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Abstract. We consider the design of an output feedback controller for a large scale sys-
tem like the linearized Navier-Stokes equation. We design an observer-based controller
for a reduced system that achieves a compromise between concurring performance and
robustness specifications. This controller is then pulled back to the large scale system
such that closed-loop stability is preserved, and such that the trade-off between the H2-
and H∞-criteria achieved in reduced space is preserved. The procedure is tested on a
simulated fluid flow study.
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1. Introduction

Robust feedback control of systems with large state dimension like the linearized Navier-
Stokes equation hinges on system reduction techniques. Bringing the system down to a
moderate size allows to apply sophisticated optimization-based robust controller synthesis
tools, which achieve a compromise between performance and robustness specifications.
The controller so obtained is then pulled back to the large dimension, and one hopes that
it still achieves a similar compromise in the large scale space.

In order to justify this approach theoretically, one first of all has to prove that the
pull back procedure preserves stability in closed loop (Raymond and Thevenet, 2010;
Thevenet, 2009). The more intriguing question is then whether pull back also preserves
the trade-off between performance and robustness specifications (Bernstein et al. 1989;
Stein and Athans, 1987; Doyle et al. 1982) achieved in reduced space. Namely, stability is
rarely the main issue in practical control applications. The real difficulties surface when
it comes to assuring good performance and robustness in the presence of the inevitable
system uncertainty.

In this work we present a new technique which allows to achieve such a compromise
between performance and robustness within the framework of observer-based controllers.
This may seem surprising at first, as H2- or LQG control is known to be fragile in the
presence of system uncertainty and finite energy external perturbations, which is why it
has been supplanted by robust control techniques in practice (Lauga and Bewley, 2004;
Farag and Werner, 2002; Lauga and Bewley, 2002; Feron, 1997; Bernstein et al. 1989;
Packard and Doyle, 1987; Doyle and Stein, 1979). Since our reduction and pull-back
technique makes it necessary to continue to use observer-based controllers, we have to
robustify them, and this is where the use of optimization techniques becomes inevitable.
In consequence, practically useful observer-based controllers can no longer be computed
by solving algebraic Riccati (ARE) equations. In particular, we cannot benefit from recent
progress (Benner et al. 2004) obtained in solving large-scale AREs.
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Roughly our approach can be described as follows. We show how a standard H2-
performance channel can be traded against an H∞-robustness specification in reduced
space such that the resulting mixed H2/H∞-controller achieves a satisfactory compromise
between performance and robustness in reduced space. We then show that the mixed
controller still achieves a good compromise when pulled back to the large system. This is a
consequence of the fact that the projection/pull-back operation preserves local optimality
if the H2 and H∞ channels are suitably re-normed in the large scale space.

The structure of the paper is as follows. In section 2 we recall the PEVA system
reduction technique, which is later used in open and in closed loop. Section 4 presents
our line of action and gives the main result. In particular, the algorithm proposed in
that section realizes the trade-off between performance and robustness specifications. In
section 5 we briefly recall the choice of performance and robustness filters for the LQG
case. Section 6 gives the proofs of the principal results. In section 7 we apply our theory
to control the linearized Navier-Stokes equation, where the full order descriptor system
after discretization features near 41000 states.

2. Review of the algorithm for partial eigenvalue assignment

The algorithm for partial eigenvalue assignment (PEVA) is a classical tool for system
reduction (Datta, 2004), which we briefly recall here, as we shall need it in the sequel.
Consider a linear system

(S) :
{

ẋ = Ax+ Bu
y = Cx(1)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. We assume that the state dimension n is
exceedingly large, while p,m are rather of moderate size. We adopt the convention that
any matrix which has at least one large dimension (row or column) is represented by a
non usual Latin symbol, for example: A,B,A,B, . . . , while small matrices have the usual
Latin symbols A,B, . . . . Similarly, vectors with large state dimension have symbols like
x, x̂, etc. while small dimensions are denoted as x, x̂ as usual. Assuming A diagonalizable,
we let E and F be bases of right and left eigenvectors of A, that is

AE = EΛ, and ATF = FΛ∗,

where Λ = diag(λ1, ..., λn) are the eigenvalues of A. Now we divide the set I = {1, . . . , n}
into two disjoint parts, Is and Iu with |Is| = ns, |Iu| = nu, ns + nu = n, where it is
assumed that unstable eigenvalues belong to Iu, that is

{i : Re(λi) ≥ 0} ⊂ Iu.

That is, we oblige all unstable modes to belong to Iu, but allow some of the stable ones
in Iu, too. Nonetheless, in slight abus de langue, we call λi with i ∈ Iu the unstable open-
loop modes, and Is the stable modes. The set Iu does in fact include those open-loop
modes which we wish to (or have to) control by feedback, whereas the modes in Is are
considered extremely fast and irrelevant for feedback.

Now let Eu be the right eigenvectors in E associated with λi, i ∈ Iu, Es those in Is, and
similarly, Fu the left eigenvectors associated with λi in Iu, Fs those in Is. By orthogonality
we have

(2) FT
s Eu = 0ns×nu , FT

u Es = 0nu×ns .

In addition, we may also arrange for Eu, Es,Fu,Fs to be real matrices and to be scaled to
satisfy

(3) FT
s Es = In−nu , FT

u Eu = Inu .
2



To arrange this we first replace [F (i)
u , F (i+1)

u ] and [E (i)
u , E (i+1)

u ] associated with a pair of
complex conjugate eigenvalues with indexes i and i+ 1, by

[F (i)
u , F (i+1)

u ]G∗ and [E (i)
u , E (i+1)

u ]G∗,

where G = 1√
2

(
1 1
j −j

)
, j2 = −1. Then we normalize them.

Using (2), (3), we can now decompose the state x of the large scale system (1) as
x = Euxu + Esxs, where xu,xs are the states of the following two subsystems, called the
unstable and the stable subsystem:

(4) (Su) :

{
ẋu = Auxu +Buu

yu = Cuxu

, (Ss) :

{
ẋs = Asxs + Bsu

ys = Csxs

where:

Au = FT
u AEu = Λu, Bu = FT

u B, Cu = CEu,(5)

As = FT
s AEs = Λs, Bs = FT

s B, Cs = CEs.
Here Λu are the unstable eigenvalues, Λs the stable eigenvalues of A. The equations of the
original system (S), given in (1), can be obtained back from the equations of the unstable
system (Su) and stable system (Ss) given in (4), bearing in mind that x = E [xu, xs]

T and
y = yu + ys. In other words, the procedure presented so far is loss-less.

3. Problem statement

In order to control the large scale system (S) appropriately, we have to embed it into
a plant P by adding performance and robustness channels. We decide to assess the
performance by a weighted H2-norm, while a robustness criterion based on a weighted
H∞-norm is added. Altogether, this leads to the following large scale plant

(6) P :



ẋ = Ax +B2w2 +B∞w∞ +Bu
ẋ2 = A2x+ A22x2 +B22w2 +B2uu
ẋ∞ = A∞x +A∞∞x∞ +B∞∞w∞ +B∞uu
z2 = C2x+ C22x2 +D2uu
z∞ = C∞x +C∞∞x∞ +D∞∞w∞ +D∞uu
y = Cx +Dy2w2 +Dy∞w∞,

where w∞ is bounded energy perturbations, w2 is a white noise source, x is the system
state with large dimension n, while x2, x∞ represent the states of the stable filters used for
frequency weighting. Here z2 and z∞ are the controlled outputs of these filters. With the
exception of A, B and C, all other matrices are specified once performance and robustness
channels are chosen.

Remark 1. Our notation highlights plant data involving the large state dimension by
using calligraphic symbols, while the small dimension is indicated by using roman symbols.
Note that B2,B∞ and also A2,A∞ and C2, C∞ have at least one large dimension, but these
matrices are under our control, so we can arrange them to be sparse.

In the sequel, we make the following assumption:

(A,B) is stabilizable, (A, C) is detectable, A is diagonalizable.

We also work under the informal hypothesis that nu ≪ n, as otherwise our reduction
technique will not kick in. Similarly, it is realistic to assume that dim y ≪ dimx. Nat-
urally, we also assume that A2,A∞ are stable. Our goal is to design a dynamic output
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feedback controller of observer structure

(7) u(s) = K(s)y(s) = −Kc

(
sI − (A− BKc −KT

f C)
)−1 KT

f y(s)

for the large scale system (S), such that the following design specifications are satisfied:

(i) K stabilizes (S) in closed loop.
(ii) The controller has good performance in the sense that a suitable frequency weighted

H2-norm of the closed-loop performance channel w2 → z2 is small.
(iii) The controller has acceptable robustness in the sense that a suitable frequency

weighted H∞-norm of the closed-loop robustness channel w∞ → z∞ is small.
(iv) The controller K should be practically computable. That rules out the nominal

mixed H2/H∞ controller, where the dimensions of Kf and Kc satisfying Riccati
equations would be exceedingly large. The controller and filter gains should be
computed using a reduced-order plant.

For the following, let us introduce the notation θ = (Kc,Kf ) for a vector θ gathering all
unknown controller and observer gains of (7), and let the corresponding observer-based
controller in (7) be K(θ). Moreover, let Tz2w2(s, θ) be the closed-loop transfer function
w2 → z2 of the large scale plant P when controller K(θ) is used, and similarly Tz∞w∞(s, θ)
the closed-loop channel w∞ → z∞ using K(θ) in feedback with P . Then we wish to solve
an optimization problem of the form

minimize P(θ) = ∥F (2)
1 Tz2w2(·, θ)F

(2)
2 + F

(2)
3 ∥2

subject to R(θ) = ∥F (∞)
1 Tz∞w∞(·, θ)F (∞)

2 + F
(∞)
3 ∥∞ ≤ r

θ = (Kc,Kf ) closed-loop stabilizing
(8)

in the large scale space. Here P(θ) is called the performance criterion, R(θ) the robust-
ness criterion, and r is a suitable robustness threshold. The frequency filters F

(k)
i (s) are

independent of the design parameter θ. Note that the matrix dimensions of Tz2w2 and
Tz∞w∞ are small, but large matrices are required to compute them, so they are not readily
available for synthesis.

It is clear that unless simplifying manipulations are made, (8) will present major nu-
merical difficulties due to the size of the matrices involved in computing the transfer
function Tzw in the large scale space. In the next section we show how the PEVA re-
duction technique may be applied to the ambitious program (8) to obtain a version in
reduced order space which is amenable to computations in such a way that the results
remain meaningful in the large dimension.

4. Course of action

In this section we present our main idea to control the large scale system (S) in (1).
We focus on the unstable system (Su), which by our working hypothesis has significantly
reduced order dim(xu) ≪ dim(x). We design a controller K for (Su), which we then lift,
or pull back to a controller K in the original system (S). The challenge is to do this in such
a way that the lifted controller has reasonable properties with regard to the performance
robustness trade-off in program (8).
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Extending the PEVA reduction technique to the plant P leads to the following reduced-
order plant.

(9) Pu :



ẋu = Auxu +B2w2 +B∞w∞ +Buu
ẋ2 = A2xu + A22x2 +B22w2 +B2uu
ẋ∞ = A∞xu +A∞∞x∞ +B∞∞w∞ +B∞uu
z2u = C2xu + C22x2 +D2uu
z∞u = C∞xu +C∞∞x∞ +D∞∞w∞ +D∞uu
yu = Cuxu +Dy2w2 +Dy∞w∞,

where xu represents the state of the unstable reduced plant Pu, x2 is the state of a H2-
performance filter for the channel w2 → z2u , x∞ is the state of the H∞-robustness channel
w∞ → z∞u , and where it is assumed as in P that the original system dynamics do not
feature the states of the filters. In particular, we have

Au = FT
u AEu, A2 = A2Eu, A∞ = A∞Eu, Bu = FT

u B, B2 = FT
u B2, B∞ = FT

u B∞,

C2 = C2Eu, C∞ = C∞Eu, Cu = CEu.(10)

Note that the matrices with roman symbols in P re-appear in Pu without changes. Note
also that there is no plant Ps defined for the stable system Ss, as our approach leaves this
subsystem uncontrolled.

Lemma 1. In the unstable reduced system (Au, Bu) is stabilizable and (Au, Cu) is de-
tectable.

Proof. Stabilizability of (Au, Bu) follows from PEVA algorithm. It is well known that

(A, C) detectable ⇔ (AT , CT ) stabilizable.

Because A diagonalizable ⇔ AT diagonalizable, then

(AT , CT ) stabilizable ⇔ (AT
u , C

T
u ) stabilizable ⇔ (Au, Cu) detectable.

□

As a consequence of this lemma, and since the state-dimension of Pu is reduced, we
can now compute observer-based controllers which stabilize (Su) in closed loop. Let us
introduce the notation

(11) u(s) = K(s, ϑ)yu(s) = −Kc

(
sI − (Au −BuKc −KT

f Cu)
)−1

KT
f yu(s)

where ϑ = (Kc, Kf ) now gathers the gains of the reduced-order observer-based controller
K = K(ϑ). We introduce the following optimization program for the small dimension nu:

minimize P (ϑ) = ∥Tz2uw2(·, ϑ)∥2
subject to R(ϑ) = ∥Tz∞uw∞(·, ϑ)∥∞ ≤ r

ϑ = (Kc, Kf ) stabilizes (Su) in closed loop
(12)

where P (ϑ), R(ϑ) are now the performance and robustness criteria in reduced space.
Suppose we have computed a locally optimal solution ϑ∗ = (K∗

c , K
∗
f ) of (12), then we

have to pull K(ϑ∗) back to the large dimension. Let us explain how this is arranged. We
simply put

(13) Kc = KcFT
u , Kf = KfET

u ,

so that θ = (KcFT
u , KfET

u ) = θ(ϑ). We call ϑ → θ respectively K(ϑ) → K(θ) the pull
back operator. We shall also say that K(θ) is pulled back from K(ϑ).
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Remark 2. The controller (Kf ,Kc) acts in the original large-dimensional space (Kf ∈
Rp×n, Kc ∈ Rm×n). The fact that it is a pull back from the controller (Kf , Kc) designed in
the low-dimensional space via program (12) is owed to the fact that solving optimization
program (8) in dimension n× (m+ p) is not possible.

The principal question which will keep us occupied now is in which way the good
properties of K(ϑ∗), the solution of (12), are preserved in (8) when we pull it back to
K(θ∗). Our first result is a direct consequence of the PEVA procedure. We have the
following well-known

Proposition 2. Suppose the observer-based controller K(ϑ) stabilizes the reduced system
(Su) in closed-loop. Then its pull back K(θ) stabilizes the large dimensional system (S)
in closed-loop.

Proof. This is shown in section 6. □

The following is more interesting and ultimately justifies our method.

Theorem 3. Given the performance and robustness channels Tz2uw2 and Tz∞uw∞ in (12),
one can choose frequency filters F

(k)
i (independent of θ and ϑ) in large scale space such

that K(ϑ∗) is a local minimum of the reduced-order mixed H2/H∞ optimization program
(12) with robustness threshold r, if and only if its pull back K(θ∗) is a local minimum of
(8) with the same r where the admissible controllers are the pull back controllers.

Proof. This theorem will also be proved in section 6. □

The following algorithm, inspired by (Ravanbod et al. 2012), is at the core of our
trade-off approach.
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Algorithm 1.Trade-off between robustness and performance

1: Initialization. Divide the eigenvalues Λ of A into two parts Λu,Λs such that Λu

contains all unstable eigenvalues. Make sure that dim(Λu) ≪ dim(Λs). Compute the
corresponding Eu,Fu.

2: Define channels. Identify suitable performance and robustness specifications w2 →
z2u and w∞ → z∞u by defining suitable filters. Compute plant Pu.

3: Calibrate performance. Compute best possible performance p↓ by solving the
H2-optimization program

minimize ∥Tz2uw2(ϑ)∥2
subject to K(ϑ) closed-loop stabilizing

The optimal H2 controller K(ϑ2) gives p↓ = ∥Tz2uw2(ϑ2)∥2. Its robustness is r↑ =
∥Tz∞uw∞(ϑ2)∥∞. If the nominal H2-controller is considered sufficiently robust, i.e.,
if r↑ is not too large, then pull the controller back to K(θ2) and quit. Otherwise
continue.

4: Calibrate robustness. Compute optimal robustness r↓ by solving the structured
H∞-program

minimize ∥Tz∞uw∞(ϑ)∥∞
subject to K(ϑ) closed-loop stabilizing

initialized by K(ϑ2). The solution is K(ϑ∞) and satisfies r↓ = ∥Tz∞uw∞(ϑ)∞)∥∞ ≪ r↑.
The performance of K(ϑ∞) is p↑ = ∥Tz2uw2(ϑ∞)∥2 ≫ p↓.

5: Mixed synthesis. Choose r with r↓ < r < r↑ and solve the mixed H2/H∞-program

minimize ∥Tz2uw2(·, ϑ)∥2
subject to ∥Tz∞uw∞(·, ϑ)∥∞ ≤ r

K(ϑ) closed-loop stabilizing

initialized by K(ϑ∞). The solution is ϑ∗.
6: Evaluate performance. If performance p∗ = ∥Tz2uw2(ϑ

∗)∥2 is satisfactory, then
ϑ2/∞ = ϑ∗ and pull controller back to obtain K(θ∗) and quit. If performance p∗ is too
large then relax robustness constraint by increasing r ∈ (r↓, r

↑) and go back to step
4.

Remark 3. The rationale of Algorithm 1 can be summarized as follows. In step 2 we
choose a nominal performance channel, and a robustness channel with which we assess the
robustness of the design. Our choice of the robustness channel may be guided by (Zhou
and Doyle, 1998; Doyle et al., 1982), where a list of robustness specifications suited for
various types of uncertainty is given. The more is know about the type of uncertainty,
the better this channel can be adapted.

If the nominal controller is not sufficiently robust with respect to the chosen channel,
then our procedure in steps 3 to 6 sets in. As a result, we can always enhance robustness,
while keeping the performance of the mixed controller ϑ∗ close to the nominal performance
of ϑ2.

Note that in Algorithm 1 we do not question the choice of the H2 performance chan-
nel itself. We enhance robustness while maintaining the original performance objective.
Notwithstanding, there are also various heuristic procedures, where one modifies the nom-
inal performance in order to enhance robustness. A prominent example is the LQG/LTR
procedure, where e.g. the noise level in the output is artificially increased in order to
robustify the design. For a discussion see (Ravanbod et al. 2012).
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Figure 1. Feedback configuration with high-pass filter F∞1 and low-pass
filter F∞2. The objectives are tracking of the steady-state r = 0 and atten-
uating finite energy external process noise w∞.

The fact that LQG- and H2-controllers often require this posterior robustification be-
came apparent to the control community in the late 1970s and 1980s. The phenomenon
is not related to the state dimension of the system. We refer to (Bernstein and Haddad,
1989; Doyle and Stein, 1979) for a discussion.

5. Specific case of an LQG controller

It is well known that LQG control can be considered a special case of H2 optimal
control. In our numerical experiment we will indeed apply our mixed H2/H∞-approach
to compute a robustified version of the LQG controller. Recall that in LQG the H2

performance channel in (9) is set-up as follows:
A). We consider following system{

ẋu = Auxu +Buu+Bww

yu = Cuxu + v
.

The covariance matrices of process noise, w, and measurement noise, v, are called
respectively, W and V .

B). We choose weighting matrices Ry and Ru in the quadratic performance criterion

(14) Ju := lim
T→∞

1

T

∫ T

0

(yTuRyyu + uTRuu)dt.

C). We derive Kalman filter parameters KLQG
c and KLQG

f . They minimize Ju and they
are evaluated analytically using the solution X∗ and Y ∗ of the following AREs:

XAu + AT
uX −XBuR

−1
u Bu

TX + Cu
TRyCu = 0, X = XT ,(15)

Y AT
u + AuY − Y Cu

TV −1CuY +BwWBT
w = 0, Y = Y T ,

by KLQG
c = R−1

u BT
uX

∗ and KLQG
f = V −TCuY

∗.
D). In the algorithm we consider ϑ2 = (KLQG

c , KLQG
f ).

E). In this case, no dynamic filter is involved for the performance channel, so that x2

is removed from (9).
F ). In (9), C22 = 0 and the other involved matrices are specified as follows

B2 =
(
(BwWBw)

1/2 0
)
, C2 =

(
(CT

u RyCu)
1/2

0

)
, D2u =

(
0

R
1/2
u

)
, Dy2 =

(
0 V 1/2

)
.

To specify the H∞ channel matrices in (9), we proceed as follows:
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α). We choose a low-pass weighting filter F∞1(s) at the control input to limit the
maximum effort at low frequencies, i.e. z∞1(s) = F∞1(s)u(s).

β). We choose a high-pass weighting filter F∞2(s) at the output to reduce the ampli-
tude of oscillations, i.e. z∞2(s) = F∞2(s)y(s).

γ). Denoting their associated state space representations by, (A∞1 , B∞1 , C∞1 , D∞1 =
0) and (A∞2 , B∞2 , C∞2 , D∞2), it can be easily verified that in (9)

A∞∞ =

(
A∞1 0
0 A∞2

)
, A∞ =

(
0

B∞2Cu

)
, B∞u =

(
B∞1

0

)
,

C∞ =

(
0

D∞2Cu

)
, C∞∞ =

(
C∞1 0
0 C∞2

)
, D∞u = 0, D∞∞ = 0, Dy∞ = 0.

Note that the transfer operator Tz∞w∞(ϑ) includes the two transfer blocks z∞1/w∞ and
z∞2/w∞ shown in Figure 1:

(16) Tz∞w∞ =

[
z∞1/w∞
z∞2/w∞

]
=

[
F∞1Si(ϑ)
F∞2PSi(ϑ)

]
,

where Si = (I+KP )−1 is the input sensitivity function. The filter F∞1 is a high-pass, F∞2

is a low-pass. This reflects the fact that in the channel w∞ → z∞1 we want to penalize
high frequency components of the control signal, while in z∞2 we want the low frequency
components of the output y to track the reference input r = 0. For more details on how
to choose filters in a robust control synthesis, see (Zhou and Doyle, 1998; Doyle et al. 1982)

Remark 4. The control scenario chosen in Figure 1 does not only robustify the design
against the external effect of process noise w∞, but also against intrinsic uncertainty in
controller and plant, as we now argue.

Indeed, by (16) the transfer function of the first robustness channel w∞ → u → z∞1

involves the input sensitivity function Si = (I + KP )−1. In Figure 1 we have u = Ke,
e = −y, y = Pu and if we consider the scheme without the inputs and differentiate with
respect to K, keeping P fixed, we obtain du = K · de + dK · e, de = −dy, dy = Pdu,
hence

du = (I +KP )−1 (dK · e) = Si (dK · e) .
Since optimization tries to keep the operator norm ∥Si∥∞ = ∥Si∥2,2 small, it also minimizes
the effect du of a variation dK in the controller variable. Therefore we can say the first
robustness channel reduces undesirable high frequency effects caused by a variation dK
in the nominal controller variable.

Similarly, if we want to minimize effects caused by variations in the system P , we
differentiate with respect to P , keeping K fixed. That gives du = K ·de, dy = P ·du+dP ·u,
de = −dy, hence

dy = (I + PK)−1 (dP · u) =: So (dP · u) ,
now involving the output sensitivity function So = (I + PK)−1. So normally, in order
to reduce high frequency effects of a variation dP in the plant parameters on the output
y, we ought to add yet another robustness constraint based on So. However, we consider
here the case m = p = 1 where the channels are SISO and we have KP = PK, hence
Si = So, and in the present study So is therefore not required.

In conclusion we can say that, as promised, the synthesis scheme in Figure 1 robustifies
the design against undesirable effects caused by unstructured internal variations dP in
P . Since system reduction is heavily used and can be understood as such an effect, this
justifies the choice of the robustness channels (16). For more details on how to choose
filters in a robust control synthesis, see (Zhou and Doyle, 1998; Doyle et al. 1982). For
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other choices of sensitivity functions classified by the type of perturbation in the system
see Doyle (Doyle et al. 1990).

6. Proof of the main result

In this section we prove Proposition 2 and Theorem 3 given in the section 4. We treat
the channels separately, which is possible by construction. That means, we consider

Su :


ẋu = Auxu +Bfuw+Buu
ẋu
f = Afuxu+Affx

u
f+Bffw+Bfuu

zu = Cfuxu+Cffx
u
f+Dffw+Dfuu

yu = Cuxu +Dyfw

S :


ẋ = Ax + Bfw + Bu
ẋf =Afx+Affxf +Bffw +Bfuu
z = Cfx+ Cffxf +Dffw +Dfuu
y = Cx +Dyfw.

where f stands for any of the filters f = 2 or f = ∞. Note that in the case f = 2 we
must have D22 = 0. Recall that

Au = FT
u AEu, Afu = AfEu, Bu = FT

u B, Bfu = FT
u Bf ,

Cfu = CfEu, Cu = CEu.(17)

Note that on the left only the unstable subsystem Su is taken care of, as according to
our procedure the stable system Ss remains uncontrolled. We consider the following
observer-based controller for Su in the reduced space

u(s) = −Kc(sI − (Au −BuKc −KT
f Cu))

−1KT
f yu(s),

parametrized by ϑ = (Kc, Kf ), and the observer-based controller

u(s) = −Kc(sI − (A− BKc −KT
f C))−1KT

f y(s)

for the large dimensional space S, parametrized by θ = (Kc,Kf ). Substituting them in
Su, respectively, S, gives the closed loop systems (Su)

cl, respectively, Scl:

(Su)
cl :



ẋu = Auxu −BuKcx̂u +Bfuw
˙̂xu = Aux̂u −BuKcx̂u +KT

f (yu − ŷu)
ẋu
f = Affx

u
f + Afuxu−BfuKcx̂u+Bffw

zu = Cfuxu+Cffx
u
f−DfuKcx̂u+Dfww

yu = Cuxu +Dyfw,
ŷu = Cux̂u

Scl :



ẋ = Ax− BKcx̂+ Bfw
˙̂x = Ax̂− BKcx̂+KT

f (y − ŷ)
ẋf = Affxf +Afx−BfuKcx̂+Bffw
z = Cfx+ Cffxf −DfuKcx̂+Dfww
y = Cx+Dyfw
ŷ = Cx̂

Inspired by the PEVA algorithm, we decompose x and x̂ as follows

x = Euxu + Esxs, x̂ = Eux̂u + Esx̂s,

and at the same time, we replace Kc and Kf by Kc = KcFT
u and Kf = KfET

u , i.e. θ = θ(ϑ).
These actions result in

(Scl)u :



ẋu = Auxu −BuKcx̂u +Bfuw
˙̂xu = Aux̂u−BuKcx̂u+KT

f (yu−ŷu+ys−ŷs)
ẋu
f = Affx

u
f + Afuxu −BfuKcx̂u +Bffw

zu = Cfuxu + Cffx
u
f −DfuKcx̂u +Dfww

yu = Cuxu +Dyfw
ŷu = Cux̂u

(Scl)s :



ẋs = Asxs − BsKcx̂u + Bfsw
˙̂xs = Asx̂s − BsKcx̂u

ẋs
f = Affx

s
f +Afsxs

zs = Cfsxs + Cffx
s
f

ys = Csxs

ŷs = Csx̂s,

where
Afs = AfEs, Bs = FT

s B, Bfs = FT
s Bf , Cfs = CfEs.

Please recall that the notation (Scl)u is chosen only to emphasize the similarity between
this subsystem and (Su)

cl and it does not mean that it is unstable!
We can present the following findings:
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a. The closed-loop system Scl can be fully recovered from the two split closed-loop
systems (Scl)u and (Scl)s, as long as the controller K(θ) is pulled back from some
K(ϑ) via (13).

b. This is no longer the case if the closed-loop system (Su)
cl is used instead of (Scl)u.

In particular (Su)
cl ̸= (Scl)u.

c. (Scl)s and (Scl) feature big matrices, indicated by the boldface and calligraphic
elements, but the u-operator applied to Scl makes (Scl)u a small system.

d. The term which makes the difference between (Scl)u and (Su)
cl is

KT
f (ys − ŷs) = KT

f Cs(xs − x̂s).

In particular, this term causes trouble, as the big matrix Cs and the state xs are
involved.

Remark 5. Concerning item a., the equations of Scl are obtained by combining those of
(Scl)u and (Scl)s bearing in mind that x = Euxu + Esxs = E [xu, xs]

T , x̂ = Eux̂u + Esx̂s =
E [x̂u, x̂s]

T , y = yu + ys, xf = xu
f + xs

f and z = zu + zs. Then we have to use the following
properties to derive the equations:

FT
u BKcx̂ = BuKcx̂u, FT

u KT
f (y − ŷ) = KT

f (y − ŷ)(18)

FT
s BKcx̂ = BsKcx̂u, FT

s KT
f (y − ŷ) = 0.

□

The question is now how we deal with the mismatch between (Su)
cl and (Scl)u. The

term (yu − ŷu + ys − ŷs) in (Scl)u can be expanded as:

yu − ŷu + ys − ŷs = Cu(xu − x̂u) + CseAst ∗ Bfsw +Dyfw,(19)

where ∗ is the convolution operator. This equation will be required later.

6.1. Proof of proposition 2. Consider the reduced system (Su)
cl. We introduce a new

state variable eu = xu − x̂u, rewriting the state equations of (Su)
cl as:ẋu

f
˙̂xu

ėu

 =

Aff Afu −BfuKc Afu

0 Au −BuKc KT
f Cu

0 0 Au −KT
f Cu

xu
f

x̂u

eu

+

Bffw
0

Bfuw

 .

Since by hypothesis the controller K(ϑ) with ϑ = (Kc, Kf ) is stabilizing, (Su)
cl is stable,

which means Aff , Au−BuKc and Au−KT
f Cu are stable. This uses the fact that the filter

Aff is stable by construction.
Let us get back with this information to the large scale closed-loop system Scl. Intro-

ducing two similar state variables eu = xu − x̂u and es = xs − x̂s, using (19) we get the
following equivalent state equations for Scl:

ẋf

ẋs

˙̂xu

ėu
ės

 =


Aff Afs Afu −BfuKc Afu 0
0 As −BsKc 0 0
0 0 Au −BuKc KT

f Cu 0
0 0 0 Au −KT

f Cu 0
0 0 0 0 As



xf

xs

x̂u

eu
es



+


Bffw
Bfsw

KT
f CseAst ∗ Bfsw +KT

f Dyfw
Bfuw −KT

f CseAst ∗ Bfsw −KT
f Dyfw

Bfsw

 ,
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where ∗ is the convolution operator. Since As is stable by the PEVA construction, the
stability of Aff , Au−BuKc and Au−KT

f Cu established above shows that the closed loop
system Scl remains stable. Note that we again use the fact that K(θ) is pulled back from
K(ϑ) via (13), so that the elements Kc, Kf can be expressed with the help of Kc and Kf .
We recall again that this observer-based stabilizing controller is of the same order as the
system. In tandem with (18) that completes the proof of Proposition 2. □

6.2. Links between the transfer functions Tzuw(ϑ) and Tzw(θ). In the following we
need new notations for the states in (Su)

cl, as they must be distinguished from those in
(Scl)u. The subscript u in (Su)

cl is hence replaced by r. We now establish a link between
the transfer functions Tzrw(ϑ) and Tzw(θ).

Proposition 4. There exist transfer functions Hi(s) i = 1, . . . , 6, independent of ϑ and
θ, such that for every controller K(ϑ) in reduced space and its pull back K(θ) in large
space the following relations in closed-loop are satisfied:

Tzrw(s, ϑ) = H1(s) ·Hr(s, ϑ) +H2(s),(20)
Hr(s, ϑ) = Ht(s, ϑ) ·H3(s),

H(s, ϑ) = Ht(s, ϑ) ·H4(s)

Tzw(s, θ) = H5(s) ·H(s, ϑ) +H6(s), θ = θ(ϑ).

Here ϑ = (Kc, Kf ). The parameter dependent transfer functions Hr(s, ϑ) and H(s, ϑ) are
given as H(s, ϑ) = −Kc · x̂u(s, ϑ)/w(s) and Hr(s, ϑ) = −Kc · x̂r(s, ϑ)/w(s), while Ht(s, ϑ)
is given in formula (21) below.

Proof. We start by observing that the transfer function of (Scl)s is obtained through

xs(s) = (sI −As)
−1 · Bs · (−Kcx̂u(s)) + (sI −As)

−1 · Bfs · w(s)
xs
f (s) = (sI − Aff )

−1 · Afs · xs(s) = M1(s) · (−Kcx̂u(s)) +M2(s)w(s),

where

M1(s) = (sI − Aff )
−1 · Afs · (sI −As)

−1Bs,

M2(s) = (sI − Aff )
−1 · Afs · (sI −As)

−1Bfs.

The equations of (Scl)u provide

xu(s) = (sI − Au)
−1 ·Bu · (−Kcx̂u(s)) + (sI − Au)

−1 ·Bfuw(s)

xu
f (s) = (sI − Aff )

−1Afuxu(s) + (sI − Aff )
−1Bfu(−Kcx̂u(s)) + (sI − Aff )

−1Bffw(s)

= N1(s) · (−Kcx̂u(s)) +N2(s)w(s),

where

N1(s) = (sI − Aff )
−1Bfu + (sI − Aff )

−1Afu(sI − Au)
−1Bu,

N2(s) = (sI − Aff )
−1Bff + (sI − Aff )

−1Afu(sI − Au)
−1Bfu.

Via the equations of (Scl)u we also define a very useful transfer function from w to −Kc ·x̂u

H(s, ϑ) := −Kc · x̂u(s)/w(s) = Ht(s, ϑ)H4(s),

where

(21) Ht(s, ϑ) =
−Kc(sI − A)−1KT

f

(I + (sI − A)−1KfTCuN1(s)Kc)
12



and

(22) H4(s) = CuN2(s) + Cs(sI − As)
−1Bfs +Dyf .

Using the transfer function H(s, ϑ), which for short is denoted by H(.), and remembering
the pull back operator ϑ → θ, we can write:

zu(s, θ) = [Cfu · (sI − Au)
−1Bu + Cff ·N1(s) +Dfu] ·H(.)(23)

+ [Cfu · (sI − Au)
−1Bfu + Cff ·N2(s) +Dfu] · w(s),

zs(s, θ) = [Cfs · (sI − As)
−1 · Bs + Cff ·M1(s)] ·H(.)

+ [Cfs · (sI − As)
−1 · Bfs + Cff ·M2(s)] · w(s).

Recall that,

Tzw(s, θ) = z(s, θ)/w(s)(24)
Tzuw(s, θ) = zu(s, θ)/w(s)

Tzsw(s, θ) = zs(s, θ)/w(s),

then, regarding z(.) = zu(.) + zs(.) and the relations (23), (24), we find out

Tzw(s, θ) = H5(s) ·H(s, ϑ) +H6(s),

where

(25) H5(s) = Cfu · (sI − Au)
−1Bu + Cfs · (sI − As)

−1 · Bs + Cff (N1(s) +M1(s)) +Dfu

and

(26) H6(s) = Cfu · (sI −Au)
−1Bfu+ Cfs · (sI −As)

−1 · Bfs+Cff (N2(s)+M2(s))+Dfw.

In the same way it can be shown that

Tzrw(s, θ) = H1(s)Hr(s, ϑ) +H2(s),

where

(27) H1(s) = Cfu · (sI − Au)
−1Bu + CffN1(s) +Dfu,

(28) H2(s) = Cfu · (sI − Au)
−1Bfu + CffN2(s) +Dfw,

Hr(s, ϑ) = Ht(s, ϑ) ·H3(s),

where

(29) H3(s) = (sI − A)−1[CuN2(s) +Dyf ]

and Ht(s, ϑ) is given in (21).
□

Proof of Theorem 3. Using (20) we can now write Tzrw(s) as a function of Tzw(s) as
stated in (8), namely, Tzrw := F1(s)TzwF2(s) + F3(s), where

F1(s) = H1(s)H5(s)
−1, F2(s) = H4(s)

−1H3(s),(30)

F3(s) = −H1(s)H5(s)
−1H6(s)H4(s)

−1H3(s) +H2(s).

Therefore, minimizing ∥Tzrw∥ is the same as minimizing ∥F1TzwF2 + F3∥, and similarly
for the robustness constraint. □

We can also apply Proposition 4 in the opposite direction. Suppose we start out with
minimize P(θ) = ∥Tz2w2(·, θ)∥2
subject to R(θ) = ∥Tz∞w∞(·, θ)∥∞ ≤ ρ

θ = (Kc,Kf ) closed-loop stabilizing
(31)
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where the performance and robustness channels Tz2w2 and Tz∞w∞ have now been designed
in the large dimensional system, with a rationale similar to that described by Figure
1. Then using Proposition 4 we can find stable transition filters F (j)

i to formulate the
following optimization program in reduced space:

minimize ∥F (2)
1 Tz2uw2(·, ϑ)F

(2)
2 + F (2)

3 ∥2
subject to ∥F (∞)

1 Tz∞uw∞(·, ϑ)F (∞)
2 + F (∞)

3 ∥∞ ≤ ρ
ϑ = (Kc, Kf ) closed-loop stabilizing

(32)

such that the following is true:

Corollary 5. Given the performance and robustness channels Tz2w2 and Tz∞w∞ in the
full dimensional space, the stable transition filters F (i)

j can be found such that ϑ∗ is a local
minimum of (32) if and only if its pull back θ∗ is a local minimum of (31).

Proof. Adopting the notation of Proposition 4, i.e. F standing for F (2) and F (∞), we put

F1(s) = H5(s)H1(s)
−1, F2(s) = H3(s)

−1H4(s),

F3(s) = −H5(s)H1(s)
−1H2(s)H3(s)

−1H4(s) +H6(s),

then the filters Fi, i = 1, 2, 3 are stable by Proposition 2.
□

Remark 6. The reason why we had to base our numerical approach on the tandem (8),
(12), and not on (31), (32), is that the computation of the filters F (i)

j requires computation
of a full basis of the stable eigenspace (see (25) and (26)), which is currently not practical.
In contrast, designing the channels in the low-order space via (12) has still the desired
effect and is algorithmically possible.

7. Numerical Experiment

We apply our trade-off technique to the problem of controlling a two-dimensional lin-
earized Navier-Stokes equations in closed loop. Only boundary control and boundary
observations are used. The example consists of the case of a flow around a circular cylin-
der shown in Figure 2. The flow is in the rectangle Ω = [−1.5, 2.2]× [0, 0.4], the cylinder
is centered at (0.25, 0.2) and its diameter is 0.1.

Let (z,p) be the solution of the two-dimensional linearized Navier-Stokes equations
around its stationary solution (zs,ps). Then following Jovanović and Bamieh, 2001:

(33)



∂tz+ (zs .∇)z+ (z .∇)zs − ν∆z+∇p = 0, in Ω× (0,∞)

∇ . z = 0 in Ω, z(0) = z0 in Ω

z = Ue on Γe × (0, T ) z = 0 on ΓD × (0,∞)

z = zc on Γc × (0,∞),

σ(z,p)n = 0 on ΓN × (0,∞),

where z =

(
z1
z2

)
represents the velocity field in x1 (or x or horizontal) and in x2 (or y or

vertical) directions, p is the pressure, and σ(z,p) is the stress defined by

σ(z,p) =
2

Re
Φ(z)− pI, Φ(z) =

1

2
[(∇z) + (∇z)T], (∇z)ij =

∂zi
∂xj

.

The Reynolds number is Re = ρdcUm/µ, where ρ > 0, µ > 0 are respectively the constant
density and viscosity of the fluid, dc is the diameter of the cylinder, and Um a characteristic
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Figure 2. Sketch of the geometry for flow around a circular cylinder.

velocity associated with zs. As usual ν = µ
ρ

is kinematic viscosity and I is the identity
tensor. It is assumed that ρ = 1, Um = 1 and dc = 0.1, which gives Re = 0.1

µ
.

We denote by Γ the boundary of Ω, and Γ = Γe∪ΓN ∪ΓD∪Γc. Control region ΓC ⊂ Γc

is composed of two arcs γ1
c and γ2

c located at the perimeter of the disk between 70 and 80
degrees and −70 and −80 degrees, as shown in the Figure 2.
The boundary condition zc is defined by

z(t,x(f)) =


u(t)m(f)n(x(f)) at γ1

c

−u(t)m(f)n(x(f)) at γ2
c

0 at Γc \ γ1
c ∪ γ2

c

,

where x(f) with f ∈ [0, 1] parametrizes the boundaries γi
c, i = 1, 2. n(x(f)) represents the

orthogonal unitary vector at Γc while m is a function which models a regular rectangle.
The function m describing the control action is given as

m(f) = g(10f − 1)− g(10f − 9),

where

g(a) =


0 a ≤ −1

0.5 + a(0.9375− a2(0.625− 0.1875 a2)) −1 < a < 1

1 a ≥ 1

.

The measured output consists of the integral of vorticity on ΓO ⊂ Γc, i.e.

y(t) =

∫
ΓO

(
∂z2(t)

∂x1

− ∂z1(t)

∂x2

)
dΓ,

where ΓO = γ1
o ∪γ2

o and γi
o, i = 1, 2 are situated at the top and the bottom of the cylinder

between 89 and 91 degrees and -89 and -91 degrees (see Figure 2).
The goal of the study is to reduce the output oscillations, caused by the perturbation

on the boundary control (Ue = 0.2 + w∞), with a minimum effort in the control input.
Figure 3 shows two Bell type perturbations w∞(t) considered here in simulations. Two
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Figure 3. Bell type disturbances.

cases Re = 80 and Re = 120 have been studied. This needs linearization of the equations
and other preliminaries, which are explained in the next subsection.

7.1. Preliminary operations. The physical system equations are discretized using a
triangular mesh of 5791 nodes, symmetric with respect to the horizontal axis of the
cylinder. A mixed Taylor-Hood finite element method of type P3-P2 was implemented in
the COMSOL software (Comsol, 2012), which is used to find the descriptor system:

M11ż(t) = A11 z(t) +A12p(t) + Bu1 u(t) + B∞1w∞(t)(34)

0 = AT
12 z(t) + Bu2 u(t)

y(t) = C1 z(t)

where z ∈ Rnz , nz = 33326 and p ∈ Rnp , np = 8136 are respectively the states represent-
ing the velocity field and the ensemble of pressure and Lagrange multipliers. The mass
matrix M11 ∈ Rnz×nz is symmetric positive definite. Control u and output y are both
scalar, w∞ ∈ L2 represents a bounded-energy disturbance at the boundary control Ue,
sometimes referred to as process noise.

Following standard lines in fluid control, the next step consists in separating the z-
and p-variables. This uses the Leray projector and we follow the method proposed in
(Barbagallo et al. 2009), which introduces a new extended state [z, p]T and a new control
input u = u̇. This leads to a descriptor system of the form(

M11 0
0 0

)
d

dt

(
z
p

)
=

(
A11 A12

AT
12 0

)(
z
p

)
+

(
B1

0

)
u+

(
B∞
0

)
w∞(35)

y = C1z.

For details we refer to the Appendix. At this stage we now employ the Leray projector

π = I − A12(A
T
12M

−1
11 A12)

−1AT
12M

−1
11 ,

to separate the z- and p-variables. The interested reader is referred to (Heinkenschloss et
al. 2008) for more details. As a result we obtain a system of the form

ẋ = Ax+ Bu+ B∞w∞

y = Cx.(36)

where x = ϕT
l z is in R(nz−np)+1, π = ϕlϕ

T
r , ϕ

T
l ϕr = I and

A = (ϕT
r M11ϕr)

−1ϕT
r A11ϕr, B = (ϕT

r M11ϕr)
−1ϕT

r B1, B∞ = (ϕT
r M11ϕr)

−1ϕT
r B∞, C = C1ϕr.
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Figure 4. A part of the spectrum of (M,A) near the imaginary axis

This is the system (S) which was the starting point of our theoretical development in
section 2. To prepare the system above for the main algorithm, it is completed as

ẋ = Ax+ Bu+ B2w2 + B∞w∞

y = Cx.(37)

where B2 = B is chosen. This is a dynamical system in the nz−np+1 = 25191 dimensional
subspace null(π).

7.2. Mixed synthesis. We explain next how the six steps of the algorithm are imple-
mented.

1) Initialization:
In (Raymond and Thevenet, 2010; Thevenet, 2009), it is explained that the finite eigen-
values of A are the same as the finite generalized eigenvalues of (M,A), where

M =

(
M11 0
0 0

)
, A =

(
A11 A12

AT
12 0

)
.

In addition, if we denote by F and E the right and the left generalized eigenvectors of
(M,A) then F = MF, E = ME, which shows that in sections 4,5 and 6, we may replace
Fu, Fs, Eu, Es by the corresponding matrices MFu, MFs, MEu, MEs.

Barkley (2006), considering a very similar setup, shows that for Reynolds numbers
50 ≤ Re ≤ 255 the spectrum of the linear operator features a conjugate pair of unstable
eigenvalues. We use an Arnoldi method combined with a shift and inverse transformation
implemented in the ARPACK library (Lehoucq et al., 1998) to compute the leading
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eigenvalues. For Re = 80 and Re = 120 the unstable modes are

λRe=80 = 1.5656∓ 17.4217j λRe=120 = 3.44∓ 17.6j.

In the case Re = 80 a part of the spectrum of (M,A) is shown in Figure 4. This system
has three unstable poles at 1.56± 17.3 j and at 0. The pole at zero is introduced during
transformation of the system (34) to the system (35), for more information see Appendix.
The reduced-order system is hence at least of order 3, and can be larger if we decide to
include some of the stable open-loop poles in (Su). In our experiment nu = 3 is chosen.
In the case Re = 120 the reduced-order system is chosen of order 3.
2) Define channels:
Our goal is to compute a robustified version of the LQG controller according to section
5. To minimize the energy of the unstable states in the output, and also the energy of
the control input, we choose Ry = 1 and Ru = 1e− 5 in the performance index (14). The
noise covariance matrices are V = W = 1.

In the case Re = 80, filters specifying the H∞ channel are chosen by trial and error as

F∞1(s) =
104

s+ 2π 5
and F∞2(s) = 10−4 s

s+ 2 π 5
.

In the case Re = 120 we choose

F∞1(s) = 107
1

s+ 2 π 5
and F∞2(s) = 10−7 s

s+ 2 π 5
.

3) Calibrate performance:
The LQG controller ϑLQG is computed via AREs, given in (15). This controller is used
as initial guess ϑ2 to calibrate robustness in step 4 of the algorithm.

4) Calibrate robustness:
The H∞ program in step 4 is solved, leading to the solution ϑ∞, which in turn is used to
initialize the optimization program in step 5 of the algorithm.

5) Mixed synthesis:
In the mixed H2/H∞-program in step 5, r = ∥Tz∞uw(ϑ∞)∥∞ + 10−5 is considered. This
choice results in a mixed controller, which is as robust as the most robust controller H∞,
but is expected to offer the desired compromise between performance and robustness.

6) Evaluate performance:
Due to the choice of r very near its minimum r↓, the evaluation in step 6 of the algorithm
shows that best robustness is achieved.

All the optimization programs were realized in Matlab using Fmincon from the opti-
mization toolbox. Gradients and sub-gradients are computed analytically. The optimiza-
tion programs use the nonsmooth algorithm, which is made available to users via the
function systune in Robust Control Toolbox in MatlabR2013b. Simulation of the descrip-
tor system is realized via the three stage second order backward difference formula.

The algorithm proposed for the trade-off behaves as expected, see table 1. Namely,
in the case of the Reynolds number Re = 80, and with the disturbance shown in Fig-
ure 3 (a), we obtain the nominal performance ∥Tz2rw2(ϑ2)∥22 = 0.2394, and the chosen
robustness criterion gives ∥Tz∞rw∞(ϑ2)∥∞ = 0.0663. As this value is considered too
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Re controller ∥ · ∥22 ∥ · ∥∞

80
LQG 0.2394 0.0663
ϑ∞ 0.9066 0.0296
ϑ2/∞ 0.270 0.0296

120
LQG 1.3126 57.7968
ϑ∞ 5.98 24.26
ϑ2/∞ 1.5133 24.26

Table 1. Norms evaluated for different controllers and different Reynolds numbers.
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Figure 5. Results obtained for projected system (Su)
cl, when Re=80 and

disturbance of Figure 3 (a).

large, we start the robustification procedure of Algorithm 1. The H∞-controller com-
puted for the purpose of calibration has ∥Tz∞rw∞(ϑ∞)∥∞ = 0.0296, which is the best
robustness we can achieve. Naturally, this controller is made for robustness and not for
performance, which is confirmed by the value ∥Tz2r,w2(ϑ∞)∥22 = 0.9066. The optimization
procedure delivers the trade-off in the form of the mixed H2/H∞-controller ϑ2/∞. This
controller achieves ∥Tz∞rw∞(ϑ2/∞)∥∞ = 0.0296, that is, the same robustness as ϑ∞, but
has ∥Tz2rw2(ϑ2/∞)∥22 = 0.270, which means a loss of performance of 12%. Performance of
ϑ2/∞ over ϑ∞ is improved by 70.2%, while its robustness is preserved.

The advantage of the trade-off can also be shown via the control input and the mea-
surement output time responses. Figures 5 (a) and (b) illustrate these signals in the
case of the reduced-order system. We compare, respectively, control inputs and measured
outputs obtained by different controllers. We also represent the responses obtained by
the LQ regulator. The parameters of the LQ controller, i.e. the state feedback gains, are
computed for the reduced-order system and are then pulled back to give the LQ parame-
ters for full-order system: KLQ = KLQF

T
uM. Note that LQ is only a fictive controller, as it

depends on knowledge of the full state x, an unrealistic assumption in practice. However
the LQ controller has the best possible robustness, and it can therefore be used to judge
the quality of any candidate robust output feedback controller by inspecting whether its
output resembles that of the LQ controller.

As can be seen, the observer-based H∞ controller indeed eliminates oscillations in the
output faster than other observer-based controllers. However the price is a large control
input effort. In contrast, the LQG controller economizes in its control input effort, but
it is unacceptable as it authorizes larger oscillations. The mixed controller seems to give
the best compromise, as indicated by its responses, which are situated between those of

19



0 5 10 15
−3

−2

−1

0

1

2

3
x 10

−3

t [s]

Control input 

 

 
LQ
LQG
H∞
H

2
/H∞

 (a)

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

t [s]

Observation

 

 
LQ
LQG
H∞
H

2
/H∞

5 6 7

6

8

10

12

14

x 10
−5

 

 

 (b)

Figure 6. Results obtained for descriptor system Scl, when Re=80 and
disturbance of Figure 3 (a).
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Figure 7. Results obtained for descriptor system when Re=80 and distur-
bance of Figure 3 (b).

the LQG and those of the H∞ controller. The mixed controller eliminates the oscillations
faster than the LQG controller, and with much less control effort than the H∞ controller.

Figures 6 (a) and (b) compare the corresponding signals in the case of full-order system
(descriptor system given in (35) of order 41462), i.e., when the controllers are pulled back
to the full dimension. As can be seen, the output associated with the pulled back H∞
controller is in excellent agreement with the output of pulled back LQ controller. This
confirms that the pulled back H∞ controller is the most robust observer-based controller.
Once again, as in the reduced-order system case, oscillations in the measured output
terminate more rapidly compared to the pulled back LQG controller while the control
input effort is less than that of the pulled back H∞ controller. This means the trade-
off organized in the reduced system is still present in the large state dimension, as we
expected.

Figures 7 and 8 illustrate only the descriptor system results. Figure 7 compares the
signals when a more active disturbance, shown in Figure 3 (b), is applied. Figure 8
concerns the descriptor system with larger Reynolds number, i.e. Re = 120 and the
perturbation of Figure 3 (a). As can be seen, the trade-off again carries over from the
reduced system to the full system.

Remark 7. We recall that our controller is observer-based, hence its order is the same
as the order of the linearized system. This system order may be very large and then
simulation may be slow. For example simulation of a flow lasting 10 seconds for a system
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Figure 8. Results obtained for descriptor system when Re=120 and dis-
turbance of Figure 3 (a).

with 300,000 states takes approximately 5 hours CPU even with a relatively large step of
0.001 s. For convenience, in the paper we have rather worked with 41, 000 states, where
the same simulation takes ≈ 8 seconds CPU. The large CPU in simulation is what we
call the problem of implementation, and in the paper we do not pretend to propose a
solution for this. What we propose is a solution to the problem of computing the con-
troller i.e. the vectors Kc and Kf . Namely, if the controller is to be robust with respect
to system uncertainty, then it must be found by optimization, as we indicate. And then
the size of Kc, Kf becomes a serious problem, as the number n of optimization variables
is n = card(Kf ) + card(Kc). Since a non-linear optimization method has to be used, vec-
tors Kc, Kf ∈ R500 are already highly challenging, and with currently known techniques
it is out of the question to compute with Kc, Kf ∈ R41,000, let alone Kc, Kf ∈ R300,000.
Therefore, for this large-scale system, a reduction technique like the one we propose has
to be used.

8. Conclusion

We have presented a new method to realize a trade-off between performance and ro-
bustness in a class of large order linear systems via observer-based H2/H∞ synthesis. The
method does not require solving large scale Algebraic Riccati Equations, and instead uses
nonlinear optimization problems of moderate size. The method is suited for systems with
diagonalizable state space matrix and with a limited number of unstable modes.

By applying the PEVA algorithm to a large-order system in open loop, we obtain a
reduced-order system whose order equals approximately the number of unstable modes
in the large-order system.

We demonstrate that the stability of this reduced-order system in closed-loop leads to
stability of the large system in closed-loop if a suitable pull back procedure for the controller
is used. We then proceed to indicate that if a mixed H2/H∞ performance and robustness
trade-off is put to work in reduced space, then the results are approximately preserved
when pulled back to the large dimension. We further demonstrate that the procedure
leads to a significant reduction in the control effort, i.e., to a better performance, while
maintaining the same level of robustness.

In its present form our approach is applicable in large scale pre-computations under
the proviso that unstable eigenvalues and their associated eigenvectors are available, and
as long as the order of the low-order system does not exceed (≈ 500). For larger reduced
systems the nonsmooth optimization algorithms are currently not very efficient. In some
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cases computation of the eigen decomposition may be the main bottleneck to our ap-
proach. For non-diagonalizable A, or for large condition numbers, the approach of Varga
(1995, 1981) may present an alternative.

In conclusion, we have presented a novel algorithmic solution to the problem of syn-
thesizing an observer-based H2/H∞ controller for a large-order system, by computing a
suitable reduced-order system for which we cast an optimization problem representing a
trade-off between performance and robustness, and by pulling the solution back to the
large dimensional space.

The efficiency of our method was demonstrated in an application in fluid control where
output oscillations caused by flow around a cylindrical obstacle had to be stabilized with
constraints on the control effort. In simulations our novel controller attenuated oscillations
caused by perturbation much faster than the optimal H2 controller (LQG) and with lower
control effort than the H∞ controller.
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Appendix

The objective of this appendix is to explain how (35) is derived from (34). To simplify
the notations, we re-write (34) as

Mẋ(t) = Ax(t) + B1 u(t) + B2 w∞(t)

y(t) = C x(t)(38)

where x =

(
z
p

)
and

(39)

M =

(
M11 0
0 0

)
, A =

(
A11 A12

AT
12 0

)
, B1 =

(
Bu1

Bu2

)
, B2 =

(
B∞1

0

)
, C =

(
C1 0

)
.

We let u(t) = ζ(t)uG, where uG is the velocity profile of the injected or extracted flow,
while ζ(t) determines its magnitude and temporal behavior. We take as the state vector
x the sum of the solution xh of the homogeneous problem, i.e. with no control input
applied (ζ(t) = 0), and a solution of the form ζ(t)xs, where xs is the stationary solution
or the solution of the steady but inhomogeneous problem, i.e. when ζ(t) = u0, w∞ = 0.
Moreover, without loss of generality, we suppose that u0 = 1. Then we have

• The homogeneous problem: Mẋh = Axh +B2w∞.
• The inhomogeneous problem: 0 = Axs +B1.

We express the state vector as x = ζxs + xh and the control as u = ζ and substitute both
in (38). This leads to:

Mẋh(t) = Axh(t) + (MA−1B1)ζ̇(t) +B2 w∞(t)
y(t) = C xh(t) + (−CA−1B1)ζ(t).

(40)

We define Bh = MA−1B1 and Ch =
(
C −CA−1B1

)
. Due to the special form of M we

have Bh =

(
Bh1

0np

)
.
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If we replace in (40), xh by
(
zh
ph

)
and M, A, ... by their equivalents from (39), we obtain

M11żh = A11zh +A12ph +Bh1 ζ̇ + B∞1w∞

0 = AT
12zh

y = C1zh + (−CA−1B1)ζ(t).

In this last system, we consider ζ(t) as a new state variable, which results in the following
extended system, which is the same as (35):(

M11 0
0 0

)
d

dt

(
z
p

)
=

(
A11 A12

AT
12 0

)(
z
p

)
+

(
B1

0

)
u+

(
B∞
0

)
w∞

y = C1z.

Here we have z =

(
zh
ζ

)
, p = ph, u = ζ̇ , and

M11 =

(
M11 0
0 1

)
, A11 =

(
A11 0
0 0

)
, A12 =

(
A12

0

)
,

B1 =

(
Bh1

1

)
,B∞ =

(
B∞1

0

)
,C1 =

(
C1 (−CA−1B1)

)
.

(41)
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