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Bifunctional Duality, Lagrange Duality, and Fenchel Duality in convex program-
ming are presented under a common point of view. Stability criteria, weaker and
more natural than the usual Slater type constraint qualification hypotheses, are
obtained for any of these types of duality.  © 1991 Academic Press, Inc.

1. INTRODUCTION

The purpose of this note is to present Bifunctional Duality, Lagrange
Duality, and Fenchel Duality in convex programming from a common
point of view. As a result, we obtain stability criteria for each of the duality
concepts weaker and more natural than the usual Slater type constraint
qualification hypotheses. We do this by showing that the three types of
duality are actually equivalent, and then use the well-known description
of Fenchel duality in terms of the Sandwich Theorem. The natural
requirements needed to prove versions of the Sandwich Theorem (cf. [1, 4,
5, 6]) then lead to the mentioned stability criteria. For instance, using this
reduction, we obtain Rockafellar’s stability condition in Lagrange duality
(cf. [7, p. 192; 8]).

The interrelation between different types of duality has been investigated
by various authors. We just mention Refs. [2, 7, 8, 12], where the case of
Slater type conditions is treated. Qur access provides stability conditions of
a fairly general type, covering all cases of practical relevance.

2. YOUNG—-FENCHEL TRANSFORM

Let E, F be normed spaces, and let F be ordered by a closed convex and
normal cone F, (cf. [9, p.215]). Throughout we assume that F is order-
complete, which means that subsets of F which are order-bounded below
admit infima (see [9, p. 209]).
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Let ¢: E— Fu {0} be a convex operator. The Young—Fenchel transform
¢* of ¢ is defined by

¢*(f) =sup (f(x)—(x)),

xeE

fe #(E, F), where Z(E, F) denotes the space of continuous linear
operators from E to F. In the case where the domain

D(¢)={xeE: g(x) <o}

of ¢ is nonempty, ¢*: #L(E, F)—» Fu {co} is a convex operator. D(¢*)
may be empty, however; i.c., we may have ¢*=oc. If ¢ is lower semi-
continuous with values in Ru {00}, the Brendsted—Rockafellar Theorem
implies that d¢(x)# Jon a dense set of points x € D(¢), from which we
readily deduce that D(¢*) # . In the vector-valued case, no analogue of
the Brendsted-Rockafellar Theorem is available, but a generalization of
Hormander’s theorem, proved in [4, Section 2], yields D(¢*) # (&, at least
in the case of a lower semi-continuous ¢ having values in Fu {c0} for an
order-complete F having an order-unit (cf. [9, p.205]). Clearly the case
where int D(¢)+# I causes no difficulties, for then the Hahn-Banach
Theorem proves d¢(x) # & on int D(¢), from which we obtain D(¢*)# O
{see [11]). The general vector-values case, however, is more complicated,
as the following example indicates.

ExampLE. Let E=1'(N), F=/*N), the latter ordered in the natural
way. Let D(¢) be the cone of xe/%(N) having x, =0, and define ¢ by

B(x) = (—/x.) .

Then ¢ is even Lipschitz continuous, convex, and defined on a closed
convex and generating cone D(¢) in /}(N). But ¢*= oo here, as may be
seen by [4, Example 1].

If the domain D(¢) of ¢ satisfies some mild completeness condition, the
statement D(¢*) # & may be obtained even under weaker requirements on
the operator ¢ provided that F has an order-unit. In this case mere
measurability assumptions on ¢ are sufficient.

PROPOSITION 1. Let E be a Banach space, F a normally ordered
normed space. Suppose F is order-complete and has an order-unit. Let
¢:E—>Fu{o} be a convex operator. Suppose (1) D(¢) is CS-closed (cf.
[31), and (ii) for every fe F', f 20, the convex functional f o ¢ is majorized
by a Borel measurable mapping /. D(¢) — R. Then D(¢*) # .

The proof is essentially the same as in [4, Theorem 7], where we proved
that under the assumptions (i), (ii) above the operator ¢ admits a
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continuous affine support mapping h: E— F, h<¢. Clearly, h= f +v for
certain f € #(E, F), ve F, whence fe D(¢*).

3. BIFUNCTIONAL DUALITY

Let E, F be given as in Section 2, and let ¢: E— Fu {o0} be a convex
operator with nonempty domain. A convex bifunction ®: Ex Y — FU {0}
is called a perturbation of ¢ if @(-,0)=¢. The normed space Y is referred
to as the perturbation space. We consider the convex optimization problem

(P)g minimize ¢(x)= P(x, 0), xeE.

The value vy of (P)is vy=inf{g(x): xe E}e FU {—}.
We consider the associated dual optimization problem

(P*)g maximize —®@*(0, f), feZ(Y, F),

where @* denotes the Young—Fenchel transform of @, and where (0, /)
stands for the linear operator (x, y)— f(y) on ExY. Let wy=
sup{ —®*0, f): fe Z(Y, F)} be the value of the dual problem (P*)g,
then we have the well-known

PROPOSITION 2. —o0 Swp<vp.

This is immediate from the estimate

—2*(0, /)<inf (D(x, y)— f(y)) <inf D(x, 0) = v,

The original problem (P); is called stable if vy =wp, and if there exists an
optimal solution for the dual problem (P*)z. A well-known stability
criterion (cf. [2, p. 52]) is the condition

(S)s There exists x,e E and a neighborhood V of 0 in Y such that
@(x,, -): V- F is continuous at 0.

We derive a weaker stability criterion in Section 7.

4. LAGRANGE DuUALITY

Let E, F be as in Section 2, and let G be a normed space ordered by a
normal positive cone G, . Let ¢: E-»>Fu {0} and y: E-GuU {0} be
convex operators. We consider the optimization problem

(P), minimize ¢(x) subject to y(x) <0.
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The value v, of (P), is v, =inf{@(x): x € E, x(x) <0}. The dual Lagrange
optimization problem (P*), is obtained as
(P*), maximize inf, (¢(x)+ f(x(x))), f e Z(G, F) subject to f =0.
The value of the dual problem being w, =sup, ., inf, (¢(x)+ f(x(x))), we
again have the relation
PROPOSITION 3. —oo<w, <v,.

Indeed, for fe Z(G, F), f =0, we find
il)}f (P(x)+ f(x(x)) < X(ir)lio ((x)+ f(x(x)))

< inf ¢(x)=v,.
x(x)<0
Problem (P), is called stable if v, =w;, and if (P*), admits an optimal
solution f,. The latter is called a Lagrange multiplier for problem (P), in
view of the relation
Solx(x0)) =0,

pertaining to every optimal solution x, of (P),. This corresponds with the
classical (finite-dimensional) convex programming case, where Lagrange
multipliers annihilate inactive constraints.

A well-known stability criterion for problem (P),; is Slater’s condition

(S). x(xo)€ —int G, for some x, € D(¢),

which usually is combined with certain continuity assumptions on the func-
tions ¢, x (cf. [7, p. 66f]). We derive a weaker stability criterion, called
Rockafellar’s condition, in Section 8. Also we see, then, that the continuity
assumptions combined with (S), are not actually needed.

5. FENCHEL DUALITY

Let E, F be as above and let ¢: E— Fu {c0 } be a convex, and y: E —
Fu {—o0} a concave operator. The primal Fenchel optimization problem
is defined as

(P)r minimize ¢(x) ~(x), x e D(¢) N D(¥),

its value being v, =inf{¢(x) —Y(x): xe D(¢)~ D(y¥)}. Using the Young-
Fenchel transforms, one states the dual problem (P*), as

(P*); maximize y*(f)—@*(f), fe D(¢*)n D(y*),

where y* denotes the concave Young-Fenchel transform —(—y)*.
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Denoting by w the value of the dual problem (P*);, we have the obvious

PROPOSITION 4. — 00 SWp< V.

This follows from the estimate

Wr=sup W*(f)—9*()
=sup (inf (f(y) —¥()) —sup (f(x) — 4(x)))
< Sl;p (f(x) =¥ (x) = (f(x) — ¢(x))) S vF.

Again, (P)y is called stable if wy=v, holds and a dual optimal solution
exists. A sufficient condition for stability was obtained by Zowe in [12]:

(S)r ¢ is continuous at some X € int D(¢) N D(¥).

We obtain a weaker stability condition in the next section.

6. STABILITY FOR (P)

In this section we reduce the Fenchel optimization problem to the
Sandwich Theorem, thereby obtaining the appropriate setting for stability.
Let (P)s be defined as in Section 5. Suppose vp€ F; then

vrt+¥(x) < d(x)

holds for all xeD(¢)n D(y). The Sandwich problem for the convex
operator ¢ and the concave operator ¥ + v, now consists in finding a
continuous affine mapping 4: E — F satisfying

V+ov<h<4.

Suppose this Sandwich problem has been solved and A = f, + w for certain
foe #(E, F), weF has been found accordingly. Then f, actually is an
optimal solution for (P*),, rendering problem (P), stable. This follows
from the estimate

¢(x} —Y(y) —vpZ h(x) — h(y) = fo(x) — fo(¥),
pertaining to all xe D(¢), y € D(}). Rearranging this inequality gives
Jo(¥) =¥ () — (fo(x) — $(x)) Z vp
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for all xe D(¢), ye D({). So passing to the infima on the left-hand side
yields the desired inequality y*(f,) —~ ¢*(fo) = vr, in which equality must
hold as a consequence of Proposition4. So we are led to establish a
continuous Sandwich Theorem for the operators ¢, ¥ + vp.

THEOREM 5. Let (P)y be defined as in Section 5. Then (P) is algebrai-
cally stable provided that the condition

(R)r D(¢)— D(¥) is absorbing

is satisfied. Topological stability of (P), is guaranteed by any one of the
following conditions (1)-(4):

(1) For every geF', g=0 there exists xe D{(¢)n D(Y) such that
go¢: D(¢)— R is upper semicontinuous at X, g-: D(y) —» R is lower semi-
continuous at x, and (D(¢) — X, D(Y} — X) induces an open decomposition of
E (cf. [3,5,67).

(2) E is a separable Banach space, and there exist analytic sets C, D
in E having C < D(¢), D < D({) such that C — D is absorbing, and for every
geF', g=0, the convex functionals go¢p: C >R, —goyy: D—> R are Borel
measurably majorized.

(3) E is a Banach space, and there exist CS-closed sets C, D in E
having C < D(4), D<= D(y) such that C— D is absorbing, and for every
geF', g=0, the convex functionals go¢: C >R, —goyr: D - R are Borel
measurably majorized.

(4) E is Banach, D(¢)— D(y) is absorbing, and for every ge F', g 20,
the convex functionals go¢, —goy have weakly A -analytic level sets

{gogp<a}, {goy =B}, (f [10]).

Proof. By condition (R)z, we certainly have vy<oo. Let us first
consider the case v.= — 0. Setting f, =0 then obviously provides a dual
optimal solution satisfying Y *(f,) — ¢*(fy) = — 0. So let us now assume
vp€ F. Define a sublinear operator x: E — F by setting

1(x)=inf{A($(x) —¥(y) —vp): A>0,z=A(x— y)}.

In view of condition (R), x is actually fully defined (see [4, 127). The
Hahn-Banach Theorem therefore provides a linear mapping f;: E — F sup-
porting x. Certainly, f, is the desired optimal solution for (P*),, rendering
(P) stable, resp. topologically stable, once its continuity is established.

Deriving the continuity of f; is possible under any one of the topological
conditions (1)-(4).

First consider the case where (1) is satisfied. As E is normed and F is
normally ordered, it suffices to show that go f, is continuous for every
geF',g>=0.
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Let ge F’, g=0 be fixed. By assumption there exists xe D(¢)n D(y)
such that go¢ is upper semicontinuous at X, goy is lower semicontinuous
at ¥ and (D(¢) — %, D(y)— x) induces an open decomposition of E.

This means that we can find a, >0 and a neighborhood U of 0 in £
such that

gop<a on (x+ U)n D(g),
goyz—f on (X+U)nD®W).

We claim that go f; is bounded by « + § on some neighborhood of 0 in E,
from which the continuity of g< f; follows.
Assume the contrary. Then

g(fo(z))>a+ B

for a null-sequence (z,) in E. Now as the pair (D(¢)— x, D(¢) — x) induces
an open decomposition of E, we can find sequences (x,) in D(¢), (y,) in
D(y) such that x, - X, y, - X, and

zn=(xn_x)_(yn_—j)=xn—yn

eventually.
But x,, y,e€ X + U eventually, hence we obtain

g(fo(z,)) < g(x(z,)) < g(d(x,) —¥(y,))<a+f

eventually, a contradiction with the choice of (z,). This proves the claim in
case (1).

Case (2) is just our Sandwich Theorem [4, Theorem 6(1)], while case (3)
is covered by [6] (see also [4, Theorem 6(2)]). Finally, consider case (4).
In the case F=R, this is just the Sandwich Theorem [5, Satz 3]. But note
that, in view of the fact that E is a Banach space and F is normally
ordered, we again must only show that go f, is continuous for fixed ge F’,
£2=0. So we are left to deal with the scalar case, to which the method in
[5] applies. This ends the proof in case (4).

Remark. The purely algebraic part (R) of the stability criteria (1)-(4)
presented in Theorem 5 was already discussed in [12]. It is sufficient to
obtain an algebraic optimal solution for the dual problem (P*),.

It is worth noting that condition (1) above is in some sense minimal for
the stability of problem (P),. More precisely, we have the following

PROPOSITION 6. Let E be a Banach space, and let C, D be convex sets in
E such that C— D is absorbing and 0e C n D. Suppose that for all convex
¢:E->Ru {0}, C< D(¢) and concave y: E—-Ru { -0}, DS D) such



DUALITY IN CONVEX PROGRAMMING 515

that | C, —y| D are upper semicontinuous at 0, the corresponding Fenchel
optimization problem (P) is (topologically) stable. Then (C, D) induces an
open decomposition of E.

Proof. We prove that every linear functional f € E* such that f|C, f| D
are continuous at 0 (on C resp. D), is continuous on E. From this we
derive that (C, D) induces an open decomposition of E (cf. [ 5, Section 4]).

Let fe E* be of this kind. Then ¢, defined by ¢|C=f, ¢(x)= o0 for
x ¢ C, is convex,  defined by | D= f, y(y)= — oo for y¢ D, is concave.
By assumption, the corresponding problem (P), is stable, so there exists a
continuous linear f, € E' such that

inf(P) =0 =y*(fo) — 4*(fo)
inf (fo(y)— f(¥)) —sup (fo(x) — f(x)).

veD xeC

I

This implies
Jo(x) = f(x)< fo(y) — f(¥)

respectively
So(x=y)< flx—y)

for all xe C, ye D. As C— D is absorbing, every z € E may be represented
as z=Ax~y), >0, xeC, yeD. But this implies f,< f on E, hence
fo=f, so fis continuous.

7. STABILITY FOR (P),

Using the results of the previous section, we now derive a stability
criterion for bifunctional duality, which in a sense similar to that of
Proposition 6 is weakest possible. We obtain this by reducing problem (P),
to an equivalent Fenchel optimization problem.

Let : Ex Y — Fu {0} be a convex bifunction with nonempty domain,
and let (P) be the corresponding minimization problem. We define convex
sets

C={(y,2)e Y F: ®(x, y)< z for some x e £},
D={0}xF,

and a convex operator ¢:YxF-—Fu{w}, by ¢(y,z)=z on C,
#(», z) = oo otherwise, a concave operator Y: Yx F>Fu{—ow} by y =0
on D, Yy = — o otherwise.
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Let (P), denote the Fenchel optimization problem associated with ¢ and
Y. Then we have the following relations.

PROPOSITION 7. vp=0y, Wwg=wg. Moreover, optimal solutions for (P),
and (P)p respectively dual optimal solutions for (P*)g and (P* )y correspond.

Proof. The statement concerning vg=v; and optimal solutions for
(P)s, (P)p is clear from the definition of (P)r. Let us check wgz=wp.
Observing that

Y*(f)=inf f(0,z) <0
is possible only when f(0, -} =0, and that Y*(f)=0 on D(y*), we obtain

we=sup {— sup (f(y,2)—2)}

5 aec
=sup inf (z—f(»,0))
/ naec

=sup inf{P(x, y)— f(»,0): (x, y)eEx Y}
S/

=WB’

where sup, stands for the supremum over D(¥*) n D(¢*) =
{feL(YXF, F): f(0,-)=0} =D(®*(0, -)).

Finally, the above calculation also shows that an optimal solution f, for
(P*)r must satisfy f,(0,-)=0, and so must uniquely correspond to an
optimal solution of (P*)y, and vice versa. |

As a consequence of Proposition 7 and the stability result Theorem 5 for
(P)r, we now obtain

THEOREM 8. Let (P)g defined as in Section 3. (P)y is algebraically stable
if the following condition

(R)sz the projection p,(D(®)) of D(D) onto the Y-coordinate is
absorbing

is satisfied. Topological stability is provided by any one of the following
conditions (1}-(4):

(1) The projection of D(®) onto the Y-coordinate is a neighborhood of
OinY,;

(2) E, F, Y are separable Banach spaces, (R) g holds, and & has Borel
measurable epigraph;
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(3) E, F, Y are Banach spaces, (R)g is satisfied, and @ has CS-closed
epigraph;

(4) F is a weakly A -analytic Banach space, (R)g is valid, and @ has
weakly A -analytic level sets {® <z}, zeF.

Proof. Condition (R),; means that for every y e Y there exist A >0 and
x € E such that &(x, iy) < 0. So (R), translates into condition (R). for
the associated Fenchel optimization problem (P)., ie., the projection
py(C) is absorbing in Y. Hence the algebraic part of Theorem 5 applies.
Concerning the topological part it suffices to check that (1)-(4) above
correspond with (1)-(4) from Theorem 5 when applied to the special
problem (P), associated with (P),.

First consider case (1). This condition is just the statement that (C, D)
induces an open decomposition of Ex Y. Since ¢ on C, ¥ on D are
obviously continuous, Theorem 5, part (1), applies and gives the result,

Next consider case (2). Here Epi(¢)={(x, y,z):z=®(x, y)} is Borel,
hence its projection onto the coordinates (y, z) is an analytic set, Ex Y x F
being a separable Banach space. But this is just the set C. Since D= {0} x F
is analytic and ¢, y are continuous on C, D, Theorem 6, part (2), applies.

For part (3) observe that the CS-closedness of the epigraph Epi(®)
implies that its image C under the projection (x, y, z) = (y, z) is a pseudo-
complete set in the sense of [6]. So this verson follows from the slightly
more general statement of the Sandwich Theorem in [6].

Finally, for part (4), observe that the functions ¢,y have weakly
X -analytic level sets. For iy this is a consequence of the weak
A -analyticity of F. For ¢ observe that {# <z} is just the image of

Epi(®)n(Ex Y x {z})

under the projection (x, y, z) = (y, z), hence is weakly J -analytic. This
ends the proof of Theorem 8. ||

Remark. Note that the stability condition (S); for (P), presented in
Section 3 clearly implies condition (1) of Theorem 8.

8. StaBILITY FOR (P),

Let E, F, G, ¢, x be defined as in Section 4, and let (P), be the corre-
sponding Lagrange minimization problem. We define a convex bifunction
D:ExG-Fu{w} by

p(x), if x(x)<y,
0, otherwise.

o(x, » =
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Let (P)p be the bifunctional optimization problem associated with @. Then
we have the following

PROPOSITION 9. v, =05, w,=wz. Moreover, xo€E is an optimal
solution for (P), if and only if it is optimal for (P)g. Optimal solutions
fo for (P*), and gy for (P*), are in 1-1 correspondence via the formula
Jo(¥)= golx, »).

Proof. The statement concerning v, =v, and the coincidence of the
optimal solutions of (P), and (P), are clear from the above definition of
@. We then prove w, = wy. By definition of (P*),, we have

wy, = sup inf ((x) + f(x(x)))

fz0 x

=sup inf [D(x, y)+f(¥)]

f20x)<y

=sup inf [D(x, y) ~ f(y)].

f<€0xy

Here the last equality comes from the fact that elements x, y for which
x(x) < y is not satisfied, give @(x, y)= o0, and so do not contribute to the
infimum. But now the expression on the right-hand side is just —@*(0, 1),
where (0, 1) stands for the operator (x, y})— f(¥) on ExG. It remains to
prove

sup { —~®*(0, f)} =w5.

<0

But this follows from the fact that elements f' e £ (G, F) having f € 0 do not
contribute to the supremum here. Indeed, D(®*(0, -)) consists of those
feZ(G, F) for which

up= sup {f(y)—4¢(x)} <oo.

x)<y

Fixing x e D{¢) n D(y), we find that y(X) < x(X)+z=:y for 220 in G, so
Sy <up + (%) — f(x(X))

for all z>0 in G. But clearly this is possible only in the case where f < 0.
This establishes w, = wp.

The above calculation also shows that optimal solutions of (P*),, (P*),
are in 1-1 correspondence in the way stated. [

Combining Proposition 9 with the stability Theorem 8 for bifunctional
duality, we obtain stability criteria for (P),.
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THEOREM 10. Let (P), be defined as in Section 4. Suppose the following
condition (R),, called Rockafellar’s condition, is satisfied:

(R), for every yeF there exist A>0 and x € D(¢) having y(x) < Ay.

Then problem (P), is algebraically stable. Topological stability is provided
by any one of the following conditions:

(1) The projection of (D(¢)x G)n Epi(y) onto the G-coordinate is a
neighborhood of 0 in G.

(2) E, F, G are separable Banach spaces, (R), is satisfied, and ¢, x
have Borel measurable epigraphs.

(3) E, F, G are Banach spaces, (R), is satisfied, and ¢,y have
CS-closed epigraphs.

(4) E, F, G are weakly X -analytic Banach spaces, (R), is satisfied,
and ¢, y have weakly A -analytic epigraphs.

Proof. The algebraic condition (R), translates into (R)y for the
associated bifunctional problem (P);. So the algebraic part of the state-
ment follows from the algebraic part of Theorem 8. Concerning the
topological part, we must show that conditions (1)-(4) transiate into
conditions (1)-(4) from Theorem 8.

Condition (1) above translates to (1) from Theorem 8, because of
D(®)= (D(¢)x G) n Epi(y). Concerning condition (2), observe that

Epi(®) = (Epi(¢) x G) n (Epi(x) x F);

hence Epi(®) is analytic if Epi(¢), Epi(x), and G, F are. The same equality
also shows that Epi(®) is CS-closed, if Epi(¢), Epi(y) are CS-closed. This
means that Theorem 8, part (3), applies when we translate problem (P),
into the corresponding bifunctional problem.

Finally, the above equality also shows that in the case of condition (4),
Epi(®) is weakly X -analytic, as Epi(¢), Epi(x) and F,G are. So
Theorem 8, part (4), applies here. ||

Remarks. (1) The stability criterion (1) should be compared with the
criteria in [7, p. 63 ff]. Essentially, it was first used by Rockafellar [8] in
the form (R),, under additional continuity assumptions on ¢, x. Note that
its advantage over the Slater condition (S), (cf. Section 4) is that the
positive cone G, need not have interior points. For instance, condition
(R), also permits a treatment of problem (P), with affine equality con-
straints y(x) =0, for in this case, the positive cone G , has just to be chosen
as G, = {0}. Although G, does not have interior points then, (R), will be
satisfied in this case when the affine operator y is onto. In particular, our

409/161/2-15
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formulation of problem (P), also covers the case of mixed constraints (cf.
[7, p. 66 11]); ie, (R), is still a reasonable condition for stability of (P),
then.

(2) The translation of (P), into (P), presented in this section also
shows that (S), translates into (S)z. So (S), is a stability criterion for (P),
without any additional continuity assumptions on ¢ resp. . Again we refer
to the results in {7, p. 63 ff ], where stability of (P), is deduced from (S),
plus additional requirements on ¢, y, using a different technique.

9. CONCLUSION

Closing the circel started in Section 6, we could translate the Fenchel
optimization problem (P), into an associated Lagrange optimization
problem (P),, such that dual programs (P*), and (P*), correspond. This
would also translate the stability criteria (R) (resp. (1)-(4) for (P)g) into
(R), (resp. (1)~(4) for (P),.) Starting with (P);, defined by ¢,y as in
Section 5, we just had to define @(x, y) = ¢(x) —¥(y), #(x, y)= y — x, then
the problem (P), of minimizing &(x, y) subject to the affine equality
constraint F(x, y) =0 would suit. We refer to [7, p. 82 ff ] for the treatment
of the case F=R.

Clearly the stability criteria (S)y, (S)g, (S), imply the weaker (R) (resp.
(1) for (P)g), (R)p (resp. (1) for (P)g) and (R), (resp. (1) for (P),).

But (S)g, (S)p, (8), are not mutually equivalent. While (S), implies (S)p
without any continuity assumptions on ¢, x, condition (S) translates into
(S)F only in the case where F has an order-unit (see Section 7). Finally, the
translation of (P), into (P), described above has no effect at all on condi-
tions (S), (S)., for (S), is not appropriate when affine equality con-
straints are involved. Nevertheless, translating (P) into (P), has the
desired effect on (R)g, (R),.
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