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Abstract

Significant progress in control design has been achieved by the use of nonsmooth and semi-infinite mathematical programming techniques.
In contrast with LMI or BMI approaches, these new methods avoid the use of Lyapunov variables, which gives them two major strategic
advances over matrix inequality methods. Due to the much smaller number of decision variables, they do not suffer from size restrictions, and
they are much easier to adapt to structural constraints on the controller. In this paper, we further develop this line and address both frequency-
and time-domain design specifications by means of a nonsmooth algorithm general enough to handle both cases. Numerical experiments are
presented for reliable or fault-tolerant control, and for time response shaping.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Nonsmooth optimization; H∞ synthesis; Structured controllers; PID tuning; Time-domain constraints; Fault tolerance control; Time response shaping

0. Notation

Let Rn×m be the space of n×m matrices, equipped with the
corresponding scalar product 〈X, Y 〉 = Tr(XTY ), where XT is
the transpose of the matrix X, Tr(X) its trace. The notation Hr

stands for the set of Hermitian matrices of size r . For complex
matrices XH stands for its conjugate transpose. For Hermitian
or symmetric matrices, X � Y means that X − Y is positive
definite, X � Y that X−Y is positive semi-definite. We use the
symbol �1 to denote the maximum eigenvalue of a symmetric
or Hermitian matrix. Given an operator T , T ∗ is used to denote
its adjoint operator on the appropriate space. The notation vec
applied to a matrix stands for the usual column-wise vector-
ization of a matrix. We use concepts from nonsmooth analysis
covered by [12]. For a locally Lipschitz functionf : Rn →
R, �f (x) denotes its Clarke subdifferential at x while the no-
tation f ′(x; h) stand for its directional derivative at x in the
direction h.
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1. Introduction

Interesting new methods in nonsmooth optimization for the
synthesis of controllers have recently been proposed. See [11,8]
for stabilization problems, [4,5,20,3,10] for H∞ synthesis, and
[3,6] for design with IQCs. These techniques are in our opinion
a valuable addition to the designer’s toolkit:

• They avoid expensive state-space characterizations, which
suffer the curse of dimension, because the number of Lya-
punov variables grows quadratically with the system size.

• The preponderant computational load of these new methods
is transferred to the frequency domain and consists mainly in
the computation of spectra and eigenspaces, and of frequency
domain quantities, for which efficient algorithms exist. This
key feature is the result of the idea of the diligent use of nons-
mooth criteria of the form f (K)=max�∈[0,∞] �1(F (K, �)),
which are composite functions of a smooth but nonlinear
operator F , and a nonsmooth but convex function �1.

• The new approach is highly flexible, as it allows to ad-
dress, with almost no additional cost, structured synthesis
problems of the form f (�) = max�∈[0,∞] �1(F (K(�), �)),
where K(·) defines a mapping from the space of controller
parameters � to the space of state-space representations K .
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From a practical viewpoint, structured controllers are bet-
ter apprehended by designers and facilitate implementation
and re-tuning whenever performance or stability specifica-
tions change. This may be the major advantage of the new
approach over matrix inequality methods.

• The new approach is general and encompasses a wide range
of problems beyond pure stabilization and H∞ synthesis.
A number of important problems in control theory can be re-
garded as structured control problems. Striking examples are
simultaneous stabilization, reliable and decentralized con-
trol, multifrequency band design, multidisk synthesis and
much else.

• Finally, the new methods are supported by mathematical
convergence theory, which certifies global convergence un-
der practically useful hypotheses in the sense that iterates
converge to critical points from arbitrary starting points.

In this paper, we expand on the nonsmooth technique
previously introduced in [4], and explore its applicability to
structured controller design in the presence of frequency- and
time-domain specifications. We show that the same nonsmooth
minimization technique can be used to handle these seemingly
different specifications. We address implementation details of
the proposed technique and highlight differences between fre-
quency and time domain. Finally, we present numerical results
in observer-based control design and reliable control, as well
as for time-response shaping.

We refer the reader to the articles cited above for references
on controller synthesis using nonsmooth optimization. General
concepts in nonsmooth analysis can be found in [12], and op-
timization of max functions is covered by [23]. Time response
shaping is addressed at length in [13,15,17]. These techniques
are often referred to as the Iterative Feedback Tuning (IFT) ap-
proach, mainly developed by M. Gevers, H. Hjalmarsson and
co-workers.

2. Time- and frequency-domain designs

Consider a plant P in state-space form

P(s) :
⎡
⎣ ẋ

z

y

⎤
⎦=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦
⎡
⎣ x

w

u

⎤
⎦ , (1)

where x ∈ Rn is the state vector of P , u ∈ Rm2 the vector of
control inputs, w ∈ Rm1 the vector of exogenous inputs or a test
signal, y ∈ Rp2 the vector of measurements and z ∈ Rp1 the
controlled or performance vector. Without loss, it is assumed
throughout that D22 = 0.

The focus is on time- or frequency-domain synthesis with
structured controllers, which consists in designing a dynamic
output feedback controller K(s) with feedback law u = K(s)y

for the plant in (1), having the following properties:
Controller structure: K(s) has a prescribed structure.
Internal stability: K(s) stabilizes the original plant P(s) in

closed-loop.
Performance: Among all stabilizing controllers with that

structure, K(s) is such that either the closed-loop time response

P

K

yu

w z

Tw → z (K) : =

Fig. 1. Standard interconnection.

z(t) to a test signal w(t) satisfies prescribed constraints, or the
H∞ norm of transfer function ‖Tw→z(K)‖∞ is minimized.
Here Tw→z(K) denotes the closed-loop transfer function from
w to z, see Fig. 1.

For the time being we leave apart structural constraints and
assume that K(s) has the frequency domain representation:

K(s) = CK(sI − AK)−1BK + DK, AK ∈ Rk×k , (2)

where k is the order of the controller, and where the case k = 0
of a static controller K(s) = DK is included. A further sim-
plification is obtained if we assume that preliminary dynamic
augmentation of the plant P(s) has been performed

A →
[
A 0

0 0k

]
, B1 →

[
B1

0

]
, etc.

so that manipulations will involve a static matrix

K :=
[
AK BK

CK DK

]
∈ R(k+m2)×(k+p2). (3)

With this proviso, the following closed-loop notations will be
useful:[
A(K) B(K)

C(K) D(K)

]
:=
[

A B1

C1 D11

]
+
[

B2

D12

]
K [C2 D21 ] .

(4)

Structural constraints on the controller will be defined by a
matrix-valued mapping K(.) from Rq to R(k+m2)×(k+p2), that
is K = K(�), where vector � ∈ Rq denotes the independent
variables in the controller parameter space Rq . For the time be-
ing we will consider free variation � ∈ Rq , but the reader will
be easily convinced that adding parameter restriction by means
of mathematical programming constraints gI (�)�0, gE(�)=0
could be added if need be. We will assume throughout that the
mapping K(.) is continuously differentiable, but otherwise ar-
bitrary. As a typical example, consider MIMO PID controllers,
given as

K(s) = Kp + Ki

s
+ Kds

1 + �s
, (5)

where Kp, Ki and Kd the proportional, the integral and the
derivative gains, respectively, are alternatively represented in
the form

K(s) = DK + Ri

s
+ Rd

s + �
, (6)
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with the relations

DK := Kp + Kd

�
, Ri := Ki, Rd := −Kd

�2 , � := 1

�
(7)

A linearly parameterized state-space representation is readily
derived as

(8)

Free parameters in this representation can be gathered in the
vector � obtained as

� :=

⎡
⎢⎢⎢⎣

�

vecRi

vecRd

vecDK

⎤
⎥⎥⎥⎦ ∈ R3m2

2+1.

We stress that the above construction is general and encom-
passes most controller structures of practical interest. We shall
see later that interesting control problems such as reliable con-
trol are also special cases of the general structured design
problem.

With the introduced notation, time-domain design is the op-
timization program

min
�∈Rq

f∞(�) with f∞(�) := max
t∈[0,T ] f (�, t),

where the case T =∞ is allowed. See Section 3.1.2 for further
details and other practical options.

Frequency-domain design is the standard H∞ problem and
can be cast similarly using the definition

f∞(�) := sup
�∈[0,∞]

�̄(Tw→z(K(�), j�)) = ‖Tw→z(K(�))‖∞.

3. Nonsmooth descent method

In this section we briefly present our nonsmooth optimization
technique for time- and frequency-domain max functions. For
a detailed discussion of the H∞ norm, we refer the reader to
[4,5]. The setting under investigation is

min
�

max
x∈X

f (�, x), (9)

where the semi-infinite variable x = t or x =� is restricted to a
one-dimensional set X. Here X may be the halfline [0, ∞], or a
limited band [�1, �2], or a union of such bands in the frequency
domain, and similarly in the time domain. The symbol � denotes
the design variable involved in the controller parametrization
K(·), and we introduce the objective or cost function

f∞(�) := max
x∈X

f (�, x).

At a given parameter �, we assume that we can compute the
set �(�) of active times or frequencies, which we assume finite
for the time being

�(�) := {x ∈ X : f (�, x) = f∞(�)}. (10)

For future use we construct a finite extension �e(�) of �(�)

by adding times or frequencies to the finite active set �(�).
An efficient strategy to construct this set for x = � has been
discussed in [4,5]. For x = t some ideas will be given in
Section 4.3.

For the ease of presentation we assume that the cost function
f is differentiable with respect to � for fixed x ∈ �e(�), so
that gradients 	x = ∇�f (�, x) are available. Extensions to the
general case are easily obtained by passing to subgradients,
since f (., x) has a Clarke gradient with respect to � for every
x ∈ X [12]. Following the line in Polak [23], see also [4], we
introduce the optimality function


e(�) := min
h∈Rq

max
x∈�e(�)

−f∞(�) + f (�, x) + hT	x + 1

2
hTQh.

(11)

Notice that 
e is a first-order model of the objective function
f∞(�) in (9) in a neighborhood of the current iterate �. The
model offers the possibility to include second-order information
[2] via the term hTQh, but Q � 0 has to be assured. For
simplicity, we will assume Q = � I with � > 0 in our tests.

Notice that independently of the choices of Q � 0 and the
finite extension �e(�) of �(�) used, the optimality function
has the following property: 
e(�)�0, and 
e(�)=0 if and only
if 0 ∈ �f∞(�), that is, � is a critical point of f∞. In order
to use 
e to compute descent steps, it is convenient to obtain
a dual representation of 
e. To this aim, we first replace the
inner maximum over �e(�) in (11) by a maximum over its
convex hull and we use Fenchel duality to swap the max and
min operators. This leads to


e(�) := max∑
x∈�e(�)�x=1,�x �0

min
h∈Rq

∑
x∈�e(�)

�x(f (�, x) − f∞(�)

+ hT	x) + 1
2hTQh.

These operations do not alter the value of 
e. The now inner
infimum over h ∈ Rq is now unconstrained and can be com-
puted explicitly. Namely, for fixed �x in the outer program, we
obtain the solution of the form

h(�) = −Q−1

⎛
⎝ ∑

x∈�e(�)

�x	x

⎞
⎠ . (12)

Substituting this back in the primal program (11) we obtain the
dual expression


e(�) = max
�x �0,

∑
x∈�e(�)

�x=1

∑
x∈�e(�)

�x(f (�, x) − f∞(�))

− 1

2

⎛
⎝ ∑

x∈�e(�)

�x	x

⎞
⎠

T

Q−1

⎛
⎝ ∑

x∈�e(�)

�x	x

⎞
⎠ . (13)
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Notice that in its dual form, computing 
e(�) is a convex
quadratic program (QP). As a byproduct we see that 
e(�)�0
and that 
e(�) = 0 implies � is critical that is, 0 ∈ �f∞(�).

What is important is that as long as 
e(�) < 0, the direction
h(�) in (12) is a descent direction of f∞ at � in the sense that
the directional derivative satisfies the decrease condition

f ′∞(�; h(�))�
e(�) − 1

2

⎛
⎝ ∑

x∈�e(�)

�x	x

⎞
⎠

T

Q−1

×
⎛
⎝ ∑

x∈�e(�)

�x	x

⎞
⎠ �
e(�) < 0,

where � is the dual optimal solution of program (13). See
[5, Lemma 4.3] for a proof. In conclusion, we obtain the fol-
lowing algorithmic scheme:

Nonsmooth descent method for min� f∞(�):
Parameters 0 < � < 1, 0 <  < 1.

1. Initialize. Find a structured closed-loop stabilizing con-
troller K(�).

2. Active times or frequencies. Compute f∞(�) and obtain
the set of active times or frequencies �(�).

3. Add times or frequencies. Build finite extension �e(�) of
�(�).

4. Compute step. Calculate 
e(�) by the dual QP (13) and
thereby obtain direction h(�) in (12). If 
e(�) = 0 stop.
Otherwise:

5. Line search. Find largest b = k such that f∞(� +
bh(�)) < f∞(�) − �b
e(�) and such that K(� + b h(�))
remains closed-loop stabilizing.

6. Step. Replace � by � + b h(�) and go back to step 2.

Finally, we mention that the above algorithm is guaranteed to
converge to a critical point [4,5], a local minimum in practice.

3.1. Nonsmooth properties

In order to make our conceptual algorithm more concrete,
we need to clarify how (sub)differential information can be
obtained for both time- and frequency-domain design.

3.1.1. Frequency-domain design
In the frequency domain we have x=�. The function f∞(�)

becomes f∞(�)=‖.‖∞ ◦Tw→z(.)◦K(�), which maps Rq into
R+, and is Clarke subdifferentiable as a composite function
[21,4,3]. Its Clarke gradient is obtained as K′(�)∗�g∞(K),
where K′(�) is the derivative of K(.) at �, K′(�)∗ its adjoint,
and where g∞ is defined as g∞ := ‖.‖∞◦Tw→z(.) and maps the
set D ⊂ R(m2+k)×(p2+k) of closed-loop stabilizing controllers
into R+. Introducing the notation[
Tw→z(K, s) G12(K, s)

G21(K, s) �

]
:=
[
C(K)

C2

]
(sI − A(K))−1

× [B(K) B2 ]

+
[
D(K) D12

D21 �

]
. (14)

The Clarke subdifferential of g∞ at K is the compact and
convex set of subgradients �g∞(K) := {�Y : Y ∈ S(K)}
where

�Y = g∞(K)−1
∑

�∈�(K)

R{G21(K, j�) Tw→z(K, j�)H

× Q�Y�(Q�)H G12(K, j�)}T (15)

and where S(K) is the spectraplex

S(K) =
⎧⎨
⎩Y = (Y�)�∈�(K) : Y� = (Y�)H � 0,

∑
�∈�(K)

Tr(Y�) = 1, Y� ∈ Hr�

⎫⎬
⎭ .

In the above expressions, Q� is a matrix whose columns span
the eigenspace of Tw→z(K, j�)Tw→z(K, j�)H associated
with its largest eigenvalue �1

(
Tw→z(K, j�)Tw→z(K, j�)H

)
of multiplicity r�. We also deduce from expression (15) the
form of the subgradients of f (�, �) := �̄(Tw→z(K(�), j�))

at � with fixed �, which are used in the primal and dual pro-
grams (11) and (13), respectively

	x = �Y� = K′(�)∗f (�, �)−1R

{G21(K,j�) Tw→z(K,j�)HQ�Y�(Q�)HG12(K,j�)}T,

where Q� is as before and Y� ∈ Hr� , Y� � 0, Tr(Y�) = 1.
Finally, we note that all subgradient formulas are made im-
plementable by expliciting the action of the adjoint operator
K′(�)∗ on elements F ∈ R(m2+k)×(p2+k). Namely, we have

K′(�)∗F =
[

Tr

(
�K(�)

��1

T

F

)
, . . . , Tr

(
�K(�)

��q

T

F

)]T

.

In the general case, where some of the maximum eigenval-
ues at some of the frequencies in the extended set �e(�) has
multiplicity > 1, the formulas above should be used, and the
dual program in (13) becomes a linear SDP [4,5]. This is more
expensive than a QP, but the size of the SDP remains small,
so that the method is functional even for large systems. When
maximum eigenvalues are simple, which seems to be the rule in
practice, matrices Y� are scalars, and the primal and dual sub-
problems become much faster convex QPs. This feature, taken
together with the fact that Lyapunov variables are never used,
explains the efficiency of the proposed technique.

3.1.2. Time-domain design
We now specialize the objective function f∞ to time-domain

specifications. For simplicity of the exposition, we assume the
performance channel w → z is SISO, that is m1 = p1 = 1,
while the controller channel y → u remains unrestricted.

As noted in [9], most specifications are in fact envelope con-
straints

zmin(t)�z(�, t)�zmax(t) for all t �0, (16)
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where z(�, .) is the closed-loop time response to the input signal
w (typically a unit step command), when controller K=K(�)

is used, and where −∞�zmin(t)�zmax(t)� +∞ for all t �0.
This formulation offers sufficient flexibility to cover basic step
response specifications such as rise and settling times, over-
shoot and undershoot, or steady-state tracking. Several con-
straints of this type can be combined using piecewise constant
envelope functions zmin and zmax. A model following specifica-
tion is easily incorporated by setting zmin = zmax = zref , where
zref is the desired closed-loop response.

For a stabilizing controller K = K(�), the maximum con-
straint violation

f∞(�) = max
t �0

max
{[z(�, t)−zmax(t)]+, [zmin(t)−z(�, t)]+} ,

(17)

where [.]+ denotes the threshold function [x]+ = max{0, x}, is
well defined. We have f∞(�)�0, and f∞(�)= 0 if and only if
z(�, .) satisfies the constraint (16). Minimizing f∞ is therefore
equivalent to reducing constraint violation, and will as a rule
lead to a controller K(�̄) achieving the stated time-domain
specifications. In the case of failure, this approach converges
at least to a local minimum of constraint violation.

The objective function f∞ is a composite function with a
double max operator. The outer max on t �0 makes the program
in (17) semi-infinite, while the inner max, for all t �0, is taken
over f1(�, t) = z(�, t) − zmax(t), f2(�, t) = zmin(t) − z(�, t)

and f3(�, t) = 0.
Assuming that the time response � �→ z(., t) is continuously

differentiable, f∞ is Clarke regular and its subdifferential is

�f∞(�) = co
t∈�(�)

{
co

i∈I(�,t)
∇�fi(�, t)

}
, (18)

where �(�) is the set of active times defined by (10), and
I(�, t) = {i ∈ {1, 2, 3} : f (�, t) = fi(�, t)}. More precisely,
for all t ∈ �(�),

co
i∈I(�,t)

∇�fi(�, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{∇�z(�, t)}
if z(�, t) > zmax(t),

{−∇�z(�, t)}
if z(�, t) < zmin(t),

{0}
if zmin(t) < z(�, t) < zmax(t),

[∇�z(�, t), 0]
if z(�, t) = zmax(t) > zmin(t),

[−∇�z(�, t), 0]
if z(�, t) = zmin(t) < zmax(t),

[−∇�z(�, t), ∇�z(�, t)]
if z(�, t) = zmin(t) = zmax(t).

(19)

Clearly, as soon as the envelope constraint is satisfied for one
active time t ∈ �(�), either one of the last four alternatives
in (19) is met, we have f∞(�) = 0 for all t �0 so that 0 ∈
�f∞(�) and � is a global minimum of program (9). The com-
putation of the descent step only makes sense in the first two

cases, i.e., when f∞(�) > 0. Notice then that the active times
set �(�) can be partitioned into

�1(�) := {t : t ∈ �(�), f1(�, t) = f∞(�)},
�2(�) := {t : t ∈ �(�), f2(�, t) = f∞(�)} (20)

and the Clarke subdifferential �g∞(K) is completely described
by the subgradients

�Y (K) =
∑

t∈�1(K)

Yt∇Kz(K, t) −
∑

t∈�2(K)

Yt∇Kz(K, t),

(21)

where Yt �0 for all t ∈ �(K) and
∑

t∈�(K)Yt = 1.

Remark. The hypothesis of a finite set �(�) may be unrealistic
in the time domain case, because the step response trajectory
z(·, t) is not necessarily analytic or piecewise analytic, and may
therefore attain the maximum value on one or several contact
intervals [t−, t+], where t− is the entry time, t+ the exit time,
and where it is reasonable to assume that there are only finitely
many such contact intervals. In that case, our method is easily
adapted, and (11) remains correct in so far as the full contact
interval can be represented by three pieces of information: the
gradients 	x of the trajectory at x=t−, x=t+, and one additional
element 	x = 0 for say x = (t− + t+)/2 on the interior of the
contact interval. (This is a difference with the frequency domain
case, where the functions � �→ f (�, �) are analytic, so that
the phenomenon of a contact interval could not occur.)

A more systematic approach to problems of this form with
infinite active sets would consist in allowing choices of finite
sets �e(�), where �(�) /⊂ �e(�) is allowed. This leads to a
variation of the present algorithm discussed in [6,24,7], where
a trust region strategy replaces the present line search method.

Gradient computation: By differentiating the state-space
equations (1) with respect to Kij , we get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�̇x

�Kij

(K, t) = A
�x

�Kij

(K, t) + B2
�u

�Kij

(K, t),

�z

�Kij

(K, t) = C1
�x

�Kij

(K, t) + D12
�u

�Kij

(K, t),

�y

�Kij

(K, t) = C2
�x

�Kij

(K, t),

(22)

controlled by

�u

�Kij

(K, t) = �K

�Kij

(K, t)y(K, t) + K
�y

�Kij

(K, t),

= yj (K, t)ei + K
�y

�Kij

(K, t), (23)

where ei stands for the ith vector of the canonical basis of
Rm2 . It follows that the partial derivative of the output signal
�z/�Kij (K, t) is the simulated output of the interconnection
in Fig. 2, where the exogenous input w is held at 0, and the
vector yj (K, t)ei is added to the controller output signal. We
readily infer that nu × ny simulations are required in order to
form the sought gradients.
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Fig. 2. Interconnection for gradient computation.

This way of computing output signal gradients by performing
closed-loop simulations is at the root of the IFT method, ini-
tially proposed in [17] for SISO systems and controllers. This
optimization technique has originated an extensive bibliogra-
phy (see [16,15,13] and references therein) and was extended
to multivariable controllers [14]. Most of these papers illustrate
the IFT with a smooth quadratic objective function, minimized
with the Gauss–Newton algorithm. In [18], the nonsmooth ab-
solute error is used, but a differentiable optimization algorithm
(DFP) is applied. Our approach here differs both in the choice
of the nonsmooth optimization criterion f∞, and in the design
of a tailored nonsmooth algorithm as outlined in Section 3.

Practical aspects: The active time sets �1(K) and �2(K)

are computed via numerical simulation of the closed-loop sys-
tem in response to the input signal w, see Fig. 1. This first
simulation determines the time samples (t l)0� l �N that will be
used throughout the optimization phase. Measured output val-
ues (y(t l)) must be stored for subsequent gradient computation.
The extension �e(K) is built from �(K) by adding time sam-
ples with largest envelope constraint violation (16), up to n�
elements in all are retained. According to our experiments the
set extension generally provides a better model of the original
problem as captured by the optimality function 
e (11) and thus
descent directions (12) with better quality are obtained. The
gradients ∇Kz(K, t l) (for t ∈ �e(K)) result from nu × ny

additional simulations of the closed-loop (Fig. 2) at the same
time samples (t l)0� l �N .

4. Applications

In this section, we illustrate our nonsmooth technique on a
variety of examples including structured H∞ control, reliable
control and time response shaping. We insist on the high flex-
ibility of the proposed nonsmooth techniques and its excellent
success in solving hard practical problems.

4.1. Application to observer-based controller design

Observer-based controllers suit many realistic control
problems, whenever the system state variables are not directly
available for feedback synthesis. Unlike unstructured dynamic
controllers, they have a straightforward physical interpretation,
since controller states are simply estimates of the plant states.
In addition, observer-based controllers are easier to implement
and to re-tune.

Let x̂ be an asymptotic estimate of the state vector x of the
plant P (1). We assume that (C2, A) is detectable, and that
(A, B2) is stabilizable. As is well known, the estimate x̂ is
obtained through the full-order Luenberger observer

˙̂x = Ax̂ + B2u + Kf (y − C2x̂), (24)

where Kf ∈ Rn×p2 is the state estimator gain. The controlled
input is u = −Kcx̂, where Kc ∈ Rm2×n is the state feedback
gain. With the notations in (3), we get

(25)

where the controller parameters are described as

� :=
[

vecKf

vecKc

]
∈ Rn(p2+m2).

This state-space realization of the standard full-order observer-
based controller is linear in �. It follows that the Jacobian matrix
K′(�) only depends on the plant data A, B2 and C2.

Nonsmooth H∞ synthesis with observer-based controllers
has been tested on the following problem discussed in [1], taken
from the Matlab library of mu-synthesis examples for Simulink.
The state-space equations of the controlled plant are

(26)

The exogenous inputs are the disturbances w1 (on the actuator
signal) and w2 (on the measurement). Two frequency domain
weights Wu(s) and Wy(s) are applied to u = uG − w1, respec-
tively, to y = y + w1, defining the regulated outputs z1 and z2.
They are

Wu(s) = 50s + 5000

s + 10000
and Wy(s) = 0.5s + 1.5

s + 10000
. (27)

The resulting augmented model (Fig. 3) has order 4, with state
vector x = [xG, xu, xy]T, and the realization used in our com-
putations is the following:

(28)
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z1

z2

y+ +

w1

++

Wu

Wy

G

u

 (�)

w2

Fig. 3. Observer-based feedback with augmented model.

Notice that the static gains Kf and Kc depend on the state-space
realization chosen for P , since the controller state variable x̂

estimates x.
Running our nonsmooth algorithm to minimize ‖Tw→z

(K(�))∞, yields the gains

Kf = [3886, 7203, 163.3, 29.22]T,

Kc = [−484, 219.2, 1876, −152.9]. (29)

Correspondingly, the achieved H∞ norm is 0.5168, which is
about the same as the H∞ performance of the standard full-
order H∞ controller � = 0.5109.

4.2. Application to reliable control

Reliable or fault-tolerant control has to guarantee satisfac-
tory stability and performance in nominal conditions as well
as in scenarios, where some system components turn faulty
or deviate from nominal conditions. The active approach uses
a fault detection scheme or identification procedure to adjust
the controller in real-time to ensure safe operation. Here the
focus is on the passive approach, where a single controller is
required to handle most plausible default scenarios. See [25]
and the survey [22] for a comprehensive view. We reformulate
this problem as a doubly structured design problem and use
our nonsmooth method to derive a local solution. In Fig. 4 we
show on the left side various synthesis scenarios, where a single
(unstructured or already structured) controller K(�) must si-
multaneously minimize the closed-loop performance channels
‖Twi→zi(K(�))‖∞ for i = 1, . . . , N . This is readily formu-
lated as a single structured H∞ synthesis problem, where the
sought controller K(�) has a repeated block-diagonal structure
K(�) = R ◦ K(�). See the right-hand side of Fig. 4. A state-
space representation of the plant P(s) is readily derived as

P

wN zN

yN

PN

w1 z1

y1

P1

w z

y

uN

u1

u⇔

. . .

...

   (�)

TwN→zN
 (   (�))

Tw1→z1
 (   (�))

   (�)

  (�)

Tw→z (   (�))

   (�)

Fig. 4. Reliable control based on N scenarios.

where the superscript i refers to the ith scenario and where ap-
propriate dynamic augmentations have been performed before-
hand for dynamic controllers. Note that the controller is now
doubly- structured in the sense that the already structured data
K(�) are repeated in the block-diagonal structure IN ⊗K(�),
which we describe by the diagonal block repetition operator R
above (see Fig. 4). This fits nicely into the general framework
presented in Sections 2 and 3, because the chain rule can ob-
viously be used to cope with a diagonal augmentation R ◦ K
of controller parameterizations.

We illustrate the synthesis technique by means of the follow-
ing example from [27]. It consists of 10 plants G0 to G9 with
G0(s) = 1/(s − 1), the nominal model and

G1(s) = 6.1

s2 + 5.1s − 6.1
, G2(s) = 1.425

s − 1.425
,

G3(s) = 0.67

s − 0.67
, G4(s) = −(s − 14.29)

(s + 14.29)(s − 1)
,

G5(s) = 4900

(s − 1)(s2 + 21s + 4900)
,

G6(s) = 4900

(s + 777.7)(s + 6.301)(s − 1)
,

G7(s) = 15625106

(s + 50)6(s − 1)
,

G8(s) = −2.9621(s − 9.837)(s + 0.7689)

(s + 32)(s − 1)(s + 0.5612)
,

G9(s) = 4.991(s2 + 3.672s + 34.85)

(s + 32)(s + 7.241)(s − 1)
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Fig. 5. Feedforward design with reference model.
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Fig. 6. Step response with performance controller.

as faulty modes. The design objective is to minimize

max
i=0,...,9

‖W(s)Twi→zi (K)‖∞,

where Twi→zi := (I + Gi(s)K(s))−1 (30)

and W(s) = (0.25s + 0.6)/(s + 0.006) is a weighting
function penalizing the low frequency range to achieve good
tracking properties in response to a step command. Different
controller structures K(�) will be considered in the sequel.
The author in [27] investigated various options including a con-
troller with good nominal performance K1(s)=10(0.9s+1)/s,
a robust controller K2(s) = 2.8s + 1/s, and a generalized in-
ternal model control (GIMC) implementation based on both
K1(s) and K2(s), which we shall denote Kgimc(s). The latter
is a 6th order controller with Youla parameter

Q := −0.68889s(s + 1.452)(s + 1)

(s + 1.111)(s2 + 1.8s + 1)
.

Step responses of these controllers for nominal and faulty
modes of the plant are displayed in Figs. 6–8. Clearly, K1 has
good nominal performance, but is not satisfactory on faulty
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Fig. 7. Step response with robust controller.
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Fig. 8. Step response with generalized internal model controller.

modes. On the other hand, controller K2 shows very robust per-
formance, but responses are slower and the controller performs
poorly in the nominal case. The GIMC implementation dramat-
ically improves the situation, since good nominal performance
is maintained and the controller also gives good performance
on faulty modes.

We have used the proposed nonsmooth technique to minimize
the worst case objective in (30) over the set of PID feedback
controllers with parametrization given in (6). The following
parameter values were obtained:

� = 0.0100, Ri = 1.1589, Rd = 0.4883, DK = 4.0263.

The achieved max H∞ norm is 0.4886, and step responses
with this controller are shown in Fig. 9. This controller shows
clearly better performance than K1(s) or K2(s), but performs
slightly worse than Kgimc(s). Note that the GIMC controller
can also be viewed as a two-degree of freedom controller [26],



V. Bompart et al. / Systems & Control Letters 57 (2008) 271–282 279

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

time (sec.)

o
u
tp

u
t

Fig. 9. Step response with nonsmooth PID controller.

which suggests using a two-degree of freedom architecture to
improve the PID feedback controller. We have used the model
following synthesis interconnection shown in Fig. 5, where Gref
is a reference model to compute a second-order feedforward
controller F(s) with fixed feedback controller K(s) = KPID.
As before, the feedforward controller is required to minimize
the worst-case tracking error from r to e over simultaneously
the nominal model and the faulty modes

min
F(s)

max
i=0,...,9

‖T i
r→e(F (s))‖∞.

With a slow reference model

Gref = 11.11

s2 + 6s + 11.11
,

the following feedforward controller was obtained

F(s) = −3.0642(s + 1.976)(s + 1.273)

(s + 3.796)(s + 1.049)
.

With a faster reference model

Gref = 28.7

s2 + 7.5s + 28.7
,

we have obtained

F(s) = −1.1684(s2 + 1.46s + 18.51)

s2 + 5.015s + 18.39
.

Note that the overall controller has order 4 since it consists
in a PID controller in the feedback path and a second-order
controller for feedforward action. Steps responses are given in
Figs. 10 and 11, respectively, for slow and fast feedforward
controllers. Note that the latter controller appears to be the best
obtained so far in terms of settling time and overshoot.
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Fig. 10. Step response with PID + feedforward control, slow reference model.
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Fig. 11. Step response with PID + feedforward control, fast reference model.

4.3. Application to PID time response shaping

In order to illustrate the ability of the proposed nonsmooth
technique to handle time-domain constraints and controller
structure, the following test examples from [19] have been used

G1(s) = 1

20s + 1
e−5s , G2(s) = 1

20s + 1
e−20s

G3(s) = 1

(10s + 1)8 , G4(s) = −5s + 1

(10s + 1)(20s + 1)
. (31)

The time delays are replaced by a third-order Padé approxima-
tion, which generates nonminimum phase zeros in the transfer
functions G1 and G2. Each of these plants is regulated by a
two-degree-of-freedom (2-DOF) PID controller, as shown in
Fig. 12, with Kr(s) = Kp + Ki

s
and Kỹ(s) = Kp + Ki

s
+ Kds

1+�s .
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This 2-DOF controller structure is equivalent to the following
state-space representation, in the framework shown in Fig. 13,
with the notations from (7):

(32)

where the search space is � = [�, Ri, Rd, DK ]T ∈ R4.
For each of the four systems (31), the envelope functions

were chosen piecewise constant, in order to constrain the over-
shoot zos and the settling time at ±2% of the steady state.
Using the indicatrix function 1[a,b[ to restrict to intervals,

Kr (s) G (s)

Ky (s)

-

u ỹ+r

˜

Fig. 12. Two 2-DOF with PID.

   (�) r

yP

G

w = r z = y

ỹ

u

˜

Fig. 13. Equivalent standard form to 2-DOF with PID.

Table 1
PID parameters, settling time and overshoot

Plant Contr. � Kp Ki Kd ts (S) zos (%)

G1 ZN (init) 10−3 4.0588 0.4388 9.3860 46.22 46.92
G1 IFT 10−3 3.6717 0.1324 7.7311 21.34 5.37
G1 NS 10−3 3.3315 0.1221 9.3874 20.94 1.95

G2 NEW (init) 10−3 0.5000 0.0500 5. 0000 319.45 45.72
G2 IFT 10−3 09303 0.0309 5.6332 50.15 0.90
G2 NS 9.9992 × 10−4 0.9361 0.0305 4.9920 49.35 1.73

G3 NEW 10−3 0.5000 0.0100 10.0000 235.54 0.11
G3 IFT 10−3 0.6641 0.0123 12.0959 131.99 1.00
G3 NS 10−3 0.6590 0.0121 9.9997 129.91 1.97

G4 ZN 10−3 3.5294 0.2101 14.8235 69.22 53.82
G4 IFT 10−3 3.0279 0.0654 18.4075 28.31 0.53
G4 NS 10−3 2.8947 0.0615 14.8247 25.58 1.67

we define

zmax = (1 + zos)1[0,ts [ + 1.021[ts ,+∞[, (33)

zmin =
{−∞ on [0, ts[,

0.98 on [ts , +∞[. (34)

The vector � was initialized with the PID parameters obtained
with the Ziegler–Nichols (ZN) tuning rules in [19], a heuristic
which gives unsatisfactory step responses for the plants (31),
with high overshoot and slow settling times. The results are
summarized in Table 1, where “NS” indicates the controller
parameters obtained from the nonsmooth optimization. They
are compared to those from [19], denoted by “IFT”. The cor-
responding step responses are drawn in Figs. 14–17.

Obviously, arbitrary low zos or ts are not necessarily achiev-
able with the structured controller K(�). If the chosen time
envelope is too restrictive, the algorithm will converge to a
minimizer �̄ of f∞ (i.e., 
e(�̄) ≈ 0) with f∞ > 0.

Conversely, as the algorithm returns a local minimizer �̄,
f∞(�̄) > 0 does not necessaries mean that the time constraints
could not be satisfied. A restart with another initial controller
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Fig. 14. G1 step responses with PIDs.
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Fig. 15. G2 step responses with PIDs.
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Fig. 16. G3 step responses with PIDs.

0 20 40 60 80 100 120 140 160 180 200

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

z
 (

t)

ZN (initial)

IFT

NS
zmax

zmin

Fig. 17. G4 step responses with PIDs.

� may very well lead to f∞ = 0. This difficulty appeared for
plant G2 (resp. G3): with the ZN controller as starting point,
we reached f∞ = 3.4033 × 10−2 (resp. f∞ = 1.3907 × 10−2)
at convergence, which was an unsatisfactory local minimum.
We got around this difficulty by restarting the algorithm from
a new point, denoted by “NEW” in Table 1.

Finally, we mention that we did not use any masking scheme
as is classically done in the IFT approach to avoid spurious
solutions.

5. Conclusion

We have described a general and very flexible nonsmooth
algorithm to compute locally optimal solutions to synthesis
problems subject to frequency- or time-domain constraints.
Our method offers the new and appealing possibility to inte-
grate controller structures of practical interest in the design.
We have now several encouraging reports of successful experi-
ments, which advocate the use of nonsmooth mathematical pro-
gramming techniques when it comes to solving difficult (often
NP-hard) design problems. The results obtained in this paper
corroborate previous studies on different problem classes. Ex-
tension of our nonsmooth technique to problems involving a
mixture of frequency- and time-domain constraints seems a
natural next step, which is near at hand. For time-domain de-
sign, we have noticed that the proposed technique assumes very
little about the system nature, except the access to simulated
responses. A more ambitious goal would therefore consider ex-
tensions to nonlinear systems.
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