J. reine angew. Math. 436 (1993), 1—17 Journal fiir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1993

Second order differentiability of integral
functionals on Sobolev spaces and L?-spaces

By Dominikus Noll at Stuttgart

1. Introduction

Let Q be a domain in R*, and consider an integral functional f of the form

(1.1 f@= [ é(x,u(x),Du(x))dx, ue W} Q)
[
L 0 0 ‘ .
on the Sobolev space W, (2). Here D=|—,...,— ) and ¢: QX RXR* > R is
0x, 0x,

measurable and satisfies a growth condition of the form

(1.2) [¢(x, u, p)| < C? +|pI*) + g(x)

for some g e L' (R2), a.a. x, and all u, p. Suppose ¢ is of class C? in u, p and the second partial
derivatives are uniformly bounded, i.e.,

02 ¢ (x, u, p)
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(1.3) 0% ¢ (x, u, p) !

Oudp;

0> (x, u, p) l
ap; an

for some K > 0 and a.a. x € Q and all u, p. It follows that f is a function of class C! on the
Hilbert space W, (Q). Is it true that f is of class C2? This need not be the case in general,
(see [23] or [9], p. 98, for a discussion). We give an explicit example in Section 2. Actually,
we can say much more, namely, a result of Nemirovski and Semenov [15], p. 276, tells
(roughly) that the functions f of class C?2 constitute only a little band among the integral
functionals f. More precisely, their result states that a functional (1.1)-(1.2) is of class
C?2 only when ¢ (x, u, p) is a polynomial of degree <2 in u, p. (Here C2? means the func-
tions of class C2 whose second derivative is uniformly continuous on bounded sets.)

The reason why a functional f satisfying (1.1)—(1.3) may fail to be of class C? lies in the
fact that C? refers to differentiability of Vf in the Fréchet sense and to norm to norm
continuity of the Hessian operator. Indeed, our present discussion shows that using Gateaux
differentiability instead leads to a positive result, i.e., Vf is everywhere Giteaux differenti-
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able, and the Hessian operator V2f is norm to weak continuous (Theorems 4.2, Corollary
5.2). However, if the functional (1.1)—(1.3) is considered as a function on W¥ (Q), where
¢ > d/2 + 1 and the domain Q allows for the embedding theorem, then f turns out to be
everywhere second order differentiable in the Fréchet sense, but not necessarily of class C?
(Theorem 5.4).

Now let f be a functional satisfying (1.1), (1.2), but not necessarily (1.3). Is it true that f
has a second Giteaux derivative at those u e W,! (£2) where

1.4 ID*¢ (x, u(x), Du(x))| S K< 0, |a|=2foraa. xeQ

is satisfied? In view of the above result it comes as a surprise that the answer is in the nega-
tive (Example 2.3), i.e., the boundedness condition (1.4) at u alone does not guarantee
second order differentiability at » in the Gateaux sense.

Let f satisfy (1.1), (1.2) and have integrand ¢ (x, u, p) of class C? in u, p. Is it true that
[ is at least densely second order differentiable? We show that the answer is in the positive
e.g. for convex f, or more generally, in the case where the eigenvalues of the Hessian matrices
V2 (x, u(x), Du(x)) are essentially uniformly bounded below (resp. above). More preci-
sely, in these cases, Vf is Giteaux differentiable at the points u of a dense subset of W,! (Q).

Intuitively, a functional f satisfying (1.1), (1.2) is close to twice differentiable at « when
(1.4) is satisfied. We even know what the Hessian operator V2f(u) should look like, namely

(1.5) <V @h,h)yig = | V2 (x,u(x),Du(x))(h(x), Dh(x)), (h(x),Dh(x)))dx,
f?]

he W} (Q2). Here we present a notion of a generalized second derivative which appeals to
this context, i.e., it may be helpful in situations where the second Giteaux derivative fails
to exist, but the generalized Hessian operator (1.5) is defined. Our approach is motivated by
the notion of second epi derivatives, used by R.T. Rockafellar [21], [22] in finite dimen-
sions. For convex functions £, these have been extended to Hilbert space by J. Borwein and
the author [5], § 6. Second epi derivatives are part of the theory of graphical convergence.
See [11, [2], [31, [4], [5], [12] for an overview on this.

Besides integral functionals (1.1)—(1.3) on spaces W) we also consider integral
functionals on spaces L? (see Section 3). The results we obtain are completely analoguous
for both types of functionals, so we prefer to use L? functionals as prototypes in the prin-
cipal Sections 3, 4.

2. Second derivatives
In this section we discuss the basic notions of differentiability needed in this work.

Let f be a continuous real-valued function defined on some Hilbert space H. For the
notion of a Fréchet resp. Giteaux derivative of f at x we refer to [9], [10]. The function f is
of class C! on an open set U if f is Fréchet differentiable on U and the derivative Vf is
norm to norm continuous on U.
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Concerning second derivatives of f, we consider convergence of the difference quotient
1
2.1) 7 (Vf(x+1th)—Vf(x)) > T,h (t~0),

of Vf at x to some bounded symmetric linear operator T, on H. We use the notation
T, = V?f(x), calling T, the Hessian of f at x. There are at least four different ways in which
convergence of (2.1) may be understood.

We say that f is second order Gateaux differentiable at x resp. weakly second order
Gateaux differentiable if convergence (2.1) is pointwise in 4 with respect to the norm topology
resp. pointwise in 4 with respect to the weak topology. On the other hand, f is called second
order Fréchet differentiable resp. weakly second order Fréchet differentiable at x when
convergence in (2.1) is uniform on ||| £1 and in the norm topology resp. uniform on
[lA]l £1 and in the weak topology. fis said to be of class C2 on an open set U if it is of class
C!, and is second order Fréchet differentiable on U and the operator V2f: U — £ (H) is
norm to norm continuous.

There are four obvious implications among the four notions of second order
differentiability, none of which may be reversed in general. We focus on one situation where
one of the implications may be reversed.

Proposition 2.1 (cf. [S], Prop. 3.2). Let H be a separable Hilbert space. Let f be first
order Gateaux differentiable in a neighbourhood of x and suppose f is weakly second order
Gateaux differentiable at x. Suppose that Vf is directionally weakly absolutely continuous in a
neighbourhood of x, i.e., t - {Vf(x + th),k) is absolutely continuous for small t and fixed
h, k. Then f is in fact second order Gateaux differentiable at x, i.e., weak convergence in (2.1)
may be improved to norm convergence.

There is an alternative way of looking at second order differentiability which avoids
using the difference quotient (2.1) of V. This is motivated by the study of convex functions
f, where one wishes to discuss second order notions without having a first order derivative
in the above sense (see [5]) at all points. Namely we take the second difference quotient of f
at x with respect to some ye H, :

2.2) Ay i) = fx+th) *{ 2(x) — k.

considered as a function of 4 for every fixed ¢ % 0. Notice that y will usually be the gradient
V£ (x) here, or more generally a generalized gradient y € df (x) in the sense of convex analysis
or a Clarke generalized gradient [8] when f is a locally Lipschitz function.

A function ¢q: H — R is called purely quadratic if it has a representation of the form

2.3) q(h) = -;—(Th, h>, heH
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for a bounded and symmetric linear operator T € £ (H). With these preparations we may
now discuss convergence of the second difference quotient (2.2) at x to some purely quadratic
limit function g, as ¢ — 0. Naturally, this is the same as asking whether, in some sense or
other, f admits a second order Taylor expansion at x. Again, there are various possible
notions of convergence of (2.2) here, for instance, we may consider pointwise convergence,
or uniform convergence on compact resp. bounded sets.

Definition 2.1. We write xeD,2 if the second difference quotient (2.2) converges
uniformly on compact sets to some purely quadratic limit function g,.

This agrees with our notation from [5], § 2, where we defined D? for convex f to be
the set of points x where f has a pointwise second order Taylor expansion, i.e., where (2.2)
converges pointwise. Indeed, since for convex f the second difference quotient is a convex
function of A, we may invoke Arzela-Ascoli to improve pointwise convergence to uniform
convergence on compact sets. Notice, however, that in infinite dimensions, we do not get
uniform convergence on bounded sets. For examples see [5], § 3.

The existence of a second order Taylor expansion is generally weaker than second order
differentiability. However, for convex functions, J. Borwein and the author ([5], § 3) have
shown that x € D} is equivalent to pointwise weak convergence of the difference quotient

%(af (x + th) — 8f (x)) as t = 0, i.e., to second order weak Giteaux differentiability of f at

x, while uniform convergence of (2.2) on bounded sets corresponds to second order Fréchet
differentiability. Naturally, the same observations pertain to functions f+ g with f convex,
g of class C2. In particular, this is the case for the integral functionals with C? integrand
satisfying (1.1)-(1.3).

Let us now focus on different types of convergence of (2.2) which are familiar in the
context of graphical convergence of functions.

We consider real-valued (or more generally extended real valued) functions f,, f on
H. The sequence (f,) said to epi converge to the limit f if the following conditions are
satisfied:

(x) Given any x € H, there exist x, — x (norm) such that f,(x,) = f(x).

(B) Given any x € H, a sequence n, * oo of indices and a sequence x, — x (norm), we
have f(x) < lim f,, (x,).
k=

The sequence (f,) is said to Mosco converge to the limit f if conditions («) and (B) are
satisfied, where: ;

(B) Given any x € H, a sequence n, » oo of indices, and a sequence x, — x (weakly),
we have f(x) < lim f, (x,).
k- @ -

~

Compare [1], [2] for these notions. We use the notations f, —— f resp. f, —— f.
Clearly Mosco convergence entails epi convergence, and both notions coincide in finite
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dimensions. As was already observed in [3], Mosco convergence f, —— f does not
lead to a reasonable concept unless the functions f,, f are weakly lower semi continuous. For
suppose f is not weakly lower semi-continuous, then the constant sequence f, = f fails to
converge to the limit f. Therefore, essentially, the use of Mosco convergence is limited to
the case of convex functions. Similarly, epi convergence requires functions which are lower
semi-continuous with respect to the norm, but this is a natural requirement even when the
- functions under consideration are not necessarily convex.

Definition 2.2. The continuous function f on H has a generalized second derivative at
x € H if there exists a purely quadratic function g, such that the second difference quotient
A,y €Pi converges to ¢, as t — 0, (¥ = Vf(x)). The operator T, associated with g, as in
(2.3) is called the generalized Hessian of f at x, noted T, = V2f (x) We use the notation
x e GD} if f has a generalized second derivative at x.

Compare [21], [22] and [16], where generalized second derivatives in the sense of
Definition 2.2 have been discussed in finite dimensions. Observe that epi convergence

A, ,. — 4, entails that y is the gradient of f at x.

Notice that in [5], §6, we used Mosco convergence to introduce the notion of a
generalized second derivative for convex functionals on Hilbert space, while the present
approach is based on epi convergence as the defining notion of convergence. This is enforced
since using Mosco convergence in the non-convex case is out of the question. But then we end
up with two concurring concepts of a generalized second derivative in the convex case.
Fortunately, as we will see in Section 3 (Corollary 3.2), both notions coincide at least for
convex integral functionals.

It can be shown that D} = GD}?, see [5], Prop.6.1, or [16]. Also notice that
GD?NGD*,c D},ie.if fand —f both have a generalized second derivative at x, then f has
a second order Taylor expansion at x. This may be checked using conditions () and (B).
Therefore, the generalized second derivative may be understood as a one-sided second
derivative.

We end this section with some examples illustrating the interrelation between the
various types of second derivatives and generalized second derivatives.

Example 2.1. Let Q = (0,1). For 7€ Q define an even convex C? function ¢(z, )
1 3 3
by ¢(1,x) =1t Y4|x| for |x| =" "4, and ¢(r,x) = — -gr”zx‘ + sz + §t“”2 for
|x] < ™14, Notice that ¢ (z, x) is measurable, and that © — ¢ (r, x(7)) isan L* function for
every x € L2. We may therefore define a convex integral functional f on L?(1, ©) by

1
fx) = (_[d’(’t,X(T))d’t )

By Theorem 4.2, f has a second Géteaux derivative g, atevery x € L?,i.e. D} = L?.Indeed,
1

we have 0 £ ¢"(1,x) < -;—, hence g¢,(h) = [ ¢"(z,x(z)) h(x)*dz is defined on L?(0,1).
o f

However, f fails to be of class C2. In fact, f is not second order Fréchet differentiable at any
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x € L?. This may be seen from [23] or proved directly. Let us show exemplaryly that Vf is
not Fréchet differentiable in norm at x = 0.

For & > 0 let #’ € L? be defined by #%(1) = 1~ "*for 7 < §, h*(t) = 0 else. Then we have
s
Vf(x+h®) = Vf(x)— Vi ()R, h*) = | (t“”‘ -~ %r‘”‘) 1 V44t = — —;— (1212 .
o

But norm Fréchet differentiability of Vf at x = 0 would require this term to be of the form
0(]|h%||?) as & — 0. This proves the claim.

Notice also that V2f is norm to weak continuous, but fails to be norm to norm con-
tinuous at any x here.

Example 2.2. The above example may be modified so that ¢ (z, x) is even of class C®
with bounded ¢” and such that ¢(z,x) = v~ 4|x| for |x| =t~ 14

Example 2.3. We give an example showing that (1.1), (1.2) and (1.4) does not yield
second order differentiability of f at a given point.

Let Q = (1, ), and define ¢(z,x) by ¢(z,x) =17 %|x]| for [x| 2772 (1/2<a<1
fixed), and ¢(r,) smooth and convex on [—772,772]. Let f be the convex integral
functional with integrand ¢.

Let xe L? be x(t) = t~2. Then f has a generalized second derivative at x, namely
q, =0, 1ie., xe GD}. This follows from Corollary 3.2. However, we have x ¢ D}, i.e., f
is not even second order weakly Gateaux differentiable at x. Indeed, according to [5],
Prop.2.2, xe D} would imply that f is Lipschitz smooth at x in the sense of [11], [6], i.e.,
there would exist C> 0 and 6 > 0 such that

fGe+h) —f(x) = <Vf(x), by = CliAlI?

is satisfied for all ||4|| < 6. We show that this is not the case. Indeed, define A’ by
K ()= —1"'for 126!, h® =0 else. Then we have

S4B —f() = CVFGL MY = | vo(r™ =171 |—172) + 1% L
-1
= 0(52a)+(9(§2¢+2)’

which by 1/2 < a <1 is not of the form @ (]|h%||?) = 0(63). So f is not Lipschitz smooth
at x.

3. Integral functionals on L 2-spaces

Let (R, o, u) be a o-finite measure space, and let L24(£2, o, 1) be the Hilbert space of
classes of measurable functions x : 2 — R? having
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1
Ixll, = (I Ix(T)Iz(#)dt)2 <.
Q
We consider integral functionals f on L3. of the form

G.1) f(x) = !)d’(f’x(f))(.u)df, x€Lga,

with ¢ : Qx R? - R measurable. Clearly, f is convex when ¢ (z, x) is convex in x. For
convenience we assume throughout that f is finite everywhere. This requires a growth
condition on ¢(z, x), e.g. of the form

(3.2 ¢, x)| = C- x> +[<h(@), x)| +8(1),

for some C > 0 and some ge L', h € L}4, see [20]. Also we assume throughout that f is
continuous, which holds when ¢ (z, x) is continuous in x. In particular, this is the case when
f is convex. See [20], [23], [9] for basic facts concerning integral functionals.

We start with the following fundamental result on generalized second derivatives. In
[5], 6.10, we have obtained a version of this for convex f using duality techniques.

Theorem 3.1. Let f be an integral functional (3.1), (3.2) on L%.. Suppose xe€ L%a
satisfies x(t) € D}, ., for almost all ©. Then the following statements are equivalent:

(1) f has generalized second derivative q, at x;

(2) esssup |V2¢ (1, x(1))| < 00, and there exists a >0 such that
tefN

(3.3) A¢(z, -),x(:),y(:),z(C) +af 5|2 =20
forall 0<|t| £1, all £ € R, and almost all t.

Moreover, in these cases, we have the representation

(V2 (1, x(1) h(x), h(D)> W) dr .

N =

G4 4. (h) = |
Q2

Proof. First assume statement (2). Observe that the assumption x(1) € Dj(,,.) for a.a.
7 implies that there exists a dense subset @ of L%, such that, for every ke &, the second
difference quotient converges pointwise (as ¢t — 0),i.e., A, (h):= A, , ,(h) = q,(h), where g,
is defined as in the statement of the Theorem. Indeed, x(t) € Dj(,’,, implies that we find
d(t) > 0 such that

(.5 A58~ 3 (P x(0) &, 6| st
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for all |¢€] <1 and all 0 <|¢] < d(r). Here we use the notation

At (T’ 6) = A¢(t,'),x(t),}'(f)ﬂ(¢) *

Also, we may assume that the function © — (z) is measurable. Now let (4,,) be an in-
h @©
creasing sequence in & having 2 = (J 4,,, pu(4,,) < . Let

m=1

‘ 1
E = {teﬂ:&(t)gz},

be the set of functions 4 € L2,

m,k,r

then Q\ () E, is a null set by assumption. Now let &,
k=1
having h(z) = 0 for 7 ¢ 4,,NE,, and with ||h||, <r. Clearly & = U ®,, «.» is dense in

m,k,r

L}.. We check that, for hed,,,,, A (h) - q,(h). Let q(z,&):= % (V2P (7, x() &, &),
whence g, (h) = [ g(z, h(z))(w) dr. Then (3.5) gives
2

1A, (7, h(@)| < |q(z, h(z))| + 1

for the T € 4,, and |¢| < 8(z)/r, whence the A, (z, #(7)) have common integrable majorant
© - (¢(z,h(v)) + ) - 14,,. Dominated convergence therefore gives

3.6) lim A,(h) = lim j A,(t, h(r)) (wdr = I lim A,(r,h(t)) (w)de
t—0 t>0 10

= ;}q(T,h(T))(ﬂ)dT = qx(h) .

This proves the statement on .
As a consequence of the observation above we now check condition () for the epi
convergence A, —— ¢,. Indeed, for fixed he L. find A, € ®, h,, - h in norm. We may
1
assume that |g,(h) — q,(h,)| = - Let a null sequence ¢,, be fixed. Using 4, € @, we find an

increasing sequence k(m) of indices such that

|-

lAt,.(hm) - qx(hm)l _é

for all n = k(m). Define h" by setting 4" = h,, for k(m) < r< k(m + 1). Then we easily
check A, (") — q(h) as r —» oo. This proves condition ().

Checking condition (f).remains. Let h, — h (norm) be fixed. For any null sequence
t,, (3.3) gives

3.7 A, (b @)+ |h@P 20
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for a.a. 7. Select a subsequence 4, such that
lim (A, (h,) + all,|13) = lim (&, (h,) + ol 113).

Then select another subsequence h,. which converges almost everywhere. By Fatou’s
Lemma, which applies because of (3.7), we obtain

lim (A, )+ ke l12) 2 | lim (A, (5 k() + - by (D)) W)de

"' o Qn’ oo

= rfl(q(r,h(f)) +a- k@) @dr.

This proves condition (), and hence statement (1).

Conversely assume statement (1). Let A, — g for a purely quadratic function q. We
have to check condition (2) and also g = g,, where g, has the same meaning as above.

First observe that, by continuity of f, we find é > 0 such that | f(x + k)| £ | f(x)]| + 1
for all ||k||, < 6. We now claim that there exists & > 0 such that, for all ||A||, < and
0 <|t] £1, we have

(3.8) Ah)+a-||Al320.
Assume the contrary. Then we find 0 <|¢,| <1 and ||A,||, < 6 such that
(3.9) A, (h) + 2|k, <0

forn =1,2,.... We have two cases. First assume that, at least for a subsequence, || 4,||, — 0.
Let g, be chosen such that g, # o, g,h, = 0 (norm), and na,||A,||, = . Then we have

Aw(0,h,) = 07 A, () < —ncl|| |13 » —0,

a contradiction since 6,4, — 0 and ¢,/0, — 0, whence lim A+ (6,4,) 2 q(0) > — oo by con-

dition (B). The second case is when ||4,||, = ¢ > 0 for ever)"' n. Here we necessarily have
t, — 0. Indeed, using (2.1) we have

=2|f ) =1 =|IVfX)l,- o

ty

A, (h,) 2

b

since ||¢,h,|l, < é. But A, (h,) - — co by our assumption (3.9), hence ¢, — 0. Now we find a
sequence g, — 0 such that ng? » o and ¢,/¢, — 0. Then we have

‘“”Qf”hung > Ql% Al,.(hn) = A%“. (anhn) ’

a contradiction with condition (B) as above, since g,h, — 0 (norm). This proves (3.8).
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Let us now show that (3.8) implies the second part of the statement (2). Let £ € R?,
& % 0 be fixed. We show that for all 0 <|¢|] <1 and a.a. T we have

(3.10) A +a-|£?20.

Assume the contrary, then we find 0 < |¢| <1 such that {te 2: A,(t, &) + «|¢|*> < 0} has
positive measure. Hence for some n > 0 the set {t:A,(7, &) + a|¢ |* < —n} has positive
measure. Choose a subset A4 of this set having 0 < u(4) < 6/|&|. Let h =& - x,, where y,
denotes the indicator function. Then ||A||, < J, so (3.8) gives

0 <A +allhll = [ (A1, +alP)(Wdr < —nu(4) <0,
A

a contradiction which proves (3.10). Now let (,) be a dense sequence in R*. By the above
argument we find for every k a null set N, such that, for all 0 <|z|] <1 and all ¢ N,

A(r, &) +al&l*20.

Let N = (J N,, then by continuity, we have A,(t,&) +[{? 20 forall 0<|f| <1, 1¢N
k
and all ¢ € R This proves (3.3).

Let us finally check the first part of statement (2). By (3.3) proved before, we clearly
have

<V2¢(T,x(7)) és é> ..2_ _zalélz ’

whence it suffices to find an upper bound for the left hand side here. Fixing A, and using
condition («), we find h,, = h (norm) such that, for some fixed null sequence ¢,,,

A, (hy) = q(h).

By Fatou’s Lemma, we have

m —* o0

@G.41)  lim (A, (k) + @llhall2) = | liminf (A, (z, Ap(2) + @l Ay (2)2) (W) dz .
m = 0

Selecting a subsequence of h,, which converges almost everywhere, we find that the right
hand side in (3.11) equals | % V29 (t,x(2)) h(x), h(2)) + a|h(7)|* () dx, giving
2 .

9. (h) = ‘Iz q(,h(@)Wdr < q(h).

As g is bounded above on some open set, we deduce that g, is continuous, whence
|g.(h)| < C < oo for ||h]|, 1, say. This implies |¢g(z,¢)| < C for all [{] <1 and a.a. 1,
proving the first part of statement (2).
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Finally, to prove g =gq,, we use the implication (2) = (1) again, which gives
A, —— g,, hence g = q,, since the epi limit of A, is unique. 0

Remark. The boundedness condition (3.3) does not come as a surprise when we recall
that a similar uniform boundedness below condition is required for Mosco convergence of
sequences of convex functions (see [1], Lemme 1.5).

We obtain an interesting consequence for convex integral functionals. Here we wish to
apply results from [5], so we have to assume that the space L2, is separable. This is the case
when & is countably generated in tandem with our general assumption that yu is o-finite.

Corollary 3.2. Let f be a convex integral functional (3.1), (3.2.). Suppose L}. is
separable. Then for x € L% the following statements are equivalent:

1) Assy —— g, for a purely quadratic convex function q..

@ Asye —"— q, for a purely quadratic convex function q..

(3) x(z) € D},,., for almost all t, and ess sup | V> ¢ (1, x(1))| < co.
te

Moreover, in these cases, q, has the representation (3.4).

Proof. The equivalence of (2) and (3) was proved in [5], 6.10, using duality methods.
As (2) implies (1), we have but to observe that (1) implies (3) by Theorem 3.1. Indeed,
condition (3.3) in statement (2) of the Theorem is automatically satisfied, since

Az, 7)) = A¢(r.~),t 20
for convex ¢(z,7). O

Corollary 3.3. Under the assumptions of Corollary 3.2, let L}4(R2, o4, u) be such that
weak convergence h,— h implies the existence of a subsequence h,. which converges almost
everywhere. Then we may include among the list in Theorem 3.1 the following equivalent
statement :

(3) There exists > 0 such that A, , .+ all |3 —— g, +all - |13 for a purely qua-
dratic function q..

Proof. Clearly A, +a|| - |13 —=— g, + a|| - ||} implies A, + el I} —— g, +all- ||,
and the latter implies A, —— ¢,, which is statement (1). Conversely, we have to show that
statement (2) of the Theorem implies (3) above. This requires our extra assumption on the
space L%.. We mimick the proof in Theorem 3.1, (2) = (1). The proof of condition («)
remains unchanged. As for condition (B), let h,— h (weakly), then Fatou’s Lemma gives the
estimate (3.11). Now the extra assumption gives a subsequence which converges almost
everywhere, and so the proof proceeds as the proof of Theorem 3.1 did. This completes the
argument. O



12 Noll, Sobolev spaces

Remarks. (1) The extra condition in Corollary 3.3 is valid e.g. in L3.(N) = £2,,
since here weak convergence entails pointwise convergence. On the other hand the extra
condition fails e.g. in L2 [0, 1], for here we may exhibit 4, —0 weakly such that no sub-
sequence converges a.e. Take h,(x) =sinnnx, then h,—0 by the Riemann-Lebesgue
Lemma, but for no subsequence, 4, — 0 in probability. Indeed, we have

1
Ax: 1k (0 21/2/2} = 5
for every n.

(2) Let us mention without proof that the extra condition in Corollary 3.3 above may
be given an equivalent lattice theoretic formulation. Namely, it holds if and only if the lattice
operation f — f* is weaky sequentially continuous at 0.

(3) It might be somewhat surprising that we did not add the statement A, —— ¢ in
Corollary 3.3. The reason lies in the fact that the function y = —a|| - ||3 is not weakly lower
semi continuous, so we may not argue that ¢, — ¢ implies @, +p —— ¢ + .
However, this kind of relation holds when we are dealing with convex functions. Here
¢, +p —— ¢ +y implies ¢, —— ¢, and vice versa.

4. Smooth integrands
In this section we discuss the differentiability properties of integral functionals having

C?-integrand. Concerning first order differentiability resp. class C!, the situation is
well-known. We have the following

Proposition 4.1. Let f be an integral functional satisfying (3.1), (3.2). Suppose that
either ¢ (1, x) is convex and of class C* or that ¢ (z, x) is of class C* and the eigenvalues of the
Hessian matrices V2 ¢ (t, x) are essentially uniformly bounded below. Then f is of class C*
on the Hilbert space L2..

Proof. First consider the case where ¢ is convex and of class C. It follows that f is
everywhere Giteaux differentiable and that the operator Vf: L34 — L2, with

Vf(0)(®) = V¢ (7, x(7))

is norm to weak continuous. The statement now amounts to proving that Vf is norm to
norm continuous. This follows from a result of Krasnosel’skii (see [10], p. 77).

Now consider the case where ¢ is of class C? and where we have

Vo, On,my 2 —alnl?

for some « > 0. This implies convexity of ¢ (t, £) + a|£|%, hence the result follows from the
first part. O ,
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Theorem 4.2. Let f be an integral functional (3.1), (3.2) such that ¢ (z, x) is of class
C? in x. Suppose the second partial derivatives of ¢ are essentially uniformly bounded, i.e.,

*¢(z,x)

4.1
“D 0x;0x;

SK<ow.

Then f is everywhere second order differentiable, i.e. Vf is everywhere Gateaux differentiable
in norm.

Proof. The assumption (4.1) on ¢ (z, x) is equivalent to saying that, for some a > 0,
21 02 2
4.2) —al| = 5V (& & s eldl

holds for all £, n and a.a. t. This implies that y(t, x) = ¢(t, x) + «|x|? is convex. Hence
A (t, &)+ a|é|* =0, where as usual A, (1, &) denotes the second difference quotient of
¢ (7, -) at x(t). Therefore, without loss, we may assume that f is convex.

By (4.2) and Theorem 3.1, f has a generalized second derivative g, at every x € L},

ie., A, ., —— g,. By Corollary 3.2, this is equivalent to A, , , —— g, for every x.

Now we use our result [5], 6.3, which tells that Mosco convergence A, , , —— q,
implies uniform convergence A, , , . — ¢, on compact sets whenever x is a point of Lipschitz
smoothness of f. Denoting the set of Lipschitz smooth points of f by L, this reads as
GD}nL r < D}. But notice that fis Lipschitz smooth at every x, since by (4.1), Vfis globally
Lipschitz with constant K. So A, , . = g, uniformly on compact sets for every x. Notice
that, by [5], Thm. 3.1, the latter is equivalent to weak convergence of the difference quotient
1/t (Vf (x + th) — Vf(x)) as (¢t — 0) for every fixed h and every x. In other words, Vf is
weakly Giteaux differentiable.

Finally, according to Proposition 2.1, weak convergence of the difference quotient of
Vf may be improved to norm convergence, since Vf is Lipschitz. This proves the
statement. O

Remarks. (1) Asshown by Example 2.1, we cannot expect Vf to be densely Fréchet
differentiable. See also [5], Ex. 3.3, for a different type of counterexamples.

(2) Notice that, in contrast with the situation in Proposition 5.1, norm to weak con-
tinuity of the operator V2f cannot be improved to norm to norm continuity, since
Krasnosel’skii’s result (used in the proof of Proposition 5.1) does not apply to operators
mapping into spaces of type L* (cf. [9]). Indeed, Example 2.1 shows explicitely that V2f
need not be norm to norm continuous.

Proposition 4.3. Let f be an integral functional (3.1), (3.2) with integrand ¢ (t, x) of
class C2. Suppose the eigenvalues of the Hessian matrices V* ¢ (z, x) are essentially uniformly
bounded below, i.e., ¢ (v, x) + a|x|? is convex for some o> 0. Then f is densely second order
differentiable, i.e., Vf is Gateaux differentiable on a dense set.

2 Journal fir Mathematik. Band 436
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Proof. We may assume that fis convex. We invoke a result of Fabian [11], Thm. 2.8,

which tells that the L of Lipschitz smooth points x of the function f'is dense in L3.. Now
let x be a Lipschitz smooth point of f, i.e., we have

fx+h) = f(x)—<Vf(x), by = CllIAll3

for some C> 0,6 >0, and all ||A]|, £ 6. Now it is clear that this implies that the ¢(z,*)
as well are Lipschitz smooth at the x(t) with the same constant C. In other words,

(V2 (1, x(9) &, & < CIEP,
since the ¢(z,-) are of class C2. By Corollary 3.2, f therefore has a generalized second
derivative at x. Finally, our result [5], 6.3, implies that f is second order differentiable at
such x, i.e., xe sz. To obtain second order Giteaux differentiability with respect to the
norm, we have to use Proposition 2.1, which applies since Vf is directionally weakly
Lipschitz. 0O
5. Integral functionals on Sobolev spaces

In this section we obtain results on second derivatives of integral functionals f satis-

fying (1.1), (1.2) on a Sobolev space W,!(f). Notice that the restriction to integral

functionals depending only on first order derivatives is not essential. Similar results for
higher derivatives may be obtained with the same techniques.

We start with the following analogue of Theorem 3.1.

Theorem 5.1. Let f be an integral functional (1.1), (1.2). Let ue W, (Q), and suppose
(u(x), Du(x)) € Dj(x,.,.) for almost all x € Q. Then the following statements are equivalent:

(1) f has a generalized second derivative at u, i.e., A, , . —=—s q for a purely quadratic
Junction q.

(2) esssup | V2 (x,u(x), Du(x))| < o, and there exists a > 0 such that
xef
(5.1) A¢(x,-,-),t(€) +alé Iz 20

for almost all xeQ, all 0<|t|<1andall € Rx R®.

Moreover, in these cases, we have the representation

(V2 (x, u(x), Du(x)) (h(x), Dh(x)), (h(x), Dh(x))) dx .

| =

(52 a)=|
Q2

The proof proceeds in much the same way as the proof of Theorem 3.1. We have the
following consequence in the spirit of Theorem 4.2.



Noll, Sobolev spaces 15

Corollary 5.2.  Let f be an integral functional (1.1), (1.2) on W,! () such that ¢(x, u, p)
is of class C? in u, p. Suppose the second partial derivatives of ¢ are essentially bounded, i.e.,
for a.a. x,

0%¢(x,u,p)
dudp;

0% ¢(x,u,p)

(5.3)
ap; op;

S(C<o.

0%¢(x,u,p)
ou? ’

Then f is everywhere second order differentiable, i.e., the difference quotient

(Yt th) — Vf )

converges pointwise in norm for every u € W,! (Q).

The reasoning is similar to the proof of Theorem 4.2. Notice again that condition (5.3)
is equivalent to saying that the eigenvalues of the Hessian operators V2¢(x,u,p) are
essentially bounded.

For ¢ 2 1, the functional (1.1), (1.2) may be considered as a function on W¥ (). In
the following, we assume that the domain Q allows for the Sobolev embedding Theorems

(cf. [24], §8).

Proposition 5.3. Let £>d/2+ 1, and let f be an integral functional (1.1), (1.2) on
the space W (). Let ue W{(Q) be fixed. Then the following statements are equivalent:

(1) f has generalized second derivative q, at u, i.e., A, . — g, in W{(Q).

(2) Af,u,v,t “ 9 in I/VZl({J)

(3) Statement (2) from Theorem 5.1 is satisfied.
Moreover, in these cases, q, has the representations (5.2).

Proof. ‘We have to show that (3) implies (2). First observe that, for some a 2 0,
condition (5.1) gives

Agun +ll- 1332 0.

Now we first argue that A, ,  +afl - |l3v; g, +a- ”%'z" This is the situation from

Corollary 3.3. We have to check condition (B). We take h,—h weakly in W}. We get an
estimate similar to (3.11), and we need a subsequence k,, such that h,, and Dh, are both
convergent a.e. Now we use the fact that the embedding W{ — L? is compact by ¢ > d/2
(cf. [24], § 8). This gives a subsequence 4, — h in L?-norm, and hence another subsequence
which converges a.e. Next we use that because of £ + 1> d/2 the embedding Wy ' — L?
as well is compact, hence D is compact as an operator Wi - L?.-This provides the subse-
quence h,,. having Dh,.. - Dh a.e. This proves statement (5). '
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Let us now show that A, . ~™» g,. Again we have but to check (f). Let h,—~h

weakly in W. Now we argue that 4, has a subsequence which converges in the W,}-norm.
But this follows from the compactness of the embedding Wy — W, the latter being a conse-
quence of the compactness of Wy — L?> and Wf{ ' - L% 0O

We end with the following result which shows that an integral function f satisfying
(1.1)—(1.3) is second order differentiable in the Fréchet sense when it is considered as a
function on WY (Q) for £ > d/2 + 1, but need not be of class C2.

Theorem 5.4. Let f be an integral functional (1.1), (1.2) considered as a function on
W5(Q), ¢ > d|2 + 1. Suppose ¢ (x,u, p) has bounded second partial derivatives, i.e., (1.3) is
satisfied. Then f is twice differentiable in the Fréchet sense on Wi ().

Proof. As aconsequence of (1.3), we may assume that f is convex. By Corollary 5.1,
f is second order Giteaux differentiable on W, (), i.e., the second difference quotient
A, ... converges to a purely quadratic limit g,, with convergence being uniform on compact
setsin W,'. Here v € 0f (u) is a vector in W} (). Now observe that the embedding W{ — W}
is compact as a consequence of £ > d/2 + 1 (cf. [24]). Hence A, , , converges uniformly on
the ball of W (£2). Now let we Wy be choosen so that A wirwwt = Af.uolws. Then we

deduce that A 1wt CODVErges uniformly on bounded sets in W¥. By [5], Thm. 3.1 this
implies that V1, is Fréchet differentiable at ue Wj(Q). O

Example 5.1. Let f be the functional from Example 2.3 considered as a function on
W2(0,1). Then f is twice differentiable in the Fréchet sense by Theorem 5.4, but V2f fails
to be norm to norm continuous.
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