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Abstract Delamination is a typical failure mode of composite materials caused by
weak bonding. It arises when a crack initiates and propagates under a destructive
loading. Given the physical law characterizing the properties of the interlayer adhesive
between the bonded bodies, we consider the problem of computing the propagation
of the crack front and the stress field along the contact boundary. This leads to a
hemivariational inequality, which after discretization by finite elements we solve by a
nonconvex bundle method, where upper-C1 criteria have to be minimized. As this is in
contrast with other classes of mechanical problems with non-monotone friction laws
and in other applied fields, where criteria are typically lower-C1, we propose a bundle
method suited for both types of nonsmoothness. We prove its global convergence in
the sense of subsequences and test it on a typical delamination problem of material
sciences.
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1 Introduction

We develop a bundle technique to solve nonconvex variational problems arising in
contact mechanics and in other applied fields. We are specifically interested in the
delamination of composite structureswith an adhesive bonding under destructive load-
ing, a failure mode which is studied in the material sciences. When the properties of
the interlayer adhesive between the bonded bodies are given in the form of a physical
law relating the normal component of the boundary stress vector to the relative dis-
placement between the upper and lower boundaries at the crack tip, the challenge is to
compute the displacement and stress fields in order to assess the reactive destructive
forces along the contact boundary, as the latter are difficult to measure in situ. This
leads to minimization of an energy functional, where a specific form of nonsmooth-
ness arises in the boundary integral at the contact boundary. After discretization via
piecewise linear finite elements using the trapezoidal quadrature rule, this leads to a
finite-dimensional nonsmooth optimization problem of the form

minimize f (x)
subject to Ax ! b

(1)

where f is locally Lipschitz, but neither smooth nor convex. Depending on the nature
of the non-monotone contact problem, the criterion f may be upper-C1 or lower-C1,
see e.g. Fig. 2. As these two classes of nonsmooth functions behave substantially
differently when minimized, we are forced to expand on existing bundle strategies
and develop an algorithm general enough to encompass both types of nonsmoothness.
We prove its convergence to a critical point in the sense of subsequences, and show
that it provides satisfactory numerical results in a simulation of the double cantilever
beam test [43], one of the most popular destructive tests used in the material sciences
to qualify structural adhesive joints.

The difficulty in nonconvex bundling is to provide a suitable cutting plane oracle
which replaces the no longer available convex tangent plane. One of the oldest ora-
cles, discussed already in Mifflin [29], and used in the bundle codes of Lemaréchal
and Sagastizábal [22,23], or the BT-codes of Zowe [41,44], uses the method of down-
shifted tangents. While these authors use linesearch with Armijo and Wolfe type
conditions, which in the nonconvex case allows only weak convergence certificates in
the sense that some accumulation point of the sequence of serious iterates is critical, we
favor proximity control in tandem with a suitable backtracking strategy. This leads to
stronger convergence certificates, where every accumulation point of the sequence of
serious iterates is critical. For instance, in [8,9,31] a strong certificate for downshifted
tangents with proximity control was proved within the class of lower-C1 functions,
but its validity for upper-C1 criteria remained open. An oracle for upper-C1 functions
with a rigorous convergence theory can be based on themodel approach of [31,33,34],
but the latter is not compatible with the downshift oracle. While these considerations
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Nonconvex bundle method with application...

concern the nonconvex case, we recall that according to [16, Theorem XV.3.2.2(ii)]
in the convex bundle method the entire sequence of serious iterates converges to a
single minimum if the proximity control parameter stays bounded away from zero.
For bundle methods which can deal with inexact function values or subgradients, we
refer the reader to [20,32].

It is unsatisfactory to have two strings to one bow, as one could hardly expect
practitioners to select their strategy according to such a distinction, which might not
be easy to make in practice. In this work we will resolve this impasse and present a
cutting plane oracle based on downshifted tangents, which leads to a bundle method
with strong convergence certificate for both types of nonsmoothness. In its principal
components our method agrees with existing strategies for downshifted tangents, like
[22,25,27,44], and could therefore be considered as a justification of this technique
for a wide class of applications. Differences with existing methods occur in the man-
agement of the proximity control parameter, which in our approach has to respect
certain rules to assure convergence to a critical point, without impeding good practical
performance.

The structure of the paper is as follows. Section 2 gives some preparatory infor-
mation on lower- and upper-C1 functions. Then a representation formula for a typical
nonsmooth upper-C1 objective as encountered in delamination problems is given,
highlighting the difficulty. Section 4 presents the algorithm and comments on its ingre-
dients. Theoretical tools for convergence are presented and employed in Sects. 3 and 5.
Section 6 gives the main convergence result, while Sect. 7 discusses practical aspects
of the algorithm. In Sect. 8, we discuss the delamination problem, which we solve
numerically using our bundle algorithm.

Related contact problems with adhesion modeled by upper-C1 objective function
have been considered in [25,27] and in the book of Haslinger et al. [15], where numer-
ical results based on proximal bundle method by Mäkelä [26] and bundle-Newton
method by Lukšan and Vlček [24] have been presented.

For related, but different interface crack problems, their study and numerical treat-
ment by primal-dual active-set methods, we refer to [21] and the references therein.

2 Lower- and upper-C1 functions

Following Spingarn [42], a locally Lipschitz function f : Rn → R is lower-C1 at x0,
if there exist a compact Hausdorff space K , a neighborhood U of x0, and a mapping
F : U×K → R such that both F and its partial derivative Dx F are jointly continuous
and

f (x) = max{F(x, y) : y ∈ K }

is satisfied for x ∈ U . The function f is upper-C1 at x0 if − f is lower-C1 at x0.
Note that if f is lower-C1, then it is semismooth [28, Definition 1] and Clarke

regular. This follows from [42, Prop. 2.4 and Thm. 3.9]. A counterexample in [42,
Section II] shows that the converse is not true; see also [14, Section 1.1 (3)]. Now
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observe that if f is upper-C1, then by the above − f is semismooth, and then so is f ,
as follows directly from the definition of semismoothness.

In theminimization problem (1),we expect lower- andupper-C1 functions to behave
completely differently. Minimizing a lower-C1 function ought to lead to real difficul-
ties, as on descending we move into the zone of nonsmoothness, which for lower-C1

goes downward. In contrast, upper-C1 functions are generally expected to be well
behaved, as intuitively on descending we move away from the nonsmoothness, which
here goes upward. The present application shows that this argument is too simplistic.
Minimization of upper-C1 functions leads to real difficulties, which we explain sub-
sequently. In delamination for composite materials we encounter objective functions
of the form

f (x) = fs(x)+
∫ 1

0
min
i∈I

fi (x, t) dt, (2)

where fs gathers the smooth part, while the integral term, due to the minimum, is
responsible for the nonsmoothness. For the following, let I be a finite set.

Lemma 1 Suppose fs is upper-C1, the fi are jointly continuous, and each fi (·, t) is
upper-C1. Then the function (2) is upper-C1 and can be represented in the form

f (x) = fs(x)+ min
σ∈Σ

∫ 1

0
fσ (t)(x, t) dt, (3)

where Σ is the set of all measurable mappings σ : [0, 1] → I .

Proof Let us first prove (3). For σ ∈ Σ and fixed x ∈ Rn the function t %→ fσ (t)(x, t)
is measurable, and since mini∈I fi (x, t) ! fσ (t)(x, t) ! maxi∈I fi (x, t), it is also
integrable. Hence F(x, σ ) = fs(x) +

∫ 1
0 fσ (t)(x, t) dt is well defined, and clearly

F(x, σ ) " f (x), so we have infσ∈Σ F(x, σ ) " f (x).
To prove the reverse estimate, fix x ∈ Rn and consider the closed-valued multi-

function Φ : [0, 1] → 2I defined by Φ(t) = {i ∈ I : fi (x, t) = mini ′∈I fi ′(x, t)}.
Since the fi (x, ·) aremeasurable and I is finite,Φ ismeasurable, cf. [3, Theorem8.2.1].
Choose a measurable selection σ , that is, σ ∈ Σ satisfying σ (t) ∈ Φ(t) for every
t ∈ [0, 1]. Then clearly F(x, σ ) = f (x). This gives (3).

We show that f is upper-C1. Let ϕ(x, t) = mini∈I fi (x, t) and Φ(x) =∫ 1
0 ϕ(x, t)dt . Every ϕ(·, t) is upper-C1 as a finite minimum of upper-C1 functions.
By [6, Corollary 3] the −ϕ(·, t) are approximately convex in the sense of [30], and
by a standard compactness argument using joint continuity of ϕ, they are uniformly
approximately convex over t ∈ [0, 1] in the following sense: For every x ∈ Rn and
ε > 0 there exists δ > 0 such that for all y, z ∈ B(x, δ) and every t ∈ [0, 1], the
inequality

ϕ(λy + (1 − λ)z, t) " λϕ(y, t)+ (1 − λ)ϕ(z, t) − ελ(1 − λ)∥y − z∥

is satisfied for 0 < λ < 1. Integration readily gives Φ(λy + (1 − λ)z) " λΦ(y) +
(1 − λ)Φ(z) − ελ(1 − λ)∥y − z∥, and as x and ε > 0 were arbitrary, this proves
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that −Φ is approximately convex. Again by [6, Corollary 3], −Φ is lower-C1, and so
f = fs + Φ is upper-C1. ⊓)
Note that the minimum (3) is semi-infinite even though I is finite. Minimization

of (2) cannot be converted into an NLP, as would be possible in the min–max case.
The representation (3) highlights the difficulty in minimizing (2). Minimizing a min-
imum has a disjunctive character, and due to the large size of Σ this could lead to a
combinatorial situation with intrinsic difficulty.

Remark 1 We mention that semismoothness of integral functionals of the form (2) is
also discussed in [38, Section 3].

3 The model concept

The following extension of the first-order Taylor expansion to nonsmooth functions
was proposed in [34], and is used to analyze nonconvex bundle methods.

Definition 1 (Compare [34]) A function φ : Rn × Rn → R is called a first-order
model of the locally Lipschitz function f : Rn → R on the set Ω ⊂ Rn if the
following axioms are satisfied:

(M1) For every x ∈ Ω the function φ(·, x) : Rn → R is convex, φ(x, x) = f (x)
and ∂1φ(x, x) ⊂ ∂ f (x).

(M2) For every x ∈ Ω and every ε > 0 there exists δ > 0 such that f (y) !
φ(y, x)+ ε∥y − x∥ for every y ∈ B(x, δ).

(M3) The function φ is jointly upper semicontinuous, i.e., (y j , x j ) → (y, x) on
Rn × Ω implies lim sup j→∞ φ(y j , x j ) ! φ(y, x). ⊓)

Note that every locally Lipschitz function f has the so-called standard model

φ♯(y, x) = f (x)+ f ◦(x, y − x),

where f ◦(x, d) is the Clarke directional derivative of f at x in direction d. The same
function f may in general have several models φ, and following [31,33], the standard
model φ♯ is the smallest one. As we shall see, every model φ gives rise to a bundle
strategy. The question is then whether this bundle strategy is successful. This depends
on the following property of φ.

Definition 2 A first-order model φ of f on Ω is said to be strict at x0 ∈ Ω if axiom
(M2) is replaced by the stronger

(M̂2) For every ε > 0 there exists δ > 0 such that f (y) ! φ(y, x) + ε∥y − x∥ for
all x, y ∈ B(x0, δ).

We say that φ is a strict model on Ω , if it is strict at every x0 ∈ Ω . ⊓)
Remark 2 We may write axiom (M2) in the form f (y) ! φ(y, x0) + o(∥y − x0∥)
for y → x0, and (M̂2) as f (y) ! φ(y, x) + o(∥y − x∥) for x, y → x0. Except
for the fact that these concepts are one-sided, this is precisely the difference between
differentiability and strict differentiability. Hence the nomenclature.
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Lemma 2 (Compare [31,33]) Suppose f is upper-C1. Then its standard model φ♯ is
strict, and hence every model φ of f is strict. ⊓)
Remark 3 For convex f the standard model φ♯ is in general not strict, but f may be
used as its own model φ(·, x) = f . For nonconvex f , a wide range of applications is
covered by composite functions f = g ◦ F with g convex and F differentiable. Here
the model φ(y, x) = g(F(x)+ F ′(x)(y − x)) can be used, because it is strict as soon
as F is class C1, and we have termed this the natural model. This model can be used
for lower-C2 functions in the sense of [39], lower-C1,α functions in the sense of [7],
or amenable functions in the sense of [37], which allow representations of the form
f = g ◦ F with F of class C1,1.

We conclude with the remark that lower-C1 functions also admit strict models,
even though in that case the construction is more delicate. The strict model in that
case cannot be exploited algorithmically, and for lower-C1 functions we prefer the
oracle concept, which will be discussed in Sect. 5. Nonetheless, the link between more
principled cutting plane oracles and the model concept corroborates the importance
of the latter.

4 Elements of the algorithm

In this section we briefly explain the main features of the algorithm. This concerns
building the working model, computing the solution of the tangent program, checking
acceptance, updating the working model after null steps, and the management of the
proximity control parameter.

4.1 Working model

At the current iterate x , the inner loop of the algorithm at counter k computes an
approximation φk(·, x) of f in a neighborhood of x , which shall be called a first-order
working model. Working models have of course been at the core of any bundle method
and are being used since [16,19]. Here we distinguish between the ideal model φ, and
its approximation φk , hence the terminology.

Definition 3 A first-order working model of f at the serious iterate x is a polyhedral
convex function of the form

φk(·, x) = max
(a,g)∈Gk

a + g⊤(· − x), (4)

where Gk is a finite set of pairs (a, g) representing affine functions y %→ a+g⊤(y−x)
satisfying a ! f (x), referred to as cutting planes. The set Gk is updated during the
inner loop k.

Once the first-orderworkingmodelφk(·, x) has been built, we obtain a second-order
working model Φk(·, x) of the form

Φk(·, x) = φk(·, x)+ 1
2 (· − x)⊤Q(x)(· − x), (5)
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where Q(x) = Q(x)⊤ is a possibly indefinite symmetric matrix, depending only on
the current serious iterate x , and fixed during the inner loop k. The second-order term
includes curvature information on f at x , if available.

4.2 Tangent program and acceptance test

Once the second-order working model (5) is formed, we solve the tangent program
with proximity control

minimize Φk(y, x)+ τk
2 ∥y − x∥2

subject to Ay ! b.
(6)

Here the proximity control parameter τk satisfies Q(x)+ τk I ≻ 0, which assures that
(6) is strictly convex and has a unique solution, yk , called the trial step. The trial step
is a candidate to become the new serious iterate x+. In order to decide whether yk is
acceptable, we compute the test

ρk =
f (x) − f (yk)

f (x) − Φk(yk, x)

?
" γ , (7)

where 0 < γ < 1 is a fixed parameter. If ρk " γ , then x+ = yk is accepted and
called a serious step. In this case the inner loop ends successfully. On the other hand,
if ρk < γ , then yk is rejected and called a null step. In this case the inner loop k
continues. This means we will update the working model Φk(·, x) → Φk+1(·, x),
adjust the proximity control parameter τk → τk+1, and solve (6) again.

Note that the test (7) corresponds to the usual Armijo descent condition used in a
linesearch, or to the standard acceptance test in trust region methods, see e.g. [16,19,
40].

4.3 Updating the working model via aggregation

Suppose the trial step yk fails the acceptance test (7) and is declared a null step. Then
the inner loop k has to continue, and we have to improve the working model at the next
sweep in order to perform better. Since the second-order part of the working model
1
2 (· − x)⊤Q(x)(· − x) remains invariant, we will update the first-order part only. At
each inner loop step k, the following rules have to be respected when updating φk to
φk+1:

(R1) One or several cutting planes at the null step yk , generated by an abstract cutting
plane oracle, are added to Gk+1.

(R2) The so-called aggregate plane (a∗, g∗) according to [18], which consists of
convex combinations of elements of Gk , is added to Gk+1.

(R3) Some older planes in Gk , which become obsolete through the addition of the
aggregate plane, are discarded and not kept in Gk+1.
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(R4) Every Gk contains at least one so-called exactness plane (a0, g0), where exact-
ness plane means a0 = f (x), g0 ∈ ∂ f (x). This assures φk(x, x) = f (x), hence
the name.

(R5) Every working model φk satisfies ∂1φk(x, x) ⊂ ∂ f (x).

Concerning rule (R2), by the necessary optimality condition for (6), there exists a
multiplier η∗ " 0 such that

0 ∈ ∂1Φk
(
yk, x

)
+ τk

(
yk − x

)
+ A⊤η∗,

or equivalently,

(Q(x)+ τk I )
(
x − yk

)
− A⊤η∗ ∈ ∂1φk

(
yk, x

)
.

Since φk(·, x) is by construction a maximum of affine planes, we use the stan-
dard description of the convex subdifferential of a max-function. Writing Gk =
{(a0, g0), . . . , (ap, gp)} for p = card(Gk) + 1, we find non-negative multipliers
λ0, . . . , λp summing up to 1 such that

(Q(x)+ τk I )
(
x − yk

)
− A⊤η∗ =

p∑

i=0

λi gi ,

and in addition, ai + g⊤
i (y

k − x) = φk(yk, x) for all i ∈ {0, . . . , p} with λi > 0.
We now define the aggregate plane through the pair (a∗, g∗) with

a∗
k =

p∑

i=0

λi ai , g∗
k =

p∑

i=0

λi gi .

Note that by construction the aggregate plane m∗
k(·, x) = a∗

k + g∗⊤
k (· − x) at null

step yk satisfies m∗
k(y

k, x) = a∗
k + g∗⊤

k (yk − x) = φk(yk, x). This construction is
standard and follows the original idea in Kiwiel [18]. It assures in particular that
Φk+1(yk, x) " m∗

k(y
k, x)+ 1

2 (y
k − x)⊤Q(x)(yk − x) = Φk(yk, x).

We say that those planes which are active at yk in (6) are called by the aggregate
plane. With this notion rule (R3) can now be specified as follows. Planes called by the
aggregate plane can be removed from Gk and be represented by the aggregate plane,
which has to be included in Gk+1. Inactive planes can altogether be removed, but at
least one exactness plane and the latest cutting plane at yk have to stay in Gk+1.

4.4 Updating the working model by cutting planes and exactness planes

The crucial improvement in the first-order working model is in adding a cutting plane
which cuts away the unsuccessful trial step yk according to rule (R1). We shall denote
the cutting plane as mk(·, x) = ak + g⊤

k (· − x). The only requirement for the time
being is that ak ! f (x), as this assures φk+1(x, x) ! f (x). Since we also maintain at
least one exactness plane of the form m0(·, x) = f (x)+ g⊤

0 (· − x) with g0 ∈ ∂ f (x),
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we assure φk+1(x, x) = Φk+1(x, x) = f (x). Later we will also have to check the
validity of (R5).

It is possible to integrate so-called anticipated cutting planes in the new working
modelGk+1. This term designates all planeswhich are not based on the rules exactness,
aggregation, cutting planes. Naturally, adding such planes cannot be allowed in an
arbitrary way, because axioms (R1) − (R5) have to be respected. For further details,
see [31, Example 5].

Remark 4 A typical example of anticipated cutting planes arises, e.g., when a function
f = max{ fi : i ∈ I } is minimized. Here a cutting plane like m↓(·, x) (see Example
3 in Sect. 5) at some unsuccessful trial step y would require a downshifted tangent
of one of those branches fi which are active at y. But it may be beneficial to also
include downshifted tangents of some inactive (but nearly active) branches f j . The
importance of adding anticipated cuts was as already observed in [1, Sect. VI. G] for
a different type of oracle.

Remark 5 It may be beneficial to choose a new exactness plane m0(·, x) = f (x) +
g⊤(· − x) after each null step y, namely the one which satisfies m0(y, x) =
f ◦(x, y − x). If x is a point of strict differentiability of f , then ∂ f (x) = {∇ f (x)}
[39, Theorem 9.18], and all these exactness planes are then identical, so no extra work
occurs.

In many cases computation of a subgradient g ∈ ∂ f (x) satisfying g⊤(y − x) =
f ◦(x, y − x) is cheap. Consider for instance eigenvalue optimization, where f (x) =
λ1 (F(x)), x ∈ Rn , F : Rn → Sm , and λ1 : Sm → R is the maximum eigenvalue
function of Sm . Then f ◦(x, d) = λ′

1(X, D) = λ1(Q⊤DQ), where X = F(x), D =
F ′(x)d, and where Q is a t × m matrix whose columns form an orthogonal basis
of the maximum eigenspace of X of dimension t [5]. Then G = QQ⊤ ∈ ∂λ1(X)
attains λ′

1(X, D), hence g = F ′(x)∗QQ⊤ attains f ′(x, d). Since usually t ≪ m, the
computation of g is cheap.

On the other hand, situations where even computation of a single g ∈ ∂ f (x)
is expensive are not unusual. This includes for instance classical applications in
Lagrangian relaxation or stochastic programming.Here the use of cutting plane oracles
which require only computation of a single subgradient g ∈ ∂1φ(y, x), respectively,
g ∈ ∂ f (y), is mandatory.

4.5 Management of proximity control

The central novelty of the bundle methods developed in [2,31,34] is the discovery that
in the absence of convexity the proximity control parameter τ has to follow certain
basic rules to assure convergence of the sequence x j of serious iterates. This is in
contrast with convex bundle methods, where τ could in principle be frozen once and
for all. More precisely, suppose φk(·, x) has failed and produced only a null step yk .
Having built the new model φk+1(·, x), we compute the secondary test

ρ̃k =
f (x) − Φk+1

(
yk, x

)

f (x) − Φk
(
yk, x

)
?
" γ̃ , (8)
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where 0 < γ < γ̃ < 1 are fixed. Our decision whether τk should be increased or not
is

τk+1 =
{
2τk if ρ̃k " γ̃ ,

τk if ρ̃k < γ̃ .
(9)

The rationale of (9) is as follows. In case ρ̃k < γ̃ , improving the model by adding
cutting planes may still suffice. On the other hand, if ρ̃k " γ̃ , then we will have to
force shorter steps. Namely, the denominator in (8) gives the model predicted progress
f (x)−φk(yk, x) = φk(x, x)−φk(yk, x) > 0 at yk . The numerator f (x)−φk+1(yk, x)
gives the progress over x we would achieve at yk , had we already known the cutting
planes drawn at yk . Due to aggregation we know that φk+1(yk, x) " φk(yk, x), so
that ρ̃k ! 1. Values ρ̃k ≈ 1 indicate that little to no progress is achieved by adding the
cutting plane. In this case the τ -parameter must be increased to force smaller steps,
because that reinforces the agreement between f and φk+1(·, x), hence increases the
chances to find a serious step.

Remark 6 In the test (8) we replace ρ̃k ≈ 1 by ρ̃k " γ̃ for some fixed 0 < γ < γ̃ < 1.
If ρ̃k < γ̃ , then the quotient is far from 1 and we decide that adding planes has still
the potential to improve the situation. In that event we do not increase τ .

Let us next consider the management of τ in the outer loop. Since τ can only
increase or stay fixed in the inner loop, we allow τ to decrease between serious steps
x → x+, respectively, x j → x j+1. This is achieved by the test

ρk j =
f (x j ) − f

(
x j+1)

f (x j ) − Φk j (x j+1, x j )

?
" Γ,

where 0 < γ ! Γ < 1 are fixed. In other words, if at acceptance we have not only
ρk j " γ , but even ρk j " Γ , then we decrease τ at the beginning of the next inner loop
j + 1, because we may trust our working model. On the other hand, if γ ! ρk j < Γ

at acceptance, then we memorize the last τ -parameter used, that is τk j at the end of
the j th inner loop.

Remark 7 We should compare our management of the proximity control parameter τ

to other strategies in the literature. For instance [18,24,29] use linesearch strategies,
and [25] consider a different management of τ , which is motivated by the convex case.
Our strategy assures global convergence in the sense that every accumulation point of
the sequence of serious iterates is critical.

4.6 Statement of the algorithm

We are now ready to give our formal statement of Algorithm 1 (see next page).
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Algorithm 1 Proximity control algorithm for (1)

Parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q < T < ∞.

◃ Step 1 (Initialize outer loop). Choose initial guess x1 with Ax1 ! b and an initial matrix
Q1 = Q⊤

1 with −q I ≼ Q1 ≼ q I . Fix memory control parameter τ
♯
1 such that Q1 + τ

♯
1 I ≻ 0. Put

j = 1.

⋄ Step 2 (Stopping test).At outer loop counter j , stop if 0 ∈ ∂ f (x j )+ A⊤η∗ for some Lagrange
multiplier η∗ " 0. Otherwise goto inner loop.

◃ Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize τ -parameter
using the memory element, i.e., τ1 = τ

♯
j . Choose initial convex working model φ1(·, x j ), possibly

recycling some planes from previous sweep j −1, and letΦ1(·, x j ) = φ1(·, x j )+ 1
2 (·− x j )⊤Q j (·−

x j ).

◃ Step 4 (Trial step generation). At inner loop counter k solve tangent program

min
Ay!b

Φk (y, x
j )+ τk

2 ∥y − x j∥2.

The solution is the new trial step yk .

⋄ Step 5 (Acceptance test). Check whether

ρk = f (x j ) − f (yk )

f (x j ) − Φk (yk , x j )
" γ .

If this is the case, put x j+1 = yk (serious step), quit inner loop and goto step 8. If this is not
the case (null step), continue inner loop with step 6.

◃ Step 6 (Update working model). Build new convex working model φk+1(·, x j ) based on null

step yk by adding an exactness plane m♯
k (·, x j ) satisfying m♯

k (y
k , x j ) = f ◦(x j , yk − x j ), a down-

shifted tangentm↓
k (·, x j ), and the aggregate planem∗

k (·, x j ). Apply rule (R3) to avoid overflow. Build
Φk+1(·, x j ), and goto step 7.

⋄ Step 7 (Update proximity parameter). Compute

ρ̃k = f (x j ) − Φk+1(yk , x j )

f (x j ) − Φk (yk , x j )
.

Put

τk+1 =

⎧
⎨

⎩

τk if ρ̃k < γ̃ (bad),

2τk if ρ̃k " γ̃ (too bad).

Then increase counter k and continue inner loop with step 4.

⋄ Step 8 (Update Q j and memory element). Update matrix Q j → Q j+1, respecting
Q j+1 = Q⊤

j+1 and −q I ≼ Q j+1 ≼ q I . Then store new memory element

τ
♯
j+1 =

⎧
⎨

⎩

τk if γ ! ρk < Γ (not bad),

1
2 τk if ρk " Γ (good).

Increase τ
♯
j+1 if necessary to ensure Q j+1 + τ

♯
j+1 I ≻ 0.

⋄ Step 9 (Large multiplier safeguard rule). If τ
♯
j+1 > T then re-set τ♯

j+1 = T . Increase
outer loop counter j by 1 and loop back to step 2.
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5 Nonconvex cutting plane oracles

In the convex cutting plane method [16,40], unsuccessful trial steps yk are cut away
by adding a tangent plane to f at yk into the model. Due to convexity, the cutting
plane is below f and can therefore be used to construct an approximation (4) of f . For
nonconvex f , cutting planes aremore difficult to construct, but several ideas have been
discussed, see e.g. [13,29]. In [31]we have proposed an axiomatic approach,which has
the advantage that it covers the applications we are aware of, and allows a convenient
convergence theory. Here we use this axiomatic approach in the convergence proof.

Definition 4 (Compare [31]) Let f be locally Lipschitz. A cutting plane oracle for
f on the set Ω is an operator O which, with every pair (x, y), x a serious iterate in
Ω , y ∈ Rn a null step, associates an affine function my(·, x) = a + g⊤(·− x), called
the cutting plane at null step y for serious iterate x , so that the following axioms are
satisfied:

(O1) For y = x we have a = f (x) and g ∈ ∂ f (x).
(O2) Suppose y j → x . Then there exist ε j → 0+ such that f (y j ) ! myj (y j , x) +

ε j∥y j − x∥.
(O3) Let x j → x and y j , y

+
j → y. Then there exists z ∈ Rn such that

lim sup j→∞ my+j
(y j , x j ) ! mz(y, x). ⊓)

As we shall see, these axioms are aligned with the model axioms (M1) − (M3).
Not unexpectedly, there is also a strict version of (O2).

Definition 5 A cutting plane oracleO for f is called strict at x0 if the following strict
version of (O2) is satisfied:

(Ô2) Suppose y j , x j → x . Then there exist ε j → 0+ such that f (y j ) !
myj (y j , x j )+ ε j∥y j − x j∥. ⊓)

We now discuss two versions of the oracle which are of special interest for our
applications.

Example 1 (Model-based oracle) Suppose φ is a model of f . Then we can generate a
cutting plane for serious iterate x and trial step y by taking g ∈ ∂1φ(y, x) and putting

my(·, x) = φ(y, x)+ g⊤(· − y) = φ(y, x)+ g⊤(x − y)+ g⊤(· − x).

Oracles generated by amodel φ in this waywill be denotedOφ . Note thatOφ coincides
with the standard oracle [18,22] if f is convex and φ(·, x) = f , i.e., if the convex f is
chosen as its own strict model. This means that our axiomatic approach encompasses
the classical convex cutting plane method.

In more general cases, the simple idea of the model-based oracle is that in the
absence of convexity, where tangents to f at y are not useful, we simply take tangents
of φ(·, x) at y. Note that the model-based oracle Oφ is strict as soon as the model φ

is strict. #
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Example 2 (Standard oracle)A special case of the model-based oracle is obtained by
choosing the standard model φ♯. Due to its significance for our present work we call
this the standard oracle. The standard cutting plane for serious step x and null step y
is m♯

y(·, x) = f (x) + g⊤(· − x), where the Clarke subgradient g ∈ ∂ f (x) is one of
those that satisfy g⊤(y − x) = f ◦(x, y − x). The standard oracle is strict iff φ♯ is
strict. As was observed before, this is for instance the case when f is upper-C1. Note
a specificity of the standard oracle: every standard cutting plane m♯

y(·, x) is also an
exactness plane at x . This is no longer true for other models of f . #
Example 3 (Downshifted tangents) Probably the oldest oracle used for nonconvex
functions are downshifted tangents, which we define as follows. For serious iterate x
and null step y, let t (·) = f (y)+ g⊤(·− y) be a tangent of f at y. That is, g ∈ ∂ f (y).
Then we shift t (·) down until it becomes useful for the model (4). Fixing a parameter
c > 0, with c = 1 a typical value, this is organized as follows: We define the cutting
plane as m↓

y (·, x) = t (·) − s, where the downshift s " 0 is

s =
[
t (x) − f (x)+ c∥y − x∥2

]
+.

Put differently, m↓
y (·, x) = a + g⊤(·− x), where a = min{t (x), f (x)− c∥y − x∥2}.

Note that this procedure aways satisfies axioms (O1) and (O3), whereas axioms (O2),
respectively, (Ô2), are satisfied if f is lower-C1 at x0. In other words, see [31], for f
lower-C1 this is an oracle, which is automatically strict. #

Motivated by the previous examples, we now define an oracle which works for both
lower-C1 and upper-C1.

Example 4 (Modified downshift)Let x be the current serious iterate, y a null step in the
inner loop belonging to x . Then we form the downshifted tangentm↓

y (·, x) := t (·)−s,
that is, the cutting plane we would get from the downshift oracle, and we form the
standard oracle plane m♯

y(·, x) = f (x)+ g⊤(· − x), where the Clarke subgradient g
satisfies f ◦(x, y − x) = g⊤(y − x). Then we define

my(·, x) =
{
m↓

y (·, x) if m↓
y (y, x) " m♯

y(y, x),

m♯
y(·, x) otherwise.

In other words, among the two candidate cutting planesm↓
y (·, x) andm♯

y(·, x), we take
the one which has the larger value at the null step y.

Note that this is the oracle we use in our algorithm. Theorem 1 clarifies when this
oracle is strict. ⊓)

Suppose we are given an operator O which with every pair (x, y) of a serious step
x and a null step y associates an abstract cutting plane my(·, x) = a + g⊤(· − x).
Fixing a constant M > 0, we define the following function

φ↑(·, x) = sup{my(·, x) : ∥y − x∥ ! M}.

The crucial property of φ↑ is the following
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Lemma 3 SupposeO : (x, y) %→ my(·, x) is a cutting plane oracle satisfying axioms
(O1) − (O3). Then φ↑ is a first-order model of f . Moreover, if the oracle satisfies
(Ô2), then φ↑ is strict. ⊓)

The proof can be found in [31]. We refer to φ↑ as the upper envelope model associ-
ated with the oracleO . Since in turn every model φ gives rise to a model-based oracle,
Oφ , it follows that having a strict oracle and having a strict model are equivalent prop-
erties of f . Note, however, that the model φ↑ is in general not practically useful. It is
a theoretical tool in the convergence proof.

Remark 8 If we start with a model φ, then build Oφ , and go back to φ↑, we get back
to φ.

On the other hand, going from an oracleO to its envelope model φ↑, and then back
to the model based oracle Oφ↑ does not necessarily lead back to the oracle O .

Remark 9 The definition of φ↑ leaves the choice of the parameter M > 0 free. As
φ↑ is only used as a theoretical instrument in the convergence proof, we will adjust
M > 0 such that B(x,M) contains all trial steps yk computed by the algorithm in the
inner loop at serious iterate x , and this is possible under a mild coercivity assumption
on f in tandem with the following Remark 10.

Remark 10 In the inner loop at serious step x boundedness of the set {yk :
yk trial step at x} can be seen as follows. The necessary optimality conditions for (6)
are

(Q + τk I )
(
x − yk

)
− vk ∈ ∂1φk

(
yk, x

)
, vk = A⊤η∗

k , η∗
k " 0.

From the subgradient inequality we obtain

(
x − yk

)⊤
(Q + τk I )

(
x − yk

)
− v⊤

k
(
x − yk

)
! φk(x, x) − φk

(
yk, x

)
.

By (R4) we have φk(x, x) = f (x) and φk(yk, x) " m0(yk, x), where m0(·, x) =
f (x)+g⊤

0 (·−x)with g0 ∈ ∂ f (x) is an exactness plane. Combiningwith v⊤
k (x−yk) !

0, we have

(
x − yk

)⊤
(Q + τk I )

(
x − yk

)
! g⊤

0
(
x − yk

)
! ∥g0∥∥x − yk∥.

As τk is never decreased in the inner loop, we have Q + τk I ≽ Q + τ1 I ≽ κ I for
some κ > 0. That implies ∥x − yk∥ ! κ−1∥g0∥, hence boundedness of the sequence
yk .

In the outer loop a similar argument in tandem with a mild coercivity hypothesis
on f implies boundedness of the set {yk : yk trial step at x j , j = 1, 2, . . . , τk " 2q}.
Boundedness of both sets is required to define the upper model envelope φ↑ correctly.

We are now in the position to check axiom (R5).

Corollary 1 All workingmodelsφk constructed in our algorithm satisfy ∂1φk(x, x) ⊂
∂ f (x). ⊓)

123

Author's personal copy



Nonconvex bundle method with application...

6 Main convergence result

In this section we state and prove convergence of our algorithm when it is operated
with the modified downshift oracle of Example 4.

Theorem 1 Let f be locally Lipschitz and suppose for every x ∈ Rn, f is either
lower-C1 or upper-C1 at x. Let x1 be such that Ax1 ! b and {x ∈ Rn : f (x) !
f (x1), Ax ! b} is bounded. Then every accumulation point x∗ of the sequence x j of
serious iterates generated by Algorithm 1 is a Karush–Kuhn–Tucker point of (1).

Proof The resultwill follow from [31,Theorem1] as soon aswe show that downshifted
tangents as modified in Example 4 and used in the algorithm is a strict cutting plane
oracle in the sense of Definition 5. The remainder of the proof is to verify this.

1) Let us denote cutting planes arising from the standard model φ♯ by m♯
y(·, x),

cutting planes obtained by downshift as m↓
y (·, x) = t (·) − s, and the true cutting

plane of the oracle as my(·, x). Then as we know my(·, x) = m↓
y (·, x) if m↓

y (y, x) "
m♯

y(y, x), and otherwise my(·, x) = m♯
y(·, x). We have to check (O1), (Ô2), (O3).

2) The validity of (O1) is clear, as both oracles provide Clarke tangent planes to f
at x for y = x .

3) Let us now check (O3). Consider x j → x , and y j , y+j → y. Here y+j is a null step
at serious step x j . Passing to subsequences, we may distinguish between case I, where
my+j

(·, x j ) = m♯

y+j
(·, x j ) for every j , and case II, where my+j

(·, x j ) = m↓
y+j
(·, x j ) for

every j .
Consider case I first. Let m♯

y+j
(y j , x j ) = f (x j )+ g⊤

j (y j − x j ), where g j ∈ ∂ f (x j )

satisfies f ◦(x j , y+j − x j ) = g⊤
j (y

+
j − x j ). Passing to yet another subsequence, we

may assume g j → g, and upper semi-continuity of the Clarke subdifferential gives
g ∈ ∂ f (x). Therefore my+j

(y j , x j ) = f (x j )+ g⊤
j (y j − x j ) → f (x)+ g⊤(y − x) !

m♯
y(y, x) ! my(y, x). So here (O3) is satisfied with z = y.
Next consider case II. Here we have my+j

(y j , x j ) = tg j (y j ) − s j , where tg j (·)
is a tangent to f at y+j with subgradient g j ∈ ∂ f (y+j ), and s j is the corresponding
downshift

s j =
[
tg j (x j ) − f (x j )+ c∥y+j − x j∥2

]

+
.

Passing to a subsequence, we may assume g j → g, and using y+j → y in tan-
dem with upper semi-continuity of ∂ f , we deduce g ∈ ∂ f (y). Therefore, s j →[
tg(x) − f (x)+ c∥y − x∥2

]
+ =: s, where uniform convergence tg j (y j ) → tg(y)

occurs due to the boundedness of ∂ f . But now we see that s is the downshift for
the pair (x, y) when g ∈ ∂ f (y) is used. Hence my+j

(y j , x j ) → m↓
y (y, x), and since

m↓
y (y, x) ! my(y, x), we are done. So again the z in (O3) equals y here.
4) Let us finally check axiom (Ô2). Let x j , y j → x be given. We first consider

the case when f is upper-C1 at x . We have to find ε j → 0+ such that f (y j ) !
myj (y j , x j )+ ε j∥y j − x j∥ as j → ∞, and by the definition of the oracle, it clearly
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suffices to show f (y j ) ! m♯
y j (y j , x j )+ ε j∥y j − x j∥. By Spingarn [42], or Daniilidis

and Georgiev [6], − f , which is lower-C1 at x , has the following property: For every
ε > 0, there exists δ > 0 such that for all 0 < t < 1 and y, z ∈ B(x, δ),

f (y) ! f (z)+ t−1 ( f (z + t (y − z)) − f (z))+ ε(1 − t)∥z − y∥.

Taking the limit superior t → 0+ implies

f (y) ! f (z)+ f ′(z, y − z)+ ε∥y − z∥ ! f (z)+ f ◦(z, y − z)+ ε∥y − z∥.

Choosing z = x j , y = y j , δ j = ∥y j − z j∥ → 0, we can find ε j → 0+ such that
f (y j ) ! f (x j ) + f ◦(x j , y j − x j ) + ε j∥y j − x j∥, hence f (y j ) ! m♯

y j (y j , x j ) +
ε j∥y j − x j∥ by the definition of m♯

y j (·, x j ). That settles the upper-C1 case.
Now consider the case where f is lower-C1 at x . We have to find ε j → 0+

such that f (y j ) ! myj (y j , x j ) + ε j∥y j − x j∥ as j → ∞, and it suffices to show

f (y j ) ! m↓
y j (y j , x j ) + ε j∥y j − x j∥. Since m↓

y j (y j , x j ) " f (y j ) − s j , where s j is
the downshift s j =

[
t (x j ) − f (x j )+ c∥y j − x j∥2

]
+, and t (·) = f (y j )+ g⊤

j (·− y j )
for some g j ∈ ∂ f (y j ), it suffices to exhibit ε j → 0+ such that f (y j ) ! f (y j ) −
s j + ε j∥y j − x j∥, or equivalently, s j ! ε j∥y j − x j∥. For that it suffices to arrange[
t (x j ) − f (x j )

]
+ ! ε j∥y j − x j∥, because once this is verified, we get

s j !
[
t (x j ) − f (x j )

]
+ + c∥y j − x j∥2 ! ε̃ j∥y j − x j∥

with ε̃ j := ε j + c∥y j − x j∥. Note again that by [6,42], f has the following property
at x : For every ε > 0 there exists δ > 0 such that for all y, z ∈ B(x, δ)

f (t z + (1 − t)y) ! t f (z)+ (1 − t) f (y)+ εt (1 − t)∥z − y∥.

Dividing by t > 0 and passing to the limit t → 0+ gives f ◦(y, z − y) ! f (z) −
f (y)+ ε∥y − z∥, using the fact that f is locally Lipschitz. But for every g ∈ ∂ f (y),
g⊤(z−y) ! f ◦(y, z−y). Using ∥y j −x j∥ =: δ j → 0 and taking y = y j , z = x j , this
allows us to find ε j → 0+ such that g⊤

j (x j − y j ) ! f (x j ) − f (y j )+ ε j∥y j − x j∥.
Substituting this above gives t (x j ) − f (x j ) = f (y j ) − f (x j ) + g⊤

j (x j − y j ) !
ε j∥y j − x j∥ as desired. That settles the lower-C1 case. ⊓)

7 Practical aspects of the algorithm

In this section we discuss several technical aspects of the algorithm, which are impor-
tant for its performance.
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7.1 Stopping

The stopping test in step 2 of the algorithm is stated in this form for the sake of
the convergence proof. In practice we delegate stopping to the inner loop using the
following two-stage procedure.

If the inner loop at serious iterate x j finds a new serious step x j+1 such that

| f
(
x j+1) − f

(
x j )|

1+ | f
(
x j

)
| < tol1,

∥PC
(
− g∗

j+1

)
∥

1+ | f
(
x j+1

)
| < tol2,

∥x j+1 − x j∥
1+ ∥x j∥ < tol3, (10)

then we decide that x j+1 is optimal. Here g∗
j+1 is the aggregate subgradient at accep-

tance of x j+1, and PC is the projection operator onto the constraint setC = {x : Ax !
b}. In consequence, the ( j + 1)st inner loop will not be executed. On the other hand,
if the inner loop has difficulties terminating and produces kmin consecutive null steps
yk , where

| f
(
yk

)
− f

(
x j )|

1+ | f
(
x j

)
| < tol1,

∥PC
(
− g∗

k

)
∥

1+ | f
(
x j

)
| < tol2,

∥yk − x j∥
1+ ∥x j∥ < tol3, (11)

or if a maximum number kmax of allowed steps in the inner loop is reached, then we
decide that x j is optimal. In our experiments, we use tol1 = 10−3, tol2 = 10−2,
tol3 = 10−3, kmin = 3, and kmax = 50. Typical values in Algorithm 1 are γ = 0.01,
γ̃ = 0.4 and Γ = 0.6.

7.2 Recycling of planes

At the beginning of a new inner loop at serious step x j+1, we do not want to start
building the working model φ1(·, x j+1) from scratch. It is more efficient to recycle
some of the planes (a, g) ∈ Gk j in the latest working model φk j (·, x j ). In the convex
cutting plane method, this is self-understood, as cutting planes are affine minorants of
f , and can at leisure stay on in the sets G at all times j, k. Without convexity, we need
the following recycling procedure.

Given a plane m(·, x j ) = a + g⊤(· − x j ) in the latest set Gk j , we form the new
downshifted plane

m
(
·, x j+1) = m

(
·, x j ) − s,

where the downshift is organized as

s =
[
m

(
x j+1, x j ) − f

(
x j+1) + c∥x j+1 − x j∥2

]

+
.

In other words, we treat m(·, x j ) like a tangent to f at null step x j with respect to the
serious step x j+1 in the downshift oracle. We put

m
(
·, x j+1) = a + g⊤(

· −x j ) − s = a − s + g⊤(
x j+1 − x j ) + g⊤(

· −x j+1),
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and we accomodate (a− s+ g⊤(x j+1 − x j ), g) ∈ G1 at the beginning of the ( j+1)st
inner loop. In the modified version we only keep a plane of this type in G1 after
comparing it to the exactness plane m0(·, x j+1) = f (x j+1) + g⊤(· − x j+1), g ∈
∂ f (x j+1), which satisfies g⊤(x j − x j+1) = f ◦(x j+1, x j − x j+1). Indeed, when
m(x j , x j+1) " m0(x j , x j+1), then we keep the downshifted plane, otherwise we add
m0(·, x j+1) as additional exactness plane.

8 Application to delamination benchmark problem

8.1 Modeling of delamination

The interface behavior of bonded laminated composite benchmark structures is usu-
ally determined experimentally using the double cantilever beam test [43] or other
destructive testing methods. The result of a typical experiment is shown schemati-
cally in Fig. 1 from [43], where three probes with different levels of contamination
of the adhesive are displayed, starting with the critical load P = 150N. While the
intact material shows stable propagation of the crack front (dashed curve), the speci-
men with 10% contamination on average shows a typical zig-zag profile (bold solid
curve), indicating unstable crack front propagation. Indeed, when reaching the critical
load, here P = 140N, a crack in the adhesive layer opens at the loaded tip of the
double beam and propagates starting with initial crack length 0mm. By the growth of
the crack-elongation, the compliance of the structure increases. When the crack meets
a zone of contamination, the load P in the structure drops immediately, here from
P = 140N to P = 40N. At the latest when leaving the zone of contamination, the
crack propagation slows down and the crack is caught, i.e., stops at u2 = 0.25mm.
Thereafter, by the constantly applied traction force, there is a linear growth of the load
from P = 40N to the critical load P = 90N, where the crack starts again to propagate
and stops at u2 = 5mm with the load now reduced to P = 30N. This phenomenon
occurs five to six times, as seen in Fig. 1. Note that in the material sciences, knowledge
of the interface behavior is crucial for the understanding of the basic failure modes of
real-world bonded composite structures in aerospace and automotive industry.

To describe the process of structural adhesive bonding in mathematical terms we
use the tools of nonsmooth analysis. We model the interface behavior of a bonded
composite structure by a non-monotone multivalued law, which can be expressed by
means of the Clarke subdifferential of a nonconvex nonsmooth, but locally Lipschitz
function. More precisely, the physical law governing the relation between the normal
component Sn(s)|Γc of the boundary stress vector on the one hand, and the relative
displacement u2(s)|Γc, or jump, between the upper and lower boundaries on the other
hand, is described by

− Sn(s) ∈ ∂ j (s, u2(s)), s ∈ Γc, (12)

where j is a locally Lipschitz function. A typical law ∂ j for an interlayer adhesive
is shown in Fig. 2 (left). The superpotential j of ∂ j , which is a locally Lipschitz
minimum-type function, is the nonsmooth part of the total potential energy functional
of the composite structure.
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Fig. 1 Load-displacement curve determined by double cantilever beam test. Dashed curve shows stable
behavior for material without contamination. The 10% contaminated specimen (bold solid curve) shows
unstable crack growth. The 50% contaminated specimen exhibits micro-cracks not visible at the chosen
scale. The adhesive energy, which is represented by the area below the load-displacement curve, indicates
that a contaminated specimen is of minor resistance

Even though the displacement u2 in Fig. 1 can only be measured at the crack tip,
in order to proceed we stipulate the law ∂ j along the whole boundary Γc. Under
this hypothesis we minimize the discretized total potential energy and thus compute
the unknown displacement and stress fields of the entire mechanical structure. For
validation of the adhesive law the numerical results at the crack tip can be compared
with experimental data using the initial crack length as variable input parameter of the
delamination process.

Note that Sn(s)|Γc is the truly relevant information, as it indicates the action of
the destructive forces along Γc, explaining eventual failure of the composite. In cur-
rent practice in the material sciences, this information cannot be assessed by direct
measurement, and is therefore estimated by heuristic formulae [43]. In contrast, our
approach should be understood as an estimation technique of the process of delamina-
tion including contamination effects, that is based on a rigorous mathematical contact
model from continuum mechanics.

8.2 Study of a delamination problem: continuous formulation

Within the framework of plane linear elasticity we consider a two-dimensional sym-
metric laminated structure with an interlayer adhesive under loading (see Fig. 3).
Because of the symmetry of the structure and by assuming that the forces applied to
the upper and lower part are the same, it suffices to consider only the upper half of the
specimen, represented byΩ ⊂ R2. The Lipschitz boundary Γ of the bounded domain
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Fig. 2 Left image shows non-monotone delamination law ∂ j , leading to an upper-C1 objective. Right
image shows non-monotone friction law, leading to a lower-C1 objective

Γu ΓF1
ΓF2Γc

F2

Fig. 3 Schematic viewof cantilever beam testing.Under applied traction force F2 the crack front propagates
to the left. In program (17) traction force F2 and crack front length are given, while the corresponding
displacement u and reactive forces −Sn |Γc along the contact boundary Γc have to be computed

Ω consists of four disjoint parts Γu , Γc, ΓF1 and ΓF2 . We adopt the standard notations
from linear elasticity (see e.g. [17]) and introduce the bilinear form

a(u, v) =
∫

Ω
ε(u) : σ (v) dx, (13)

where u = (u1, u2) is the displacement vector decomposed in horizontal and vertical
displacements, and ε(u) = 1

2 (∇u+ (∇u)T ), σ (v) = C : ε(v) stand for the linearized
strain tensor and the stress tensor, respectively. Here, C is the Hooke tensor, assumed
to be uniformly positive definite with L∞(Ω)- coefficients. The bilinear form of linear
elasticity (13) is symmetric and due to the first Korn inequality, coercive. The equation
of the equilibrium state of Ω is defined as follows

σi j, j = 0 in Ω, i = 1, 2, (14)

since no volume forces are assumed. In our computations we use

σi j (u) =
Eν

1 − ν2
(ε11(u)+ ε22(u)) δi j +

E
1+ ν

εi j (u),

where E and ν are the Young modulus and the Poisson’s ratio, respectively.
Next, we define the boundary conditions. On ΓF1 ∪ ΓF2 the traction forces are

prescribed
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F = (0, 0) on ΓF1,

F = (0, F2) on ΓF2 ,

where F2 is a constant force. The linear form ⟨g, ·⟩ is now defined as

⟨g, v⟩ = F2

∫

ΓF2

v2 ds.

Next, the body is fixed along the boundary Γu :

ui = 0 on Γu, i = 1, 2,

andbecause of the non-penetration of the laminaewehave also the unilateral constraint

u2 " 0 a.e. on Γc

in the vertical direction along the contact boundary.
Furthermore, we assume that the non-monotone multivalued law ∂ j , displayed

schematically in Fig. 2 (left), describes the behavior of the binding interlayer material
along Γc. We also assume that the tangential component of the boundary stress vector
is negligible, i.e., St (s) = 0. In our computations, the superpotential j of ∂ j is a
minimum of four convex quadratic and one linear function.

The normal component Sn and the tangential component St of the stress vector S are
defined, respectively, by Sn = σi j n j ni and Sti = σi j n j − Sn ni , where n = (n1, n2)
is the outward unit normal vector to Γc.

We define the space

V =
{
v ∈ H1(Ω;R2) : v = 0 on Γu

}
.

Let K ⊂ V be the nonempty, closed and convex set of all admissible displacements
defined by

K = {v ∈ V : v2 " 0 on Γc}.

Due to the symmetry of the bilinear form, the potential energy of the considered
mechanical problem has the form

Π(v) = 1
2a(v, v)+ J (v) − ⟨g, v⟩, (15)

where J : V → R is the nonsmooth functional defined by

J (v) =
∫

Γc

j (s, v2(s)) ds. (16)
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Using the potential energy functional, we can formulate the following nonsmooth,
nonconvex constrained optimization problem:

minimize Π(v)
subject to v ∈ K ,

(17)

where the objective is an upper-C1 function, because the super-potential j is a
minimum-type function. In particular, we have an objective of the form (2), where
the smooth part fs comprises 1

2a(v, v) − ⟨g, v⟩, while J (v) =
∫
Γc

j (s, v2(s)) ds is
the nonsmooth part in (2).

Taking into account the nonconvexity and the nonsmoothness of the potential energy
functional, we can only pose critical point problems, i.e., find u∗ ∈ K such that

0 ∈ ∂ Π(u∗)+ NK (u∗), (18)

where NK (u∗) is the normal cone to K at u∗. Moreover, according to [27] every local
minimizer of the problem (17) is a critical point of Π on K in the sense of (18).

8.3 Discrete problem

We consider a regular triangulation {Th} of Ω , where we first divide Ω into small
rectangles and then each rectangle by its diagonal into two triangles. To approximate
V and K we use a piecewise linear finite element approximation and set Vh and Kh ,
respectively, by

Vh =
{
vh ∈ C(Ω;R2) : vh |T ∈ (P1)

2 ∀ T ∈ Th, vh |Γu = 0
}
,

Kh = {vh ∈ Vh : vh2(sν) " 0 ∀ sν ∈ Γc\Γu}.

Here, P1 is the set of all polynomials of degree one and sν are the nodes of Th lying
on Γc\Γu . Similar to low order finite element approximations of nonsmooth convex
contact problems [10,11], we use the trapezoidal quadrature rule to approximate the
functional J in (16) by

Jh(vh) =
1
2

∑

sν∈Γc\Γu

|sνsν+1|
[
j (sν, vh2(sν))+ j (sν+1, vh2(sν+1))

]
,

where we are summing over the nodes sν on the contact boundary Γc\Γu , with sν+1
being the neighbor of node sν on Γc in the sense of integration. This can be regrouped
as

Jh(vh) =
∑

sν∈Γc\Γu

cν j (sν, vh2(sν)) =
∑

sν∈Γc\Γu

cν min
i∈I

ji (sν, vh2(sν))
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with appropriate weights cν > 0. Here, I indexes the smooth branches contributing to
the nonsmooth function j (·), so for instance in the case of Fig. 2 (left) with |I | = 5,
this corresponds to four zig-zags in the graph of ∂ j .

The bundle algorithm is applied to minimize the discrete functional

Πh(vh) = 1
2a(vh, vh)+ Jh(vh) − ⟨g, vh⟩ on Kh, (19)

where we pull out the minimum from under the sum over the N quadrature nodes sν ,
which leads to the expression

Πh(vh) =
1
2
a(vh, vh)+ min

i(·)∈I N

∑

sν∈Γc\Γu

cν ji(ν)(sν, vh2(sν)) − ⟨g, vh⟩,

which is the discretized version of (3). In (19), 12a(vh, vh)−⟨g, vh⟩ is the smooth term
and Jh is the nonsmooth part.

The discrete critical point problem on Kh reads as follows: Find uh ∈ Kh such that

0 ∈ ∂Πh(uh)+ NKh (uh). (20)

Due to the results in [27], the discrete problem (20) is solvable and its solutions
converge in subsequences to the solutions of the continuous critical point problem
(18).

Discretizing the quadratic form of linear elasticity as a(vh, vh) = v⊤
h Avh with the

symmetric stiffness matrix A, and observing ⟨g, vh⟩ = g⊤vh, a Clarke subgradient
of (19) at vh is readily computed as Avh + ∑

ν∈N ∇ ji(ν)(sν, vh2(sν)) − g, where
i(ν) ∈ I is one of those indices where the minimummini∈I ji (sν, vh2(sν)) is attained.
Similarly, the matrix Q = Q(vh) in the second-order working model (5) is chosen as
Q(vh) = A+ ∑

ν∈N ∇2 ji(ν)(sν, vh(sν)), where i(ν) ∈ I is the same active index.
Note that here we use the lowest-order finite element approximation which satisfies

Kh ⊂ K and is thus conforming.Higher-order approximationswith no limitation in the
polynomial degree, leading to nonconforming approximation of unilateral constraints,
have only recently been analyzed for monotone contact problems, see [12].

8.4 Numerical results

We present numerical results obtained in a delamination simulation of a symmetric
system of two bodies in an adhesive contact. The used material is characterized by the
modulus of elasticity E = 210GPa and Poisson’s ratio ν = 0.3 corresponding to a
steel specimen. In all examples we use the benchmark model of [4] (see Fig. 3 (left))
with geometrical characteristics Ω = (0, 100) × (0, 10) in [mm]. The applied loads
F2 are 0.2, 0.4, 0.6, 0.8, 1.0N/mm2, respectively. The volume forces are neglected.
The non-monotone adhesive law is defined by themultivalued function shown in Fig. 2
(left).We apply our bundlemethod to (19) and compare the results to those obtained by
the regularization method in [35,36]. All computations use piecewise linear functions
on a 40 × 4 triangulation Th of Ω , corresponding to the step length h = 2.5 in [mm]
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Fig. 4 Performance of Algorithm 1 for a typical run of (19) with 80 unknowns in the case F2 = 1N/mm2.
Top left j %→ f (x j ). Top right j %→ ∥PC (−g∗

j )∥. Lower left j %→ ∥x j − x j+1∥. Lower right j %→ τ
♯
j , the

evolution of the memory control parameter at serious steps

along the boundary Γc. Thus, the number of the unknowns on the boundary in the
discrete problem (19) is 80. All tests have been performed with MATLAB R2013b on
OS Windows 7 Home Premium with CPU Intel Core i5-2410M (2.30 GHz) and 4GB
of RAM.

We note that in our experiments, the bundle algorithm usually terminates due to the
stopping test (10). For example, in the case F2 = 1N/mm2 with the starting point 0.0
in all the components, Algorithm 1 terminated based on (10), where the quantities in
(10) are respectively 2.2656×10−9, 3.2573×10−3, 5.9716×10−8. Figure 4 displays
a typical performance profile of Algorithm 1.

For comparison we use the regularization method from [35,36]. The regulariza-
tion parameter ε is set to ε = 0.1, and the discrete regularized problem is solved
using the following steps. Firstly, (a) we use a condensation technique based on
a Schur complement to reduce the total number of unknowns to obtain a prob-
lem formulated only in terms of the displacements at the free nodes on the contact
boundary Γc. Secondly, (b) the reduced discrete regularized problem is re-written
as a mixed complementarity problem, which by means of the Fischer–Burmeister
function f (a, b) =

√
a2 + b2 − (a + b) is reformulated as a system of nonlinear

equations. Finally, (c) by applying an appropriate merit function we obtain an equiv-
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Fig. 5 Comparison of bundle method (dotted) and regularization method (solid) for 3 different loads
F2 = 0.2N/mm2 (red), 0.6N/mm2 (green), 1.0N/mm2 (blue) in vertical displacement on Γc (top) and
normal component of the stress vector along Γc (lower) (Color figure online)

alent smooth, unconstrained minimization problem, which is numerically solved by
using the lsqnonlin—MATLAB function based on a trust regionmethod. Themaximal
number of iterations in lsqnonlin has been fixed to 100. While theoretical convergence
of the regularizationmethod occurswith ε → 0, for details see [35], the choice ε = 0.1
is based on the observation that smaller values, while increasing the CPU times, do
not further improve the solution from a mechanics point of view.

The computed values of the vertical and horizontal displacements of the upper
lamina on Γc obtained by our bundle method and by the regularization method at four
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Table 3 Comparison of bundle and regularization method

F2(N/mm2) Initial Πh Optimal Πh Running time

Bundle Reg. Bundle Reg.

0.2 0.000346 −0.169337 −0.145855 6.264 11.6895

0.4 0.000346 −0.678386 −0.584459 0.148 12.1158

0.6 0.000346 −1.684544 −1.605770 5.656 12.2706

0.8 0.000346 −3.633644 −3.199650 0.802 12.1733

1.0 0.000346 −7.006673 −5.768180 0.810 12.0655

Starting point all 0.0’s

Table 4 Comparison of bundle and regularization method

F2(N/mm2) Initial Πh Optimal Πh Running time

Bundle Reg. Bundle Reg.

0.2 1934543393.554280 −0.169337 −0.14587 4.998 2.6249

0.4 1934541479.777698 −0.678386 −0.661415 4.959 2.3922

0.6 1934539566.001117 −1.684020 −1.050940 0.555 2.4006

0.8 1934537652.224535 −3.635792 −3.037370 0.829 2.3527

1.0 1934535738.447954 −7.006673 −6.669180 0.429 2.4976

Starting point all 0.1’s

Table 5 Comparison of bundle and regularization method

F2(N/mm2) Initial Πh Optimal Πh Running time

Bundle Reg. Bundle Reg.

0.2 193454510602.708070 −0.169337 −0.145998 4.845 2.5282

0.4 193454491464.942230 −0.678386 −0.656331 4.707 2.4290

0.6 193454472327.176420 −1.684020 −1.049730 0.562 2.4911

0.8 193454453189.410610 −3.635792 −3.036380 0.858 2.4273

1.0 193454434051.644810 −7.006673 −6.668540 0.437 2.4023

Starting point all 1.0’s

intermediate points on Γc, (25, 0), (50, 0), (75, 0), (100, 0) in [mm], are presented
in Tables 1 and 2. As default, the starting point is 0.1 in all components. Vertical
displacements and normal stresses along Γc obtained by both methods are compared
in Fig. 5 for different loads F2 = 0.2, 0.6, 1.0N/mm2. Figure 5 shows qualitatively
similar results.

Tables 3, 4, and 5 give the final results obtained by our bundle method and the
regularization technique for 3 different starting points, where horizontal and vertical
displacements at the grid points on the boundary are chosen as 0.0, 0.1, 1.0’s, respec-
tively. We compare optimal objective function values and running times in seconds.
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The computations show that both methods are numerically stable and reliable. Even
for very different starting points we obtain almost identical final results.

9 Conclusion

We have presented a bundle method based on the mechanism of downshifted tangents
which is suited to optimize upper- and lower-C1 functions. Our method allows to
integrate second-order information, if available, and gives a convergence certificate
in the sense of subsequences. Every accumulation point of the sequence of serious
iterates with an arbitrary starting point is critical. We have successfully applied our
method to a delamination problem arising in the material sciences, where upper-C1

functions have to be minimized. Results obtained by our nonsmooth optimization
method were compared to those obtained by the regularization technique of [35,36],
and both methods are, in general, in good agreement.

Wehave observed that practitioners often feel uncomfortablewith the regularization
approach, considering it in extremis as of tampering with the problem. Since our
nonsmooth approach deals with the problem in its original form, one may therefore
argue that the regularization technique is validated through the nonsmooth method.

Acknowledgments The authors thank H.-J. Gudladt for many useful discussions. The authors were
partially supported by Bayerisch-Französisches Hochschulzentrum (BFHZ).
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