these conditions are not easy to check, they
seem to be verified most of the time, so that the following
result reflects what we observe in practice for the min-min
program of the negative spectral abscissa a−.

Theorem 2 (Worst-case spectral abscissa on ∆). Let δj ∈∆
be the sequence generated by Algorithm 2 for program (7),
where the step finding subroutine is carried out with step
4 activated. Suppose every accumulation point δ∗ of the
sequence δj is simple or semi-simple and satisfies condition
(22). Then the sequence converges to a unique Karush-Kuhn-
Tucker point of program (7).

Proof: We apply [34, Cor. 1], using that a− satisfies the
Łojasiewicz inequality at all accumulation points.

9

Remark 11. The results of this section give a fair theoretical
explanation why the step finding subroutine reduces to a
standard linesearch in almost all cases. Indeed, as ∂a−(δ) is
singleton almost everywhere in the neighborhood of a semi-
simple eigenvalue due to Proposition 3 and Rademacher’s
theorem, step 4 becomes redundant almost everywhere.

D. Multiple performance measures

Practical applications often feature several design require-
ments combining H∞ and H2 performances with spectral
constraints related to pole locations. The results in Section
V-B easily extend to this case upon defining H(κ, δ) :=
maxi∈I hi (Tzi,wi(κ, δ)), where several performance channels
wi → zi are assessed against various requirements hi, as in
[22], [8]. All results developed so far carry over to multiple
requirements, because the worst-case multi-objective perfor-
mance in step 4 of Algorithm 1 involves H− = −H which
has the same min-min structure as before.

VI. EXPERIMENTS

A. Algorithm testing

In this section our dynamic inner approximation technique
(Algorithm 1) is tested on a bench of 14 examples of various
sizes and structures. All tests have been adapted from the liter-
ature and are described in Table I. Some tests have been made
more challenging by adding uncertain parameters in order to
illustrate the potential of the technique for higher-dimensional
parametric domains ∆. The notation [r1 r2 . . . rm] in the
rightmost column of the table stands for the block sizes in
∆ = diag [δ1Ir1 , . . . , δmIrm]. Uncertain parameters have been
normalized so that ∆ = [−1, 1]m, with nominal value δ = 0.

The dynamic inner approximation of Algorithm 1 is first
compared to static inner approximation (6), which uses a dense
enough static grid ∆s of ∆ to perform a multi-model synthesis
for a large number card(∆s) of models where card stands for
set cardinality. In consequence, static approximation cannot be
considered practical. Namely,
• Dense grids become quickly intractable for high-

dimensional ∆.
• Static approximation may lead to overly optimistic an-

swers in terms of worst-case performance if critical
parametric configurations are missed by gridding.

This is what is observed in columns 7 - 9 of Table II, where
we used a 5m-point grid with m = dim(δ) the number
of uncertain parameters. Worst-case performance is missed
in tests 6, 9, 12 and 14, as we verified by Algorithm 1.
Running times may rise to hours or even days for cases
1, 2, 5 and 10. On the other hand, when the worst case
δ∗ found by Algorithm 1 is close to the grid ∆s, then
static approximation and Algorithm 1 find the same result.
Dynamic inner approximation (Algorithm 1) can therefore be
considered a cheap, and therefore very successful, way to
cover the uncertainty box. The number of scenarios in ∆a

rarely exceeds 10 in our testing. Computations were performed
with MATLAB R2013b on OS Windows 7 Home Premium
with CPU Intel Core i5-2410M running at 2.30 Ghz and 4
GB of RAM.

The results h∞ achieved by Algorithm 1 shown in column
4 of Table II are underestimates of the worst-case H∞
performance on the unit cube. We therefore certify them a
posteriori through the mixed µ upper bound [13], which can
be computed using the routine wcgain of [12]. This is Step 6
in Algorithm 1, which gives the final validation of the design.
This gives an overestimate γ̄A1 of the worst-case performance
on the unit cube ∆, which we report in column 5 of Table
II. Since h∞ ≤ µ ≤ γ̄A1, we know that as soon as lower
and upper worst-case estimates nearly coalesce, h∞ ≈ γ̄A1,
controllers designed using Algorithm 1 are certified on the unit
cube.

Our last comparison is between Algorithm 1 and DKSYN
for complex- and mixed-µ syntheses. To put comparison on
an equal basis, we scale the performance channels by 1/h∞,
where h∞ are the values computed via Algorithm 1 (column
4 of Table II). If we now validate our method using wcgain
as before, this gives the values γ̄A1 ≥ 1 reported in column
2 of Table III. This allows to compare results to one and to
decide whether a technique improves over Algorithm 1.

For the purpose of comparison we now run complex- and
mixed-µ syntheses for solving

min
K(s)

max
δ∈∆

1

h∞
‖Tzw (δ,K(s)) ‖∞. (23)

The optimal controllers K(s) are then again analyzed in
closed-loop via wcgain, which gives the estimates γ̄C and
γ̄R reported in columns 3 and 4 of Table III.

Table III shows that all synthesis techniques perform equally
well in tests 4 and 6, as indicated by γ̄A1 ≈ γ̄C ≈ γ̄R. Mixed-
µ synthesis performs better in case 8, but with a very high
order controller, 61 states versus a simple PID for Algorithm
1. In all other cases, Algorithm 1 achieves better worst-case
performance γ̄A1 � γ̄C, γ̄R with simpler structured controllers
K(κ). It also proves competitive in terms of CPU.

Going a step further, it can be shown using the min-min
program in Step 4 in Algorithm 1, or alternatively the routine
wcgain, that the upper estimates γ̄A1, γ̄C and γ̄R are tight. We
therefore conclude that the conservatism observed in µ syn-
thesis is not an artifact of the analysis routine, but reflects the
conservatism of the synthesis approach. The results of Tables
II and III can be checked by downloading the entire benchmark
at http://pierre.apkarian.free.fr/BENCH.zip

TABLE I: Test cases

No. Benchmark name Ref. States Uncertainty block structure
1 Flexible Beam [43] 8 [1 1 1 3 1]
2 Mass-Spring-Dashpot [44] 12 [1 1 1 1 1 1]
3 DC Motor [45] 5 [1 2 2]
4 DVD Drive [46] 5 [1 3 3 3 1 3]
5 Four Disk [47] 10 [1 3 3 3 3 3 1 1 1 1]
6 Four Tank [48] 6 [1 1 1 1]
7 Hard Disk Drive [49] 18 [1 1 1 2 2 2 2 1 1 1 1]
8 Hydraulic Servo [50] 7 [1 1 1 1 1 1 1 1]
9 Mass-Spring System [51] 4 [1 1]

10 Tail Fin Controlled Missile [52] 23 [1 1 1 6 6 6]
11 Robust Filter Design 1 [53] 4 [1]
12 Robust Filter Design 2 [54] 2 [1 1]
13 Satellite [55] 5 [1 6 1]
14 Mass-Spring-Damper [12] 8 [1]

10

TABLE II: Comparisons of Algorithm 1 with static
approximation on unit box, running times in sec.

No. order Algorithm 1 Static relaxation
scen. h∞ γ̄A1 time # scenarios H∞ norm time

1 3 4 1.290 1.290 25 3125 I ∞
2 5 16 2.960 2.990 261 15625 I ∞
3 PID 2 0.500 0.510 6 125 0.500 128
4 5 1 45.455 45.455 2 15625 45.454 4909
5 6 6 0.682 0.682 68 9765625 I ∞
6 6 4 5.568 5.568 42 625 5.564 3872
7 4 4 0.026 0.026 35 48828125 I ∞
8 PID 3 0.701 0.708 10 390625 I ∞
9 4 4 0.745 0.745 23 25 0.759 67
10 12 6 1.810 1.828 159 15625 I ∞
11 4 4 2.636 2.636 17 5 2.636 7
12 1 3 2.793 2.793 8 25 2.660 23
13 6 5 0.154 0.154 48 125 0.156 876
14 5 3 1.643 1.643 39 5 1.644 27

I = intractable

TABLE III: Comparisons of Algorithm 1 (A1) & DKSYN
complex- (C) and mixed-µ (R)

Worst-case H∞ performance on unit box computed using µ
upper bound

No. worst-case H∞ Controller order Running times
γ̄A1 γ̄C γ̄R A1 C R A1 C R

1 1.00 1.36 U 3 52 102 25 80 86
2 1.01 1.56 1.22 5 42 82 261 123 141
3 1.02 24.86 26.10 PID 47 47 6 76 27
4 1.00 1.00 1.00 5 5 5 2 27 53
5 1.00 4.04 3.40 6 54 10 68 131 316
6 1.00 1.00 1.00 6 6 22 42 18 29
7 1.01 63.65 F 4 18 F 35 159 F
8 1.01 1.20 0.95 PID 45 47 10 101 134
9 1.00 1.10 1.21 4 24 28 23 48 113

10 1.01 2.83 2.05 12 149 385 159 1412 7612
11 1.00 1.04 1.49 4 14 16 17 14 22
12 1.00 1.02 1.07 1 10 14 8 16 21
13 1.00 2.76 8.41 6 269 259 48 183 257
14 1.00 1.32 1.27 5 14 16 39 17 47

U: unstable, F: failure, times in seconds

B. Tail fin controlled missile

We now illustrate our robust synthesis technique in more
depth for a tail fin controlled missile. This problem is adapted
from [52, Chapter IV] and has been made more challenging by
adding parametric uncertainties in the most critical parameters.
The linearized rigid body dynamics of the missile are

[
α̇
q̇

]
=

[
Zα 1
Mα Mq

] [
α
q

]
+

[
Zd
Md

]
u

[
η
q

]
=

[
V/kGZα 0

0 1

] [
α
q

]
+

[
V/kGZd

0

]
u

where α is the angle of attack, q the pitch rate, η the
vertical acceleration and u the fin deflection. Both η and q
are measured through appropriate devices as described below.
A more realistic model also includes bending modes of the
missile structure. In this application, we have 3 bending modes
whose contribution to η and q is additive and described as:

[
ηi(s)
qi(s)

]
=

1

s2 + 2ζωis+ ω2
i

[
s2Ξηi
sΞqi

]
, i = 1, 2, 3 .

It is also important to account for actuator and detector
dynamics. The actuator is modeled as a 2nd-order trans-

fer function with damping 0.7 and natural frequency 188.5
rad./sec. Similarly, the accelerometer and pitch rate gyrometer
are 2nd-order transfer functions with damping 0.7 and natural
frequencies 377 rad./sec. and 500 rad./sec., respectively.

Uncertainties affect both rigid and flexible dynamics and
the deviations from nominal are 30% for Zα, 15% for Mα,
30% for Mq , and 10% for each ωi. This leads to an uncertain
model with uncertainty structure given as

∆ = diag
[
δZα , δMα

, δMq
, δω1

I6, δω2
I6, δω3

I6
]
,

which corresponds to δ ∈ R6 and repetitions [1 1 1 6 6 6] in
the terminology of Table I. The controller structure includes
both feed-forward Kff(s) and feedback Kfb(s) actions

uc = Kff(s)ηr +Kfb(s)

[
ηr − ηm
−qm

]
= K(s)



ηr − ηm
qm
ηr


 ,

where ηr is the acceleration set-point and ηm, qm are the
detectors outputs. The total number of design parameters κ in
K(κ, s) is 85, as a tridiagonal state space representation of a
12-th order controller was used.

The missile autopilot is optimized over κ ∈ R85 to meet
the following requirements:
• The acceleration ηm should track the reference input ηr

with a rise time of about 0.5 seconds. In terms of the
transfer function from ηr to the tracking error e := ηr −
ηm this is expressed as ||We(s)Teηr ||∞ ≤ 1, where the
weighting function We(s) is

We(s) := 1/M
s/ωB +M

s/ωB +A
, A = 0.05, M = 1.5, ωB = 10 .

• Penalization of the high-frequency rate of variation of
the control signal and roll-off are captured through the
constraint ||Wu(s)Tuηr ||∞ ≤ 1, where Wu(s) is a high-
pass weighting Wu(s) := (s/100(0.001s+ 1))

2.
• Stability margins at the plant input are specified through

the H∞ constraint ‖Wo(s)S(s)Wi(s)‖∞ ≤ 1, where S
is the input sensitivity function S := (I +KfbG)−1 and
with static weights Wo = Wi = 0.4.

Finally, stability and performance requirements must hold
for the entire range of parametric uncertainties, where ∆ is
the R6-hyperbox with limits in percentage given above. The
resulting nonsmooth program v∗ to be solved in step 2 of
Algorithm 1 takes the form

min
κ∈R85

max
δ∈∆a⊂R6

‖Tzw (δ, κ) ‖∞.

We have observed experimentally that controllers K(s) of
order greater than 12 do not improve much. The order of
the augmented plant including flexible modes, detector and
actuator dynamics, and weighting filters is nx = 23.

The evolution of the worst-case H∞ performance vs. it-
erations in Algorithm 2 (and its Subroutine 1) is problem-
dependent. For the missile example, a destabilizing uncertainty
is found at the 1st iteration. The algorithm then settles very
quickly in 5 iterations on a final set ∆a consisting of 6
scenarios. The number of scenarios in the final ∆a coincides
with the number of iterations in Algorithm 1 plus the nominal

11

scenario, and can be seen in column 3 of Table II. Note that
the evolution of the worst-case H∞ performance is not always
monotonic. Typically the curve may bounce back when a bad
parametric configuration δ is discovered by the algorithm. This
is the case e.g. for the mass-spring example.

The achieved values of the H∞ norm and corresponding
running times are given in Table II. Responses to a step
reference input for 100 models from the uncertainty set ∆ are
shown in Fig. 3 to validate the robust design. Good tracking
is obtained over the entire parameter range. The magnitude
of the 3 controller gains of K(s) is plotted in Fig. 4. Robust
roll-off and notching of flexible modes are clearly achieved.
Potential issues due to pole-zero cancellations are avoided as
a consequence of allowing parameter variations in the model.
Finally, Fig. 5 displays the Nichols plots for 100 models
sampled in the uncertainty set. We observe that good ”rigid”
margins as well as attenuation of the flexible modes over ∆
has been achieved.

Remark 12. Mixed-µ synthesis turned out time-consuming,
exceeding two hours in the missile example. The controller
order inflates to 385 and conservatism is still present as
compared to dynamic approximation via Algorithm 1 as shown
in Table III. Resorting to interpreting uncertain parameters
as complex cannot be considered an acceptable workaround.
Even when it delivers a result, this approach as a rule leads to
high-order controllers (149 states in the missile example) and
is also conservative, as we expected. It appears that scaling-
or multiplier-based approaches using outer approximations
[56], [2] encounter difficulties in terms of conservatism and
controller complexity for repeated parametric uncertainties
whereas our approach is not affected by these issues.

Remark 13. Static inner approximation remains intractable
even for a coarse grid of 5 points in each dimension. See
Table II.

VII. CONCLUSION

We have presented a novel algorithmic approach to para-
metric robust H∞ control with structured controllers. A new
inner approximation technique termed dynamic inner approx-
imation, adapting a set of parameter scenarios ∆a iteratively,
was developed and shown to work rapidly without introducing
conservatism. Global robustness and performance certificates
are then best obtained a posteriori by applying analysis tools
based on outer approximations. At the core our new method is
leveraged by sophisticated nonsmooth optimization techniques
tailored to the class of upper-C1 stability and performance
functions. The approach was tested on a bench of challenging
examples, and within a case study. The results indicate that the
proposed technique is a valid practical tool, capable of solving
challenging design problems with parametric uncertainty. The
new method discussed in this paper will be available in the
R2015b release of MATLAB’s Robust Control Toolbox.

REFERENCES

[1] H. Özbay. O. Toker, “On the NP-hardness of the purely complex µ
computation, analysis/synthesis, and some related problems in multi-

Fig. 3: Step responses of controlled missile for 100 sampled
models in uncertainty range

10−2 10−1 100 101 102 103 104
−40

−30

−20

−10

0

10

20

30

40

Singular Values

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

K
η

Kq
F

Fig. 4: Feedback and feed-forward gains

dimensional systems,” in Proc. American Control Conf., Seattle, June
1995, pp. 447–451.

[2] A. Packard, J. C. Doyle, and G. J. Balas, “Linear, multivariable robust
control with a µ perspective,” J. Dyn. Sys., Meas., Control, Special
Edition on Control, vol. 115, no. 2b, pp. 426–438, June 1993.

[3] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, µ-Analysis
and synthesis toolbox: User’s Guide. The MathWorks, Inc., 1991.

[4] E. Polak and Y. Wardi, “Nondifferentiable optimization algorithm for de-
signing control systems having singular value inequalities,” Automatica–
J. IFAC, vol. 18, no. 3, pp. 267–283, 1982.

[5] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” IEEE Trans.
Automat. Control, vol. 51, no. 1, pp. 71–86, January 2006.

[6] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “Stabilization
via nonsmooth, nonconvex optimization,” IEEE Trans. Automat. Control,
vol. 51, no. 11, pp. 1760–1769, November 2006.

[7] P. Gahinet and P. Apkarian, “Automated tuning of gain-scheduled control
systems,” in Proc. IEEE Conf. on Decision and Control, Florence,
December 2013, pp. 2740 – 2745.

12

−360 −180 0 180 360 540 720
−80

−60

−40

−20

0

20

40

60

80

 6 dB
 3 dB
 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB
 −6 dB

 −12 dB

 −20 dB

 −40 dB

 −60 dB

 −80 dB

From: deltac To: deltac

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n

(d
B)

Fig. 5: Nichols plots for 100 sampled models in uncertainty
range

[8] P. Apkarian, “Tuning controllers against multiple design requirements,”
in Proc. American Control Conf., Washington, June 2013, pp. 3888 –
3893.

[9] P. Apkarian and D. Noll, “Optimization-based control design techniques
and tools,” in Encyclopedia of Systems and Control, J. Baillieul and
T. Samad, Eds. Springer-Verlag, 2015.

[10] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “HIFOO - A
Matlab package for fixed-order controller design and H∞ optimization,”
in 5th IFAC Symposium on Robust Control Design, Toulouse, July 2006.

[11] P. Apkarian and D. Noll, “Nonsmooth optimization for multidisk H∞
synthesis,” Eur. J. Control, vol. 12, no. 3, pp. 229–244, May-June 2006.

[12] Robust Control Toolbox 5.0. MathWorks, Natick, MA, USA, Sept 2013.
[13] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence

of mixed parametric uncertainty and unmodeled dynamics,” IEEE Trans.
Automat. Control, vol. 36, no. 1, pp. 25–38, 1991.

[14] V. Balakrishnan, “Linear matrix inequalities in robustness analysis with
multipliers,” Systems Control Lett., vol. 25, no. 4, pp. 265–272, 1995.

[15] R. H. Nyström, K. V. Sandström, T. K. Gustafsson, and H. T. Toivonen,
“Multimodel robust control of nonlinear plants: a case study,” J. Process
Contr., vol. 9, no. 2, pp. 135–150, 1999.

[16] J.-F. Magni, Y. Le Gorrec, and C. Chiappa, “A multimodel-based
approach to robust and self-scheduled control design,” in Proc. IEEE
Conf. on Decision and Control, vol. 3, 1998, pp. 3009–3014.

[17] J. Ackermann, A. Bartlett, D. Kaesbauer, W. Sienel, and R. Stein-
hauser, Robust control. Systems with Uncertain Physical Parameters,
ser. Comm. Control Engrg. Ser. London: Springer-Verlag London, Ltd.,
1993.

[18] F. H. Clarke, Optimization and Nonsmooth Analysis, ser. Canad. Math.
Soc. Ser. Monogr. Adv. Texts. New York: John Wiley & Sons, Inc.,
1983.

[19] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. New
Jersey: Prentice Hall, 1996.

[20] R. M. Redheffer, “On a certain linear fractional transformation,” J. Math.
and Phys., vol. 39, pp. 269–286, 1960.

[21] D. Noll, O. Prot, and A. Rondepierre, “A proximity control algorithm to
minimize nonsmooth and nonconvex functions,” Pac. J. Optim., vol. 4,
no. 3, pp. 571–604, 2008.

[22] P. Apkarian, P. Gahinet, and C. Buhr, “Multi-model, multi-objective
tuning of fixed-structure controllers,” in European Control Conf. (ECC),
Strasbourg, June 2014.

[23] J. E. Spingarn, “Submonotone subdifferentials of Lipschitz functions,”
Trans. Amer. Math. Soc., vol. 264, no. 1, pp. 77–89, 1981.

[24] P. Apkarian, D. Noll, and O. Prot, “A proximity control algorithm to
minimize nonsmooth and nonconvex semi-infinite maximum eigenvalue
functions,” J. Convex Anal., vol. 16, no. 3-4, pp. 641–666, 2009.

[25] ——, “A trust region spectral bundle method for nonconvex eigenvalue
optimization,” SIAM J. Optim., vol. 19, no. 1, pp. 281–306, 2008.

[26] D. P. Bertsekas, Nonlinear Programming. Belmont: Athena Scientific,
1999.

[27] S. Boyd, V. Balakrishnan, and P. Kabamba, “A bisection method for
computing the H∞ norm of a transfer matrix and related problems,”
Math. Control Signals Systems, vol. 2, no. 3, pp. 207–219, 1989.

[28] S. Boyd and V. Balakrishnan, “A regularity result for the singular
values of a transfer matrix and a quadratically convergent algorithm
for computing its L∞-norm,” Systems Control Lett., vol. 15, no. 1, pp.
1–7, 1990.

[29] P. Benner, V. Sima, and M. Voigt, “L∞-norm computation for
continuous-time descriptor systems using structured matrix pencils,”
IEEE Trans. Automat. Control, vol. 57, no. 1, pp. 233–238, 2012.

[30] S. Boyd and C. Barratt, Linear Controller Design: Limits of Perfor-
mance. New York: Prentice Hall, 1991.

[31] J. V. Burke and M. L. Overton, “Differential properties of the spectral
abscissa and the spectral radius for analytic matrix-valued mappings,”
Nonlinear Anal., vol. 23, no. 4, pp. 467–488, 1994.

[32] V. Bompart, P. Apkarian, and D. Noll, “Non-smooth techniques for
stabilizing linear systems,” in Proc. American Control Conf., New York,
July 2007, pp. 1245–1250.

[33] S. H. Lui, “Pseudospectral mapping theorem II,” Electron. Trans. Numer.
Anal., vol. 38, pp. 168–183, 2011.

[34] D. Noll, “Convergence of non-smooth descent methods using the
Kurdyka-Łojasiewicz inequality,” J. Optim. Theory Appl., vol. 160, no. 2,
pp. 553–572, 2014.

[35] K. C. Kiwiel, “An aggregate subgradient method for nonsmooth convex
minimization,” Math. Programming, vol. 27, no. 3, pp. 320–341, 1983.

[36] M. N. Dao, “Bundle method for nonconvex nonsmooth constrained
optimization,” 2014, submitted.

[37] D. Noll, “Cutting plane oracles to minimize non-smooth non-convex
functions,” Set-Valued Var. Anal., vol. 18, no. 3-4, pp. 531–568, 2010.

[38] J. Bolte, A. Daniilidis, and A. Lewis, “The Łojasiewicz inequality
for nonsmooth subanalytic functions with applications to subgradient
dynamical systems,” SIAM J. Optim., vol. 17, no. 4, pp. 1205–1223,
2006.

[39] E. Bierstone and P. D. Milman, “Semianalytic and subanalytic sets,”
Inst. Hautes Études Sci. Publ. Math., vol. 67, pp. 5–42, 1988.

[40] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization.
Regularity, Calculus, Methods and Applications, ser. Nonconvex Optim.
Appl. Dordrecht: Kluwer Academic Publishers, 2002, vol. 60.

[41] R. Mifflin, “Semismooth and semiconvex functions in constrained opti-
mization,” SIAM J. Control Optimization, vol. 15, no. 6, pp. 959–972,
1977.

[42] J. Moro, J. V. Burke, and M. L. Overton, “On the Lidskii-Vishik-
Lyusternik perturbation theory for eigenvalues of matrices with arbitrary
Jordan structure,” SIAM J. Matrix Anal. Appl., vol. 18, no. 4, pp. 793–
817, 1997.

[43] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control
Theory. New York: Macmillan Publishing Company, 1992.

[44] C. S. Resnik, “A method for robust control of systems with parametric
uncertainty motivated by a benchmark example,” Master’s thesis, June
1991.

[45] U. Chaiya and S. Kaitwanidvilai, “Fixed-structure robust DC motor
speed control,” in Proc. International MultiConference of Engineers and
Computer Scientists (IMECS), vol. II, Hong Kong, March 2009, pp.
1533–1536.

[46] G. Filardi, O. Sename, A. Besancon-Voda, and H.-J. Schroeder, “Ro-
bust H∞ control of a DVD drive under parametric uncertainties,” in
European Control Conf. (ECC), Cambridge, September 2003.

[47] D. F. Enns, “Model reduction for control system design,” Ph.D. disser-
tation, Stanford University, 1984.

[48] R. Vadigepalli, E. P. Gatzke, and F. J. Doyle III, “Robust control of
a multivariable experimental four-tank system,” Ind. Eng. Chem. Res.,
vol. 40, no. 8, pp. 1916–1927, 2001.

[49] D. W. Gu, P. H. Petkov, and M. M. Konstantinov, Robust Control Design
with Matlab. London: Springer-Verlag, 2005.

[50] Y. Cheng and B. L. R. D. Moor, “Robustness analysis and control system
design for a hydraulic servo system,” IEEE Trans. on Control System
Technology, vol. 2, no. 3, pp. 183–197, 1994.

[51] D. Alazard, C. Cumer, P. Apkarian, M. Gauvrit, and G. Ferreres,
Robustesse et Commande Optimale. Toulouse: Cépaduès Éditions,
1999.

[52] D. L. Krueger, “Parametric uncertainty reduction in robust multivariable
control,” Ph.D. dissertation, Naval Postgraduate School, September
1993.

13

[53] C. W. Scherer and I. E. Köse, “Robustness with dynamic IQCs: an
exact state-space characterization of nominal stability with applications
to robust estimation,” Automatica J. IFAC, vol. 44, no. 7, pp. 1666–1675,
2008.

[54] Y.-M. Kim, “Robust and reduced order H-Infinity filtering via LMI
approach and its application to fault detection,” Ph.D. dissertation,
Wichita State University, May 2006.

[55] D. Noll, M. Torki, and P. Apkarian, “Partially augmented Lagrangian
method for matrix inequality constraints,” SIAM J. Optim., vol. 15, no. 1,
pp. 161–184, 2004.

[56] P. M. Young, “Controller design with real parametric uncertainty,”
Internat. J. Control, vol. 65, no. 3, pp. 469–509, 1996.

Pierre Apkarian received the Ph.D. degree in con-
trol engineering from the Ecole Nationale Supérieure
de l’Aéronautique et de l’Espace (ENSAE), France,
in 1988. He was qualified as a Professor from
University of Toulouse (France) in both control engi-
neering and applied mathematics in 1999 and 2001,
respectively. Since 1988, he has been a Research
Scientist at ONERA (Office National d’Etudes et de
Recherches Aérospatiales) and an Associate Profes-
sor at the University of Toulouse. Pierre Apkarian
has served as an associate editor for the IEEE

Transactions on Automatic Control. His research interests include robust and
gain-scheduling control theory through LMI methods or optimization-based
techniques. More recently, his research has focused on the development of
specialized non-smooth programming techniques for control system design.
He is co-author with Dominikus Noll and Pascal Gahinet of the HINFSTRUCT
and SYSTUNE software in MATLAB’s Robust Control Toolbox.

Minh Ngoc Dao received his B.Sc. and M.Sc.
in mathematics from Hanoi National University of
Education (Vietnam) in 2004 and 2006, and his
Ph.D. in applied mathematics from the University
of Toulouse (France) in 2014. He has held a lecturer
position at Hanoi National University of Education
since 2004, and is currently a Postdoctoral Fellow
at the University of British Columbia, Kelowna
(Canada). Dr. Dao’s research interests include non-
linear optimization, projection methods, monotone
operator theory and automatic control.

Dominikus Noll received his Ph.D. and habilita-
tion in 1983 and 1989 from Universität Stuttgart
(Germany). Since 1995 he is a professor of applied
mathematics at the University of Toulouse (France),
and a distinguished professor of mathematics since
2009. Dr. Noll has held visiting positions at Up-
psala University, Dalhousie University, the Univer-
sity of Waterloo, Simon Fraser University, and the
University of British Columbia. Dr. Noll’s current
research interests include nonlinear optimization,
optimal control, projection-based iterative schemes,

and robust feedback control design. He is co-inventor of the synthesis tools
HINFSTRUCT and SYSTUNE. Dr. Noll is Associate Editor of the Journal of
Convex Analysis.

