
Cutting plane oracles to minimize non-smooth non-convex
functions

Dominikus Noll∗

Abstract

We discuss a bundle method for non-smooth non-convex optimization programs. In the
absence of convexity, a substitute for the cutting plane mechanism has to be found. We
propose such a mechanism and prove convergence of our method in the sense that every
accumulation point of the sequence of serious iterates is critical.

Keywords. Non-smooth optimization, bundle method, cutting plane oracle.
AMS classification. 49J52, 90C26, 90C22, 93B36.

1 Introduction

We consider optimization programs of the form

min
x∈Rn

f(x),(1)

where f : Rn → R is non-smooth, non-convex, and locally Lipschitz. We present a bundle algorithm
for (1), which converges globally in the sense that every accumulation point x̄ of the sequence of
serious steps is critical, that is, satisfies

0 ∈ ∂f(x̄),(2)

where ∂f(x) is the Clarke subdifferential of f at x. Non-convexity of (1) leads to three major
difficulties. Firstly, cutting planes can no longer be used as in the convex case, and a substitute
has to be found. Secondly, recycling of affine support planes between serious steps has to be
adapted to the new context. And thirdly, a more sophisticated management of the proximity
control mechanism is required to obtain a satisfactory convergence theory. We will show in which
way these elements can be addressed and combined into a successful algorithm.

The present work follows a line of investigation initiated in [2, 5] and continued in [3, 4, 6, 7],
where non-smooth algorithms of bundle type are used to solve difficult problems in feedback control
design. In [17] we have presented a non-convex bundle algorithm in a more abstract form. Here we
expand on [17] in at least two important points. We refine the management of the proximity control
parameter, and we introduce the concept of a cutting plane oracle in order to give convergence
proofs for several heuristic techniques in non-smooth optimization.

∗Université Paul Sabatier, Institut de Mathématiques, Toulouse, France

1

2 First and second order models

The concept of a local model φ(·, x) in the neighbourhood of the current iterate x will be central
for our approach.

Definition 1. A function φ : Rn × Rn → R is called a first-order model of f on Ω ⊂ Rn if φ(·, x)
is convex for every fixed x ∈ Ω, and if the following axioms are satisfied:

(M1) φ(x, x) = f(x) and ∂1φ(x, x) ⊂ ∂f(x).

(M2) For every sequence yj → x there exist εj → 0+ such that f(yj) ≤ φ(yj, x) + εj‖yj − x‖ for all
j ∈ N.

(M3) For sequences yj → y in Rn and xj → x in Ω one has lim sup
j→∞

φ(yj, xj) ≤ φ(y, x).

If Ω = Rn then we simply call φ a first-order model of f .

Remark 1. Every locally Lipschitz function has the standard (or Clarke) model

φ](y, x) = f(x) + f 0(x, y − x),

where f 0(x, d) is the Clarke directional derivative of f at x in direction d. Indeed, axiom (M1)
is immediate because ∂1φ

](x, x) = ∂2f
0(x, 0) = ∂f(x). Axiom (M2) follows directly from the

definition of the Clarke directional derivative, and (M3) uses upper semicontinuity of ∂f .

Lemma 1. Every first-order model φ satisfies ∂1φ(x, x) = ∂f(x).

Proof: (a) Let us first prove that if f is differentiable at x, then ∇f(x) ∈ ∂1φ(x, x). Indeed, for
fixed d ∈ Rn and t > 0 we have

t−1 (f(x+ td)− f(x)) ≤ t−1 (φ(x+ td, x) + εtt‖d‖ − f(x))

by axiom (M2), where εt → 0 as t→ 0+. Passing to the limit we find ∇f(x)>d ≤ φ′(x, x, d), where
φ′(x, x, d) is the directional derivative of φ(·, x) at x in direction d. Since the left hand term is
linear in d, and since φ′(x, x, ·) is the support function of ∂1φ(x, x), we have ∇f(x) ∈ ∂1φ(x, x).

(b) Let us now show ∂f(x) ⊂ ∂1φ(x, x). Since ∂f(x) is the convex hull of the limiting sub-
differential ∂af(x), it suffices to show ∂af(x) ⊂ ∂1φ(x, x). Let g ∈ ∂af(x). Then there exists a
sequence xj → x such that f is differentiable at xj and gj = ∇f(xj) → g. By part (a) we know
that gj ∈ ∂1φ(xj, xj). By the subgradient inequality this means g>j d ≤ φ(xj + d, xj)− φ(xj, xj) for
every test vector d. Now φ(xj, xj) = f(xj) by (M1), so passing to the limit using f(x) = φ(x, x)
gives g>d ≤ lim supj→∞ φ(xj + d, xj)−φ(x, x) ≤ φ(x+ d, x)−φ(x, x), where the last estimate uses
axiom (M3). Since this holds for every d, we have shown g ∈ ∂1φ(x, x). �

Lemma 2. The standard model φ] is the smallest first-order model of f . That is, any other model
φ satisfies φ] ≤ φ.

2

Proof: It follows from convexity of φ(·, x) and (M1) that φ(y, x) ≥ f(x)+φ′(x, x, y−x) for every y,
where φ′(x, x, d) is the directional derivative of φ(·, x) at x in direction d. But φ′(x, x, d) = f 0(x, d)
by Lemma 1. Namely, φ′(x, x, ·) is the support function of ∂1φ(x, x), f 0(x, ·) the support function
of ∂f(x), and the two sets coincide by Lemma 1. Therefore φ(y, x) ≥ f(x)+f 0(x, y−x) = φ](y, x)
for every y. �

We will also need the following variants of definition 1.

Definition 2. A first-order model φ(y, x) of f on Ω is called strict if axiom (M2) is replaced by
the stronger axiom

(M̂2) Given sequences yj → x in Rn and xj → x in Ω there exists a sequence εj → 0+ such that
f(yj) ≤ φ(yj, xj) + εj‖yj − xj‖.

The first-order model is called strong if the following even stronger axiom is satisfied:

(M̃2) Given sequences yj → x, xj → x in Ω, there exists L > 0 such that f(yj) ≤ φ(yj, xj)+L‖yj−
xj‖2 for every j ∈ N.

Remark 2. Notice that (M2) means f(y) ≤ φ(y, x) + o(‖y − x‖) for y → x. Strictness (M̂2) is

f(y) ≤ φ(y, x) + o(‖y − x‖) as y − x → 0 uniformly on bounded sets. Strongness (M̃2) means
f(y) ≤ φ(y, x) + O(‖y − x‖2) as y − x → 0 uniformly on bounded sets. The difference between

(M̂2) and (M̃2) is therefore analogous to the difference between the first-order Taylor-Lagrange
and the Taylor-Young formulas.

Remark 3. Suppose f is differentiable, then φ(y, x) = f(x) + ∇f(x)>(y − x) seems a natural
candidate for a model. But it is not a model in general, because axiom (M3) fails. In order to
have (M3) one needs class C1, and then φ is indeed the standard model. Since class C1 means f
is strict differentiability, we see that this model is then even strict. (This motivated the choice of

the term strict for models with property (M̂2)). Finally, the Taylor expansion is a strong model
as soon as f is class of C1,1.

Remark 4. Every strong model is strict, and every strict model is a model. None of these are
reversible. Consider f(x) = x2 sinx−1 on the real line, then φ] is not strict on any neighbourhood
of 0. On the other hand, if f ∈ C1 \C1,1, then the standard model φ](y, x) = f(x)+∇f(x)>(y−x)
is strict but not strong.

Remark 5. If f is convex, then φ(·, x) = f is a strong model. We say that a convex function is
its own strong model.

Remark 6. How about concave functions? Consider −f , where f is convex. Let g ∈ ∂f(x), then
the subgradient inequality gives g>(y − x) ≤ f(y)− f(x), or what is the same,

−f(y) ≤ −f(x) + g>(x− y) ≤ −f(x) + f 0(x, x− y) = −f(x) + (−f)0(x, y − x) = φ](y, x).

That means that the standard model is strong for concave functions. More generally, we have the
following result.

Proposition 1. Suppose f is upper C2. Then its standard model φ] is strong. If f is upper C1,
then φ] is strict.

3

Proof: 1) Recall that f is upper Ck if −f is lower Ck. For the definition of lower Ck see [18].
2) Let us discuss the upper C2 case first. According to [18, Prop. 13.33] (−f) is prox-regular

at every x̄ ∈ Rn with respect to every ḡ ∈ ∂(−f)(x̄). That means there exists ε > 0 and r > 0
such that for all x, x′ ∈ B(x̄, ε) and every g(x) ∈ ∂(−f)(x) with ‖g(x)− ḡ‖ ≤ ε one has

|f(x)− f(x̄)| < ε =⇒ −f(x′) ≥ −f(x) + g(x)>(x′ − x)− r
2
‖x′ − x‖2.

That is the same as

f(x′) ≤ f(x)− g(x)>(x′ − x) + r
2
‖x′ − x‖2

≤ f(x) + sup
−g∈∂f(x)

(−g)>(x′ − x) + r
2
‖x′ − x‖2 = f(x) + f 0(x, x′ − x) + r

2
‖x′ − x‖2,

which proves (M̃2) with L = r
2

on the ball B(x̄, ε).
3) Now consider the case where (−f) is lower C1. According to Daniilidis and Georgiev [12]

(−f) has the following property called approximate convexity: For every x̄ ∈ Rn and ε > 0 there
exists δ > 0 such that (−f)(ty + (1− t)x) ≤ t(−f)(y) + (1− t)(−f)(x) + εt(1− t)‖x− y‖ for all
x, y ∈ B(x̄, δ) and 0 ≤ t ≤ 1. This can be re-arranged into

f(y) ≤ f(x) +
f(x+ t(y − x))− f(x)

t
+ ε(1− t)‖x− y‖.

Passing to the limit t → 0+ gives the estimate f(y) ≤ φ](y, x) + ε‖x − y‖ for every y ∈ B(x, δ),

hence (M̂2). �

Remark 7. Suppose f is a composite function f = h ◦ F , where h is convex and F of class C1.
Then a natural first order model for f is

φ(y, x) = h (F (x) + F ′(x)(y − x)) .

Notice that φ is strict because F (y)− [F (x) + F ′(x)(y − x)] = o(‖y− x‖) and because h is locally
Lipschitz. We sometimes call φ the natural model of f . Observe that φ is strong if F ∈ C1,1.

A typical application of this is eigenvalue optimization f = λ1 ◦F , where F is usually smooth.
The natural strong model is then φ(y, x) = λ1 (F (x) + F ′(x)(y − x)). The standard model φ] in
contrast is only strong at those x where the maximum eigenvalue of F (x) has multiplicity 1.

Remark 8. Consider a lower C2 function. For every bounded set B there exists a constant µ0 > 0
such that for every x ∈ B and µ ≥ µ0 the function φµ(y, x) = f(y) + µ‖y − x‖2 is convex in
y ∈ B [18, Prop. 13.33]. Therefore each φµ with µ ≥ µ0 is a strong model of f on B.

Notice that f can be re-written as f = hµ ◦ Fµ with hµ convex and Fµ of class C2, namely,
hµ(x, y) = y+ f(x)+ µ

2
‖x‖2 and Fµ(x) = (x,−µ

2
‖x‖2), where µ ≥ µ0. Then φµ turns out to be the

natural model of hµ ◦ Fµ on B in the sense of remark 7.

Remark 9. Let f = f1 + f2, where f1 is lower C2 and f2 is upper C2. This applies in particular
to convex differences. Then a natural candidate for a strong model of f is

φµ(y, x) = f1(y) + µ‖y − x‖2 + f2(x) + f 0
2 (x, y − x),(3)

4

because f2(x) + f 0
2 (x, y − x) is the standard model of f2, which is strong by Proposition 1, and

because f1 + µ‖ · −x‖2 is convex and therefore a strong model of f1 if µ is as in remark 8. Is φµ a
strong model of f?

What is missing to guarantee this is not strongness, but the property ∂1φµ(x, x) ⊂ ∂f(x). We
have ∂1φµ(x, x) ⊂ ∂f1(x) + ∂f2(x). Now everything would be fine if we had ∂f1(x) + ∂f2(x) ⊂
∂(f1 + f2)(x). Unfortunately the sum rule for the Clarke generalized derivative goes the opposite
way ∂f(x) ⊂ ∂f1(x) + ∂f2(x), see [9, Prop. 2.3.3]. Equality holds if either f1 or f2 is strictly
differentiable [9, Cor. 1, page 39] or if f1, f2 are regular in the sense of Clarke. The latter is
hopeless here, because f2 has no chance to be regular in the sense of Clarke.

Is this where (3) is finished off? Not at all, because we can consider that the sum rule holds with
equality except some pathological cases. Moreover, the following argument may be put forward in
favour of (3). If one defines x̄ to be a cd-critical point of f = f1 + f2 if ∂f1(x̄) ∩ (−∂f2(x̄)) 6= ∅,
then all the remaining theory will be valid for model (3), only the algorithm will be stopped if an
iterate xj with ∂f1(x

j) ∩ (−∂f2(x
j)) 6= ∅ will be found, and the inner loop will only be initiated

if xj is not a cd-critical point of f . The sequence of serious iterates xj will converge to such a
cd-critical point.

We conclude this section with the definition of a second-order model.

Definition 3. Let φ(y, x) be a first-order model of f . Then Φ(y, x) = φ(y, x)+ 1
2
(y−x)>Q(x)(y−x)

is called a second-order model of f if Q(x) ∈ Sn is bounded on bounded sets of x.

3 First- and second order working model

Having defined first- and second-order models φ(y, x), Φ(y, x), the difficulty is that computations
based on φ(y, x) may be too costly. We therefore use an approximation φk(y, x) of φ(y, x), which we
call the first-order working model. φk(y, x) is indexed by k ∈ N, because it is updated iteratively
during the inner loop with counter k. We sometimes call φ(y, x) the ideal first-order model,
because it is what we would ideally like to use. For the working model φk we require the following
conditions:

Definition 4. The function φk is a first order working model of f at x associated with the ideal
first-order model φ of f if φk(·, x) is convex and satisfies φk(·, x) ≤ φ(·, x), φk(x, x) = f(x).

Notice that ∂1φk(x, x) ⊂ ∂f(x) for every k as a consequence of the fact that ∂1φ(x, x) = ∂f(x)
and φk ≤ φ. An advantage of the working model is that ∂1φk(x, x) can be a very small subset of
∂f(x), while ∂1φ(x, x) = ∂f(x) by Lemma 1. This is important in cases where ∂f(x) is too large
to be computed efficiently.

Definition 5. Let φk be a first-order working model for f associated with the ideal first-order model
φ. Let Φ(y, x) = φ(y, x) + 1

2
(y − x)>Q(x)(y − x) be a second-order model associated with φ. Then

Φk(y, x) = φk(y, x) + 1
2
(y − x)>Q(x)(y − x) is the corresponding second-order working model.

Remark 10. Our notation suggests an important detail. The first-order working model φk is
updated iteratively in the inner loop k, while the second order term Q(x) depends only on the
serious iterate x and remains unchanged during the inner loop k. Updating Q(x) → Q(x+) happens
only in the outer loop when a serious step x→ x+ is made. The reason for this will become clear
in section 9.

5

4 Elements of the algorithm

In this section we will discuss the different elements of the algorithm, which itself will be presented
in section 5.

4.1 Tangent program

Let x ∈ Rn be the current serious iterate. The inner loop now turns until a new serious iterate
x+ is found. At inner loop counter k we dispose of a first-order working model φk(·, x) and the
corresponding second order working model Φk(y, x) = φk(y, x)+ 1

2
(y−x)>Q(x)(y−x), where Q(x)

depends on x, but is fixed during the inner loop k. Now we compute a solution yk+1 to the tangent
program with proximity control

min
y∈Rn

Φk(y, x) + τk

2
‖y − x‖2,(4)

where τk > 0 is the so-called proximity control parameter. We assume throughout that Q(x)+τkI �
0, so that (4) is strictly convex and has a unique solution yk+1. We refer to yk+1 as the trial step.
The optimality condition 0 ∈ ∂1Φk(y

k+1, x) can be re-written as

g∗k+1 := (Q(x) + τkI)
(
x− yk+1

)
∈ ∂1φk(y

k+1, x).(5)

It is standard to call g∗k+1 the aggregate subgradient. Its use is explained in section 4.4 below.

4.2 Acceptance

In order to decide whether the trial step yk+1 is acceptable to become the next serious iterate x+,
step 5 of the algorithm computes the quotient

ρk =
f(x)− f(yk+1)

f(x)− Φk(yk+1, x)
,(6)

which tests agreement between f and Φk(·, x) at yk+1. If agreement is good, we expect ρk ≈ 1. In
order to obtain a decision we fix constants 0 < γ < Γ < 1. We say that the agreement between
f and Φk at yk+1 is good if ρk > Γ, where the reader might for instance imagine Γ = 3

4
. On the

other hand, we say that the agreement is bad if ρk < γ, where γ = 1
4

makes sense. We accept the
trial step yk+1 already as the new serious iterate x+ if ρk ≥ γ, that is, if it is not bad. Standard
terminology in bundling refers to this as a serious step. In that case the inner loop ends.

The delicate case is when agreement is bad, that is, ρk < γ. Here yk+1 is rejected and referred
to as a null step. Now the inner loop k has to continue. In order to do better at the next sweep,
model Φk+1 has to improve over Φk. This is achieved by two mechanisms, known as aggregation
and cutting planes. A third mechanism, which is not needed in the convex case, but is mandatory
in the absence of convexity is updating the proximity control parameter τk in an intelligent way.
Having arranged these three elements, we will increase counter k and solve (4) again, hoping for a
better trial step yk+2 at the next iteration.

4.3 Exactness

Our working models φk(·, x) need to satisfy ∂1φk(x, x) ⊂ ∂f(x) and φk(x, x) = f(x) at all times k.
To guarantee this, we pick a subgradient g(x) ∈ ∂f(x) and assure that me(y, x) = f(x)+g(x)>(y−
x) is an affine minorant of φk(·, x) at all times k. We refer to me(·, x) as the exactness plane at x.

6

4.4 Aggregation

Let us now explain aggregation. As we have seen, optimality (5) gives the aggregate subgradient
g∗k+1. We also refer to

m∗
k+1(y, x) = φk(y

k+1, x) + g∗>k+1(y − yk+1)

as the aggregate plane. It is an affine support function of φk(·, x) at yk+1 and could also be written
as m∗

k+1(y, x) = a∗k+1 + g∗>k+1(y−x), where a∗k+1 = φk(y
k+1, x)+ g∗>k+1(x− yk+1). We will assure that

the new working model φk+1(·, x) has m∗
k+1(·, x) as an affine minorant. The consequence is:

Lemma 3. Suppose the new first-order working model φk+1(·, x) satisfies m∗
k+1(·, x) ≤ φk+1(·, x).

Then φk+1(y
k+1, x) ≥ φk(y

k+1, x). Moreover, in that case condition (5) is satisfied.

Aggregation follows the usual lines as introduced in [10].

4.5 Cutting planes

The next element which is fundamental in bundle methods is inclusion of a cutting plane mk+1(·, x)
among the affine support planes of the new working model φk+1(·, x). The role of the cutting plane
mk+1(·, x) is to cut away the unsuccessful trial step yk+1. The idea is that if we let φk+1(·, x) ≥
mk+1(·, x), then yk+1 is no longer solution of the tangent program. If f is convex, then this is
indeed what happens. The cutting plane is simply an affine support function of f at yk+1. We put
mk+1(y, x) = f(yk+1)+ g>k+1(y− yk+1), where gk+1 ∈ ∂f(yk+1), and the information (f(yk+1), gk+1)
is referred to as the oracle of f at yk+1.

Without convexity tangents to f at yk+1 may be useless, so cutting planes cannot be obtained
that way. We need to elaborate a substitute, and this is the first major complication due to non-
convexity. In [17] the following approach was chosen: Use the ideal first-order model φ(·, y) as a
substitute and take tangents of φ(·, x) at yk+1 rather than tangents of f . Here we go even further
and consider cutting planes as of furnished by an abstract process satisfying certain axioms. The
advantage of this will become more evident when we discuss applications.

Definition 6. A cutting plane oracle for f on Ω is a bounded mapping which with every triplet
(k, y+, x) ∈ N× Rn × Ω associates an affine function mk,y+,x(y) = a + g>(y − x), called a cutting
plane at serious step x, trial step y+, and counter k, such that the following conditions are satisfied:

(C1) For y+ = x we have a = f(x) and g ∈ ∂f(x) for every k ∈ N.

(C2) Suppose y+
j → x, and kj ∈ N. Suppose the cutting plane is drawn at trial point y+

j for serious
point x at counter kj. Then there exist εj → 0+ such that f(y+

j) ≤ mkj ,y+
j ,x(y

+
j) + εj‖y+

j − x‖
for every j.

(C3) Suppose y+
j → y+, yj → y, and xj → x. Then there exist z+, bounded in x, y, y+, and ` ∈ N

such that one has lim sup
j→∞

mkj ,y+
j ,xj

(yj) ≤ m`,z+,x(y).

We say that the cutting plane oracle is strict if the following stronger version of (C2) is satisfied:

(Ĉ2) Suppose y+
j → x, xj → x, and kj ∈ N. Suppose the cutting plane is drawn at trial point y+

j

for center point xj at instant kj. Then there exist εj → 0+ such that f(y+
j) ≤ mkj ,y+

j ,xj
(y+

j)+

εj‖y+
j − xj‖ for every j.

7

The cutting plane oracle is called strong, if the following even stronger variant of (C2) holds:

(C̃2) Suppose y+
j → x, xj → x, and kj ∈ N. Suppose the cutting plane is drawn at trial point y+

j

for center point xj at instant kj. Then there exists L > 0 such that f(y+
j) ≤ mkj ,y+

j ,xj
(y+

j) +

L‖y+
j − xj‖2 for every j.

Consider all possible cutting planes mk,y+,x(·) arising at the current serious iterate x and at
all possible trial points y+ in a large but bounded neighbourhood B(x,M) of x and all counters
k ∈ N. Then for fixed x the expression

φ↑(y, x) := sup{mk,y+,x(y) : y+ ∈ Rn, ‖y+ − x‖ ≤M,k ∈ N}

defines a convex function of the argument y, the convex envelope of all oracle planes at x. Since
the plane mk,y+,x and also z+ in (C3) are bounded in the data (y+, x) independently of k, φ↑ is

finite everywhere. Axioms (C1) - (C3) assure that φ↑ is a first-order model of f . If axiom (Ĉ2) is

satisfied, then φ↑ is strict, and if (C̃3) is satisfied, then φ↑ is strong.

Definition 7. We call φ↑ the upper envelope model associated with the cutting plane oracle, or
simply the upper envelope model.

In order to understand our axiomatic approach, we need to discuss examples.

Example 1. Tangent cutting planes. Given an ideal model φ(y, x) of f , the most natural
way to draw cutting planes is to take the tangents of φ. That is, mk,y+,x(y

+) = φ(y+, x) and
∇mk,y+,x ∈ ∂1φ(y+, x). This approach is discussed in [17]. Here the upper envelope model φ↑

coincides with φ. For convex f = φ(·, x) we recover the standard form of the oracle, where all
cutting planes are tangent planes of f .

Example 2. Cutting planes for f lower C2. Our next example is motivated by [17]. Suppose
f is lower C2. Then for every x there exists a neighbourhood U of x and µ0 > 0 such that for
every x′ ∈ U and µ ≥ µ0 φµ(y, x′) = f(y) + µ‖y − x′‖2 is convex in y. That means, each of these
φµ(·, x′) could be chosen as ideal model in the sense of the previous example. One would obviously
like to adapt µ at each step, taking the smallest µ which convexifies f . This approach is proposed
in [17], and underlies the algorithms in Sagastizábal and Hare [19] and Sagastizábal [20] for lower
C2 functions.

So the situation is slightly more elaborate than in example 1 in so far as we have a whole family
of models φµ at our disposal, and we will draw tangent planes from any one of them, changing
µ between the null steps of the inner loop if need be. All that is required is that the set of µ
visited during this procedure remains bounded. If this is the case, then φ↑(y, x) = sup{φµ(y, x) :
µ used in the procedure} is the upper envelope model in the sense of Definition 7. The reader will

notice the difference with example 1. The cutting planes are all below φ↑, but need not be tangents
to φ↑. Yet φ↑ has the same structure as the individual φµ, so we could at any moment use φ↑ itself
to draw tangents, which would bring us straight back to example 1.

Example 3. Downshift planes. Our third example is motivated by Schramm and Zowe [21]
and also by heuristics used in various convex bundle codes like Lemaréchal’s M2FC1 [15] and in
the BT codes [24]. Let f be non-convex and let x the current iterate, y+ a trial step. Taking
g+ ∈ ∂f(y+) gives a tangent plane mt(y) = f(y+) + g>+(y− y+) to f at y+. However, mt(·) has no
reason to be below f , and we do not know whether it is useful to build our working model φk.

8

It is not even clear whether mt(x) ≤ f(x), which is the least we would expect. Fixing a small
parameter c > 0, we therefore put

s := [mt(x)− f(x)]+ + c‖y+ − x‖2,

and call this the down shift. We then build the cutting plane by mk,y+,x(y) = mt(y) − s, so that
mk,y+,x(x) ≤ f(x) − c‖y+ − x‖2. Put more explicitly, if the tangent plane mt(·) does not pass
below f(x) at x, then we shift it first down by the gap f(x)−mt(x) > 0. Then we add the small
additional down shift c‖y+ − x‖2, which is needed to assure that the oracle model is contingent
with f at x. Defining the upper envelope model as

φ↑(y, x) = sup{mk,x,y+(y) : y+ possible trial step in B(x,M) at counter k},

contingency ∂1φ
↑(x, x) ⊂ ∂f(x) is assured. (For convenience the ball B(x,M) is chosen large

enough so that it contains also the elements z+ arising in axiom (C3)). The details will be discussed
in section 10.

What is the difference of this construction with examples 1 and 2? We know that mk,x,y+(y+) ≤
φ↑(y+, x), but there might be another oracle plane mk′,x,z+(·), originating from another trial point
z+ at another counter k′ ∈ N, which satisfies mk′,x,z+(y+) > mk,x,y+(y+). Then φ↑(y+, x) >
mk,x,y+(y+). So the difference with example 1 is that oracle planes are not necessarily tangents of
φ↑.

Neither was this the case in example 2. So what is the difference with example 2? The definition
of the model φ↑ as an upper envelope of convex cuts makes φ↑ much more difficult to use than in
example 2. We are not able to draw tangents (or obtain cutting planes) from it. φ↑(y, x) cannot
be used in the algorithm, but remains a convenient theoretical tool in the convergence analysis.

Example 4. Using memory. The examples above do not use the counter k of the inner loop.
The action taken to generate the cutting plane depends only on x and y+. But it is beneficial to
allow dependence on k. The simplest case where this may happen is when we use memory and
keep some of the cutting planes from previous steps k − 1, k − 2, . . . , k − t. The construction in
Example 3 could be modified as follows. Construct mx,y+ as above, which does not depend on
k. Then take the last t planes stored from the previous steps and take the maximum of all these
planes at y+. This is now dependent on k.

Example 5. Including heuristics. Our axiomatic provides a fairly general mechanism, which
allows users a maximum degree of freedom to build their own cutting plane oracle. Users might
have additional knowledge how to add heuristic planes mh(·) to the working model. Obviously
they would like to build their working model φk such that φk(y

+, x) ≥ mh(y
+). But what to do if

the heuristic plane mh(·) drawn at (k, y+, x) satisfies mh(y
+) > mk,y+,x(y

+)? Should one in that
case reject mh? The answer is no, as long as mh(x) ≤ f(x)− c‖y+− x‖2. One simply replaces the
oracle plane by mh(·), but keeps the old oracle plane in the working model. Increasing the oracle

value at y+ does no harm to axioms (C2), (Ĉ2), (C̃2). One has to assure that axiom (C3) is still
satisfied.

Example 6. Automatic control and the H∞-norm. This application has been extremely
useful for the development of our theory. Here the function (1) is of the form

f(x) = max
ω∈[0,∞]

f(x, ω), f(x, ω) = σmax (F (x, ω)) ,

9

where σmax is the maximum singular value of a matrix. The operator F : Rn × [0,∞] → Cp×m is
jointly of class C∞ and maps into a space of p×m matrices. A natural candidate for a first-order
model of f is

φ(y, x) = σmax (F (x, ω) + F ′(x, ω)(y − x)) ,

where derivatives refer to x. Strongness of φ follows from remark 7.
The crucial point about model φ is that it is more expensive to compute than f , sometimes up

to a factor 27. An alternative was therefore developed in [6]. This strongly motivated the current
approach, because the solution of [6] matches the concept of a cutting plane oracle.

Definition 8. Suppose mx,y+,k is a cutting plane oracle in the sense of Definition 6. Then
Mx,y+,k(y) = mx,y+,k(y)+

1
2
(y−x)>Q(x)(y−x) is the associated second order oracle. If φ↑ is the up-

per envelope model associated with the oracle mx,y+,k, then Φ↑(y, x) = φ↑(y, x)+ 1
2
(y−x)>Q(x)(y−x)

denotes the corresponding second order upper envelope model.

4.6 Management of proximity control

The management of the proximity control parameter τk marks the second major difference between
the non-convex and the convex case. In the convex case proximity control may without harm be
fixed once and for all. Early variants of the bundle method fixed τk indeed, while later versions al-
lowed updates of τk, which remained optional. In the non-convex case a sophisticated management
of τk is mandatory to establish convergence.

In order to explain the idea, let us temporarily consider the case of the tangent oracle (Example
1), where cutting planes are tangents of the ideal model φ(y, x). If the trial step yk+1 fails to make
progress over x, this is because the current working model Φk(·, x) does not agree well with the real
f at yk+1. We know that aggregation and cutting planes keep improving the model during inner
steps k, but unlike the convex case, these elements only drive Φk closer to the ideal model Φ, not
directly to f . If Φk(y

k+1, x) is already close to Φ(yk+1, x) and we still do not make progress, then
this must be because Φ(yk+1, x) is by itself too far from f(yk+1). Since Φ(·, x) is in some sense the
best model we have (the ideal model), we can only make progress by making smaller trial steps
‖x− yk+2‖ < ‖x− yk+1‖. This is arranged by increasing τk and referred to as tightening proximity
control.

In order to decide when to increase τk and when not, we draw the cutting plane mk+1(·, x) :=
mk,x,yk+1 at x, counter k and trial point yk+1. Then we build Mk+1(y, x) = mk+1(y, x) + 1

2
(y −

x)>Q(x)(y − x) and use Mk+1(y
k+1, x) as a substitute for Φ(yk+1, x). In step 6 of the algorithm

we compute the secondary control parameter

ρ̃k =
f(x)−Mk+1(y

k+1, x)

f(x)− Φk(yk+1, x)
,

which tests agreement between Φk(·, x) and Mk+1(·, x) at yk+1. If agreement between f and Φk at
yk+1 is bad (ρk < γ), but at the same time agreement between Φk and Mk+1 is not bad (ρ̃k ≥ γ̃),
then we decide that aggregation and cutting planes alone will not do the job, because they will
only bring Φk closer and closer to Mk+1, without making progress toward f . This is when we
tighten proximity control by increasing τk.

On the other hand, when Φk is far from f at yk+1, (ρk < γ), but also Φk far fromMk+1, (ρ̃k < γ̃),
then nothing seems decided as yet. We then continue to rely on cutting planes and aggregation

10

alone, being reluctant to increase τk prematurely. This was the strategy analysed in [17]. Here we
propose an extension which uses a third control parameter:

ρ̂k =
f(x)− f(yk+1)

f(x)−Mk+1(yk+1, x)
=
ρk

ρ̃k

,(7)

whose use was in fact established in numerical tests in [1]. Fixing a third threshold γ̂ < 1, we now
have the following decision:

if ρk < γ, ρ̃k < γ̃, ρ̂k < γ̂,


and f(x) < Mk+1(y

k+1, x) then increase τk

and f(x) ≥Mk+1(y
k+1, x) then leave τk as is

if ρk < γ, ρ̃k < γ̃, ρ̂k ≥ γ̂ then leave τk as is

if ρk < γ, ρ̃k ≥ γ̃ then increase τk

The entire decision hierarchy can also be seen in Table 1.

Remark 11. The decision in step 6 of the algorithm looks technical and needs some explanation.
Notice that in [17] the simpler alternative

τk+1 =

{
τk, if ρk < γ and ρ̃k < γ̃
2τk if ρk < γ and ρ̃k ≥ γ̃

was used. What we do here is a fine analysis of the case ρ̃k < γ̃. We observed in experiments
[1,17,22] that it sometimes happens that after a long series of aggregation and cutting plane steps
with frozen τk, Φk comes close enough to Mk+1 to have ρ̃k ≥ γ̃. Then the τ -parameter ultimately
has to be increased. However, delaying the increase of the τ -parameter is done with the sole
intention that serious steps x→ x+ should not become too small. Therefore, if the above happens,

this goal is missed. The new test ρ̂k

?
< γ̂ is supposed to accelerate the increase of τ when it cannot

be avoided.

Primary Secondary Ternary Decision Action Quality

ρk > Γ
accept yk+1

serious step
τk decreased
recycle planes

good

γ ≤ ρk ≤ Γ
accept yk+1

serious step
τk unchanged
recycle planes

not bad

ρk < γ ρ̃k ≥ γ̃
reject yk+1

null step
agg. + cutting pl.
τk increased

too bad

ρk < γ ρ̃k < γ̃
ρ̂k < γ̂ and
f(x) > Mk+1

reject yk+1

null step
agg.+ cutting pl.
τk increased

too bad

ρk < γ ρ̃k < γ̃ else
reject yk+1

null step
agg. + cutting pl.
τk unchanged

bad

Table 1: Decision scheme. Secondary and ternary tests are only used in case ρk < γ (null step)
and help to decide whether τk is increased or kept fixed. In column three Mk+1 := Mk+1(y

k+1, x)
and the case else includes either ρ̂k ≥ γ̂ or ρ̂k < γ̂ in tandem with f(x) > Mk+1.

11

Remark 12. We also need to comment on the decision in step 8. If ρk ≥ Γ, then agreement
between f and Φk at yk+1 = x+ is good and we can trust our model. In trust region methods
this is accounted for by increasing the trust region radius. Here we do the same by reducing τk in
that case, so we relax proximity control. Since the inner loop ends in that situation, we pass the
information to the next sweep via the memory element τ]

j (see steps 3 and 8 of the algorithm).
Notice, however, that we have to assure Qj+1 + τ1Pj+1 � 0 according to what was said in section
4.2. The decision is shown in table 1.

4.7 Recycling of planes

When a new inner loop starts in step 3, a new working model φ1(·, x+) is formed. In the convex
case this model does not start from scratch, because one typically recycles some of the cutting and
aggregate planes from the previous step x. This happens naturally because these planes are affine
minorants of f and remain such as we go from x to x+.

This is no longer the case when f is non-convex. In principle it may be impossible to use
information from the previous serious step x at the new x+. In this case our strategy to memorize
the τ -parameter becomes doubtful, because it presumes some sort of history in time in the working
model. Fortunately, in many cases recycling of planes between serious steps x→ x+ is possible.

Consider the case where f = h ◦ F , with h convex and F of class C1. Suppose m(y, x) = a +
g>(y−x) is one of the planes used at x. That means a ≤ φ(x, x) = f(x). Can we recycle m at x+?
According to the chain rule we know that g = F ′(x)∗g̃ for some subgradient g̃ ∈ ∂h (F (x)). Since
h is convex, g̃ is still useful even though we pass from x to x+. We therefore put g+ := F ′(x+)∗g̃,
and we build the plane m+(y, x+) = a+ + g+>(y − x+), where a+ = f(x+). The procedure does
not interfere with our convergence analysis, so the user can do this in a sophisticate way if the
particular structure of the application can be exploited.

A general way to recycle planes which applies without any specific structure of f is to downshift
them in exactly the same way as done in Example 3 of section 4.5. That is, if m(y) = a+g>(y−x)
is a plane used at x, and if the new serious iterate x+ arrives, then compute the shift s = [f(x+)−
m(x+)]+ + c‖x − x+‖2 and recycle the plane under the new guise m+(y) = m(y) − s. This is
less sophisticated than the previous procedure, because it only involves a shift, while tilting plus
shifting was used before.

4.8 Memorizing τ

As we have seen, non-convexity makes a dynamic management of the proximity control parameter
mandatory. Step 8 of the algorithm regulates how τ is memorized between serious steps.

Definition 9. We shall say that the τ -parameter is fully memorized between serious steps if T = ∞.
If T <∞, then we shall say that the large multiplier safeguard rule is applied.

Except for the constraint Qj+1 + τ]
j+1Pj+1 � 0, T = ∞ means that we are free to memorize the

last value τk+1 if the step was not bad, and 1
2
τk+1 if the step was good. The case T < ∞ means

that τ]
j+1 is corrected as soon as it gets larger than T .

5 Algorithm

12

Algorithm 1. Proximity control algorithm for (1).

Parameters: 0 < γ < γ̃ < Γ < 1, γ̂ < 1, 0 < q <∞, 0 < c < C <∞, q/c < T ≤ ∞.
1: Initialize outer loop. Choose initial guess x1 and an initial matrix Q1 = Q>

1 with −qI �
Q1 � qI. Choose Euclidian norm ‖y‖2

1 = y>P1y with c‖ · ‖ ≤ ‖ · ‖1 ≤ C‖ · ‖. Fix memory
control parameter τ]

1 such that Q1 + τ]
1P1 � 0. Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂f(xj). Otherwise goto inner loop.
3: Initialize inner loop. Put inner loop counter k = 1 and initialize τ -parameter using

the memory element, i.e., τ1 = τ]
j . Choose initial convex working model φ1(·, xj), and let

Φ1(y, x
j) = φ1(y, x

j) + 1
2
(y − xj)>Qj(y − xj). The Euclidian norm is ‖y‖2

j = y>Pjy.
4: Trial step generation. At inner loop counter k solve tangent program

min
y∈Rn

Φk(y, x
j) + τk

2
‖y − xj‖2

j .

The solution is the new trial step yk+1.
5: Acceptance test. Check whether

ρk =
f(xj)− f(yk+1)

f(xj)− Φk(yk+1, xj)
≥ γ.

If this is the case put xj+1 = yk+1 (serious step), quit inner loop and goto step 8. If this is not
the case (null step) continue inner loop with step 6.

6: Update proximity parameter. Call cutting plane oracle mk+1(·, xj) at xj, trial point at
yk+1, and counter k. Then let Mk+1(y, x

j) = mk+1(y, x
j) + 1

2
(y− xj)>Qj(y− xj) and compute

secondary and ternary control parameters

ρ̃k =
f(xj)−Mk+1(y

k+1, xj)

f(xj)− Φk(yk+1, xj)
, ρ̂k =

f(xj)− f(yk+1)

f(x)−Mk+1(yk+1, xj)
=
ρk

ρ̃k

Put τk+1 =


τk, if ρ̃k < γ̃ .and.

(
ρ̂k ≥ γ̂ .or. f(x) < Mk+1(y

k+1, x)
)

(bad)

2τk, if ρ̃k < γ̃ .and. ρ̂k < γ̂ .and. Mk+1(y
k+1, x) < f(x) (too bad)

2τk, if ρ̃k ≥ γ̃ (too bad)

7: Update working model. Build new convex working model φk+1(·, xj) based on null step
yk+1 by respecting the three rules (exactness, cutting plane, aggregation). Then increase inner
loop counter k and continue inner loop with step 4.

8: Update Qj and memory element. Update matrix Qj → Qj+1 respecting Qj+1 = Q>
j+1 and

−qI � Qj+1 � qI. Then store new memory element

τ]
j+1 =


τk+1, if γ ≤ ρk < Γ (not bad)

1
2
τk+1, if ρk ≥ Γ (good)

If τ]
j+1 > T then re-set τ]

j+1 = T . Choose new Euclidian norm ‖·‖j+1 with c‖·‖ ≤ ‖·‖j+1 ≤ C‖·‖.
Increase τ]

j+1 if necessary to ensure Qj+1 + τ]
j+1Pj+1 � 0. Increase outer loop counter j by 1

and loop back to step 2.

13

6 Analysis of the inner loop

In this section we prove finite termination of the inner loop. This requires three Lemmas. Since
the Euclidean norm ‖y‖2

P = y>Py is fixed in the inner loop, we suppress the index and simply
write it as ‖ · ‖. The matrix Q(x) is also fixed, and we write Q.

Our first result shows that the third alternative ρk < γ, ρ̃k ≥ γ̃ in step 6 (third line in table 1)
cannot occur infinitely often.

Lemma 4. Let 0 6∈ ∂f(x). Let axioms (C1) and (C2) be satisfied. Suppose none of the trial steps
yk+1 is accepted, i.e., ρk < γ for all k. Then there exists k0 such that ρ̃k < γ̃ for all k ≥ k0. In
other words, the third alternative in step 6 of the algorithm can only occur for finitely many k.

Proof: This is essentially the same as Lemma 4 in [17]. A slight difference is that Φ(yk+1, x)
in the definition of ρ̃k in [17] has to be replaced by Mk+1(y

k+1, x). We therefore need to replace
estimate (14) in [17] by an estimate of the form f(yk+1) −Mk+1(y

k+1, x) ≤ ω̃k‖x − yk+1‖ with
ω̃k → 0. This is readily obtained from axiom (C2). The remainder of the proof is unchanged. �

.
Flowchart of proximity control algorithm

outer loop inner loop command if statement

start

current iterate

stopping exit
yes

working
model

tangent
program

ρ ≥ γ
yes no

ρ̃ ≥ γ̃

yes
no

cutting planes
aggregation

ρ̂ ≥ γ̂
no

τ+ = 2τ

τ+ = τ

yes
ρ ≥ Γ

yes

recycle planes

no
τ+ = 1

2ττ+ = τ

no

.

Figure 1: Algorithm 1 represented as a flow chart.

Lemma 4 shows that from some counter k0 onwards we must have ρk < γ and ρ̃k < γ̃ for all
k ≥ k0. In other words, the third alternative in the update formula of step 6 (third line in table 1)

14

can no longer occur. That means, during the remaining infinitely many inner loop steps k either
line 4 or line 5 in table 1 must occur. This is where the third control parameter ρ̂k enters the scene.
There are two logical possibilities, according to step 6 of the algorithm. Case 1 is ρk < γ, ρ̃k < γ̃
from k0 onwards together with ρ̂k < γ̂ and Mk+1(y

k+1, x) < f(x) for infinitely many k. Case 2 is
ρk < γ, ρ̃k < γ̃ from k0 onwards, but now combined with either ρ̂k ≥ γ̂ or Mk+1(y

k+1, x) ≥ f(x)
for all k from some counter k1 onwards. Case 1 corresponds to the second alternative in step 6,
(line 5 in table 1), where τk is increased infinitely often. Case 2 is the first alternative in step 6,
(line 6 in table 1), and this is where τk is frozen from some counter k1 onwards. The following
Lemma handles case 1. Case 2 will be discussed in Lemma 6.

Lemma 5. Let axioms (C1) and (C2) be satisfied. Let 0 6∈ ∂f(x) and suppose the inner loop turns
forever, i.e., ρk < γ for all k. Then there exists k0 such that for all k ≥ k0 ρk < γ, ρ̃k < γ̃ and
either ρ̂k ≥ γ̂ or Mk+1(y

k+1, x) ≥ f(x). In other words, the second alternative in step 6 can only
occur for finitely many k.

Proof: (i) By the previous Lemma 4 we know that ρk < γ and ρ̃k < γ̃ from some counter k0

onwards. In other words, the third line in step 6 no longer occurs for k ≥ k0. Assume contrary
to what is claimed that there exist infinitely many k ∈ K such that ρ̂k < γ̂ and at the same time
Mk+1(y

k+1, x) < f(x). Then the second line of the rule in step 6 of the algorithm (line 5 in table
1) is applied infinitely often. Since τk is increased in this case, we have τk → ∞. We argue that
this implies yk+1 → x.

By definition of the aggregate subgradient we have g∗k+1 = (Q+ τkP)(x−yk+1) ∈ ∂1φk(y
k+1, x).

By the subgradient inequality this gives

g∗>k+1(x− yk+1) ≤ φk(x, x)− φk(y
k+1, x).(8)

Now use the fact that φk(x, x) = f(x) and that the exactness plane me(·, x) satisfies me(y
k+1, x) ≤

φk(y
k+1, x). Recall that me(y, x) = f(x) + g(x)>(y− x) for some g(x) ∈ ∂f(x). Then (8) becomes

(x− yk+1)>(Q+ τkP)(x− yk+1) ≤ g(x)>(x− yk+1) ≤ ‖g(x)‖‖x− yk+1‖.(9)

Since τk →∞, the term on the left hand side behaves asymptotically like τk‖x− yk+1‖2. Dividing
(9) by a factor ‖x − yk+1‖ then shows τk‖x − yk+1‖ ≤ C‖g(x)‖ for some constant C, which can
only happen when ‖x− yk+1‖ → 0. This proves indeed yk+1 → x.

An important consequence of the above estimate is that the sequence g∗k+1 is bounded. This
follows because ‖g∗k+1‖ is proportional to τk‖x− yk+1‖ for large k.

(ii) We claim that lim inf
k∈K

f(yk+1)− f(x)

‖yk+1 − x‖
≥ 0. By assumption we have ρ̂k < γ̂, and at the same

time f(x)−Mk+1(y
k+1, x) > 0 for k ∈ K. Therefore we have

f(x)− f(yk+1) ≤ γ̂
(
f(x)−Mk+1(y

k+1, x)
)

= γ̂
(
f(x)−mk+1(y

k+1, x)− 1
2
(yk+1 − x)>Q(yk+1 − x)

)
.

By axiom (C2) there exist εk → 0+ such that f(yk+1) ≤ mk+1(y
k+1, x)+ εk‖yk+1−x‖. Substituting

this gives
f(x)− f(yk+1) ≤ γ̂

(
f(x)− f(yk+1) + ε̃k‖yk+1 − x‖

)
,

where ε̃k = εk − 1
2
(yk+1 − x)>Q(yk+1 − x)/‖yk+1 − x‖ → 0. Dividing by ‖yk+1 − x‖ shows

(1− γ̂)
f(yk+1)− f(x)

‖yk+1 − x‖
≥ −γ̂ε̃k,

15

hence lim infk∈K
f(yk+1)−f(x)
‖yk+1−x‖ ≥ 0 as claimed.

(iii) Let me(y, x) = f(x) + g(x)>(y − x) be the exactness plane at x. Then g(x) ∈ ∂f(x).

Put dk = yk+1−x
‖yk+1−x‖ and assume without loss that dk → d, passing to a subsequence of K if neces-

sary. Then g(x)>d ≥ lim infk∈K
f(yk+1)−f(x)
‖yk+1−x‖ ≥ 0, which follows from the definition of the Clarke

subdifferential applied to −f and ii) above.
(iv) Since yk+1 solves the tangent program, we know ψk(y

k+1, x) < ψk(x, x) = f(x), where
ψk(y, x) = Φk(y, x) + τk

2
‖y − x‖2 is the objective function of the tangent program. The exactness

plane satisfiesme(·, x) ≤ φk(·, x). This impliesme(y, x)+
1
2
(y−x)>Q(y−x)+ τk

2
‖y−x‖2 ≤ Φk(y, x)+

τk

2
‖y−x‖2 = ψk(y, x), hence me(y

k+1, x)+ 1
2
(yk+1−x)>(Q+ τkP)(yk+1−x) ≤ ψk(y

k+1, x) < f(x).
By the definition of the exactness plane, we deduce g(x)>(yk+1 − x) + 1

2
‖yk+1 − x‖2

Q+τkP < 0.
Dividing by ‖yk+1 − x‖ gives then g(x)>dk + 1

2
‖yk+1 − x‖2

Q+τkP/‖yk+1 − x‖ < 0. But τk → ∞,
so asymptotically the right hand term is ∼ τk‖yk+1 − x‖, which in turn is ∼ ‖g∗k+1‖, the norm of
the aggregate subgradient. Using lim inf g(x)>dk ≥ 0 proved in part (iii) now implies ‖g∗k+1‖ → 0,
k ∈ K.

(v) Our next step is to prove φk(y
k+1, x) → f(x). From (8) we see that lim inf f(x) −

φk(y
k+1, x) ≥ 0, because the left hand side of (8) converges to 0. Here we use boundedness

of the sequence g∗k+1 in tandem with with yk+1 → x; see part i). On the other hand, the ex-
actness plane satisfies φk(y

k+1, x) ≥ me(y
k+1, x) → me(x, x) = f(x) as k → ∞, which gives

lim inf φk(y
k+1, x)− f(x) ≥ 0. Together these two show φk(y

k+1, x) → f(x).
(vi) Recall that g∗k+1 is a subgradient of φk(·, x) at yk+1. Therefore, for every test vector y, we

have by the subgradient inequality

g∗>k+1(y − yk+1) ≤ φk(y, x)− φk(y
k+1, x)

≤ φ↑(y, x)− φk(y
k+1, x).

The left hand side converges to 0, k ∈ K, the right hand side converges to φ↑(y, x)− f(x), because
φk(y

k+1, x) → f(x) from part (v). Together this proves 0 ∈ ∂1φ
↑(x, x), hence 0 ∈ ∂f(x). This

contradiction proves our result. �

In Lemma 4 we have shown that the second line in the update formula for τk in step 6 of the
algorithm (or line 5 in table 1) can only occur for finitely many k. From Lemma 5 we know that
the same is true for the last line in step 6 (line 4 in table 1). Since by our standing assumption the
inner loop turns forever, this means that the first line in the formula of step 6 (last line in table
1) must be active from some counter k1 onwards. This means that the τ -parameter is frozen from
this counter k1 onwards. The consequences of this case are given by the following

Lemma 6. Suppose the cutting plane oracle satisfies axioms (C1) and (C2). Let 0 6∈ ∂f(x). Then
the inner loop finds a serious step after a finite number of trials k.

Proof: Assume contrary to what is claimed that the inner loop turns forever. By Lemmas 4
and 5 there exists k1 such that for all k ≥ k1 we have ρk < γ, ρ̃k < γ̃ and either ρ̂k ≥ γ̂ or
Mk+1(y

k+1, x) ≥ f(x). By step 6 of the algorithm this means the parameter τk is frozen from k1

onwards, and only cutting planes and aggregation are at work. This is the case which was analysed
in [17, Lemma 5]. Earlier work with similar results for convex bundle methods (in the case Q = 0)
is for instance [11, Proposition 4.3], or [14, Chapter XV], or part II of [8]. �

16

Remark 13. The stopping test 0 ∈ ∂f(x) in step 2 of the algorithm may seem unrealistic, in
particular in large scale applications like Lagrangian relaxation, where ∂f(x) is too expensive to
compute at each step x. If we dispense with it and enter the inner loop directly after arrival of a
new serious iterate, then the inner loop may turn forever. The proofs of Lemmas 4–6 cover this
case as well. They tell us that in this event the sequence yk+1 converges to xj and 0 ∈ ∂f(xj).
What is needed then is a good stopping test for the inner loop, based on slow progress or proximity
of yk+1 to xj, allowing us to halt with the correct diagnostic 0 ∈ ∂f(xj). Since in practice such a
test is needed anyway, keeping step 2 in its present form is in no way restrictive. Besides, we can
always interpret this as of entrusting the stopping test to the inner loop.

7 Convergence of the outer loop

This central part of the paper shows subsequence convergence of our algorithm. We assume that
Qj = Q(xj) is the matrix of the second order model, which depends on the serious iterates xj. We
assume that at every instance j ∈ N of the outer loop a Euclidean metric ‖y‖2

j = y>Pjy is chosen.
This means the tangent program (4) at xj and inner-loop counter k takes the form

min
y∈Rn

Φk(y, x
j) + τk

2
(y − xj)>Pj(y − xj).(10)

The necessary optimality condition is τkPj(x
j − yk+1) ∈ ∂1Φk(y

k+1, xj), or what is the same

(Qj + τkPj) (xj − yk+1) ∈ ∂1φk(y
k+1, xj).(11)

Recall that the norms Pj are assumed uniformly equivalent, that is, there exist c, C > 0 such that
c‖y‖ ≤ ‖y‖j ≤ C‖y‖ for all y and all j. Now we are ready to state

Theorem 1. Let x1 be such that Ω = {x ∈ Rn : f(x) ≤ f(x1)} is bounded. Suppose f has a strict
cutting plane oracle on Ω. Suppose the algorithm is operated with the large multiplier safeguard
rule, (i.e., T <∞). Then every accumulation point of the sequence of serious iterates is critical.

Proof: i) From the analysis in section 6 we know that the inner loop always ends after a finite
number of steps k with a new x+ satisfying the acceptance test in step 5, unless we have finite
termination due to 0 ∈ ∂f(x). Let us exclude this case, and let xj denote the infinite sequence
of serious steps. We assume that at outer loop counter j the inner loop finds a serious step at
inner loop counter k = kj. In other words, ykj+1 = xj+1 passes the acceptance test in step 5 of the
algorithm and becomes a serious iterate, while the yk+1 with k < kj are null steps. That means

f(xj)− f(xj+1) ≥ γ
(
f(xj)− Φkj

(xj+1, xj)
)
.(12)

Now recall that (Qj + τkj
Pj)(x

j−xj+1) ∈ ∂1φkj
(xj+1, xj) by (5) respectively (11). The subgradient

inequality for φkj
(·, xj) at xj+1 therefore gives(

xj − xj+1
)>

(Qj + τkj
Pj)(x

j − xj+1) ≤ φkj
(xj, xj)− φkj

(xj+1, xj) = f(xj)− φkj
(xj+1, xj),

using φkj
(xj, xj) = f(xj). With Φk(y, x

j) = φk(y, x
j) + 1

2
(y − xj)>Qj(y − xj) we therefore have

1
2
‖xj+1 − xj‖2

Qj+τkj
Pj
≤ f(xj)− Φkj

(xj+1, xj) ≤ γ−1 (f(xj)− f(xj+1)) ,(13)

17

using (12). Summing (13) from j = 1 to j = J gives

J∑
j=1

‖xj+1 − xj‖2
Qj+τkj

Pj
≤ γ−1

J∑
j=1

(
f(xj)− f(xj+1)

)
= γ−1

(
f(x1)− f(xJ+1)

)
.

Here the right hand side is bounded above because our method is of descent type in the serious
steps. Consequently the series on the left is summable, and therefore ‖xj+1 − xj‖2

Qj+τkj
Pj
→ 0 as

j → ∞. Let x̄ be an accumulation point of the sequence xj and select a subsequence j ∈ J such
that xj → x̄, j ∈ J . We have to prove 0 ∈ ∂f(x̄).

ii) Suppose there exists an infinite subsequence j ∈ J ′ of j ∈ J such that gj := (Qj +
τkj
Pj) (xj − xj+1) → 0, j ∈ J ′. Here we claim that 0 ∈ ∂f(x̄), so that we are done.
In order to prove this claim, notice first that since {x ∈ Rn : f(x) ≤ f(x1)} is bounded by

hypothesis, and since our algorithm is of descent type in the serious steps, the sequence xj, j ∈ N
is bounded.

Since gj is a subgradient of φkj
(·, xj) at xj+1 = ykj+1, we have for every test vector h:

g>j h ≤ φkj
(xj+1 + h, xj)− φkj

(xj+1, xj)

≤ φ↑(xj+1 + h, xj)− φkj
(xj+1, xj) (using φkj

≤ φ↑).

Now we use the fact that ykj+1 = xj+1 was accepted in step 5 of the algorithm, which means

γ−1
(
f(xj)− f(xj+1)

)
≥ f(xj)− Φkj

(xj+1, xj).

Combining these two estimates for a fixed test vector h gives:

g>j h ≤ φ↑(xj+1 + h, xj)− f(xj) + f(xj)− φkj
(xj+1, xj)

= φ↑(xj+1 + h, xj)− f(xj) + f(xj)− Φkj
(xj+1, xj) + 1

2
(xj − xj+1)>Qj(x

j − xj+1)

≤ φ↑(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
+ 1

2
(xj − xj+1)>Qj(x

j − xj+1)

= φ↑(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
+

+1
2
(xj − xj+1)>(Qj + τkj

Pj)(x
j − xj+1)−

τkj

2
‖xj − xj+1‖2

j

≤ φ↑(xj+1 + h, xj)− f(xj) + γ−1
(
f(xj)− f(xj+1)

)
+ 1

2
(xj − xj+1)>(Qj + τkj

Pj)(x
j − xj+1).

Now fix h′ ∈ Rn. Plugging h = xj − xj+1 + h′ in the above estimate gives

1
2
‖xj − xj+1‖2

Qj+τkj
Pj

+ g>j h
′ ≤ φ↑(xj + h′, xj)− f(xj) + γ−1 (f(xj)− f(xj+1)) .(14)

Passing to the limit j ∈ J ′ and using, in the order named, ‖xj−xj+1‖2
Qj+τkj

Pj
→ 0, gj → 0, xj → x̄,

f(xj) → f(x̄) = φ↑(x̄, x̄) and f(xj)− f(xj+1) → 0, we obtain:

0 ≤ φ↑(x̄+ h′, x̄)− φ↑(x̄, x̄).(15)

Here the rightmost term f(xj) − f(xj+1) → 0 converges by monotonicity, while convergence of
the leftmost term was shown in part i). Now the test vector h′ in (15) is arbitrary, which shows
0 ∈ ∂1φ

↑(x̄, x̄). By axiom (M1) we have 0 ∈ ∂f(x̄).
iii) As a consequence of part ii), we are now left to deal with the case where ‖gj‖ = ‖(Qj +

τkj
Pj)(x

j − xj+1)‖ ≥ µ > 0 for some µ > 0 and every j ∈ J . The remainder of this proof will be
entirely dedicated to this case.

18

We notice first that under this assumption the τkj
, j ∈ J , must be unbounded. Indeed, assume

on the contrary that the τkj
, j ∈ J , are bounded. By boundedness of Qj, Pj and boundedness

of the serious steps, there exists then an infinite subsequence j ∈ J ′ of J such that Qj, Pj,
τkj

and xj − xj+1 converge respectively to Q̄, P̄ , τ̄ and δx̄ as j ∈ J ′. This implies that the
corresponding subsequence of gj converges to (Q̄+ τ̄ P̄)δx̄, where ‖(Q̄+ τ̄ P̄)δx̄‖ ≥ µ > 0. Similarly,
(xj−xj+1)>(Qj+τkj

Pj)(x
j−xj+1) → δx̄>(Q̄+τ̄ P̄)δx̄. By part i) of the proof we have g>j (xj+1−xj) =

‖xj+1 − xj‖2
Qj+τkj

Pj
→ 0, which means δx̄>(Q̄ + τ̄ P̄)δx̄ = 0. Since Q̄ + τ̄ P̄ is symmetric and

Q̄ + τ̄ P̄ � 0, we deduce (Q̄ + τ̄ P̄)δx̄ = 0, contradicting ‖(Q̄ + τ̄ P̄)δx̄‖ ≥ µ > 0. This argument
proves that the τkj

, j ∈ J , are unbounded.

iv) Having shown that the sequence τkj
, j ∈ J is unbounded, we can without loss assume that

τkj
→∞, j ∈ J , passing to a subsequence if required. Let us now distinguish two types of indices

j ∈ J . We let J+ be the set of those j ∈ J for which the τ -parameter was increased at least once
during the jth inner loop. The remaining indices j ∈ J− are those where the τ -parameter remained
unchanged during the jth inner loop. Since the jth inner loop starts at τ]

j and ends at τkj
, we have

J+ = {j ∈ J : τkj
< τ]

j} and J− = {j ∈ J : τkj
= τ]

j}.

We claim that the set J− must be finite. For suppose J− is infinite, then τkj
→∞, j ∈ J−. Then

also τ]
j → ∞, j ∈ J−. But this contradicts the large multiplier safeguard rule in step 8 of the

algorithm, which forces τ]
j ≤ T . This contradiction shows that J+ is cofinal in J .

iv) Remember that we are still in the case whose discussion started in point iii). We are now
dealing with an infinite subsequence j ∈ J+ of j ∈ J such that τkj

→∞, ‖gj‖ ≥ µ > 0, and such
that the τ -parameter was increased at least once during the jth inner loop. Suppose this happened
for the last time at stage kj − νj for some νj ≥ 1. Then

τkj
= τkj−1 = · · · = τkj−νj+1 = 2τkj−νj

.(16)

According to step 6 of the algorithm, the increase at counter kj−νj may have been for two different
reasons. Either

ρkj−νj
< γ and ρ̃kj−νj

≥ γ̃(17)

or

ρkj−νj
< γ, ρ̃kj−νj

< γ̃ and ρ̂kj−νj
< γ̂,(18)

the latter condition in tandem with Mkj−νj+1(y
kj−νj+1, xj) < f(xj). These are the two cases

labelled too bad in step 6 of the algorithm (see also Table 1). In part v) below we will discuss the
consequences of (17). Case (18) will be considered in part vi).

v) We continue by discussing case (17), where infinitely many j ∈ J+ satisfy

ρkj−νj
=

f(xj)− f(ykj−νj+1)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

< γ and ρ̃kj−νj
=
f(xj)−Mkj−νj+1(y

kj−νj+1, xj)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≥ γ̃.

Notice first that as τkj
→ ∞ and τkj

= 2τkj−νj
, boundedness of the subgradients g̃j := (Qj +

1
2
τkj
Pj)(x

j − ykj−νj+1) ∈ ∂1φkj−νj
(ykj−νj+1, xj) shows ykj−νj+1 → x̄. Indeed, boundedness follows

19

from the subgradient inequality

(xj − ykj−νj+1)>(Qj + τkj−νj
Pj)(x

j − ykj−νj+1) ≤ φkj−νj
(xj, xj)− φkj−νj

(ykj−νj+1, xj)

≤ f(xj)−me,j(y
kj−νj+1)

= g(xj)>(xj − ykj−νj+1)

≤ ‖g(xj)‖‖xj − ykj−νj+1‖,

where me,j(y) = f(xj)+g(xj)>(y−xj) is the exactness plane at xj. Now as τkj
→∞, the left hand

side behaves asymptotically like constant times τkj−νj
‖xj − ykj−νj+1‖2, because τkj−νj

= 1
2
τkj

→
∞. On the other hand the xj ∈ Ω are bounded, hence so are the g(xj). The right hand side
therefore behaves asymptotically like constant times ‖xj − ykj−νj+1‖. This shows boundedness of
τkj−νj

‖xj − ykj−νj+1‖, and therefore xj − ykj−νj+1 → 0.
We now have to discuss two logical possibilities. Either there exists an infinite subset J ′ of J+

such that g̃j → 0, j ∈ J ′, or ‖g̃j‖ ≥ η > 0 for some η > 0 and all j ∈ J+.
Suppose first that there exists an infinite subsequence J ′ of J+ such that ‖g̃j′‖ → 0, j′ ∈ J ′.

Then all is well, as we now argue. Namely, for a test vector h and j ∈ J ′:

g̃>j h ≤ φkj−νj
(ykj+νj+1 + h, xj)− φkj−νj

(ykj−νj+1, xj)(19)

≤ φ↑(ykj+νj+1 + h, xj)− φkj−νj
(ykj−νj+1, xj).

Using the fact that ρ̃kj−νj
≥ γ̃, we have

f(xj)− Φkj−νj
(ykj−νj+1, xj) ≤ γ̃−1

(
f(xj)−Mkj−νj

(ykj−νj+1, xj)
)
.

Adding 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj) on both sides gives

f(xj)− φkj−νj
(ykj−νj+1, xj)

≤ γ̃−1
(
f(xj)−Mkj−νj

(ykj−νj+1, xj)
)

+ 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj).

Combining this and estimate (19) gives

g̃>j h ≤ φ↑(ykj−νj+1 + h, xj)− f(xj) + γ̃−1
(
f(xj)−Mkj−νj

(ykj−νj+1, xj)
)

+1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj).(20)

As we have seen ykj−νj+1−xj → 0, hence the rightmost term converges to 0 by boundedness of Qj.
Moreover, we claim that lim f(xj) −Mkj−νj

(ykj−νj+1, xj) = 0, so the term γ̃−1(. . .) on the right
hand side of (20) converges to 0. Indeed, to see this claim, notice that since ykj−νj+1−xj → 0 and
xj → x̄, axiom (C3) gives lim supmj(y

kj−νj+1, xj) ≤ lim supφ↑(ykj−νj+1, xj) ≤ φ↑(x̄, x̄) = f(x̄).

Since the oracle is strict, so is φ↑, and axiom (M̂2) gives εj → 0 such that

(21) f(ykj−νj+1)− φ↑(ykj−νj+1, xj) ≤ εj‖ykj−νj+1 − xj‖.

Passing to the limit in (21) implies lim inf φ↑(ykj−νj+1, xj) ≥ f(x̄), so the two estimates together
show f(xj) − φ↑(ykj−νj+1, xj) → 0. Since the quadratic term converges to 0, we deduce f(xj) −
Φ↑(ykj−νj+1, xj) → 0, proving the claim. Going back with this information to the above subgradient
inequality and passing to the limit shows

0 ≤ φ↑(x̄+ h, x̄)− f(x̄) = φ↑(x̄+ h, x̄)− φ↑(x̄, x̄),

20

where we apply axiom (M3) for φ↑ to the first term on the right hand side. This proves 0 ∈
∂1φ

↑(x̄, x̄), because h was arbitrary. Therefore 0 ∈ ∂f(x̄) by model axiom (M1). This shows that
indeed all is well in the case of a subsequence j ∈ J ′ with g̃j → 0.

To continue, let us now consider the second logical alternative ‖g̃j‖ ≥ η for some η > 0 and all
j ∈ J+. As we shall see, this case can be ruled out. Indeed, we argue that there exists θ > 0 such
that

f(xj)− Φkj−νj
(ykj−νj+1, xj) ≥ θ‖ykj−νj+1 − xj‖(22)

for all j ∈ J+ sufficiently large. Namely, by the subgradient inequality we have

g̃>j (xj − ykj−νj+1) ≤ φkj−νj
(xj, xj)− φkj−νj

(ykj−νj+1, xj) = f(xj)− φkj−νj
(ykj−νj+1, xj).

Subtracting 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj) from both sides gives

1
2
(ykj−νj+1 − xj)>(Qj + τkj

Pj)(y
kj−νj+1 − xj) ≤ f(xj)− Φkj−νj

(ykj−νj+1, xj).

Now as τkj
→∞, we have 1

4
‖g̃j‖‖ykj−νj+1− xj‖ ≤ 1

2
(ykj−νj+1− xj)>(Qj + τkj

Pj)(y
kj−νj+1− xj) for

j ∈ J+ large enough, which proves formula (22) with θ = 1
4
η.

Next using (21), and subtracting the usual 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj) from both sides
gives

f(xj)− Φ↑(ykj−νj+1, xj) ≤ ε̃j‖ykj−νj+1 − xj‖,(23)

where ε̃j := εj + 1
2
‖Qj‖‖ykj−νj+1 − xj‖ → 0. Combining (22) and (23) gives the estimate

ρ̃kj−νj
≤ ρkj−νj

+
ε̃j‖ykj−νj+1 − xj‖
θ‖ykj−νj+1 − xj‖

which shows lim sup ρ̃kj−νj
≤ lim sup ρkj−νj

≤ γ, contradicting ρ̃kj−νj
≥ γ̃ > γ for the infinitely

many j ∈ J ′. This contradiction shows that ‖g̃j‖ ≥ η > 0 for all j ∈ J+ was impossible, so some
subsequence of g̃j (j ∈ J+) does converge to 0, proving 0 ∈ ∂f(x̄). This ends the discussion of
condition (17).

vi) It remains to discuss the consequences of (18), the case where the τ -parameter was increased
for infinitely many j ∈ J+ because of the second rule in step 6 of the algorithm:

ρkj−νj
< γ, ρ̃kj−νj

< γ̃, ρ̂kj−νj
< γ̂.

For the indices k = kj − νj + 1, . . . , kj − 1 we have ρk < γ, ρ̃k < γ̃ and ρ̂k ≥ γ̂, while of course
ρkj

≥ γ, because the last iterate in the jth inner loop ykj+1 = xj+1 was accepted as the serious step
of the jth outer loop.

Recall that in the case of the third rule we also know that Mkj−νj+1(y
kj−νj+1, xj) < f(xj), so

condition ρ̂kj−νj+1 < γ̂ becomes

f(xj)− f(ykj−νj+1) < γ̂
(
f(xj)−Mkj−νj+1(y

kj−νj+1, xj)
)

= γ̂
(
f(xj)−mkj−νj+1(y

kj−νj+1, xj)− 1
2
(ykj−νj+1 − xj)>Qj(y

kj−νj+1 − xj)
)

≤ γ̂
(
f(xj)− f(ykj−νj+1) + εj‖ykj−νj+1 − xj‖+ 1

2
‖Qj‖‖ykj−νj+1 − xj‖2

)
= γ̂

(
f(xj)− f(ykj−νj+1) + ε̃j‖ykj−νj+1 − xj‖

)
,(24)

21

where ε̃j → 0. Here the third line is based on axiom (Ĉ2). In order to be allowed to use this
axiom, we have to prove ykj−νj+1 − xj → 0 as j ∈ N ′. To see this observe first that the ykj−νj+1

are bounded. This was already established in part iii) of the proof, and here the argument is quite
similar. Namely, by the subgradient inequality we have

(xj − ykj−νj+1)>(Qj + τkj−νj
Pj)(x

j − ykj−νj+1) ≤ φkj−νj
(xj, xj)− φkj−νj

(ykj−νj+1, xj)

≤ f(xj)−me,j(y
kj−νj+1)

= g(xj)>(xj − ykj−νj+1)

≤ ‖g(xj)‖‖xj − ykj−νj+1‖,

where me,j(y) = f(xj)+g(xj)>(y−xj) is the exactness plane at xj. Now the left hand side behaves
asymptotically like τkj−νj

‖xj−ykj−νj+1‖2, because from the definition of νj we have τkj−νj
= 1

2
τkj

→
∞. On the other hand, since xj ∈ Ω, the sequence g(xj) is bounded, so the right hand side behaves
like constant times ‖xj−ykj−νj+1‖. This shows boundedness of τkj−νj

‖xj−ykj−νj+1‖, and therefore
also xj − ykj−νj+1 → 0.

Re-arranging estimate (24) and dividing by ‖ykj−νj+1 − xj‖ gives

(1− γ̂)
f(xj)− f(ykj−νj+1)

‖xj − ykj−νj+1‖
≤ ε̃j,

hence passing to the limit j ∈ J ′ using ε̃j → 0 leads to the estimate

lim inf
j∈J ′

f(ykj−νj+1)− f(xj)

‖ykj−νj+1 − xj‖
≥ 0.(25)

Let J ′′ be a subsequence of J ′ such that xj → x̄, j ∈ J ′′. We have to prove 0 ∈ ∂f(x̄). Let us put

dj = ykj−νj+1−xj

‖ykj−νj+1−xj‖
. Passing to yet another subsequence of J ′′ if necessary, we may assume dj → d

and g(xj) → g ∈ ∂f(x̄), the latter by upper semicontinuity of the Clarke subdifferential. If we
apply the definition of the Clarke directional derivative to −f we obtain, using (25), that

lim inf
j∈J ′′

g(xj)>dj ≥ lim inf
j∈J ′′

f(ykj−νj+1)− f(xj)

‖ykj−νj+1 − xj‖
≥ 0.(26)

This estimate will come in handily in a moment.
Recall that ykj−νj+1 is the solution of program

min
y∈Rn

ψkj−νj
(y, xj) = Φkj−νj

(y, xj) +
τkj−νj

2
‖y − xj‖2

j .

The exactness plane me,j satisfies me,j(y)+ 1
2
(y−xj)>Qj(y−xj)+

τkj−νj

2
‖y−xj‖2

j ≤ Φkj−νj
(y, xj)+

τkj−νj

2
‖y − xj‖2

j = ψkj−νj
(y, xj). Hence

me,j(y
kj−νj+1) + 1

2
(ykj−νj+1 − xj)>(Qj + τkj−νj

Pj)(y
kj−νj+1 − xj)

≤ ψkj−νj
(ykj−νj+1, xj) ≤ ψkj−νj

(xj, xj) = f(xj).

By definition of the exactness plane, subtracting f(xj) on both sides gives

g(xj)>(ykj−νj+1 − xj) + 1
2
‖ykj−νj+1 − xj‖2

Qj+τkj−νj
Pj
≤ 0.

22

Dividing by ‖ykj−νj+1 − xj‖ and using the definition of dj gives

g(xj)>dj + 1
2

‖ykj−νj+1 − xj‖2
Qj+τkj−νj

Pj

‖ykj−νj+1 − xj‖
≤ 0.(27)

Here the right hand expression behaves asymptotically like constant times τkj−νj
‖ykj−νj+1 − xj‖,

which in turn behaves like constant times ‖g∗j‖, where g∗j = (Qj + τkj−νj
Pj)(x

j − ykj−νj+1) is the
aggregate subgradient at inner loop stage kj−νj. Using lim inf g(xj)>dj ≥ 0, proved in (26) above,
we get g(xj)>dj → 0. From estimate (27) it now also follows that ‖g∗j‖ → 0, because the middle
term in (27) is proportional to ‖g∗j‖ and is squeezed in between two terms converging to 0. This
is the key property, but before we can exploit it, we need to verify one more fact.

Notice that τkj
→∞ in tandem with (16) shows ykj−νj+1 → x̄, j ∈ J ′′. We now claim that the

following holds:
lim
j∈J ′′

φkj−νj
(ykj−νj+1, xj) = f(x̄).

In order to prove this, observe that the aggregate subgradient at inner loop instant kj − νj is
g∗j = (Qj + τkj−νj

Pj)(x
j − ykj−νj+1). By the subgradient inequality we have

g∗>j (xj − ykj−νj+1) ≤ φkj−νj
(xj, xj)− φkj−νj

(ykj−νj+1, xj).

Since the left hand side converges to 0, we have lim supj∈J ′′ φkj−νj
(ykj−νj+1, xj) ≤ f(x̄). So it

remains to establish the reverse estimate. This uses properties of the exactness plane. Namely,
φkj−νj

(ykj−νj+1, xj) ≥ me,j(y
kj−νj+1), where me,j is the exactness plane at xj. But me,j(y

kj−νj+1) =
f(xj) + g(xj)>(ykj−νj+1 − xj) → f(x̄) as j ∈ J ′′, because f(xj) → f(x̄) and g(xj) → g ∈ ∂f(x̄),
ykj−νj+1 − xj → 0. This proves φkj−νj

(ykj−νj+1, xj) → f(x̄).
Now we are ready to finish the proof of case (18). For an arbitrary test vector y we have by

the subgradient inequality:

g∗>j (y − ykj−νj+1) ≤ φkj−νj
(y, xj)− φkj−νj

(ykj−νj+1, xj)

≤ φ↑(y, xj)− φkj−νj
(ykj−νj+1, xj).

Passing to the limit j ∈ J ′′ using g∗j → 0 on the left and φkj−νj+1(y
kj−νj+1, xj) → f(x̄) on the right

shows
0 ≤ lim sup

j∈J ′′
φ↑(y, xj)− φ↑(x̄, x̄).

Now axiom (M3) shows lim supφ↑(y, xj) ≤ φ↑(y, x̄). We have therefore proved 0 ∈ ∂1φ
↑(x̄, x̄),

which gives 0 ∈ ∂f(x̄). This completes the proof. �

It is convenient to give the following

Definition 10. If the memory parameter τ]
j+1 in step 8 of the algorithm exceeds T , and is therefore

re-set to T , then we shall say that the large multiplier safeguard rule is applied. Setting T = ∞
in the algorithm is therefore another way of saying that the large multiplier safeguard rule is not
used.

Corollary 1. Suppose Ω = {x ∈ Rn : f(x) ≤ f(x1)} is bounded and f has a strict cutting plane
oracle on Ω. Suppose the algorithm is operated without the large multiplier safeguard rule (i.e.
T = ∞). Then there exists at least one accumulation point of the sequence of serious iterates
which is critical.

23

Proof: In order to analyse this case let us introduce the following terminology. We call an outer
loop index j a drone if the τ -parameter is never increased during the jth inner loop. The large
multiplier safeguard rule therefore excludes the existence of infinite subsequences j ∈ J such that
τkj

→∞ and such that every j ∈ J is a drone. Let us call such a subsequence parasitic.
The proof of Theorem 1 shows that whenever x̄ is the accumulation point of a subsequence xj

which is not parasitic, then x̄ is critical. However, having dispensed with the large multiplier safe-
guard rule, we cannot exclude the existence of parasitic subsequences. Fortunately, if a parasitic
subsequence exists, then we can also find an infinite set J such that τkj

→ ∞, and such that the
τ -parameter was increased at least once during the jth inner loop. For short, we can also find a
non parasitic subsequence. Indeed, if the τ -parameter is unbounded, and since the drones do not
do any work to increase it, some infinite subsequence where all the work is done must exist. Every
accumulation point of this non parasitic sequence xj, j ∈ J is critical. �

Remark 14. The large multiplier safeguard rule does not altogether exclude the existence of
infinite subsequences j ∈ J with τkj

→∞. It only forbids infinite subsequences consisting entirely
of drones, i.e., parasitic subsequences. Neither does the large multiplier safeguard rule exclude the
existence of drones.

8 Convergence with complete memory

In this section we discuss the question of convergence without the large multiplier safeguard rule
in closer detail. It turns out that this rule is not needed when a strong oracle is available.

Theorem 2. Let Ω = {x ∈ Rn : f(x) ≤ f(x1)} be bounded and suppose f has a strong cutting
plane oracle on Ω. Suppose the algorithm is operated without the large multiplier safeguard rule
and also without the ternary test (i.e., T = ∞ and γ̂ = −∞). Then every accumulation point of
the sequence of serious iterates is critical.

Proof: We follow the line of Theorem 1. Parts i) – iii) of the proof can be adopted without
modification. We have to deal with a sequence j ∈ J such that τkj

→∞ and ‖gj‖ ≥ µ > 0. If the
τ -parameter was increased at least once during the jth inner loop, then we are in the case discussed
in the proof of Theorem 1, so we can follow step (v) of that proof and conclude that 0 ∈ ∂f(x̄).
The new situation we have to deal with is when the τ -parameter is never increased in the jth inner
loop, i.e., if the sequence is parasitic in the sense discussed in the proof of Corollary 1.

iv) We argue that in this case there exists another infinite subsequence j ∈ J ′ with τkj
→ ∞,

such that in addition for each j ∈ J ′, the doubling rule in step 6 of the algorithm is applied at least
once before the step xj+1 = ykj+1 was accepted. Indeed, to construct J ′ we let, for every j ∈ J ,
j′ ≤ j be that outer-loop instant where the τ -parameter was increased for the last time before j,
and we put J ′ := {j′ : j ∈ J}. It is possible that j′ = j, but in general we may have j′ < j, and
we only know that

2τkj′−1
≤ τk′j and τkj′

≥ τkj′+1
≥ · · · ≥ τkj

.

Since τkj
→∞, j ∈ J , we also get τkj′

→∞, j′ ∈ J ′. Since the doubling rule was applied at least
once at the outer-loop counter j′, the set J ′ is as claimed.

Let us say that for j ∈ J ′ the doubling rule was applied for the last time at stage τkj−νj
for

some νj ≥ 1. That means, τkj−νj+1 = 2τkj−νj
, while the τ -parameter remained unchanged during

24

the following inner steps before acceptance:

τkj
= τkj−1 = · · · = τkj−νj+1 = 2τkj−νj

.(28)

Now recall that in step 6 of the algorithm the doubling rule is applied for two different reasons.
Either because ρ < γ and ρ̃ ≥ γ̃, or because ρ < γ, ρ̃ < γ̃, ρ̂ < γ̂. But remember that we
dispensed with the second case by putting γ̂ = −∞. Therefore, if the τ -parameter is increased,
this is because ρk < γ and ρ̃k ≥ γ̃. Since by assumption this is the case at stage kj − νj we have

ρkj−νj
=

f(xj)− f(ykj−νj+1)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

< γ and ρ̃kj−νj
=
f(xj)−Mkj−νj+1(y

kj−νj+1, xj)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≥ γ̃.

By (16) we now have g̃j = (Qj + 1
2
τkj
Pj)

(
xj − ykj−νj+1

)
∈ ∂1φkj−νj

(ykj−νj+1, xj). Using the sub-
gradient inequality for φkj−νj

(·, xj) at ykj−νj+1 and φkj−νj
(xj, xj) = f(xj), we obtain(

xj − ykj−νj+1
)>

(Qj + 1
2
τkj
Pj)

(
xj − ykj−νj+1

)
≤ φkj−νj

(xj, xj)− φkj−νj
(ykj−νj+1, xj)

= f(xj)− φkj−νj
(ykj−νj+1, xj),

which on subtracting 1
2
(xj − ykj−νj+1)>Qj(x

j − ykj−νj+1) from both sides becomes

1
2
(xj − ykj−νj+1)>(Qj + τkj

Pj)(x
j − ykj−νj+1) ≤ f(xj)− Φkj−νj

(ykj−νj+1, xj).

Using ‖xj − ykj−νj+1‖2
Qj+τkj

Pj
≥ (τkj

‖Pj‖ − ‖Qj‖)‖xj − ykj−νj+1‖2, this could also be written as

(τkj
‖Pj‖ − ‖Qj‖)‖xj − ykj−νj+1‖2

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≤ 2.(29)

Now, substituting (29) into the expression for ρ̃kj−νj
and expanding gives

ρ̃kj−νj
= ρkj−νj

+
f(ykj−νj+1)−Mkj−νj+1(y

kj−νj+1, xj)

f(xj)− Φkj−νj
(ykj−νj+1, xj)

≤ ρkj−νj
+

(L+ ‖Qj‖)‖xj − ykj−νj+1‖2

f(xj)− Φkj−νj
(ykj−νj+1, xj)

(using (C̃2))

≤ ρkj−νj
+ 2

L+ ‖Qj‖
τkj
‖Pj‖ − ‖Qj‖

(using (29)).

Here the estimate in (C̃2) is applied to the set B = {xj, ykj−νj+1 : j ∈ J ′}, which as we now argue is
bounded. Indeed, to see this observe that τkj−νj

= 1
2
τkj

→∞ as j ∈ J ′. Applying the subgradient
inequality to g̃j = (Qj + τkj−νj

Pj)(x
j − ykj−νj+1) ∈ ∂1φkj−νj

(ykj−νj+1, xj) gives

(xj − ykj−νj+1)>(Qj + τkj−νj
Pj)(x

j − ykj−νj+1) ≤ φkj−νj
(xj, xj)− φkj−νj

(ykj−νj+1, xj)

≤ f(xj)−me,j(y
kj−νj+1) = g(xj)>(xj − ykj−νj+1)

≤ ‖g(xj)‖‖xj − ykj−νj+1‖.

Here me,j(·) is again the exactness plane at xj. By (16) we have τkj−νj
→∞, so using boundedness

of the xj and boundedness of the Qj, Pj, we deduce (via the argument already employed in the
proof of Lemma 1) that the ykj−νj+1 are bounded.

25

Going back to the above estimate involving ρ̃kj−νj
and ρkj−νj

, notice that ρkj−νj
< γ and

(L + ‖Qj‖)/(τkj
‖Pj‖ − ‖Qj‖) → 0 imply lim supj→∞ ρ̃kj−νj

≤ γ, contradicting ρ̃kj−νj
≥ γ̃ > γ for

the infinitely many j ∈ J ′. This proves that an infinite sequence j ∈ J with ‖gj‖ ≥ µ > 0 and
τkj

→ ∞ could not exist. Due to part ii) of the proof of Theorem 1, we infer that 0 ∈ ∂f(x̄) for
every accumulation point of the sequence xj, j ∈ J . This completes the proof. �

Remark 15. The proof of Theorem 2 shows that a strong oracle excludes parasitic subsequences
by itself, i.e., without the large multiplier safeguard rule. However, our proof only works if the
ternary test is dispensed with (γ̂ = −∞), and so far we have not been able to establish the same
result if the ternary test is used.

9 Some examples

This section presents a variety of examples which show that our algorithm could also be understood
as a fairly general method to establish convergence results. We shall also put forward situations
where the choice of Q(x) may lead to fast local convergence.

Example. Objective strictly differentiable. Suppose f is strictly differentiable. Then the
standard model is φ](y, x) = f(x)+∇f(x)>(y−x), which is then also the natural model. Suppose
we choose Q(x) = 0 and let the working model coincide with the ideal model, i.e., φk = φ] for
every k. Then the tangent program is

min
y∈Rn

f(x) +∇f(x)>(y − x) + τ
2
‖y − x‖2,

which means y = x − τ−1∇f(x). In other words, the trial step is a steepest descent step with
steplength τ−1. The acceptance test in step 5 of the algorithm is

ρ =
f(x)− f(y)

−∇f(x)>(y − x)
≥ γ,

which is nothing but the usual Armijo test with Armijo constant 0 < γ < 1. Since ρ̃ = 1, we always
increase τ when the Armijo condition is not satisfied. (The decision parameter ρ̂ is not needed
here.) This corresponds to decreasing the step τ−1, a backtracking linesearch. The large multiplier
safeguard rule, if used, becomes a small safeguard rule against small stepsizes. Namely, if the jth

linesearch ended successfully with step tj, then we start the (j+1)st linesearch at tj if the accepted
step was not bad, respectively at 2tj if the accepted step was good. Naturally, the large multiplier

safeguard rule, if applied, becomes a safeguard rule against t]j becoming too small, where we re-set

t]j = T−1 if t]j < T−1. If T = ∞, then T−1 = 0 and no such rule is applied. Since Q(x) = 0, we

are then in the case where t]j ∈ {tj, 2tj}, and we refer to this as the step being fully memorized
between iterates xj → xj+1. The relation t = τ−1 has even more surprising consequences.

Proposition 2. Let f be differentiable and suppose the standard first-order model φ] is used as
working model φ] = φk with Q(x) = 0. Then our non-smooth algorithm specializes to the steepest
descent method with backtracking linesearch and Armijo acceptance condition. The outer loop
produces the iterates xj, the inner loop is the linesearch. Suppose one of the following scenarios
occurs:

26

1. f is of class C1 and the safeguard rule against small steps t]j ≥ T−1 is applied.

2. f is of class C1,1 and the steplength is fully memorized.

Then every accumulation point of the sequence of serious iterates xj is a critical point. �

Remark 16. In descent methods where second order steps are tempted, the line search starts
with stepsize t] = 1 in order to allow full Newton or quasi Newton steps. (This corresponds to
applying the safeguard rule against small steps). In contrast, in a pure first-order method we might
memorize the successful steplength at stage j and start the (j+1)st linesearch there in order to safe
time. This is exactly what our algorithm does, except for the fact that the memorized steplength
t] would be t] = 2tj if the accepted step xj is good. If f is of class C1,1, then the standard model
is strong, and this is why we still converge by fully memorizing the stepsize t = τ−1 as in step 8 of
algorithm 1.

If we allow a variable metric ‖y‖j =
(
y>Pjy

)1/2
at each outer step j, then the step becomes

xj+1 = xj − τ−1P
− 1

2
j ∇f(xj)>P

− 1
2

j .(30)

Here we are performing a backtracking linesearch with descent direction dj = −P− 1
2

j ∇f(xj)>P
− 1

2
j .

Recall that we assume c‖y‖ ≤ ‖y‖j ≤ C‖y‖ for certain 0 < c < C < ∞ and all j. These descent
directions dj are therefore gradient oriented, i.e., the angle between dj and −∇f(xj) stays bounded
away from ±900, or what is the same, −900 < −α ≤ ∠(dj,−∇f(xj)) ≤ α < 90o for some fixed
angle 00 < α < 90o. Also, c′‖dj‖ ≤ ‖∇f(xj)‖ ≤ C ′‖dj‖ for some 0 < c′ < C ′ <∞ and all j.

Proposition 3. Let f be of class C1. Then every descent method with gradient oriented descent
direction (30), Armijo condition, and backtracking linesearch can be interpreted as a special case
of our non-smooth algorithm. Consequently, every accumulation point of the sequence of iterates
so generated is critical if the linesearch is initialized at t] = (τ])−1 with t] ≥ T−1. If f is of class
C1,1 then the successful stepsize of the line search can be fully memorized when passing from xj to
xj+1. �

Remark 17. To our knowledge Propositions 2 and 3 are new. Even when the line search is
initialized at a stepsize t] larger than some threshold T−1 > 0, convergence in the literature is
usually proved for C1,1 functions, while our proof shows C1 is enough. Naturally, one would ask
whether more practical backtracking procedures are covered. The rule τk+1 = 2τk in steps 6 the
algorithm could at any moment be replaced by more flexible choices like τk+1 = Θkτk for some
Θk > 1. All that is needed is that applying this rule infinitely often causes τk to converge to ∞.

Example. Non-smooth steepest descent. Let us consider a non-smooth f with the standard
model φ] and Q(x) = 0. As before let the working model coincide with the ideal model. Then
ρ̃ = 1, so the only action taken in the inner loop is reducing τ .

The tangent program is miny∈Rn f(x)+f 0(x, y−x)+ τ
2
‖y−x‖2. Writing h = y−x and omitting

the constant term f(x), this could be written as a minimax program v := minh maxg∈∂f(x) g
>h +

τ
2
‖h‖2. Using Fenchel duality we may swap the min and max operators. Then

v = max
g∈∂f(x)

min
h
g>h+ τ

2
‖h‖2 = max

g∈∂f(x)
g>h(g) + τ

2
‖h(g)‖2,

27

where the inner minimum over h is unconstrained and can therefore be solved explicitly. The solu-
tion is h(g) = −τ−1g, which we substitute back. This gives v = maxg∈∂f(x)− 1

2τ
‖g‖2 = − 1

2τ
‖g(x)‖2,

where g(x) is the steepest descent direction g(x) = arg min{‖g‖ : g ∈ ∂f(x)}. This leads back to
y = x+ h = x− 1

τ
g(x).

Proposition 4. Suppose the standard model φ](y, x) = f(x) + f 0(x, y − x) is used as working
model φk and Q(x) = 0. Then our method specializes to the non-smooth steepest descent method
with backtracking linesearch and Armijo acceptance test. If φ] is strict, then every accumulation
point of the sequence of iterates xj is a critical point of f as long as the safeguard rule against
small stepsizes is applied. If the standard model φ] is strong, then the stepsize τ−1 may be fully
memorized between serious steps xj → xj+1. �

Remark 18. This result is complementary to classical statements where convergence of the non-
smooth steepest descent method is established when τ−1

j → 0 in tandem with
∑

j τ
−1
j = ∞.

Conditions of that type can neither be checked nor forced algorithmically. In contrast, our condition
can be tested beforehand. It is for instance satisfied if f is upper C1.

Example. Objective function is C2. For f of class C2 the standard model is φ](y, x) = f(x)+
∇f(x)>(y − x) and coincides with the natural model. Here it makes sense to let Q(x) = ∇2f(x).

We assume that the working model coincides with the ideal model. Then the tangent program
(4) computes yk+1 = argmin

y∈Rn
f(x) +∇f(x)>(y − x) + 1

2
(y − x)> (∇2f(x) + τI) (y − x). This leads

to y = x− (∇2f(x) + τI)
−1∇f(x), which is a damped Newton step. The trial step y is accepted

as the next serious step x+ as soon as ρ ≥ γ. This is equivalent to

ρ =
f(x)− f(y)

f(x)− Φ(y, x)
=

f(x)− f(y)

−∇f(x)>(y − x)− 1
2
(y − x)>∇2f(x)(y − x)

≥ γ.

This test differs from the usual Armijo test, where one would require

ρarmijo =
f(x)− f(y)

f(x)− φ(y, x)
=

f(x)− f(y)

−∇f(x)>(y − x)
≥ γ

for the Armijo constant 0 < γ < 1. Notice that ρ ≥ ρarmijo if ∇2f(x) � 0, which means that in
the convexity zone of f our test is easier to satisfy than the Armijo test. For γ < 1

2
both tests

are asymptotically equivalent, as shown by the argument of the Dennis-Moré theorem [13]. Their
argument shows that ρ ≈ 1 in the neighbourhood of a local minimum satisfying the second order
sufficient optimality condition. In consequence, if the sequence of serious iterates starts in this
neighbourhood, then eventually ρ > Γ, which has the consequence that the τ parameter converges
to 0. We obtain the following

Proposition 5. Suppose f is of class C2. Suppose the standard first order model is used as
first-order working model. Suppose Q(x) = ∇2f(x), so that Φk = Φ is the second order Taylor
polynomial of f at x. Let x̄ a local minimum of (1) satisfying the second order sufficient optimality
condition. Then there exist ε > 0 such that whenever x1 ∈ B(x̄, ε), the sequence of serious
iterates xj generated by our algorithm satisfies xj+1 ∈ B(x̄, ε) for all j. Moreover, xj+1 = xj −
(∇2f(xj) + 2−jτ1I)

−1∇f(xj) is a damped Newton step, which converges superlinearly to x̄. Each
inner loop accepts the first trial step to become xj+1 with the good case ρ ≥ Γ. �

28

Example. Objective function is C2 (continued). If the sufficient second order optimality
condition is satisfied at the local minimum x̄, then ∇2f(x) � εI � 0 in a neighbourhood of the
minimum. For x in this neighbourhood one may therefore choose Q(x) = ∇2f(x) − ε(x)I � 0,
where ε(x) ≈ ε as x approaches x̄. This allows τ]

j to become arbitrarily small, because the condition

Q(xj)+τ]
j I � 0 in step 8 is no longer restrictive. In consequence, the tangent program computes the

Newton step, and not just a damped version. This is clearly satisfactory, as our method includes
an important classical situation. Notice that we do not have to know ε to get this. As soon as
we are in the neighbourhood of attraction, the undamped Newton step becomes interpretable as
generated by our algorithm. Naturally, unless ε is known, the difficulty is that we do not know
when we are in the neighbourhood of attraction, so we do not know from what moment onward
we are authorized to try a Newton step.

Example. Objective is convex. Suppose f is convex and the first order model φ(·, x) = f is
used. Then it makes sense to let Q(x) = 0, because Q(x) 6= 0 would produce a model Φ farther
away from f than φ. With this choice our algorithm reproduces the classical form of the bundle
algorithm for convex objectives.

Example. Objective lower C2. Consider the case where f is lower C2, and choose µ > 0 such
that φµ(y, x) = f(y) + µ‖y − x‖2 is convex, hence a strong model for f . Our natural choice of the
second order term is 1

2
(y − x)>Q(x)(y − x) = −µ‖y − x‖2, because this gives Φ(y, x) = f(y). We

assume Φk = Φ for all k, so the tangent program is

min
y∈Rn

f(y) + τk

2
‖y − x‖2.(31)

Since we must have Q(x)+ τkI � 0, we are only allowed proximity parameters satisfying τk/2 ≥ µ.
This is just saying that f + τk

2
‖ · −x‖2 is convex. In other words, the tangent program computes a

proximal step. The acceptance test is ρk = f(x)−f(y)

f(x)−f(y)− τk
2
‖y−x‖2 ≥ γ, and if ρk < γ then the proximity

constant is increased, and it is decreased if a serious step with ρ ≥ Γ occurs. All the other actions
in the algorithm (aggregate and cutting planes, decisions depending on ρ̃ and ρ̂) are redundant.

Proposition 6. For a lower C2 function the proximal point algorithm based on (31) can be inter-
preted as a special case of our algorithm. �

Notice in addition that we have the option to memorize the τ parameter between serious steps,
because the model φµ is strong. Moreover, if we use the oracle of Example 2 in section 4.5, then
µ can be adapted anew after each serious step. For instance, we may decrease µ as going from x
to x+ in cases where a smaller µ+ suffices to convexify f at x+. We can also be forced to increase
µ if the opposite happens. In the latter case we might have to correct τ at the beginning of the
inner loop according to step 8 to assure τ/2 ≥ µ.

Can we decrease µ during the inner loop? According to the oracle of Example 2 in section 4.5
we can indeed. However, in that case we have to keep the aggregate planes, because they are no
longer redundant. So here we no longer use a pure proximal point method.

Remark 19. We have to read the result above with some care, because f + µ‖ · −x‖2 is typically
only convex in a neighbourhood of x. Since φµ(·, x) has to be convex everywhere, we may have to
define it differently outside this neighbourhood, which is not in the spirit of a practical method.
In assuming that the solution of the proximal point program miny f(y) + µ‖y− x‖2 gives the new
trial step y, we therefore make the implicit assumption that y lies within the region of convexity
of f + µ‖ · −x‖2.

29

Another restriction is that in order to converge superlinearly, the proximal point method needs
τj = τ]

j → 0 [18]. But this may be in conflict with the requirement τj/2 ≥ µ. It certainly is if µ > 0
is just fixed. We better adapt µ at every step, choosing µ(x) as small as possible to guarantee
convexity of φµ(x)(y, x) = f(y) + µ(x)‖y − x‖2.

But this raises yet another interesting question. As x approaches a local minimum x̄, can we
render φµ(x)(·, x) convex with smaller and smaller µ(x), even with µ(x) → 0 as x→ x̄? It appears
that the answer should be positive, because functions get more and more convex as minima are
approached. Unfortunately, this is so only for smooth functions. Looking at f(x) = |x|−x2, which
has a local minimum at 0, we see what may happen. Indeed, to convexify f we need Q(x) = −I,
hence µ(x) ≥ 1 even for x→ 0.

Remark 20. The models φµ(y, x) = f(y) + µ‖y− x‖2 for prox-regular f appear for the first time
in [17]. Later Sagastizábal and Hare [19], Sagastizábal [20], and also Lewis and Wright [16] use
essentially the same construction. As we have seen, the delicate problem is the choice of µ. In
order to assure that the solution of the tangent program lies in the zone of convexity of φµ, we
want µ large, but on the other hand we want to use the smallest possible µ to convexify in order
to keep our model close to the true f . The solution to this dilemma is to not use φµ at all. What
we recommend instead is the downshift oracle. It is a much more flexible tool, which in addition
applies to the much larger class of lower C1 functions.

10 Application: Downshift oracle

In this section we apply our theory to the downshift oracle, which is Example 3 in Section 4.5. The
best known convergence result for this oracle is Schramm and Zowe’s [21, Theorem 3.1], where it is
proved that some accumulation point of the sequence of serious iterates is critical. The algorithm
of [21] differs from ours in the management of τ . In relating the downshift technique to our oracle
concept, we can prove stronger convergence results.

Lemma 7. The downshift oracle satisfies axiom (C1).

Proof: A tangent plane at y+ = x is of the form m(y) = f(x) + g>(y − x) for some g ∈ ∂f(x).
Since the quadratic term c‖x− x‖2 in the downshift vanishes, we have s = 0, so the cutting plane
mx,x coincides with the tangent. This immediately gives axiom (C1). �

Lemma 8. Let f be a lower C1 function. Then the downshift oracle satisfies axiom (Ĉ2), and
therefore also axiom (C2).

Proof: i) Let yj → x, xj → x. We have to find εj → 0+ such that f(yj) ≤ myj ,xj
(yj)+εk‖yj−xj‖.

Now observe that myj ,xj
(yj) ≥ f(yj) − sj, where sj is the downshift relating the tangent and the

oracle plane at trial point yj. The case sj = c‖yj −x‖2 is when the tangent plane to f at yj passes
below f(xj). Here we simply let εj = c‖yj − xj‖. In the case where the tangent plane mt passes
above f(xj) the down shift is sj = mt(xj)−f(xj)+c‖yj−xj‖2. Now f(yj) ≤ myj ,xj

(yj)+εj‖yj−xj‖
is equivalent to f(yj) ≤ f(xj) + g>j (yj − xj) − c‖yj − xj‖2 + εj‖yj − xj‖, where gj ∈ ∂f(yj). So
equivalently, we have to find εj → 0 such that g>j (xj − yj) ≤ f(xj)− f(yj) + εj‖yj − xj‖.

ii) Following Daniilidis and Georgiev [12] a lower C1 function is approximately convex: For every
x̄ and ε > 0 there exists δ > 0 such that f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖

30

for all x, y ∈ B(x̄, δ) and all 0 ≤ t ≤ 1. Re-arranging this estimate gives

f(y + t(x− y))− f(y)

t
≤ f(x)− f(y) + ε(1− t)‖x− y‖.

By [18, Theorem 10.31] f is Clarke regular, so that passing to the limit t→ 0 gives the estimate

f 0(y, x− y) ≤ f(x)− f(y) + ε‖x− y‖.

Then for every g ∈ ∂f(y), g>(x− y) ≤ f 0(y, x− y) ≤ f(x)− f(y) + ε‖x− y‖. This is precisely the
estimate we need to satisfy the condition of part i). �

Lower C1 function have been introduced by Spingarn [23]. Lower Ck functions, k ≥ 1, are
discussed in Rockafellar-Wets [18].

Lemma 9. The downshift oracle satisfies axiom (C3).

Proof: Let y+
j → y+, yj → y, xj → x. Then my+

j ,xj
= mt,j − sj, where mt,j is the tangent plane

to f at y+
j , that is mt,j(y) = f(y+

j)+ g>j (y− y+
j) for some gj ∈ ∂f(y+

j). Passing to a subsequence if
necessary, we may assume gj → g+ ∈ ∂f(y+). Then mt,j → mt, where mt is a tangent to f at y+

(upper semicontinuity of the Clarke subdifferential). Since the down shift sj depends continuously
on the data xj, y

+
j and gj, and because of gj → g+, we have for this subsequence sj → s, where s is

the down shift associated with x, y+ and g+. In other words, mt,j−sj = my+
j ,xj

and mt−s = my+,x.

Then since yj → y we clearly have limj my+
j ,xj

(yj) = my+,x(y), because the sequence of gradients

∇my+
j ,xj

is uniformly bounded. �

By what is proved so far we know that we are in business. The down shift oracle is strict as
soon as f is lower C1. It remains to settle the question when the oracle is strong. This is answered
by the following

Lemma 10. The following condition is equivalent to strongness of the downshift oracle: Whenever
xj → x, yj → x, gj ∈ ∂f(yj), then there exists L > 0 such that f(yj) − f(xj) − g>j (xj − yj) ≤
L‖yj − xj‖2 for all j.

Proof: We let yj → x, xj → x. Then f(yj) ≤ myj ,xj
(yj)+sj, where sj is the downshift belonging

to the trial point yj at serious point xj. That is sj = [mt,j(xj) − f(xj)]+ + c‖yj − xj‖2, where
mt,j(y) = f(yj)+g

>
j (y−yj) is a tangent to f at yj. In particular, gj ∈ ∂f(yj). Strongness of the or-

acle requires sj = O(‖yj−xj‖2). Since this is obvious for the quadratic term c‖yj−xj‖2, everything
hinges on whethermt,j(xj)−f(xj) ≤ O(‖yj−xj‖2). Now this term equals f(yj)+g

>
j (xj−yj)−f(xj),

so strongness is assured as soon as f(xj)− f(yj) + g>j (xj − yj) ≥ −L‖yj − xj‖2 for some L > 0. �

To understand the condition of Lemma 10, consider

∆f,y,g(h) :=
f(y + h)− f(y)− g>h

‖h‖2

the second difference quotient of f at y with respect to g ∈ ∂f(y). The condition of Lemma 10
above reads

∆f,yj ,gj
(xj − yj) ≥ −L.(32)

31

Notice that if a function f is convex, then ∆f,y,g(h) ≥ 0 for every h by the subgradient inequality.
Therefore, (32) ought to be related to convexity. And indeed, observe that the second difference
quotient of x 7→ L‖x− y‖2 is constant ∆L‖·−y‖2,x,2L(x−y)(h) = L for all h. Therefore, ∆f,yj ,gj

(xj −
yj) ≥ −L is equivalent to ∆f+L‖·−yj‖2,yj ,gj+2L(xj−yj)(xj − yj) ≥ 0, which comes down to convexity
of f + L‖ · −yj‖2. We summarize:

Proposition 7. If f is lower C2, then the downshift oracle is strong.

Proof: The lower C2 property implies that for every x̄ we find L > 0 and a neighbourhood U of
x̄ such that for every y ∈ U the function f may be convexified on U by adding L‖ · −y‖2. Then
∆f+L‖·−y‖2,y,gj+2L(x−y)(x− y) ≥ 0 for all x, y ∈ U , hence we have (32). �

Theorem 3. Let f be locally Lipschitz and suppose Ω = {x ∈ Rn : f(x) ≤ f(x1)} is bounded.
Suppose the downshift oracle with one of the following operational modes is applied:

1. The large multiplier safeguard rule is used (T <∞), and f is lower C1.

2. The proximity control parameter is fully memorized (T = ∞), the ternary test involving ρ̂ is
dispensed with (γ̂ = −∞), and f is lower C2.

Then every accumulation point of the sequence of serious iterates xj is a critical point of f . �

11 Conclusion

Cutting plane oracles have been introduced and used to develop bundling techniques for non-convex
non-smooth optimization. The new concept expands naturally on existing techniques like convex
bundling, model-based cutting planes [17], and techniques for composite functions like [16,19,20].
Downshift of tangent planes used in [15,21,24] can also be seen as a special instance of our cutting
plane oracle. As a consequence, we obtain satisfactory and natural convergence proofs for these
cases in the class of lower C1 functions.

Acknowledgement

Funding by Fondation de Recherche pour l’Aéronautique et l’Espace under contract Survol, and
by Fondation EADS under contract Technicum is gratefully acknowledged.

References

[1] P. Apkarian, L. Ravanbod-Hosseini, D. Noll. Time-domain constrained structured
H∞-synthesis. Int. J. Robust Nonlin. Control, to appear.

[2] P. Apkarian, D. Noll. Non-smooth H∞ synthesis. IEEE Transactions on Automatic Con-
trol, vol. 51, no. 1, 2006, pp. 71 – 86.

[3] P. Apkarian, D. Noll. Non-smooth optimization for multidisk H∞ synthesis. European
Journal of Control, vol. 12, no. 3, 2006, pp. 229 – 244.

32

[4] P. Apkarian, D. Noll. Non-smooth optimization for multiband frequency domain control
design. Automatica, vol. 43, no. 4, 2007, pp. 724 – 731.

[5] P. Apkarian, D. Noll. Controller design with non-smooth multidirectional search. SIAM
Journal on Control and Optimization, vol. 44, no. 6, 2006, pp. 1923 – 1949.

[6] P. Apkarian, D. Noll, O. Prot. A trust region spectral bundle method for non-convex
eigenvalue optimization. SIAM Journal on Optimization, vol. 19, no. 1, 2008, pp. 281 – 306.

[7] P. Apkarian, D. Noll, O. Prot. A proximity control algorithm to minimize non-smooth
and non-convex semi-infinite maximum eigenvalue functions. Journal of Convex Analysis, vol.
16, 2009, pp. 641 – 666.

[8] F. Bonnans, J.-C. Gilbert, C. Lemaréchal, C. Sagastizábal. Numerical Optimiza-
tion. Theoretic and Practical Aspects. Springer Verlag 2006.

[9] F. H. Clarke. Optimization and Non-smooth Analysis. SIAM Classics in Applied Mathe-
matics. Philadelphia 1990.

[10] K.C. Kiwiel. An aggregate subgradient method for non-smooth convex minimization. Math.
Programming, vol. 27, 1983, p. 320 - 341.

[11] R. Correa, and C. Lemaréchal. Convergence of some algorithms for convex minimiza-
tion. Math. Programming, 62(2):261–275, 1993.

[12] A. Daniilidis, P. Georgiev. Approximate convexity and submonotonicity. J. Math. Anal.
Appl., vol. 291, 2004, pp. 117 – 144.

[13] J. E. Dennis jr., R. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice Hall Series in Computational Mathematics. 1983.

[14] J.-B. Hiriart-Urruty, C. Lemaréchal. Convex analysis and minimization algorithms,
vol I: and vol II: Advanced theory and bundle methods, vol. 306 of Grundlehren der mathema-
tischen Wissenschaften, Springer Verlag, New York, Heidelberg, Berlin, 1993.

[15] C. Lemaréchal, J.-J. Strodiot, A. Bihain. On a bundle algorithm for non-smooth
optimization. In: Mangasarian, Meyer, Robinson (eds.), Nonlinear Programming 4, Academic
Press, 1981, pp. 245 – 282.

[16] A. Lewis, S. Wright. A proximal method for composite minimization. Preprint 2008.

[17] D. Noll, O. Prot, A. Rondepierre. A proximity control algorithm to minimize non-
smooth and non-convex functions. Pacific Journal of Optimization, vol. 4, no. 3, 2008, pp. 569
– 602.

[18] R.T. Rockafellar, R. J.-B. Wets. Variational Analysis. Grundlehren der mathematis-
chen Wissenschaften, vol. 317, Springer Verlag, 1998.

[19] C. Sagastizábal, W. Hare. A redistributed proximal bundle method for nonconvex opti-
mization. Preprint 2009.

33

[20] C. Sagastizábal. Composite proximal bundle method. Preprint 2009.

[21] H. Schramm, J. Zowe. A version of the bundle idea for minimizing nondifferentiable func-
tions: conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimiza-
tion, vol. 2, 1992, pp. 121 – 151.

[22] Simões, P. Apkarian, D. Noll. Non-smooth multi-objective synthesis with applications.
Control Engineering Practice, vol. 17, no. 11, 2009, pp. 1338 – 1348.

[23] J.E. Spingarn. Submonotone subdifferentials of Lipschitz functions. Trans. Amer. Math.
Soc., vol. 264, 1981, pp. 77 – 89.

[24] J. Zowe. The BT-algorithm for minimizing a non-smooth functional subject to linear con-
straints. non-smooth Optimization and Related Topics, F.H. Clarke, V.F. Demyanov, F. Gi-
anessi (eds.), Plenum Press, 1989.

34

