
Chapter 1
Bundle method for non-convex minimization
with inexact subgradients and function values

Dominikus Noll

Abstract We discuss a bundle method to minimize locally Lipschitz functions
which are both non-convex and non-smooth. We analyze situations where only in-
exact subgradients or function values are available. For suitable classes of such non-
smooth functions we prove convergence of our algorithm to approximate critical
points.

1.1 Introduction

We consider optimization programs of the form

min
x∈Rn

f (x), (1.1)

where f : Rn → R is locally Lipschitz but neither differentiable nor convex. We
present a bundle algorithm which converges to a critical point of (1.1) if exact func-
tion and subgradient evaluation of f are provided, and to an approximate critical
point if subgradients or function values are inexact. Here x̄ ∈ Rn is approximate
critical if

dist(0,∂ f (x̄))≤ ε, (1.2)

where ∂ f (x) is the Clarke subdifferential of f at x.
The method discussed here extends the classical bundle concept to the non-

convex setting by using down-shifted tangents as a substitute for cutting planes.
This idea was already used in the 1980s in Lemaréchal’s M2FC1 code [34] or in
Zowe’s BT codes [50,56]. Its convergence properties can be assessed by the model-
based bundle techniques [6,7] and [43,44]. Recent numerical experiments using the
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down-shift mechanism are reported in [8, 21, 52]. In the original paper of Schramm
and Zowe [50] down-shift is discussed for a hybrid method combining bundling,
trust region and line-search elements.

For convex programs (1.1) bundle methods which can deal with inexact function
values or subgradients have been discussed at least since 1985, see Kiwiel [28, 30].
More recently, the topic has been revived by Hintermüller [24], who presented a
method with exact function values but inexact subgradients g ∈ ∂ε f (x), where ε

remains unknown to the user. Kiwiel [32] expands on this idea and presents an
algorithm which deals with inexact function values and subgradients, both with un-
known errors bounds. Kiwiel and Lemaréchal [33] extend the idea further to address
column generation. Incremental methods to address large problems in stochastic
programming or Lagrangian relaxation can be interpreted in the framework of inex-
act values and subgradients, see e.g. Emiel and Sagastizábal [17, 18], Kiwiel [31].
In [41] Nedic and Bertsekas consider approximate functions and subgradients which
are in addition affected by deterministic noise.

Nonsmooth methods without convexity have been considered by Wolfe [54],
Shor [51], Mifflin [40], Schramm and Zowe [50], and more recently by Lukšan and
Vlček [37], Noll and Apkarian [42], Fuduli et al. [19, 20], Apkarian et al. [6], Noll
et al. [43], Hare and Sagastizábal [23], Sagastizábal [49], Lewis and Wright [35],
Noll [44]. In the context of control applications, early contributions are Polak and
Wardi [46], Mayne and Polak [38,39], Kiwiel [29], Polak [45], Apkarian et al. [1–7],
Bompart et al. [9]. All these approaches use exact knowledge of function values and
subgradients.

The structure of the paper is as follows. In section 1.2 we explain the concept of
an approximate subgradient. Section 1.3 discusses the elements of the algorithm, ac-
ceptance, tangent program, aggregation, cutting planes, recycling, and the manage-
ment of proximity control. Section 1.4 presents the algorithm. Section 1.5 analyses
the inner loop in the case of exact function values and inexact subgradients. Sec-
tion 1.6 gives convergence of the outer loop. Section 1.7 extends to the case where
function values are also inexact. Section 1.8 uses the convergence theory of sections
1.5 – 1.7 to derive a practical stopping test. Section 1.9 concludes with a motivating
example from control.

1.2 Preparation

Approximate subgradients in convex bundle methods refer to the ε-subdifferential
[26]:

∂ε f (x) = {g ∈ Rn : g>(y− x)≤ f (y)− f (x)+ ε for all y ∈ Rn}, (1.3)

whose central property is that 0 ∈ ∂ fε(x̄) implies ε-minimality of x̄, i.e., f (x̄) ≤
min f +ε . Without convexity we cannot expect a tool with similar global properties.
We shall work with the following very natural approximate subdifferential
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∂[ε] f (x) = ∂ f (x)+ εB, (1.4)

where B is the unit ball in some fixed Euclidian norm, and ∂ f (x) is the Clarke
subdifferential of f . The present section motivates this choice.

The first observation concerns the optimality condition (1.2) arising from the
choice (1.4). Namely 0 ∈ ∂[ε] f (x̄) can also be written as 0 ∈ ∂ ( f + ε‖ · −x‖)(x),
meaning that a small perturbation of f is critical at x.

We can also derive a weak form of ε-optimality from 0 ∈ ∂[ε] f (x) for composite
functions f = g ◦F with g convex and F smooth, or more generally, for lower C2

functions, see [47], which have such a representation locally.

Lemma 1. Let f = g ◦F where g is convex and F is of class C2, and suppose 0 ∈
∂[ε] f (x). Fix r > 0, and define

cr := max
‖d‖=1

max
‖x′−x‖≤r

max
φ∈∂g(F(x))

φ>D2F(x′)[d,d].

Then x is (rε + r2cr/2)-optimal on the ball B(x,r).

Proof. We have to prove f (x) ≤ f (x+)+ rε + r2cr/2 for every x+ ∈ B(x,r). Write
x+ = x+ td for some ‖d‖ = 1 and t ≤ r. Since 0 ∈ ∂[ε] f (x), and since ∂ f (x) =
DF(x)∗∂g(F(x)), there exists φ ∈ ∂g(F(x)) such that ‖DF(x)∗φ‖ ≤ ε . In other
words, ‖φ>DF(x)d‖ ≤ ε because ‖d‖= 1. By the subgradient inequality we have

φ
> (F(x+ td)−F(x))≤ g(F(x+ td))−g(F(x)) = f (x+)− f (x). (1.5)

Second-order Taylor expansion of t 7→ φ>F(x+ td) at t = 0 gives

φ
>F(x+ td) = φ

>F(x)+ tφ>DF(x)d + t2

2 φ>D2F(xt)[d,d]

for some xt on the segment [x,x + td]. Substituting this into (1.5) and using the
definition of cr gives

f (x)≤ f (x+)+ t‖φ>DF(x)d‖+ t2

2 ‖φ
>D2F(xt)[d,d]‖ ≤ f (x+)+ rε + r2

2 cr,

hence the claim. �

Remark 1. For convex f we can try to relate the two approximate subdifferentials in
the sense that

∂ε f (x)⊂ ∂[ε ′] f (x)

for a suitable ε ′= ε ′(x,ε). For a convex quadratic function f (x) = 1
2 x>Qx+q>x it is

known that ∂ε f (x) = {∇ f (x)+Q1/2z : 1
2‖z‖

2 ≤ ε}, [26], so that ∂ε f (x)⊂ ∂ f (x)+
ε ′B = ∂[ε ′] f (x) for ε ′ = sup{‖Q1/2z‖ : 1

2‖z‖
2 ≤ ε}, which means that ε ′(x,ε) is

independent of x and behaves as ε ′=O(ε1/2). We expect this type of relation to hold
as soon as f has curvature information around x. On the other hand, if f (x) = |x|,
then ∂ fε(x) = ∂ f (x)+ ε

|x|B for x 6= 0 (and ∂ε f (0) = ∂ f (0)), which means that the
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relationship ε ′ = ε/|x| is now linear in ε for fixed x 6= 0. In general it is difficult
to relate ε to ε ′. See Hiriart-Urruty and Seeger [25] for more information on this
question.

Remark 2. For composite functions f = g ◦F with g convex and F of class C1 we
can introduce

∂ε f (x) = DF(x)∗∂ε g(F(x)),

where ∂ε g(y) is the usual convex ε-subdifferential (1.3) of g and DF(x)∗ is the
adjoint of the differential of F at x. Since the corresponding chain rule is valid in
the case of an affine F , ∂ε f (x) is consistent with (1.3). Without convexity ∂ fε(x)
no longer preserves the global properties of (1.3). Yet, for composite functions f =
g ◦F a slightly more general version of Lemma 1 combining ∂[σ ] f and ∂ε f can be
proved along the lines of [42, Lemma 2]. In that reference the result is shown for the
particular case g = λ1, but an extension can be obtained by reasoning as in Lemma
1.

Remark 3. For convex f the set ∂[ε] f (x) coincides with the Fréchet ε-subdifferential
∂ F

ε f (x). According to [36, Cor. 3.2] the same remains true for approximate convex
functions. For the latter see section 1.5.

1.3 Elements of the algorithm

1.3.1 Local model

Let x be the current iterate of the outer loop. The inner loop with counter k generates
a sequence yk of trial steps, one of which is eventually accepted to become the new
serious step x+. At each instant k we dispose of a convex working model φk(·,x),
which approximates f in a neighborhood of x. We suppose that we know at least
one approximate subgradient g(x) ∈ ∂[ε] f (x). The affine function

m0(·,x) = f (x)+g(x)>(·− x)

will be referred to as the exactness plane at x. For the moment we assume that it
gives an exact value of f at x, but not an exact subgradient. The algorithm assures
φk(·,x)≥m0(·,x) at all times k, so that g(x)∈ ∂φk(x,x) for all k. In fact we construct
φk(·,x) in such a way that ∂φk(x,x)⊂ ∂[ε] f (x) at all times k.

Along with the first-order working model φk(·,x) we also consider an associated
second-order model of the form

Φk(y,x) = φk(y,x)+ 1
2 (y− x)>Q(x)(y− x),

where Q(x) depends on the serious iterate x, but is fixed during the inner loop k. We
allow Q(x) to be indefinite.
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1.3.2 Cutting planes

Suppose yk is a null step. Then model Φk(·,x) which gave rise to yk was not rich
enough and we have to improve it at the next inner loop step k + 1 in order to
perform better. We do this by modifying the first-order part. In convex bundling
one includes a cutting plane at yk into the new model φk+1(·,x). This remains the
same with approximate subgradients and values (cf. [24,32]) as soon as the concept
of cutting plane is suitably modified. Notice that we have access to gk ∈ ∂[ε] f (yk),
which gives us an approximate tangent

tk(·) = f (yk)+g>k (·− yk)

at yk. Since f is not convex, we cannot use tk(·) directly as cutting plane. In-
stead we use a technique originally developed in Schramm and Zowe [50] and
Lemaréchal [34], which consists in shifting tk(·) downwards until it becomes useful
for φk+1(·,x). Fixing c > 0 once and for all, we call

sk := [tk(x)− f (x)]++ c‖yk− x‖2 (1.6)

the down-shift and introduce

mk(·,x) = tk(·)− sk,

called the down-shifted tangent.
We sometimes use the following more stringent notation, where no reference to

the counter k is made. The approximate tangent is ty,g(·) = f (y)+g>(·−y), bearing
a reference to the point y where it is taken and to the specific approximate subgra-
dient g ∈ ∂[ε] f (y). The down-shifted tangent is then my,g(·,x) = ty,g(·)− s, where
s = s(y,g,x) = [ty,g(x)− f (x)]+ + c‖y− x‖2 is the down-shift. Since this notation
is fairly heavy, we will try to avoid it whenever possible and switch to the former,
bearing in mind that tk(·) depends both on yk and the subgradient gk ∈ ∂[ε] f (yk).
Similarly, the down-shifted tangent plane mk(·,x) depends on yk, gk, and on x, as
does the down-shift sk. We use mk(·,x) as a substitute for the classical cutting plane.
For convenience we continue to call mk(·,x) a cutting plane.

The cutting plane satisfies mk(x,x)≤ f (x)−c‖yk−x‖2, which assures that it does
not interfere with the subdifferential of φk+1(·,x) at x. We build φk+1(·,x) in such a
way that it has mk(·,x) as an affine minorant.

Proposition 1. Let φk+1(·,x) = max{mν(·,x) : ν = 0, . . . ,k}. Then ∂φk+1(x,x) ⊂
∂[ε] f (x).

Proof. As all the down-shifts sk are positive, φk+1(y,x) =m0(y,x) in a neighborhood
of x, hence ∂φk+1(x,x) = ∂m0(x,x) = {g(x)} ⊂ ∂[ε] f (x). �
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1.3.3 Tangent program

Given the local model Φk(·,x) = φk(·,x)+ 1
2 (·− x)>Q(x)(·− x) at serious iterate x

and inner-loop counter k, we solve the tangent program

min
y∈Rn

Φk(y,x)+
τk
2 ‖y− x‖2. (1.7)

We assume that Q(x) + τkI � 0, which means (1.7) is strictly convex and has a
unique solution yk, called a trial step. The optimality condition for (1.7) implies

(Q(x)+ τkI)(x− yk) ∈ ∂φk(yk,x). (1.8)

If φk(·,x) = max{mν(·,x) : ν = 0, . . . ,k}, with mν(·,x) = aν + g>ν (· − x), then we
can find λ0 ≥ 0, . . . ,λk ≥ 0, summing up to 1, such that

g∗k := (Q(x)+ τkI)(x− yk) =
k

∑
ν=0

λν gν .

Traditionally, g∗k is called the aggregate subgradient at yk. We build the aggregate
plane

m∗k(·,x) = a∗k +g∗>k (·− x),

where a∗k = ∑
k
ν=1 λν aν . Keeping m∗k(·,x) as an affine minorant of φk+1(·,x) allows

to drop some of the older cutting planes to avoid overflow. As ∂φk(yk,x) is the
subdifferential of a max-function, we know that λν > 0 precisely for those mν(·,x)
which are active at yk. That is, ∑

k
ν=1 λν mν(yk,x)= φk(yk,x). Therefore the aggregate

plane satisfies

m∗k(y
k,x) = φk(yk,x). (1.9)

As our algorithm chooses φk+1 such that m∗k(·,x) ≤ φk+1(·,x), we have φk(yk,x) ≤
φk+1(yk,x). All this follows the classical line originally proposed in Kiwiel [27].
Maintaining a model φk(·,x) which contains aggregate subgradients from previous
sweeps instead of all the older gν , ν = 0, . . . ,k does not alter the statement of Propo-
sition 1, nor of formula (1.9).

1.3.4 Testing acceptance

Having computed the kth trial step yk via (1.7), we have to decide whether it should
be accepted as the new serious iterate x+. We compute the test quotient

ρk =
f (x)− f (yk)

f (x)−Φk(yk,x)
.
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Fixing constants 0 < γ < Γ < 1, we call yk bad if ρk < γ , and good if ρk ≥ Γ . If
yk is not bad, meaning ρk ≥ γ , then it is accepted to become x+. We refer to this as
a serious step. Here the inner loop ends. On the other hand, if yk is bad, then it is
rejected and referred to as a null step. In this case the inner loop continues.

1.3.5 Management of τ in the inner loop

The most delicate point is the management of the proximity control parameter dur-
ing the inner loop. Namely, it may turn out that the trial steps yk proposed by the
tangent program (1.7) are too far from the current x, so that no decrease below f (x)
can be achieved. In the convex case one relies entirely on the mechanism of cutting
planes. Indeed, if yk is a null step, then the convex cutting plane, when added to
model φk+1(·,x), will cut away the unsuccessful yk, paving the way for a better yk+1

at the next sweep.
The situation is more complicated without convexity, where cutting planes are

no longer tangents to f . In the case of down-shifted tangents the information stored
in the ideal set of all theoretically available cutting planes may not be sufficient to
represent f correctly when yk is far away from x. This is when we have to force
smaller steps by increasing τ , i.e., by tightening proximity control. As a means to
decide when this has to happen, we use the parameter

ρ̃k =
f (x)−Mk(yk,x)
f (x)−Φk(yk,x)

, (1.10)

where mk(·,x) is the new cutting plane drawn for yk as in Section 1.3.1, and
Mk(·,x) = mk(·,x) + 1

2 (· − x)>Q(x)(· − x). We fix a parameter γ̃ with γ < γ̃ < 1
and make the following decision.

τk+1 =

{
2τk if ρk < γ and ρ̃k ≥ γ̃

τk if ρk < γ and ρ̃k < γ̃
. (1.11)

The idea in (1.11) can be explained as follows. The quotient ρ̃k in (1.10) can also be
written as ρ̃k =

(
f (x)−Φk+1(yk,x)

)
/
(

f (x)−Φk(yk,x)
)
, because the cutting plane

at stage k will be integrated into model Φk+1 at stage k+1. If ρ̃k ≈ 1, we can there-
fore conclude that adding the new cutting plane at the null step yk hardly changes the
situation. Put differently, had we known the cutting plane before computing yk, the
result would not have been much better. In this situation we decide to force smaller
trial steps by increasing the τ-parameter. If on the other hand ρ̃k� 1, then the gain
of information provided by the new cutting plane at yk is substantial with regard to
the information already stored in Φk. Here we continue to add cutting planes and
aggregate planes only, hoping that we will still make progress without having to
increase τ . The decision ρ̃k ≈ 1 versus ρ̃k� 1 is formalized by the rule (1.11).
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Remark 4. By construction ρ̃k ≥ 0, because aggregation assures that φk+1(yk,x) ≥
φk(yk,x). Notice that in contrast ρk may be negative. Indeed, ρk < 0 means that the
trial step yk proposed by the tangent program (1.7) gives no descent in the function
values, meaning that it is clearly a bad step.

1.3.6 Management of τ in the outer loop.

The proximity parameter τ will also be managed dynamically between serious steps
x→ x+. In our algorithm we use a memory parameter τ

]
j , which is specified at the

end of the ( j−1)st inner loop, and serves to initialize the jth inner loop with τ1 = τ
]
j .

A first rule which we already mentioned is that we need Q(x j)+τkI � 0 for all k
during the jth inner loop. Since τ is never decreased during the inner loop, we can
assure this if we initialize τ1 >−λmin(Q(x j)).

A more important aspect is the following. Suppose the ( j−1)st inner loop ended
at inner loop counter k j−1, i.e. x j = yk j−1 with ρk j−1 ≥ γ . If acceptance was good,
i.e., ρk j−1 ≥ Γ , then we can trust our model, and we account for this by storing a

smaller parameter τ
]
j =

1
2 τk j−1 < τk j−1 for the jth outer loop. On the other hand, if

acceptance of the ( j−1)st step was neither good nor bad, meaning γ ≤ ρk j−1 ≤ Γ ,
then there is no reason to decrease τ for the next outer loop, so we memorize τk j−1 ,
the value we had at the end of the ( j−1)st inner loop. Altogether

τ
]
j =

{
max{ 1

2 τk j−1 ,−λmin(Q(x j))+ζ} if ρk j−1 ≥ Γ

max{τk j−1 ,−λmin(Q(x j))+ζ} if γ ≤ ρk j−1 < Γ
(1.12)

where ζ > 0 is some small threshold fixed once and for all.

1.3.7 Recycling of planes

In a convex bundle algorithm one keeps in principle all cutting planes in the model,
using aggregation to avoid overflow. In the non-convex case this is no longer possi-
ble. Cutting planes are down-shifted tangents, which links them to the value f (x) of
the current iterate x. As we pass from x to a new serious iterate x+, the cutting plane
mz,g(·,x) = a+ g>(·− x) with g ∈ ∂[ε] f (z) for some z cannot be used as such, be-
cause we have no guarantee whether a+g>(x+−x)≤ f (x+). But we can down-shift
it again if need be. We recycle the plane as

mz,g(·,x+) = a− s++g>(·− x), s+ = [mz,g(x+,x)− f (x+)]++ c‖x+− z‖2.

In addition one may also apply a test whether z is too far from x+ to be of interest,
in which case the plane should simply be removed from the stock.
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1.4 Algorithm

Algorithm 1. Proximity control algorithm for (1.1).

Parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q < ∞, q < T < ∞, ε̃ > 0.
1: Initialize outer loop. Choose initial guess x1 and an initial matrix Q1 = Q>1 with −qI �Q1 �

qI. Fix memory control parameter τ
]
1 such that Q1 + τ

]
1I � 0. Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂[ε̃] f (x j). Otherwise goto inner loop.
3: Initialize inner loop. Put inner loop counter k = 1 and initialize τ-parameter using the memory

element, i.e., τ1 = τ
]
j . Choose initial convex working model φ1(·,x j), possibly recycling some

planes from previous sweep j−1, and let Φ1(·,x j) = φ1(·,x j)+ 1
2 (·− x j)>Q j(·− x j).

4: Trial step generation. At inner loop counter k solve tangent program

min
y∈Rn

Φk(y,x j)+ τk
2 ‖y− x j‖2.

The solution is the new trial step yk.
5: Acceptance test. Check whether

ρk =
f (x j)− f (yk)

f (x j)−Φk(yk,x j)
≥ γ.

If this is the case put x j+1 = yk (serious step), quit inner loop and goto step 8. If this is not the
case (null step) continue inner loop with step 6.

6: Update proximity parameter. Compute a cutting plane mk(·,x j) at x j for the null step yk. Let
Mk(·,x j) = mk(·,x j)+ 1

2 (·− x j)>Q j(·− x j) and compute secondary control parameter

ρ̃k =
f (x j)−Mk(yk,x j)

f (x j)−Φk(yk,x j)
.

Put τk+1 =

{
τk, if ρ̃k < γ̃ (bad)

2τk, if ρ̃k ≥ γ̃ (too bad)

7: Update working model. Build new convex working model φk+1(·,x j) based on null step yk

by adding the new cutting plane mk(·,x j) (and using aggregation to avoid overflow). Keep
exactness plane in the working model. Then increase inner loop counter k and continue inner
loop with step 4.

8: Update Q j and memory element. Update matrix Q j → Q j+1, respecting Q j+1 = Q>j+1 and
−qI � Q j+1 � qI. Then store new memory element

τ
]
j+1 =


τk, if γ ≤ ρk < Γ (not bad)

1
2 τk, if ρk ≥ Γ (good)

Increase τ
]
j+1 if necessary to ensure Q j+1 + τ

]
j+1I � 0. If τ

]
j+1 > T then re-set τ

]
j+1 = T .

Increase outer loop counter j by 1 and loop back to step 2.
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1.5 Analysis of the inner loop

In this section we analyze the inner loop and show that there are two possibilities.
Either the inner loop terminates finitely with a step x+ = yk satisfying ρk ≥ γ . Or we
get an infinite sequence of null steps yk which converges to x. In the latter case, we
conclude that 0 ∈ ∂[ε̃] f (x), i.e., that x is approximate optimal.

Suppose the inner loop turns forever. Then there are two possibilities. Either τk
is increased infinitely often, so that τk→∞, or τk is frozen, τk = τk0 for some k0 and
all k ≥ k0. These scenarios will be analyzed in Lemmas 3 and 4. Since the matrix
Q(x) is fixed during the inner loop, we write it simply as Q.

To begin with, we need an auxiliary construction. We define the following convex
function:

φ(y,x) = sup{mz,g(y,x) : z ∈ B(0,M),g ∈ ∂[ε] f (y)}, (1.13)

where B(0,M) is a fixed ball large enough to contain x and all trial steps encountered
during the inner loop. Recall that mz,g(·,x) is the cutting plane at z with approximate
subgradient g ∈ ∂[ε] f (z) with respect to the serious iterate x. Due to boundedness of
B(0,M), φ(·,x) is defined everywhere.

Lemma 2. We have φ(x,x) = f (x), ∂φ(x,x) = ∂[ε] f (x), and φ is jointly upper-
semicontinuous. Moreover, if yk ∈ B(0,M) for all k, then φk(·,x)≤ φ(·,x) for every
first-order working model φk.

Proof. 1) The first statement follows because every cutting plane drawn at some
z 6= x and g ∈ ∂[ε] f (z) satisfies mz,g(x,x) ≤ f (x)− c‖x− z‖2 < f (x), while cutting
planes at x obviously have mx,g(x,x) = f (x).

2) Concerning the second statement, let us first prove ∂[ε] f (x) ⊂ ∂φ(x,x). We
consider the set of limiting subgradients

∂
l f (x) = { lim

k→∞
∇ f (yk) : yk→ x, f is differentiable at yk}.

Then co∂ l f (x) = ∂ f (x) by [14]. It therefore suffices to show ∂ l f (x) + εB ⊂
∂φ(x,x), because ∂φ(x,x) is convex and we then have ∂φ(x,x)⊃ co(∂ l f (x)+εB)=
co∂ l f (x)+ εB = ∂ f (x)+ εB.

Let ga ∈ ∂ l f (x)+ εB. We have to show ga ∈ ∂φ(x,x). Choose g ∈ ∂ l f (x) such
that ‖g− ga‖ ≤ ε . Pick a sequence yk → x and gk = ∇ f (yk) ∈ ∂ f (yk) such that
gk → g. Let ga,k = gk + ga− g, then ga,k ∈ ∂[ε] f (yk) and ga,k → ga. Let mk(·,x) be
the cutting plane drawn at yk with approximate subgradient ga,k, then mk(yk,x) ≤
φ(yk,x). By the definition of the downshift process

mk(y,x) = f (yk)+g>a,k(y− yk)− sk

where sk is the down-shift (1.6). There are two cases, sk = c‖yk − x‖2, and sk =
tk(x)− f (x)+ c‖yk− x‖2, according to whether the term [. . . ]+ in (1.6) equals zero
or not.
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Let us start with the second case, where tk(x)> f (x). Then sk = f (yk)+g>a,k(x−
yk)− f (x)+ c‖yk− x‖2 and

mk(y,x) = f (yk)+g>a,k(y− yk)− f (yk)−g>a,k(x− yk)+ f (x)− c‖yk− x‖2

= f (x)+g>a,k(y− x)− c‖yk− x‖2.

Therefore

φ(y,x)−φ(x,x)≥ mk(y,x)− f (x) = g>a,k(y− x)− c‖yk− x‖2.

Passing to the limit using yk→ x and ga,k→ ga proves ga ∈ ∂φ(x,x).
It remains to discuss the first case, where tk(x) ≤ f (x), so that sk = c‖yk− x‖2.

Then
mk(·,x) = f (yk)+g>a,k(·− yk)− c‖yk− x‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y,x)− f (x)

= f (yk)− f (x)+g>a,k(y− yk)− c‖yk− x‖2

= f (yk)− f (x)+g>a,k(x− yk)+g>a,k(y− x)− c‖yk− x‖2.

As y is arbitrary, we have ga,k ∈ ∂|ζk|φ(x,x), where ζk = f (yk)− f (x) + g>a,k(x−
yk)−c‖yk−x‖2. Since ζk→ 0, yk→ x and ga,k→ ga, we deduce again ga ∈ ∂φ(x,x).
Altogether for the two cases [. . . ]+ = 0 and [. . . ]+ > 0 we have shown ∂ l f (x)+εB⊂
∂φ(x,x).

3) Let us now prove ∂φ(x,x)⊂ ∂ f (x)+εB. Let g∈ ∂φ(x,x) and m(·,x) = f (x)+
g>(· − x) the tangent plane to the graph of φ(·,x) at x associated with g. By con-
vexity m(·,x)≤ φ(·,x). We fix h ∈Rn and consider the values φ(x+ th,x) for t > 0.
According to the definition of φ(·,x) we have φ(x+ th,x) = mzt ,gt (x+ th,x), where
mzt ,gt (·,x) is a cutting plane drawn at some zt ∈ B(0,M) with gt ∈ ∂[ε] f (zt). The
slope of the cutting plane along the ray x+R+h is g>t h. Now the cutting plane passes
through φ(x+ th,x)≥m(x+ th,x), which means that its value at x+ th is above the
value of the tangent. On the other hand, according to the downshift process, the cut-
ting plane satisfies mzt ,gt (x,x) ≤ f (x)− c‖x− zt‖2. Its value at x is therefore below
the value of m(x,x) = f (x). These two fact together tell us that mzt ,gt (·,x) is steeper
than m(·,x) along the ray x+R+h. In other words, g>h ≤ g>t h. Next observe that
φ(x+ th,x)→ φ(x,x) = f (x) as t→ 0+. That implies mzt ,gt (x+ th,x)→ f (x). Since
by the definition of downshift mzt ,gt (x+ th,x) ≤ f (x)− c‖x− zt‖2, it follows that
we must have ‖x− zt‖2 → 0, i.e., zt → x as t → 0+. Passing to a subsequence, we
may assume gt → ĝ for some ĝ. With zt → x it follows from upper semicontinuity
of the Clarke subdifferential that ĝ ∈ ∂[ε] f (x). On the other hand, g>h ≤ g>t h for
all t implies g>h≤ ĝ>h. Therefore g>h≤ σK(h) = max{g̃>h : g̃ ∈ K}, where σK is
the support function of K = ∂[ε] f (x). Given that h was arbitrary, and as K is closed
convex, this implies g ∈ K by Hahn-Banach.
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4) Upper semi-continuity of φ follows from upper semi-continuity of the Clarke
subdifferential. Indeed, let x j → x, y j → y. Using the definition (1.13) of φ , find
cutting planes mz j ,g j(·,x j) = tz j(·)− s j at serious iterate x j, drawn at z j with
g j ∈ ∂[ε] f (z j), such that φ(y j,x j)≤mz j ,g j(y j,x j)+ε j and ε j→ 0. We have tz j(y) =
f (z j) + g>j (y− z j). Passing to a subsequence, we may assume z j → z and g j →
g ∈ ∂[ε] f (z). That means tz j(·)→ tz(·), and since y j → y also tz j(y j)→ tz(y). In or-
der to conclude for the mz j ,g j(·,x j) we have to see how the down-shift behaves.
We have indeed s j → s, where s is the down-shift at z with respect to the ap-
proximate subgradient g and serious iterate x. Therefore mz,g(·,x) = tz(·)− s. This
shows mz j ,g j(·,x j) = tz j(·)− s j → tz(·)− s = mz,g(·,x) as j → ∞, and then also
mz j ,g j(y j,x j) = tz j(y j)− s j → tz(y)− s = mz,g(y,x), where uniformity comes from
boundedness of the g j. This implies limmz j ,g j(y j,x j) = mz,g(y,x) ≤ φ(y,x) as re-
quired.

5) The inequality φk ≤ φ is clear, because φk(·,x) is built from cutting planes
mk(·,x), and all these cutting planes are below the envelope φ(·,x). �

Remark 5. In [43, 44] the case ε = 0 is discussed and a function φ(·,x) with the
properties in Lemma 2 is called a first-order model of f at x. It can be understood as
a generalized first-order Taylor expansion of f at x. Every locally Lipschitz function
f has the standard or Clarke model φ ](y,x) = f (x)+ f 0(x,y− x), where f 0(x,d) is
the Clarke directional derivative at x. In the present situation it is reasonable to call
φ(·,x) an ε-model of f at x.

Following [36] a function f is called ε-convex on an open convex set U if f (tx+
(1− t)y) ≤ t f (x) + (1− t) f (y) + εt(1− t)‖x− y‖ for all x,y ∈ U and 0 ≤ t ≤ 1.
Every ε-convex function satisfies f ′(y,x− y) ≤ f (x)− f (y)+ ε‖x− y‖, hence for
g ∈ ∂ f (y):

g>(x− y)≤ f (x)− f (y)+ ε‖x− y‖. (1.14)

A function f is called approximate convex if for every x and ε > 0 there exists δ > 0
such that f is ε-convex on B(x,δ ). Using results from [16] and [36] one may show
that approximate convex functions coincide with lower C1 function in the sense of
Spingarn [53].

Lemma 3. Suppose the inner loop turns forever and τk→ ∞.

1. If f is ε ′-convex on a set containing all yk, k ≥ k0, then 0 ∈ ∂[ε̃] f (x), where
ε̃ = ε +(ε ′+ ε)/(γ̃− γ).

2. If f is lower C1, then 0 ∈ ∂[αε] f (x), where α = 1+(γ̃− γ)−1.

Proof. i) The second statement follows from the first, because every lower C1 func-
tion is approximate convex, hence ε ′-convex on a suitable neighborhood of x. We
therefore concentrate on the first statement.

ii) By assumption none of the trial steps is accepted, so that ρk < γ for all k ∈ N.
Since τk is increased infinitely often, there are infinitely many inner loop instances
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k where ρ̃k ≥ γ̃ . Let us prove that under these circumstances yk → x. Recall that
g∗k = (Q+ τkI)(x− yk) ∈ ∂φk(yk,x). By the subgradient inequality this gives

g∗>k (x− yk)≤ φk(x,x)−φk(yk,x). (1.15)

Now use φk(x,x) = f (x) and observe that m0(yk,x) ≤ φk(yk,x), where m0(·,x) is
the exactness plane. Since m0(y,x) = f (x)+g(x)>(y− x) for some g(x) ∈ ∂[ε] f (x),
expanding the term on the left of (1.15) gives

(x− yk)>(Q+ τkI)(x− yk)≤ g(x)>(x− yk)≤ ‖g(x)‖‖x− yk‖. (1.16)

Since τk → ∞, the term on the left hand side of (1.16) behaves asymptotically like
τk‖x−yk‖2. Dividing (1.16) by ‖x−yk‖ therefore shows that τk‖x−yk‖ is bounded
by ‖g(x)‖. As τk→ ∞, this could only mean yk→ x.

iii) Let us use yk → x and go back to formula (1.15). Since the left hand side of
(1.15) tends to 0 and φk(x,x) = f (x), we see that the limit superior of φk(yk,x) is
f (x). On the other hand, φk(yk,x)≥m0(yk,x), where m0(·,x) is the exactness plane.
Since clearly m0(yk,x)→ m0(x,x) = f (x), the limit inferior is also f (x), and we
conclude that φk(yk,x)→ f (x).

Keeping this in mind, let us use the subgradient inequality (1.15) again and sub-
tract a term 1

2 (x− yk)>Q(x− yk) from both sides. That gives the estimate

1
2 (x− yk)>Q(x− yk)+ τk‖x− yk‖2 ≤ f (x)−Φk(yk,x).

Fix 0 < ζ < 1. Using τk→ ∞ we have

(1−ζ )τk‖x− yk‖ ≤ ‖g∗k‖ ≤ (1+ζ )τk‖x− yk‖

and also
1
2 (x− yk)>Q(x− yk)+ τk‖x− yk‖2 ≥ (1−ζ )τk‖x− yk‖2

for sufficiently large k. Therefore,

f (x)−Φk(yk,x)≥ 1−ζ

1+ζ
‖g∗k‖‖x− yk‖ (1.17)

for k large enough.
iv) Now let ηk := dist

(
g∗k ,∂φ(x,x)

)
. We argue that ηk → 0. Indeed, using the

subgradient inequality at yk in tandem with φ(·,x)≥ φk(·,x), we have for all y∈Rn:

φ(y,x)≥ φk(yk,x)+g∗k
>(y− yk).

Here our upper envelope function (1.13) is defined such that the ball B(0,M) con-
tains x and all trial points yk at which cutting planes are drawn.

Since the subgradients g∗k are bounded by part ii), there exists an infinite subse-
quence N ⊂N such that g∗k → g∗, k ∈N , for some g∗. Passing to the limit k ∈N
and using yk→ x and φk(yk,x)→ f (x)= φ(x,x), we have φ(y,x)≥ φ(x,x)+g∗>(y−
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x) for all y. Hence g∗ ∈ ∂φ(x,x), which means ηk = dist(g∗k ,∂φ(x,x))≤‖g∗k−g∗‖→
0, k ∈N , proving the argument.

v) Using the definition of ηk, choose g̃k ∈ ∂φ(x,x) such that ‖g∗k− g̃k‖= ηk. Now
let dist(0,∂φ(x,x)) = η . Then ‖g̃k‖ ≥ η for all k ∈N . Hence ‖g∗k‖ ≥ η −ηk >
(1− ζ )η for k ∈N large enough, given that ηk → 0 by iv). Going back with this
to (1.17) we deduce

f (x)−Φk(yk,x)≥ (1−ζ )2

1+ζ
η‖x− yk‖ (1.18)

for k ∈N large enough.
vi) We claim that f (yk) ≤ Mk(yk,x) + (1 + ζ )(ε ′ + ε)‖x− yk‖ for all k suffi-

ciently large. Indeed, we have mk(·,x) = tk(·)− sk, where sk is the down-shift of the
approximate tangent tk(·) at yk, gεk ∈ ∂[ε] f (yk), and with regard to the serious iterate
x. There are two cases. Assume first that tk(x)> f (x). Then

mk(y,x) = f (yk)+g>εk(y− yk)− sk

= f (yk)+g>εk(y− yk)− c‖x− yk‖2− tk(x)+ f (x)

= f (x)+g>εk(y− x)− c‖x− yk‖2.

In consequence

f (yk)−mk(yk,x) = f (yk)− f (x)−g>εk(y
k− x)+ c‖x− yk‖2

= f (yk)− f (x)−g>k (y
k− x)+(gk−gεk)

>(x− yk)+ c‖x− yk‖2.

Now since f is ε ′-convex, estimate (1.14) is valid under the form

g>k (x− yk)≤ f (x)− f (yk)+ ε
′‖x− yk‖.

We therefore get

f (yk)−mk(yk,x)≤ (ε ′+ ε)‖x− yk‖+ c‖x− yk‖2.

Subtracting a term 1
2 (x− yk)>Q(x− yk) on both sides gives

f (yk)−Mk(yk,x)≤ (ε ′+ ε +νk)‖x− yk‖,

where νk := c‖x−yk‖2− 1
2 (x−yk)>Q(x−yk)→ 0, and Mk(y,x) = mk(y,x)+ 1

2 (y−
x)>Q(y− x). Therefore

f (yk)−Mk(yk,x)≤ (1+ζ )(ε ′+ ε)‖x− yk‖ (1.19)

for k large enough.
Now consider the second case tk(x)≤ f (x). Here we get an even better estimate

than (1.19), because sk = c‖x−yk‖2, so that f (yk)−mk(yk,x) = c‖x−yk‖2 ≤ ε‖x−
yk‖ for k large enough.

vii) To conclude, using (1.18) and (1.19) we expand the coefficient ρ̃k as
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ρ̃k = ρk +
f (yk)−Mk(yk,x)
f (x)−Φk(yk,x)

≤ ρk +
(1+ζ )2(ε ′+ ε)‖x− yk‖

(1−ζ )2η‖x− yk‖
= ρk +

(1+ζ )2(ε ′+ ε)

(1−ζ )2η
.

This shows

η <
(1+ζ )2(ε ′+ ε)

(1−ζ )2(γ̃− γ)
.

For suppose we had η ≥ (1+ζ )2(ε ′+ε)
(1−ζ )2(γ̃−γ)

, then ρ̃k ≤ ρk + (γ̃ − γ) ≤ γ̃ for all k, con-
tradicting ρ̃k > γ̃ for infinitely many k. As 0 < ζ < 1 was arbitrary, we have
the estimate η ≤ ε ′+ε

γ̃−γ
. Since ∂φ(x,x) = ∂ f (x) + εB by Lemma 2, we deduce

0 ∈ ∂φ(x,x)+ηB⊂ ∂ f (x)+(ε +η)B, and this is the result claimed in statement 1.
�

Remark 6. Suppose we choose γ very small and γ̃ close to 1, then α = 2+ ξ for
some small ξ , so roughly α ≈ 2.

Lemma 4. Suppose the inner loop turns forever and τk is frozen. Then yk → x and
0 ∈ ∂[ε] f (x).

Proof. i) The control parameter is frozen from counter k0 onwards, and we put
τ := τk, k ≥ k0. This means that ρk < γ and ρ̃k < γ̃ for all k ≥ k0.

ii) We prove that the sequence of trial steps yk is bounded. Notice that

g∗>k (x− yk)≤ φk(x,x)−φk(yk,x)

by the subgradient inequality at yk and the definition of the aggregate subgradient.
Now observe that φk(x,x) = f (x) and φk(yk,x) ≥ m0(yk,x). Therefore, using the
definition of g∗k , we have

(x− yk)>(Q+ τI)(x− yk)≤ f (x)−m0(yk,x) = g(x)>(x− yk)≤ ‖g(x)‖‖x− yk‖.

Since the τ-parameter is frozen and Q+ τI � 0, the expression on the left is the
square ‖x− yk‖2

Q+τI of the Euclidean norm derived from Q+ τI. Since both norms
are equivalent, we deduce after dividing by ‖x− yk‖ that ‖x− yk‖Q+τI ≤ C‖g(x)‖
for some constant C > 0 and all k. This proves the claim.

iii) Let us introduce the objective function of tangent program (1.7) for k ≥ k0:

ψk(·,x) = φk(·,x)+ 1
2 (·− x)>(Q+ τI)(·− x).

Let m∗k(·,x) be the aggregate plane, then φk(yk,x) = m∗k(y
k,x) by (1.9) and therefore

also
ψk(yk,x) = m∗k(y

k,x)+ 1
2 (y

k− x)>(Q+ τI)(yk− x).

We introduce the quadratic function ψ∗k (·,x) = m∗k(·,x)+
1
2 (·− x)>(Q+ τI)(·− x).

Then



16 Dominikus Noll

ψk(yk,x) = ψ
∗
k (y

k,x) (1.20)

by what we have just seen. By construction of model φk+1(·,x) we have m∗k(y,x)≤
φk+1(y,x), so that

ψ
∗
k (y,x)≤ ψk+1(y,x). (1.21)

Notice that ∇ψ∗k (y,x) = ∇m∗k(y,x)+(Q+ τI)(y−x) = g∗k +(Q+ τI)(y−x), so that
∇ψ∗k (y

k,x) = 0 by (1.8). We therefore have the relation

ψ
∗
k (y,x) = ψ

∗
k (y

k,x)+ 1
2 (y− yk)>(Q+ τI)(y− yk), (1.22)

which is obtained by Taylor expansion of ψ∗k (·,x) at yk. Recall that step 8 of the
algorithm assures Q+τI � 0, so that the quadratic expression defines the Euclidean
norm ‖ · ‖Q+τI .

iv) From the previous point iii) we now have

ψk(yk,x) ≤ ψ∗k (y
k,x)+ 1

2‖y
k− yk+1‖2

Q+τI (using (1.20))
= ψ∗k (y

k+1,x) (using (1.22))
≤ ψk+1(yk+1,x) (using (1.21))
≤ ψk+1(x,x) (yk+1 minimizer of ψk+1)
= φk+1(x,x) = f (x).

(1.23)

We deduce that the sequence ψk(yk,x) is monotonically increasing and bounded
above by f (x). It therefore converges to some value ψ∗ ≤ f (x).

Going back to (1.23) with this information shows that the term 1
2‖y

k−yk+1‖2
Q+τI

is squeezed in between two convergent terms with the same limit, ψ∗, which implies
1
2‖y

k− yk+1‖2
Q+τI → 0. Consequently, ‖yk− x‖2

Q+τI −‖yk+1− x‖2
Q+τI also tends to

0, because the sequence of trial steps yk is bounded by part ii).
Recalling φk(y,x) = ψk(y,x)− 1

2‖y−x‖2
Q+τI , we deduce, using both convergence

results, that

φk+1(yk+1,x)−φk(yk,x) = (1.24)
ψk+1(yk+1,x)−ψk(yk,x)− 1

2‖y
k+1− x‖2

Q+τI +
1
2‖y

k− x‖2
Q+τI → 0.

v) We want to show that φk(yk,x)− φk+1(yk,x)→ 0, and then of course also
Φk(yk,x)−Φk+1(yk,x)→ 0.

Recall that by construction the cutting plane mk(·,x) is an affine support function
of φk+1(·,x) at yk. By the subgradient inequality this implies

g>k (y− yk)≤ φk+1(y,x)−φk+1(yk,x) (1.25)

for all y. Therefore
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0 ≤ φk+1(yk,x)−φk(yk,x) (using aggregation)
= φk+1(yk,x)+g>k (y

k+1− yk)−φk(yk,x)−g>k (y
k+1− yk)

≤ φk+1(yk+1,x)−φk(yk,x)+‖gk‖‖yk+1− yk‖ (using (1.25))

and this term converges to 0, because of (1.24), because the gk are bounded, and
because yk− yk+1→ 0 according to part iv) above. Boundedness of the gk follows
from boundedness of the trial steps yk shown in part ii). Indeed, gk ∈ ∂ f (yk)+ εB,
and the subdifferential of f is uniformly bounded on the bounded set {yk : k ∈ N}.
We deduce that φk+1(yk,x)−φk(yk,x)→ 0. Obviously, that also gives Φk+1(yk,x)−
Φk(yk,x)→ 0.

vi) We now proceed to prove Φk(yk,x)→ f (x), and then also Φk+1(yk,x)→ f (x).
Assume this is not the case, then limsupk→∞ f (x)−Φk(yk,x) =: η > 0. Choose
δ > 0 such that δ < (1− γ̃)η . It follows from v) above that there exists k1 ≥ k0 such
that

Φk+1(yk,x)−δ ≤Φk(yk,x)

for all k ≥ k1. Using ρ̃k ≤ γ̃ for all k ≥ k0 then gives

γ̃

(
Φk(yk,x)− f (x)

)
≤ Φk+1(yk,x)− f (x)≤Φk(yk,x)+δ − f (x).

Passing to the limit implies −γ̃η ≤ −η + δ , contradicting the choice of δ . This
proves η = 0.

vii) Having shown Φk(yk,x)→ f (x), and therefore also Φk+1(yk,x)→ f (x), we
now argue that yk→ x. This follows from the definition of ψk, because

Φk(yk,x)≤ ψk(yk,x) = Φk(yk,x)+ τ

2‖y
k− x‖2 ≤ ψ∗ ≤ f (x).

Since Φk(yk,x)→ f (x) by part vi), we deduce τ

2‖y
k− x‖2 → 0 using a sandwich

argument, which also proves en passant that ψ∗ = f (x) and φk(yk,x)→ f (x).
To finish the proof, let us now show 0 ∈ ∂[ε] f (x). Remember that by the neces-

sary optimality condition for (1.7) we have (Q+ τI)(x− yk) ∈ ∂φk(yk,x). By the
subgradient inequality,

(x− yk)>(Q+ τI)(y− yk) ≤ φk(y,x)−φk(yk,x)

≤ φ(y,x)−φk(yk,x),

where φ is the upper envelope (1.13) of all cutting planes drawn at z ∈ B(0,M),
g ∈ ∂[ε] f (z), which we choose large enough to contain the bounded set {x}∪{yk :
k ∈ N}, a fact which assures φk(·,x) ≤ φ(·,x) for all k (see Lemma 2). Passing to
the limit, observing ‖x− yk‖2

Q+τI → 0 and φk(yk,x)→ f (x) = φ(x,x), we obtain:

0≤ φ(y,x)−φ(x,x)
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for all y. This proves 0 ∈ ∂φ(x,x). Since ∂φ(x,x)⊂ ∂[ε] f (x) by Lemma 2, we have
shown 0 ∈ ∂[ε] f (x). �

1.6 Convergence of the outer loop

In this section we prove subsequence convergence of our algorithm for the case
where function values are exact and subgradients are in ∂[ε] f (yk). We write Q j =

Q(x j) for the matrix of the second order model, which depends on the serious iter-
ates x j.

Theorem 1. Let x1 be such that Ω = {x∈Rn : f (x)≤ f (x1)} is bounded. Suppose f
is ε ′-convex on Ω and that subgradients are drawn from ∂[ε] f (y), whereas function
values are exact. Then every accumulation point x̄ of the sequence of serious iterates
x j satisfies 0 ∈ ∂[ε̃] f (x̄), where ε̃ = ε +(ε ′+ ε)/(γ− γ̃).

Proof. i) From the analysis in section 1.5 we know that if we apply the stopping
test in step 2 with ε̃ = ε +(ε ′+ ε)/(γ − γ̃), then the inner loop ends after a finite
number of steps k with a new x+ satisfying the acceptance test in step 5, unless we
have finite termination due to 0∈ ∂[ε̃] f (x). Let us exclude this case, and let x j denote
the infinite sequence of serious iterates. We assume that at outer loop counter j the
inner loop finds a serious step at inner loop counter k = k j. In other words, yk j = x j+1

passes the acceptance test in step 5 of the algorithm and becomes a serious iterate,
while the yk with k < k j are null steps. That means

f (x j)− f (x j+1)≥ γ

(
f (x j)−Φk j(x

j+1,x j)
)
. (1.26)

Now recall that (Q j + τk j I)(x
j−x j+1) ∈ ∂φk j(x

j+1,x j) by optimality of the tangent
program (1.7). The subgradient inequality for φk j(·,x j) at x j+1 therefore gives(

x j− x j+1)> (Q j + τk j I)(x
j− x j+1) ≤ φk j(x

j,x j)−φk j(x
j+1,x j)

= f (x j)−φk j(x
j+1,x j),

using φk j(x
j,x j) = f (x j). With Φk(y,x j) = φk(y,x j)+ 1

2 (y−x j)>Q j(y−x j) we have

1
2‖x

j+1− x j‖2
Q j+τk j I ≤ f (x j)−Φk j(x

j+1,x j)≤ γ−1
(

f (x j)− f (x j+1)
)
, (1.27)

using (1.26). Summing (1.27) from j = 1 to j = J gives

J

∑
j=1
‖x j+1− x j‖2

Q j+τk j I ≤ γ
−1

J

∑
j=1

(
f (x j)− f (x j+1)

)
= γ

−1 ( f (x1)− f (xJ+1)
)
.

Here the right hand side is bounded above because our method is of descent type in
the serious steps and Ω is bounded. Consequently the series on the left is summable,
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and therefore ‖x j+1− x j‖2
Q j+τk j I → 0 as j→ ∞. Let x̄ be an accumulation point of

the sequence x j. We have to prove 0 ∈ ∂[ε̃] f (x̄). We select a subsequence j ∈ J such
that x j → x̄, j ∈ J. There are now two cases. The first is discussed in part ii), the
second is more complicated and will be discussed in iii) – ix).

ii) Suppose there exists an infinite subsequence J′ of J such that g j := (Q j +
τk j I)

(
x j− x j+1

)
converges to 0, j ∈ J′. We will show that in this case 0 ∈ ∂[ε̃] f (x̄).

In order to prove this claim, notice first that since Ω = {x ∈ Rn : f (x) ≤ f (x1)}
is bounded by hypothesis, and since our algorithm is of descent type in the serious
steps, the sequence x j, j ∈ N is bounded. We can therefore use the convex upper
envelope function φ of (1.13), where B(0,M) contains Ω and also all the trial points
yk visited during all inner loops j.

Indeed, the set of x j being bounded, so are the ‖g(x j)‖, where g(x j) ∈ ∂[ε] f (x j)

is the exactness subgradient of the jth inner loop. From (1.16) we know that ‖x j−
yk‖Q j+τkI ≤ ‖g(x j)‖ for every j and every trial step yk arising in the jth inner loop
at some instant k. From the management of the τ-parameter in the outer loop (1.12)
we know that Q j + τkI � ζ I for some ζ > 0, so ‖x j− yk‖ ≤ ζ−1‖g(x j)‖ ≤C < ∞,
meaning the yk are bounded. During the following the properties of φ obtained in
Lemma 2 will be applied at every x = x j.

Since g j is a subgradient of φk j(·,x j) at x j+1 = yk j+1, we have for every test
vector h:

g>j h ≤ φk j(x
j+1 +h,x j)−φk j(x

j+1,x j)

≤ φ(x j+1 +h,x j)−φk j(x
j+1,x j) (using φk j(·,x j)≤ φ(·,x j)).

Now yk j = x j+1 was accepted in step 5 of the algorithm, which means

γ
−1 ( f (x j)− f (x j+1)

)
≥ f (x j)−Φk j(x

j+1,x j).

Combining these two estimates for a fixed test vector h gives:

g>j h ≤ φ(x j+1 +h,x j)− f (x j)+ f (x j)−φk j(x
j+1,x j)

= φ(x j+1 +h,x j)− f (x j)+ f (x j)−Φk j(x
j+1,x j)

+ 1
2 (x

j− x j+1)>Q j(x j− x j+1)

≤ φ(x j+1 +h,x j)− f (x j)+ γ
−1 ( f (x j)− f (x j+1)

)
+ 1

2 (x
j− x j+1)>Q j(x j− x j+1)

= φ(x j+1 +h,x j)− f (x j)+ γ
−1 ( f (x j)− f (x j+1)

)
+

+ 1
2 (x

j− x j+1)>(Q j + τk j I)(x
j− x j+1)−

τk j
2 ‖x

j− x j+1‖2

≤ φ(x j+1 +h,x j)− f (x j)+ γ
−1 ( f (x j)− f (x j+1)

)
+ 1

2 (x
j− x j+1)>(Q j + τk j I)(x

j− x j+1).

Now fix h′ ∈ Rn. Plugging h = x j− x j+1 +h′ in the above estimate gives
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1
2‖x

j− x j+1‖2
Q j+τk j I +g>j h′ ≤ φ(x j +h′,x j)− f (x j)+ γ−1

(
f (x j)− f (x j+1)

)
.

(1.28)

Passing to the limit j ∈ J′ and using, in the order named, ‖x j− x j+1‖2
Q j+τk j I → 0,

g j→ 0, x j→ x̄, f (x j)→ f (x̄) = φ(x̄, x̄) and f (x j)− f (x j+1)→ 0, we obtain:

0≤ φ(x̄+h′, x̄)−φ(x̄, x̄). (1.29)

In (1.28) the rightmost term f (x j)− f (x j+1)→ 0 converges by monotonicity, con-
vergence of the leftmost term was shown in part i), and g j → 0 is the working
hypothesis. Now the test vector h′ in (1.29) is arbitrary, which shows 0 ∈ ∂φ(x̄, x̄).
By Lemma 2 we have 0 ∈ ∂[ε] f (x̄)⊂ ∂[ε̃] f (x̄).

iii) The second more complicated case is when ‖g j‖= ‖(Q j+τk j I)(x
j−x j+1)‖≥

µ > 0 for some µ > 0 and every j ∈ J. The remainder of this proof will be entirely
dedicated to this.

We notice first that under this assumption the τk j , j ∈ J, must be unbounded.
Indeed, assume on the contrary that the τk j , j ∈ J, are bounded. By boundedness
of Q j and boundedness of the serious steps, there exists then an infinite subse-
quence j ∈ J′ of J such that Q j, τk j and x j − x j+1 converge respectively to Q̄,
τ̄ and δ x̄ as j ∈ J′. This implies that the corresponding subsequence of g j con-
verges to (Q̄+ τ̄I)δ x̄, where ‖(Q̄+ τ̄I)δ x̄‖ ≥ µ > 0. Similarly, (x j− x j+1)>(Q j +
τk j I)(x

j−x j+1)→ δ x̄>(Q̄+ τ̄I)δ x̄. By part i) of the proof we have g>j (x
j+1−x j) =

‖x j+1−x j‖2
Q j+τk j I→ 0, which means δ x̄>(Q̄+ τ̄I)δ x̄ = 0. Since Q̄+ τ̄I is symmet-

ric and Q̄+ τ̄I � 0, we deduce (Q̄+ τ̄I)δ x̄ = 0, contradicting ‖(Q̄+ τ̄I)δ x̄‖≥ µ > 0.
This argument proves that the τk j , j ∈ J, are unbounded.

iv) Having shown that the sequence τk j , j ∈ J is unbounded, we can without
loss assume that τk j → ∞, j ∈ J, passing to a subsequence if required. Let us now
distinguish two types of indices j ∈ J. We let J+ be the set of those j ∈ J for which
the τ-parameter was increased at least once during the jth inner loop. The remaining
indices j ∈ J− are those where the τ-parameter remained unchanged during the jth

inner loop. Since the jth inner loop starts at τ
]
j and ends at τk j , we have

J+ = { j ∈ J : τk j < τ
]
j} and J− = { j ∈ J : τk j = τ

]
j}.

We claim that the set J− must be finite. For suppose J− is infinite, then τk j → ∞,

j ∈ J−. Hence also τ
]
j → ∞, j ∈ J−. But this contradicts the rule in step 8 of the

algorithm, which forces τ
]
j ≤ T < ∞. This contradiction shows that J+ is cofinal in

J.
v) Remember that we are still in the case whose discussion started in point iii).

We are now dealing with an infinite subsequence j ∈ J+ of j ∈ J such that τk j →∞,
‖g j‖ ≥ µ > 0, and such that the τ-parameter was increased at least once during the
jth inner loop. Suppose this happened for the last time at stage k j − ν j for some
ν j ≥ 1. Then
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τk j = τk j−1 = · · ·= τk j−ν j+1 = 2τk j−ν j . (1.30)

According to step 6 of the algorithm, the increase at counter k j − ν j is due to the
fact that

ρk j−ν j < γ and ρ̃k j−ν j ≥ γ̃. (1.31)

This case is labelled too bad in step 6 of the algorithm.
vi) Condition (1.31) means that there are infinitely many j ∈ J+ satisfying

ρk j−ν j =
f (x j)− f (yk j−ν j)

f (x j)−Φk j−ν j(y
k j−ν j ,x j)

< γ

and

ρ̃k j−ν j =
f (x j)−Mk j−ν j(y

k j−ν j ,x j)

f (x j)−Φk j−ν j(y
k j−ν j+1,x j)

≥ γ̃.

Notice first that as τk j → ∞ and τk j = 2τk j−ν j , boundedness of the subgradients
g̃ j := (Q j +

1
2 τk j I)(x

j − yk j−ν j) ∈ ∂φk j−ν j(y
k j−ν j ,x j) shows yk j−ν j → x̄. Indeed,

boundedness of the g̃ j follows from the subgradient inequality

(x j− yk j−ν j)>(Q j + τk j−ν j I)(x
j− yk j−ν j) ≤ φk j−ν j(x

j,x j)−φk j−ν j(y
k j−ν j ,x j)

≤ f (x j)−m0(yk j−ν j ,x j)

= g(x j)>(x j− yk j−ν j) (1.32)
≤ ‖g(x j)‖‖x j− yk j−ν j‖,

where m0(·,x j) = f (x j)+g(x j)>(·−x j) is the exactness plane at x j. As τk j →∞, we
have τk j−ν j =

1
2 τk j → ∞, too, so the left hand side of (1.32) behaves asymptotically

like constant times τk j−ν j‖x j−yk j−ν j‖2. On the other hand the x j ∈Ω are bounded,
hence so are the g(x j). The right hand side therefore behaves asymptotically like
constant times ‖x j− yk j−ν j‖. This shows boundedness of τk j−ν j‖x j− yk j−ν j‖, and
therefore x j− yk j−ν j → 0, because τk j−ν j → ∞.

vii) Recall that x j → x̄, j ∈ J. By vi) we know that yk j−ν j → x̄, j ∈ J. Passing to
a subsequence J′ of J, we may assume g̃ j→ g̃ for some g̃. We show g̃ ∈ ∂φ(x̄, x̄).

For a test vector h and j ∈ J′:

g̃>j h ≤ φk j−ν j(y
k j−ν j +h,x j)−φk j−ν j(y

k j−ν j ,x j) (1.33)

≤ φ(yk j−ν j +h,x j)−φk j−ν j(y
k j−ν j ,x j).

Using the fact that ρ̃k j−ν j ≥ γ̃ , we have

f (x j)−Φk j−ν j(y
k j−ν j ,x j)≤ γ̃

−1
(

f (x j)−Mk j−ν j(y
k j−ν j ,x j)

)
.
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Adding 1
2 (y

k j−ν j − x j)>Q j(yk j−ν j − x j) on both sides gives

f (x j)−φk j−ν j(y
k j−ν j ,x j)

≤ γ̃
−1
(

f (x j)−Mk j−ν j(y
k j−ν j ,x j)

)
+ 1

2 (y
k j−ν j − x j)>Q j(yk j−ν j − x j).

Combining this and estimate (1.33) gives

g̃>j h≤ φ(yk j−ν j +h,x j)− f (x j)+ γ̃
−1
(

f (x j)−Mk j−ν j(y
k j−ν j ,x j)

)
+ 1

2 (y
k j−ν j − x j)>Q j(yk j−ν j − x j). (1.34)

As we have seen yk j−ν j − x j→ 0, hence the rightmost term in (1.34) converges to 0
by boundedness of Q j. Moreover, we claim that lim f (x j)−Mk j−ν j(y

k j−ν j ,x j) = 0,
so the term γ̃−1(. . .) on the right hand side of (1.34) converges to 0. Indeed, to see
this claim, notice first that it suffices to show f (x j)−mk j−ν j(y

k j−ν j ,x j)→ 0, because
the second order term converges to 0. Since mk j−ν j(·,x j) is a cutting plane at x j, we
have mk j−ν j(y

k j−ν j ,x j) ≤ f (yk j−ν j) by definition of the down-shift. So it suffices
to show liminfmk j−ν j(y

k j−ν j ,x j) ≥ f (x̄). Now this follows from the definition of
the down-shift s j at yk j−ν j with regard to x j. Recall that for the tangent tk j−ν j(·) at
yk j−ν j , approximate subgradient g̃ j, and serious iterate x j, we have

s j = [tk j−ν j(x
j)− f (x j)]++ c‖yk j−ν j − x j‖2.

We can clearly concentrate on proving tk j−ν j(x
j)− f (x j)→ 0. Now tk j−ν j(x

j)−
f (x j) = f (yk j−ν j)− f (x j)+ g̃>j (x

j− yk j−ν j), and since yk j−ν j → x̄, x j → x̄ and the
g̃ j are bounded, our claim follows.

Going back to (1.34) with the information g̃>j h → g̃>h, it remains to prove
limsupφ(yk j−ν j + h,x j) ≤ φ(x̄+ h, x̄). Indeed, once this is proved, passing to the
limit in (1.34) shows g̃>h ≤ φ(x̄+ h, x̄)− f (x̄) = φ(x̄+ h, x̄)−φ(x̄, x̄). This proves
g̃ ∈ ∂φ(x̄, x̄), and then g̃ ∈ ∂[ε] f (x̄) by Lemma 2.

What remains to be shown is obviously joint upper semi-continuity of φ at (x̄+
h, x̄), and this follows from Lemma 2, hence our claim g̃ ∈ ∂[ε] f (x̄) is proved.

viii) Let η := dist(0,∂φ(x̄, x̄)). Then ‖g̃‖≥ η by vii) above. Let us fix 0 < ζ < 1,
then, as g̃ j→ g̃, we have ‖g̃ j‖ ≥ (1−ζ )η for j ∈ J′ large enough.

Now, assuming first [. . . ]+ > 0 in the downshift, we have

mk j−ν j(·,x
j) = f (yk j−ν j)+ g̃>j (·− yk j−ν j)− s j

= f (yk j−ν j)+ g̃>j (·− yk j−ν j)− c‖yk j−ν j − x j‖2− tk j−ν j(x
j)+ f (x j)

= f (x j)+ g̃>j (·− x j)− c‖yk j−ν j − x j‖2,

for g̃ j ∈ ∂[ε] f (yk j−ν j) as above. Pick g j ∈ ∂ f (yk j−ν j) such that ‖g j− g̃ j‖ ≤ ε . Then
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f (yk j−ν j)−mk j−ν j(y
k j−ν j ,x j) = f (yk j−ν j)− f (x j)− g̃>j (y

k j−ν j − x j)

+c‖yk j−ν j − x j‖2

= f (yk j−ν j)− f (x j)−g>j (y
k j−ν j − x j)

+(g̃ j−g j)(yk j−ν j − x j)

+c‖yk j−ν j − x j‖2.

Since f is ε ′-convex, we have g>j (y
k j−ν j−x j)≤ f (x j)− f (yk j−ν j)+ε ′‖yk j−ν j−x j‖.

Substituting this we get

f (yk j−ν j)−mk j−ν j(y
k j−ν j ,x j)≤ (ε ′+ ε)‖yk j−ν j − x j‖+ c‖yk j−ν j − x j‖2.(1.35)

In the case [. . . ]+ = 0 an even better estimate is obtained, so that (1.35) covers both
cases. Subtracting a term 1

2 (y
k j−ν j−x j)>Q j(yk j−ν j−x j) on both sides of (1.35) and

using yk j−ν j − x j→ 0, we get

f (yk j−ν j)−Mk j−ν j(y
k j−ν j ,x j)≤ (ε ′+ ε +ν j)‖yk j−ν j − x j‖,

where ν j→ 0. In consequence

f (yk j−ν j)−Mk j−ν j(y
k j−ν j ,x j)≤ (1+ζ )(ε ′+ ε)‖yk j−ν j − x j‖ (1.36)

for j large enough. Recall that g̃ j = (Q j +
1
2 τk j I)(x

j− yk j−ν j) ∈ ∂φk j−ν j(y
k j−ν j ,x j)

by (1.8) and (1.30). Hence by the subgradient inequality

g̃>j (x
j− yk j−ν j)≤ φk j−ν j(x

j,x j)−φk j−ν j(y
k j−ν j ,x j).

Subtracting a term 1
2 (x

j− yk j−ν j)>Q j(x j− yk j−ν j) from both sides gives

1
2 (x

j− yk j−ν j)>Q j(x j− yk j−ν j)+ 1
2 τk j‖x j− yk j−ν j‖2 ≤ f (x j)−Φk j−ν j(y

k j−ν j ,x j).

(1.37)

As τk j → ∞, we have

(1−ζ ) 1
2 τk j‖x j− yk j−ν j‖ ≤ ‖g̃ j‖ ≤ (1+ζ ) 1

2 τk j‖x j− yk j−ν j‖ (1.38)

and

1
2 (x

j− yk j−ν j)>Q j(x j− yk j−ν j)+ 1
2 τk j‖x j− yk j−ν j‖2 ≥ (1−ζ ) 1

2 τk j‖x j− yk j−ν j‖2

(1.39)

both for j large enough. Therefore, plugging (1.38) and (1.39) into (1.37) gives

f (x j)−Φk j−ν j(y
k j−ν j ,x j)≥ 1−ζ

1+ζ
‖g̃ j‖‖x j− yk j−ν j‖

for j large enough. Since ‖g̃ j‖ ≥ (1−ζ )η for j large enough, we deduce
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f (x j)−Φk j−ν j(y
k j−ν j ,x j)≥ (1−ζ )2

1+ζ
η‖x j− yk j−ν j‖. (1.40)

ix) Combining (1.36) and (1.40) gives the estimate

ρ̃k j−ν j = ρk j−ν j +
f (yk j−ν j)−Mk j−ν j(y

k j−ν j ,x j)

f (x j)−Φk j−ν j(y
k j−ν j ,x j)

≤ ρk j−ν j +
(1+ζ )2(ε ′+ ε)‖yk j−ν j − x j‖

(1−ζ )2η‖yk j−ν j − x j‖
. (1.41)

This proves

η ≤ (1+ζ )2(ε ′+ ε)

(1−ζ )2(γ̃− γ)
.

For suppose we had η > (1+ζ )2(ε ′+ε)
(1−ζ )2(γ̃−γ)

, then (1+ζ )2(ε ′+ε)
(1−ζ )2η

< γ̃−γ , which gave ρ̃k j−ν j ≤
ρk j−ν j + γ̃− γ < γ̃ for all j, contradicting ρ̃k j−ν j ≥ γ̃ for infinitely many j ∈ J.

Since ζ in the above discussion was arbitrary, we have shown η ≤ ε ′+ε

γ̃−γ
. Recall

that η = dist
(
0,∂[ε] f (x̄)

)
. We therefore have shown 0 ∈ ∂[ε̃] f (x̄), where ε̃ = ε +η .

This is what is claimed. �

Corollary 1. Suppose Ω = {x ∈ Rn : f (x) ≤ f (x1)} is bounded and f is lower C1.
Let approximate subgradients be drawn from ∂[ε] f (y), whereas function values are
exact. Then every accumulation point x̄ of the sequence of serious iterates x j satisfies
0 ∈ ∂[αε] f (x̄), where α = 1+(γ̃− γ)−1. �

Remark 7. At first glance one might consider the class of lower C1 functions used in
Corollary 1 as too restrictive to offer sufficient scope. This misapprehension might
be aggravated, or even induced, by the fact that lower C1 functions are approxi-
mately convex [16, 36], an unfortunate nomenclature which erroneously suggests
something close to a convex function. We therefore stress that lower C1 is a large
class which includes all examples we have so far encountered in practice. Indeed,
applications are as a rule even lower C2, or amenable in the sense of Rockafel-
lar [47], a much smaller class, yet widely accepted as of covering all applications of
interest.

Recent approaches to non-convex non-smooth optimization like [23, 35, 49] all
work with composite (and therefore lower C2) functions. This is in contrast with our
own approach [21,22,43,44], which works for lower C1 and is currently the only one
I am aware of that has the technical machinery to go beyond lower C2. On second
glance one will therefore argue that it is rather the class of lower C2-functions which
does not offer sufficient scope to justify the development of a new theory, because
the chapter on nonsmooth composite convex functions f = g◦F in [48] covers this
class nicely and leaves little space for new contributions, and because one can do
things for lower C1.
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1.7 Extension to inexact values

In this section we discuss what happens when we not only have inexact subgradients,
but also inexact function values. In the previous sections we assumed that for every
approximate subgradient ga of f at x, there exists an exact subgradient g ∈ ∂ f (x)
such that ‖ga−g‖ ≤ ε . Similarly, we will assume that approximate function values
fa(x) satisfy | fa(x)− f (x)| ≤ ε̄ for a fixed error tolerance ε̄ . We do not assume any
link between ε and ε̄ .

Let us notice the following fundamental difference between the convex and the
non-convex case, where it is often reasonable to assume fa ≤ f , see e.g. [32, 33].
Suppose f is convex, x is the current iterate, and an approximate value f (x)− ε̄ ≤
fa(x) ≤ f (x) is known. Suppose yk is a null step, so that we draw an approximate
tangent plane tk(·) = fa(yk)+ g>k (·− yk) at yk with respect to gk ∈ ∂[ε] f (yk). If we
follow [32, 33], then tk(·), while not a support plane, is still an affine minorant of f .
It may then happen that tk(x) = fa(yk)+ g>k (x− yk) > fa(x), because fa(x), fa(yk)
are approximations only. Now the approximate cutting plane gives us viable infor-
mation as to the fact that the true value f (x) satisfies f (x)≥ tk(x)> fa(x). We shall
say that we can trust the value tk(x)> fa(x).

What should we do if we find a value tk(x) in which we can trust, and which
reveals our estimate fa(x) as too low? Should we correct fa(x) and replace it by
the better estimate now available? If we do this we create trouble. Namely, we have
previously rejected trial steps yk during the inner loop at x based on the incorrect
information fa(x). Some of these steps might have been acceptable, had we used
tk(x) instead. But on the other hand, x was accepted as serious step in the inner loop
at x− because fa(x) was sufficiently below fa(x−). If we correct the approximate
value at x, then acceptance of x may become unsound as well. For short, correcting
values as soon as better estimates arrive is not a good idea, because we might be
forced to go repeatedly back all the way through the history of our algorithm.

In order to avoid this backtracking, Kiwiel [32] proposes the following original
idea. If fa(x), being too low, still allows progress in the sense that x+ with fa(x+)<
fa(x) can be found, then why waste time and correct the value fa(x)? After all,
there is still progress! On the other hand, if the under-estimation fa(x) is so severe
that the algorithm will stop, then we should be sure that no further decrease within
the error tolerances ε̄,ε is possible. Namely, if this is the case, then we can stop in
all conscience. To check this, Kiwiel progressively relaxes proximity control in the
inner loop, until it becomes clear that the model of all possible approximate cutting
planes itself does not allow to descend below fa(x), and therefore, does not allow to
descend more than ε̄ below f (x).

The situation outlined is heavily based on convexity and does not appear to carry
over to non-convex problems. The principal difficulty is that without convexity we
cannot trust values ty,g(x)> fa(x) even in the case of exact tangent planes, g∈ ∂ f (y).
We know that tangents have to be downshifted, and without the exact knowledge of
f (x) the only available reference value to organize the downshift is fa(x). Naturally,
as soon as we downshift with reference to fa(x), cutting planes my,g(·,x) satisfying
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my,g(x,x) > fa(x) can no longer occur. This removes one of the difficulties. How-
ever, it creates, as we shall see, a new one.

In order to proceed with inexact function values, we will need the following
property of the cutting plane mk(·,x) := tk(·)− sk at null step yk and approximate
subgradient gk ∈ ∂[ε] f (yk). We need to find ε̃ > 0 such that fa(yk) ≤ mk(yk,x) +
ε̃‖x− yk‖. More explicitly, this requires

fa(yk)≤ fa(x)+g>k (y
k− x)+ ε̃‖x− yk‖.

If f is ε ′-convex, then

f (yk) ≤ f (x)+g>(yk− x)+ ε
′‖x− yk‖

≤ f (x)+g>k (y
k− x)+(ε ′+ ε)‖x− yk‖

for g ∈ ∂ f (yk) and ‖g−gk‖ ≤ ε . That means

f (yk)− ( f (x)− fa(x))≤ fa(x)+g>k (y
k− x)+(ε + ε

′)‖x− yk‖.

So what we need in addition is something like

fa(yk)≤ f (yk)− ( f (x)− fa(x))+ ε
′′‖x− yk‖,

because then we get the desired relation with ε̃ = ε + ε ′+ ε ′′. The condition can
still be slightly relaxed to make it more useful in practice. The axiom we need is
that there exist δk→ 0+ such that

f (x)− fa(x)≤ f (yk)− fa(yk)+(ε ′′+δk)‖x− yk‖ (1.42)

for every k ∈N. Put differently, as yk→ x, the error me make at yk by underestimat-
ing f (yk) by fa(yk) is larger than the corresponding underestimation error at x, up
to a term proportional to ‖x− yk‖. The case of exact values f = fa corresponds to
ε ′′ = 0,δk = 0.

Remark 8. As f is continuous at x, condition (1.42) implies upper semi-continuity
of fa at serious iterates, i.e., limsup fa(yk)≤ fa(x).

We are now ready to modify our algorithm and then run through the proofs of
Lemmas 3, 4 and Theorem 1 and see what changes need to be made to account for
the new situation. As far as the algorithm is concerned, the changes are easy. We
replace f (yk) and f (x) by fa(yk) and fa(x). The rest of the procedure is the same.

We consider the same convex envelope function φ(·,x) defined in (1.13). We
have the following

Lemma 5. The upper envelope model satisfies φ(x,x) = fa(x), φk ≤ φ . φ is jointly
upper 2ε̄-semicontinuous, and ∂φ(x,x)⊂ ∂[ε] f (x)⊂ ∂2ε̄ φ(x,x), where ∂2ε̄ φ(x,x) is
the 2ε̄-subdifferential of φ(·,x) at x in the usual convex sense.

Proof. 1) Any cutting plane mz,g(·,x) satisfies mz,g(x,x) ≤ fa(x)− c‖x− z‖2. This
shows φ(x,x)≤ fa(x), and if we take z = x, we get equality φ(x,x) = fa(x).
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2) We prove ∂[ε] f (x) ⊂ ∂2ε̄ φ(x,x). Let g ∈ ∂ f (x) be a limiting subgradient, and
choose yk→ x, where f is differentiable at yk with gk = ∇ f (yk) ∈ ∂ f (yk) such that
gk → g. Let ga be an approximate subgradient such that ‖g− ga‖ ≤ ε . We have to
prove ga ∈ ∂2ε̄ φ(x,x). Putting ga,k := gk +ga−g ∈ ∂[ε] f (yk) we have ga,k→ ga. Let
mk(·,x) be the cutting plane drawn at yk with approximate subgradient ga,k. That is,
mk(·,x) = myk,ga,k

(·,x). Then

mk(y,x) = fa(yk)+g>a,k(y− yk)− sk,

where sk = [ fa(x)− tk(x)]+ + c‖x− yk‖2 is the down-shift, and where tk(·) is the
approximate tangent at yk with respect to ga,k. There are two cases, sk = c‖x−yk‖2,
and sk = fa(x)+ tk(x)+ c‖x− yk‖2, according to whether [. . . ]+ = 0 or [. . . ]+ > 0.
Let us start with the case tk(x)> fa(x). Then

sk = fa(yk)+g>a,k(x− yk)+ c‖x− yk‖2

and

mk(y,x) = fa(yk)+g>a,k(y− yk)− fa(yk)−g>a,k(x− yk)+ fa(x)− c‖x− yk‖2.

Therefore

φ(y,x)−φ(x,x)≥ mk(yk,x)− fa(x) = g>a,k(y− x)− c‖x− yk‖2.

Passing to the limit k→ ∞ proves ga ∈ ∂φ(x,x), so in this case a stronger statement
holds.

Let us next discuss the case where tk(x)≤ fa(x), so that sk = c‖x− yk‖2. Then

mk(y,x) = fa(yk)+g>a,k(y− yk)− c‖x− yk‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(yk,x)− fa(x)

= fa(yk)− fa(x)+g>a,k(y− yk)− c‖x− yk‖2

= fa(yk)− fa(x)+g>a,k(x− yk)− c‖x− yk‖2 +g>a,k(y− x).

Put ζk := g>a,k(x− yk)− c‖x− yk‖2 +(ga,k−ga)
>(y− x), then

φ(y,x)−φ(x,x)≥ fa(yk)− fa(x)+ζk +g>a (y− x).

Notice that limζk = 0, because ga,k→ ga and yk→ x. Let Fa(x) := liminfk→∞ fa(yk),
then we obtain

φ(y,x)−φ(x,x)≥ Fa(x)− fa(x)+g>a (y− x).

Putting ε(x) := [ fa(x)−Fa(x)]+, we therefore have shown
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φ(y,x)−φ(x,x)≥−ε(x)+g>a (y− x),

which means ga ∈ ∂ε(x)φ(x,x). Since approximate values fa are within ε̄ of ex-
act values f , we have | fa(x)− Fa(x)| ≤ 2ε̄ , hence ε(x) ≤ 2ε̄ . That shows ga ∈
∂ε(x)φ(x,x)⊂ ∂2ε̄ φ(x,x).

3) The proof of ∂φ(x,x) ⊂ ∂[ε] f (x) remains the same, after replacing f (x) by
fa(x).

4) If a sequence of planes mr(·), r ∈ N, contributes to the envelope function
φ(·,x), and if mr(·)→ m(·) in the pointwise sense, then m(·) also contributes to
φ(·,x), because the graph of φ(·,x) is closed. On the other hand, we may expect
discontinuities as x j → x. We obtain limsup j→∞ φ(y j,x j) ≤ φ(y,x)+ ε̄ for y j → y,
x j→ x. �

Remark 9. If approximate function values are under-estimations, fa ≤ f , as is often
the case, then |Fa− fa| ≤ ε̄ and the result holds with ∂φ(x,x)⊂ ∂[ε] f (x)⊂ ∂ε̄ φ(x,x).

Corollary 2. Under the hypotheses of Lemma 5, if x is a point of continuity of fa,
then ∂φ(x,x) = ∂[ε] f (x) and φ is jointly upper semicontinuous at (x,x).

Proof. Indeed, as follows from part 2) of the proof above, for a point of continuity
x of fa we have ε(x) = 0. �

Lemma 6. Suppose the inner loop at serious iterate x turns forever and τk → ∞.
Suppose f is ε ′-convex on a set containing all yk, k ≥ k0, and let (1.42) be satisfied.
Then 0 ∈ ∂[ε̃] f (x), where ε̃ = ε +(ε ′′+ ε ′+ ε)/(γ̃− γ).

Proof. We go through the proof of Lemma 3 and indicate the changes caused
by using approximate values fa(yk), fa(x). Part ii) remains the same, except that
φ(x,x) = fa(x). The exactness subgradient has still g(x) ∈ ∂[ε] f (x). Part iii) leading
to formula (1.17) remains the same with fa(x) instead of f (x). Part iv) remains the
same, and we obtain the analogue of (1.18) with f (x) replaced by fa(x).

Substantial changes occur in part v) of the proof leading to formula (1.19). In-
deed, consider without loss the case where tk(x)> fa(x). Then

mk(y,x) = fa(yk)+g>εk(y− yk)− sk

= fa(x)+g>εk(y− x)− c‖x− yk‖2,

as in the proof of Lemma 3, and therefore

fa(yk)−mk(yk,x) = fa(yk)− fa(x)−g>k (y
k− x)+(gk−gεk)

>(x− yk)+ c‖x− yk‖2.

Since f is ε ′-convex, we have g>k (x− yk)≤ f (x)− f (yk)+ ε ′‖x− yk‖. Hence

fa(yk)−mk(yk,x)≤ f (x)− fa(x)−
(

f (yk)− fa(yk)
)
+(ε ′+ ε +νk)‖x− yk‖,

where νk→ 0. Now we use axiom (1.42), which gives

fa(yk)−mk(yk,x)≤ (ε ′′+ ε
′+ ε +δk +νk)‖x− yk‖,
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for δk,νk → 0. Subtracting the usual quadratic expression on both sides gives
fa(yk)−Mk(yk,x) ≤ (ε ′′+ ε ′+ ε + δk + ν̃k)‖x− yk‖ with δk, ν̃k → 0. Going back
with this estimation to the expansion ρ̃k ≤ ρk +

ε ′′+ε ′+ε

η
shows η < ε ′′+ε ′+ε

γ̃−γ
as in

the proof of Lemma 3, where η = dist(0,∂φ(x,x)). Since ∂φ(x,x) ⊂ ∂[ε] f (x) by
Lemma 5, we have 0 ∈ ∂[ε+η ] f (x). This proves the result. �

Lemma 7. Suppose the inner loop turns forever and τk is frozen from some counter
k onwards. Then 0 ∈ ∂[ε] f (x).

Proof. Replacing f (x) by fa(x), the proof proceeds in exactly the same fashion
as the proof of Lemma 4. We obtain 0 ∈ ∂φ(x,x) and use Lemma 5 to conclude
0 ∈ ∂[ε] f (x). �

As we have seen, axiom (1.42) was necessary to deal with the case τk → ∞ in
Lemma 6, while Lemma 7 gets by without this condition. Altogether, that means
we have to adjust the stopping test in step 2 of the algorithm to 0 ∈ ∂[ε̃] f (x j), where
ε̃ = ε + (ε ′′ + ε ′ + ε)/(γ̃ − γ). As in the case of exact function values, we may
delegate the stopping test to the inner loop, so if the latter halts due to insufficient
progress, we interpret this as 0 ∈ ∂[ε̃] f (x j), which is the precision we can hope for.
Section 1.8 below gives more details.

Let us now scan through the proof of Theorem 1 and see what changes occur
through the use of inexact function values fa(yk), fa(x j).

Theorem 2. Let x1 be such that Ω ′ = {x ∈ Rn : f (x) ≤ f (x1) + 2ε̄} is bounded.
Suppose f is ε ′-convex on Ω , that subgradients are drawn from ∂[ε] f (y), and that
inexact function values fa(y) satisfy | f (y)− fa(y)| ≤ ε̄ . Suppose axiom (1.42) is
satisfied. Then every accumulation point x̄ of the sequence x j satisfies 0 ∈ ∂[ε̃] f (x̄),
where ε̃ = ε +(ε ′′+ ε ′+ ε)/(γ̃− γ).

Proof. Notice that ε̃ used in the stopping test has a different meaning than in The-
orem 2. Replacing f (x j) by fa(x j) and f (yk j) by fa(yk j), we follow the proof of
Theorem 1. Part i) is still valid with these changes. Notice that Ω = {x : fa(x) ≤
fa(x1)} ⊂Ω ′, and Ω ′ is bounded by hypothesis, so Ω is bounded.

As in the proof of Theorem 1 the set of all trial points y1, . . . ,yk j visited during all
the inner loops j is bounded. However, a major change occurs in part ii). Observe
that the accumulation point x̄ used in the proof of Theorem 1 is neither among
the trial points nor the serious iterates. Therefore, fa(x̄) is never called for in the
algorithm. Now observe that the sequence fa(x j) is decreasing and by boundedness
of Ω converges to a limit Fa(x̄). We re-define fa(x̄) = Fa(x̄), which is consistent
with the condition | fa(x̄)− f (x̄)| ≤ ε̄ , because fa(x j) ≥ f (x j)− ε̄ , so that Fa(x̄) ≥
f (x̄)− ε̄ .

The consequences of the re-definition of fa(x̄) are that the upper envelope model
φ is now jointly upper semicontinuous at (x̄, x̄), and that the argument leading to
formula (1.29) remains unchanged, because fa(x j)→ φ(x̄, x̄).

Let us now look at the longer argument carried out in parts iii) - ix) of the proof
of Theorem 1, which deals with the case where ‖g j‖ ≥ µ > 0 for all j. Parts iii)
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- vii) are adapted without difficulty. Joint upper semi-continuity of φ at (x̄+ h, x̄)
is used at the end of vii), and this is assured as a consequence of the re-definition
fa(x̄) = Fa(x̄) of fa at x̄.

Let us next look at part viii). In Theorem 1 we use ε ′-convexity. Since the latter is
in terms of exact values, we need axiom (1.42) for the sequence yk j−ν j→ x̄, similarly
to the way it was used in Lemma 5. We have to check that despite the re-definition
of fa at x̄ axiom (1.42) is still satisfied. To see this, observe that yk j−ν j is a trial
step which is rejected in the jth inner loop, so that its approximate function value
is too large. In particular, fa(yk j−ν j) ≥ fa(x j+1), because x j+1 is the first trial step
accepted. This estimate shows that (1.42) is satisfied at x̄.

Using (1.42) we get the analogue of (1.36), which is

fa(yk j−ν j)−Mk j−ν j(y
k j−ν j ,x j)≤ (ε ′′+ ε

′+ν j +δ j)‖yk j−ν j − x j‖

for certain ν j,δ j → 0. Estimate (1.40) remains unchanged, so we can combine the
two estimates to obtain the analogue of (1.41) in part ix), which is

ρ̃k j−ν j ≤ ρk j−ν j +
(1+ζ 2)(ε ′′+ ε ′+ ε)

(1−ζ )2η
.

Using the same argument as in the proof of Theorem 1, we deduce

η ≤ (1+ζ )2(ε ′′+ ε ′+ ε)

(1−ζ )2(γ̃− γ)

for η = dist(0,∂φ(x,x)). Since 0 < ζ < 1 was arbitrary, we obtain η ≤ ε ′′+ε ′+ε

γ̃−γ
.

Now as x̄ is a point of continuity of fa, Corollary 2 tells us that η = dist(0,∂[ε] f (x̄)).
Therefore 0 ∈ ∂[ε+η ] f (x̄). Since ε +η = ε̃ , we are done. �

1.8 Stopping

In this section we address the practical problem of stopping the algorithm. The idea
is to use tests which are based on the convergence theory developed in the previous
sections.

In order to safe time, the stopping test in step 2 of the algorithm is usually dele-
gated to the inner loop. This is based on Lemmas 3, 4 and the following

Lemma 8. Suppose tangent program (1.7) has the solution yk = x. Then 0∈ ∂[ε] f (x).

Proof. From (1.8) we have 0 ∈ ∂φk(x,x)⊂ ∂φ(x,x)⊂ ∂[ε] f (x) by Lemma 5. �

In [22] we use the following two-stage stopping test. Fixing a tolerance level tol
> 0, if x+ is the serious step accepted by the inner loop at x, and if x+ satisfies

‖x− x+‖
1+‖x‖

< tol,
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then we stop the outer loop and accept x+ as the solution, the justification being
Lemma 8. On the other hand, if the inner loop at x fails to find x+ and either exceeds
a maximum number of allowed inner iterations or provides three consecutive trial
steps yk satisfying

‖x− yk‖
1+‖x‖

< tol,

then we stop the inner loop and the algorithm and accept x as the final solution. Here
the justification comes from Lemmas 3,4.

Remark 10. An interesting aspect of inexactness theory with unknown precisions
ε,ε ′,ε ′′ are the following two scenarios, which may require different handling. The
first is when functions and subgradients are inexact or noisy, but we do not take
this into account and proceed as if information were exact. The second scenario is
when we deliberately use inexact information in order to gain speed or deal with
problems of very large size. In the first case we typically arrange all elements of the
algorithm like in the exact case, including situations where we are not even aware
that information is inexact. In the second case we might introduce new elements
which make the most of the fact that data are inexact.

As an example of the latter, in [32] where f is convex, the author does not use
downshift with respect to fa(x), and as a consequence one may have φk(x,x) >
fa(x), so that the tangent program (1.7) may fail to find a predicted descent step
yk at x. The author then uses a sub-loop of the inner loop, where the τ-parameter
is decreased until either a predicted descent step is found, or optimality within the
allowed tolerance of function values is established.

1.9 Example from control

Optimizing the H∞-norm [1,7,21,22] is a typical application of (1.1) where inexact
function and subgradient evaluations may arise. The objective function is of the
form

f (x) = max
ω∈R

σ (G(x, jω)) , (1.43)

where G(x,s) =C(x)(sI−A(x))−1 B(x)+D(x) is defined on the open set S = {x ∈
Rn : A(x) stable}, and where A(x), B(x), C(x), D(x) are matrix valued mappings
depending smoothly on x ∈ Rn. In other words, for x ∈ S each G(x,s) is a stable
real-rational transfer matrix.

Notice that f is a composite function of the form f = ‖ · ‖∞ ◦G , where ‖ · ‖∞ is
the H∞-norm, which turns the Hardy space H∞ of functions G which are analytic
and bounded in the open right-half plane [55, p. 100] into a Banach space,

‖G‖∞ = sup
ω∈R

σ (G( jω)) ,
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and G : S→H∞, x 7→ G(x, ·) = C(x)(·I−A(x))−1B(x)+D(x) ∈H∞ is a smooth
mapping, defined on the open subset S = {x ∈ Rn : A(x) stable}. Since composite
functions of this form are lower C2, and therefore also lower C1, we are in business.
For the convenience of the reader we also include a more direct argument proving
the same result:

Lemma 9. Let f be defined by (1.43), then f is lower C2, and therefore also lower
C1, on the open set S = {x ∈ Rn : A(x) stable}.

Proof. Recall that σ(G) = max‖u‖=1 max‖v‖=1 ReuGvH , so that

f (x) = max
ω∈S1

max
‖u‖=1

max
‖v‖=1

ReuG(x, jω)vH .

Here, for x ∈ S, the stability of G(x, ·) assures that G(x,s) is analytic in s on a
band B on the Riemann sphere C∪ {∞} containing the zero meridian jS1 with
S1 = {ω : ω ∈ R∪{∞}}, a compact set homeomorphic to the real 1-sphere. This
shows that f is lower C2 on the open set S. Indeed, (x,ω,u,v) 7→ F(x,ω,u,v) :=
ReuG(x, jω)vH is jointly continuous on S× S1×Cm×Cp and smooth in x, and
f (x) = max(ω,u,v)∈K F(x,ω,u,v) for the compact set K = S1 × {u ∈ Cm : ‖u‖ =
1}×{v ∈ Cp : ‖v‖= 1‖}. �

The evaluation of f (x) is based on the iterative bisection method of Boyd et
al. [11]. Efficient implementations use Boyd and Balakrishnan [12] or Bruisma and
Steinbuch [13] and guarantee quadratic convergence. All these approaches are based
on the Hamiltonian test from [11], which states that f (x) > γ if and only if the
Hamiltonian

H(x,γ) =
[

A(x) 0
0 −A(x)>

]
−
[

0 B(x)
C(x)> 0(x)

][
γI D(x)

D(x)> γI

]−1 [C(x) 0
0 −B(x)>

]
(1.44)

has purely imaginary eigenvalues jω . The bundle method of [7], which uses (1.44)
to compute function values, can now be modified to use approximate values fa(yk)
for unsuccessful trial points yk. Namely, if the trial step yk is to become the new
serious iterate x+, its value f (yk) has to be below f (x). Therefore, as soon as the
Hamiltonian test (1.44) certifies f (yk) > f (x) even before the exact value f (yk) is
known, we may dispense with the exact computation of f (yk). We may stop the
Hamiltonian algorithm at the stage where the first γ with f (yk) > γ ≥ f (x) occurs,
compute the intervals where ω 7→ σ (G(x, jω)) is above γ , take the midpoints of
these intervals, say ω1, . . . ,ωr, and pick the one where the frequency curve is max-
imum. If this is ων , then fa(yk) = σ (G(x, jων)). The approximate subgradient ga
is computed via the formulas of [1] with ων replacing an active frequency. This
procedure is trivially consistent with (1.42), because f (x) = fa(x) and fa(y)≤ f (y).

If we wish to allow inexact values not only at trial points y but also at serious it-
erates x, we can use the termination tolerance of the Hamiltonian algorithm [12].
The algorithm works with estimates fl(x) ≤ f (x) ≤ fu(x) and terminates when
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fu(x)− fl(x) ≤ 2ηxF(x), returning fa(x) := ( fl(x)+ fu(x))/2, where we have the
choice F(x) ∈ { fl(x), fu(x), fa(x)}. Then | f (x)− fa(x)| ≤ 2ηx|F(x)|. As ηx is un-
der control, we can arrange that ηx|F(x)| ≤ ηy|F(y)|+o(‖x−y‖) in order to assure
condition (1.42).

Remark 11. The outlined method applies in various other cases in feedback con-
trol where function evaluations use iterative procedures, which one may stop short
to save time. We mention IQC-theory [4], which uses complex Hamiltonians, [7]
for related semi-infinite problems, or the multidisk problem [3], where several H∞-
criteria are combined in a progress function. The idea could be used quite naturally
in the ε-subgradient approaches [38, 39], or in search methods like [2].

Acknowledgements The author acknowledges funding by Fondation d’Entreprise EADS under
grant Technicom, and by Fondation de Recherche pour l’Aéronautique et l’Espace under grant
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