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Bifunctional Duality, Lagrange Duality, and Fenchel Duality in convex program- 
ming are presented under a common point of view. Stability criteria, weaker and 
more natural than the usual Slater type constraint qualification hypotheses, are 
obtained for any of these types of duality. 0 1991 Academic Press, Inc. 

1. INT~00uc~10N 

The purpose of this note is to present Bifunctional Duality, Lagrange 
Duality, and Fenchel Duality in convex programming from a common 
point of view. As a result, we obtain stability criteria for each of the duality 
concepts weaker and more natural than the usual Slater type constraint 
qualification hypotheses. We do this by showing that the three types of 
duality are actually equivalent, and then use the well-known description 
of Fenchel duality in terms of the Sandwich Theorem. The natural 
requirements needed to prove versions of the Sandwich Theorem (cf. [ 1, 4, 
5, 63) then lead to the mentioned stability criteria. For instance, using this 
reduction, we obtain Rockafellar’s stability condition in Lagrange duality 
(cf. [7, p. 192; 81). 

The interrelation between different types of duality has been investigated 
by various authors. We just mention Refs. [2, 7, 8, 121, where the case of 
Slater type conditions is treated. Our access provides stability conditions of 
a fairly general type, covering all cases of practical relevance. 

2. YOUNG-FENCHEL TRANSFORM 

Let E, F be normed spaces, and let F be ordered by a closed convex and 
normal cone F, (cf. [9, p. 2151). Throughout we assume that F is order- 
complete, which means that subsets of F which are order-bounded below 
admit infima (see [9, p. 2091). 
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Let 4 : E + F v ( cc } be a convex operator. The Young-Fenchel transform 
#* of I$ is defined by 

4*(f) = “,fpE (f(x) -Q(x)), 

fe 9(E, F), where 3(E, F) denotes the space of continuous linear 
operators from E to F. In the case where the domain 

D(d) = {XE E: 4(x) < a} 

of 4 is nonempty, #*: 9(E, F) -+ Fu {co} is a convex operator. D(d*) 
may be empty, however; i.e., we may have d* = co. If 4 is lower semi- 
continuous with values in [w u {cc }, the Brondsted-Rockafellar Theorem 
implies that ad(x) # Qron a dense set of points x E D(4), from which we 
readily deduce that D(4*) # 0. In the vector-valued case, no analogue of 
the Brandsted-Rockafellar Theorem is available, but a generalization of 
Hormander’s theorem, proved in [4, Section 23, yields D(d*) # 0, at least 
in the case of a lower semi-continuous 4 having values in F u {GO } for an 
order-complete F having an order-unit (cf. [9, p. 2051). Clearly the case 
where int D(b) # 0 causes no difftculties, for then the Hahn-Banach 
Theorem proves &j(x) # 0 on int D(b), from which we obtain D(b*) # fa 
(see [ 11 I). The general vector-values case, however, is more complicated, 
as the following example indicates. 

EXAMPLE. Let E = Z’(N), F= r*(N), the latter ordered in the natural 
way. Let D(4) be the cone of XE 1*(N) having x, >O, and define 4 by 

Gw=FJLL. 

Then $ is even Lipschitz continuous, convex, and defined on a closed 
convex and generating cone D(d) in I’(N). But d* = cc here, as may be 
seen by [4, Example 11. 

If the domain D(4) of 4 satisfies some mild completeness condition, the 
statement D(d*) # 0 may be obtained even under weaker requirements on 
the operator 4 provided that F has an order-unit. In this case mere 
measurability assumptions on 4 are sufficient. 

PROPOSITION 1. Let E be a Banach space, F a normally ordered 
normed space. Suppose F is order-complete and has an order-unit. Let 
4: E + Fu {a} be a convex operator. Suppose (i) D(d) is CS-closed (cf 
[3]), and (ii) for every f E F’, f b 0, the convex functional f 0 q5 is majorized 
by a Bore1 measurable mapping tif: D(4) + R. Then D(#*) # 0. 

The proof is essentially the same as in [4, Theorem 71, where we proved 
that under the assumptions (i), (ii) above the operator 4 admits a 
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continuous affine support mapping h : E--t F, h < 4. Clearly, h = f + u for 
certain f e B(E, F), u E F, whence f E D(q5*). 

3. BIFUNCTIONAL DUALITY 

Let E, F be given as in Section 2, and let q5 : E + Fu { co } be a convex 
operator with nonempty domain. A convex bz&nction @ : E x Y + F u { co } 
is called a perturbation of 4 if @( ., 0) = 4. The normed space Y is referred 
to as the perturbation space. We consider the convex optimization problem 

(WB minimize 4(x) = @(x, 0), x E E. 

The value uB of (P)B is u,=inf{q5(x):x~E}~Fu {-co}. 
We consider the associated dual optimization problem 

(p*)B maximize -@*co, f 1, f EY(Y, F), 

where @* denotes the Young-Fenchel transform of @, and where (0, f) 
stands ,for the linear operator (x, y) + f(y) on E x Y. Let wB = 
sup{-@*(O, f): f oy(Y, I;)> be the value of the dual problem (P*)s, 
then we have the well-known 

PROPOSITION 2. ---co <w,<u,. 

This is immediate from the estimate 

-@*(O,f)<inf(@(x,y)-f(y))<inf@(x,O)=u,. 
% Y x 

The original problem (P)B is called stable if us= wB, and if there exists an 
optimal solution for the dual problem (P*)B. A well-known stability 
criterion (cf. [2, p. 521) is the condition 

(S), There exists x0 E E and a neighborhood V of 0 in Y such that 
@(x,, .): V-r F is continuous at 0. 

We derive a weaker stability criterion in Section 7. 

4. LAGRANGE DUALITY 

Let E, F be as in Section 2, and let G be a normed space ordered by a 
normal positive cone G, . Let qd:E+Fu{or,} and ~:E+Gu(co) be 
convex operators. We consider the optimization problem 

(P),. minimize d(x) subject to x(x) < 0. 
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The value uL of (P)L is v L = inf{&x): x E E, x(x) < 0). The dual Lagrange 
optimization problem (P*), is obtained as 

(p*), maximize inf, (4(x) + f(~(x))), f~ 5!(G, F) subject to f 2 0. 

The value of the dual problem being wL = suprao inf, (d(x) + f(~(x))), we 
again have the relation 

PROPOSITION 3. ---co dw,<u,. 

Indeed, for f E 9( G, F), f 3 0, we find 

inf M4 + .fWN) G ,$, (4b)+fMx))) x 

d inf &x)=u~. 
x(x) s 0 

Problem (P)L is called stable if uL= wL, and if (P*), admits an optimal 
solution fo. The latter is called a Lagrange multiplier for problem (P)L in 
view of the relation 

hkdxo)) = 0, 

pertaining to every optimal solution x0 of (P)L. This corresponds with the 
classical (finite-dimensional) convex programming case, where Lagrange 
multipliers annihilate inactive constraints. 

A well-known stability criterion for problem (P)L is Mater’s condition 

(S), x(x0) E -int G, for some xo~D(q5), 

which usually is combined with certain continuity assumptions on the func- 
tions 4, x (cf. [7, p. 66f]). We derive a weaker stability criterion, called 
Rockafellar’s condition, in Section 8. Also we see, then, that the continuity 
assumptions combined with (S), are not actually needed. 

5. FENCHEL DUALITY 

LetE,Fbeasaboveandletq5:E-+Fu(co}beaconvex,and$:E-+ 
F u { - co } a concave operator. The primal Fenchel optimization problem 
is defined as 

(P)F minimize f$(x) - Ii/(x), x E D(d) n D($), 

its value being up= inf{ b(x) - $( ) x : x~D(q5) n II($)}. Using the Young- 
Fenchel transforms, one states the dual problem (P*)F as 

(P*), maximize I(/*(f) - 4*(f), SE W4*) f-7 N$*), 

where $* denotes the concave Young-Fenchel transform -( --1(1)*. 
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Denoting by wF the value of the dual problem (P*)F, we have the obvious 

PROPOSITION 4. -co < w,dv,. 

This follows from the estimate 

= sup W (f(y) - KY)) - sup (f(x) - d(x))) 
f Y x 

G sup (f(x) - Icl(x) - (f(x) -4(x))) G OF. 
f 

Again, (P)F is called stable if wF= uF holds and a dual optimal solution 
exists. A sufficient condition for stability was obtained by Zowe in [12]: 

(S), 4 is continuous at some %Eint D(q5)n II($). 

We obtain a weaker stability condition in the next section. 

6. STABILITY FOR (P)F 

In this section we reduce the Fenchel optimization problem to the 
Sandwich Theorem, thereby obtaining the appropriate setting for stability. 

Let (P)F be defined as in Section 5. Suppose VIE F; then 

uF + $cx) 6 4fx) 

holds for all XE D(4) n D(e). The Sandwich problem for the convex 
operator 4 and the concave operator # + vF now consists in finding a 
continuous afhne mapping h : E + F satisfying 

Suppose this Sandwich problem has been solved and h = SO + w for certain 
fO E P’(E, F), w E F has been found accordingly. Then fO actually is an 
optimal solution for (P*)F, rendering problem (P)F stable. This follows 
from the estimate 

pertaining to all x E D($), y E O($). Rearranging this inequality gives 

h(Y) - +(Y) - (fotx) - 4(x)) 2 uF 
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for all XE O(4), y~D(tj). So passing to the inlima on the left-hand side 
yields the desired inequality $*(fJ - d*(fO) > uF, in which equality must 
hold as a consequence of Proposition 4. So we are led to establish a 
continuous Sandwich Theorem for the operators 4, $ + uF. 

THEOREM 5. Let (P)F be defined as in Section 5. Then (P)F is algebrai- 
cally stable provided that the condition 

(R)F D(d) - D($) is absorbing 

is satisfied. Topological stability of (P)F is guaranteed by any one of the 
following conditions (l)-(4): 

(1) For euery ge F’, g>O there exists 2~ D(4) n D($) such that 
go 4: D(d) -+ R is upper semicontinuous at I, go II/: D($) -+ R is lower semi- 
continuous at X, and (D(4) - X, D($) - -) ’ d x m uces an open decomposition of 
E (cf. [3, 5, 61). 

(2) E is a separable Banach space, and there exist analytic sets C, D 
in E having CC D(gl), DE D($) such that C-D is absorbing, andfor every 
g E F’, g 3 0, the convex functionals g 0 r+!~ : C + R, - g 0 II/ : D -+ R are Bore1 
measurably majorized. 

(3) E is a Banach space, and there exist CS-closed sets C, D in E 
having C s D(4), D s D(ll/) such that C - D is absorbing, and for every 
g E F’, g 2 0, the convex functionals g 0 4 : C + R, - g 0 II/ : D + 08 are Bore1 
measurably majorized. 

(4) E is Banach, D(d) - D(t,k) is absorbing, andfor every g E F’, g > 0, 
the convex functionals go 4, -go II/ have weakly X-analytic level sets 
bv%4? {PIClkBL (4 ClOl). 

Proof. By condition (R),+ we certainly have vF< co. Let us first 
consider the case uF = - co. Setting f0 = 0 then obviously provides a dual 
optimal solution satisfying +*(fO) - $*(fO) = -co. So let us now assume 
VIE F. Define a sublinear operator x: E -+ F by setting 

x(x) = inf{d(4(x) - $( y) - uF): R > 0, z = n(x - y)). 

In view of condition (R)F, x is actually fully defined (see [4, 121). The 
Hahn-Banach Theorem therefore provides a linear mapping fO: E + F sup- 
porting x. Certainly, f0 is the desired optimal solution for (P*)F, rendering 
(P)F stable, resp. topologically stable, once its continuity is established. 

Deriving the continuity of f0 is possible under any one of the topological 
conditions (1 k(4). 

First consider the case where (1) is satisfied. As E is normed and F is 
normally ordered, it suffices to show that go f0 is continuous for every 
ge F’, g>O. 
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Let gE F’, g > 0 be fixed. By assumption there exists XED(Q) n D(e) 
such that g 0 4 is upper semicontinuous at X, g 0 IJ is lower semicontinuous 
at f and (D(4) -2, D(e) - X) induces an open decomposition of E. 

This means that we can find tl, /3 > 0 and a neighborhood U of 0 in E 
such that 

god<GI on (X + U) n D(b), 

go*> -B on (X+ U)nD(rC/). 

We claim that gofO is bounded by LY + /? on some neighborhood of 0 in E, 
from which the continuity of gof, follows. 

Assume the contrary. Then 

df&J) > a + B 

for a null-sequence (z,) in E. Now as the pair (D(b) -2, D($) - 2) induces 
an open decomposition of E, we can find sequences (x,) in D(b), (y,) in 
D($) such that x, +X, y, +X, and 

eventually. 
But x,, y, E X + U eventually, hence we obtain 

dtdz,)) G &k)) G g(WJ - KY,)) 6 a + P 

eventually, a contradiction with the choice of (2,). This proves the claim in 
case (1). 

Case (2) is just our Sandwich Theorem [4, Theorem 6( 1) J, while case (3) 
is covered by [6] (see also [4, Theorem 6(2)]). Finally, consider case (4). 
In the case F= Iw, this is just the Sandwich Theorem [S, Satz 31. But note 
that, in view of the fact that E is a Banach space and F is normally 
ordered, we again must only show that g 0 f0 is continuous for fixed g E F’, 
g>O. So we are left to deal with the scalar case, to which the method in 
[S] applies. This ends the proof in case (4). 1 

Remark. The purely algebraic part (R)F of the stability criteria (l)-(4) 
presented in Theorem 5 was already discussed in [12]. It is sufficient to 
obtain an algebraic optimal solution for the dual problem (P*)F. 

It is worth noting that condition (1) above is in some sense minimal for 
the stability of problem (P)F. More precisely, we have the following 

PROPOSITION 6. Let E be a Banach space, and let C, D be convex sets in 
E such that C-D is absorbing and 0 E CA D. Suppose that for all convex 
~:E-,[Wu{co),CcD(~)undconcaveII/:E+IWu{-cx~),D~D(~)such 
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that 4 1 C, -$I D are upper semicontinuous at 0, the corresponding Fenchel 
optimization problem (P)F is (topologically ) stable. Then (C, D) induces an 
open decomposition of E. 

Proof: We prove that every linear functional f E E* such that f 1 C, f 1 D 
are continuous at 0 (on C resp. D), is continuous on E. From this we 
derive that (C, D) induces an open decomposition of E (cf. [S, Section 41). 

Let f E E* be of this kind. Then 4, defined by 4 I C= f, d(x) = 00 for 
x $ C, is convex, $ defined by II/ ) D = f, t,b( y) = - co for y $ D, is concave. 
By assumption, the corresponding problem (P)F is stable, so there exists a 
continuous linear fO E E’ such that 

inf(P),= 0 = $*(fJ - 4*(fJ 

= inf (f,(y)-f(y))-w (f&)-f(x)). 
.,’ E D x E c 

This implies 

fo(x)-f(X)Gf,(Y)-f(Y) 

respectively 

fob- Y)df(X- Y) 

for all x E C, y E D. As C - D is absorbing, every z E E may be represented 
as z = J.(x - y), A > 0, XE C, y E D. But this implies fO< f on E, hence 
fO = f, so f is continuous. 1 

7. STABILITY FOR (P)B 

Using the results of the previous section, we now derive a stability 
criterion for bifunctional duality, which in a sense similar to that of 
Proposition 6 is weakest possible. We obtain this by reducing problem (P)B 
to an equivalent Fenchel optimization problem. 

Let @ : E x Y + F u { cc } be a convex bifunction with nonempty domain, 
and let (P)B be the corresponding minimization problem. We define convex 
sets 

C={(y,z)~YxF:@(x, y)<zforsomexEE}, 

D = (0) x F, 

and a convex operator $: YxF-+Fu{oo}, by $(y,z)=z on C, 
&y, z) = co otherwise, a concave operator II/ : Y x F + F u ( - co } by $ z 0 
on D, II/ = -co otherwise. 
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Let (P)F denote the Fenchel optimization problem associated with 4 and 
II/. Then we have the following relations. 

PROPOSITION 7. uB=vF, wB=wF. Moreover, optimal solutions for (P)B 
and (P)F respectively dual optimal solutions for (P*), and (P*), correspond. 

Proof The statement concerning vB= vF and optimal solutions for 
(P)B, (P)F is clear from the definition of (P)F. Let us check wB= wF. 
Observing that 

e*(f) = inf f(0, 2) < cc z 

is possible only when f(0, *) = 0, and that e*(f) = 0 on D($*), we obtain 

wF=suP {- sup (f(Y,Z)-z)) 
f (Y,Z)E c 

= sup inf (z-f(y, 0)) 
f (Y*Z)EC 

= sup inf(@(x, y) - f( y, 0): (x, y) E E x Y} 
f 

= WB, 

where supf stands for the supremum over D(rj*) n D(#*) = 
{fEqYxF,F):f(O, .)=o}=D(@*(o, .)). 

Finally, the above calculation also shows that an optimal solutionf, for 
(P*), must satisfy fO(O, .) =O, and so must uniquely correspond to an 
optimal solution of (P*)B, and vice versa. 1 

As a consequence of Proposition 7 and the stability result Theorem 5 for 
P)F, we now obtain 

THEOREM 8. Let (P)B defined as in Section 3. (P)B is algebraically stable 
tf the following condition 

(R)B the projection p,(D(@)) of D(@) onto the Y-coordinate is 
absorbing 

is satisfied. Topological stability is provided by any one of the following 
conditions (l)-(4): 

(1) The projection of D(G) onto the Y-coordinate is a neighborhood of 
0 in Y; 

(2) E, F, Y are separable Banach spaces, (R)B holds, and @ has Bore1 
measurable epigraph; 



DUALITYINCONVEXPROGRAMMING 517 

(3) E, F, Y are Banach spaces, (R)B is satisfied, and @ has CS-closed 
epigraph; 

(4) F is a weakly X-analytic Banach space, (R)B is valid, and @ has 
weakly X-analytic level sets { @ <z}, z E F. 

Proof: Condition (R)B means that for every y E Y there exist I > 0 and 
.X E E such that @(x, Ay) < co. So (R)B translates into condition (R)F for 
the associated Fenchel optimization problem (P)F, i.e., the projection 
p,(C) is absorbing in Y. Hence the algebraic part of Theorem 5 applies. 
Concerning the topological part it suffices to check that (lk(4) above 
correspond with (lk(4) from Theorem 5 when applied to the special 
problem (P)F associated with (P)B. 

First consider case (1). This condition is just the statement that (C, D) 
induces an open decomposition of E x Y. Since 4 on C, II/ on D are 
obviously continuous, Theorem 5, part (1 ), applies and gives the result, 

Next consider case (2). Here Epi(gl) = ((x, y, z): z >, @(x, y)} is Borel, 
hence its projection onto the coordinates ( y, z) is an analytic set, E x Y x F 
being a separable Banach space. But this is just the set C. Since D = (0) x F 
is analytic and 4, Ic/ are continuous on C, D, Theorem 6, part (2), applies. 

For part (3) observe that the CS-closedness of the epigraph Epi(@) 
implies that its image C under the projection (x, y, z) -+ (y, z) is a pseudo- 
complete set in the sense of [6]. So this verson follows from the slightly 
more general statement of the Sandwich Theorem in [6]. 

Finally, for part (4), observe that the functions 4, IJ? have weakly 
X-analytic level sets. For 1(/ this is a consequence of the weak 
X-analyticity of F. For 4 observe that { 4 < Z} is just the image of 

Epi(@)n(Ex Yx {z}) 

under the projection (x, y, z) -+ (y, z), hence is weakly X-analytic. This 
ends the proof of Theorem 8. 1 

Remark. Note that the stability condition (S), for (P)B presented in 
Section 3 clearly implies condition (1) of Theorem 8. 

8. STABILITY FOR (P)L 

Let E, F, G, 4, x be defined as in Section 4, and let (P)L be the corre- 
sponding Lagrange minimization problem. We define a convex bifunction 
@:ExG-+Fu(oo} by 

@(x, Y) = 
4(x), if x(x)< Y, 
co, otherwise. 
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Let (P)B be the bifunctional optimization problem associated with @. Then 
we have the following 

PROPOSITION 9. vL=uB, wt=wB. Moreover, x,, E E is an optimal 
solution for (P)L if and only if it is optimal for (P)B. Optimal solutions 
f0 for (P*), and g, for (P*)B are in l-l correspondence via the formula 
fo(y) = gck y). 

Proof. The statement concerning vL = vg and the coincidence of the 
optimal solutions of (P)L and (P)B are clear from the above definition of 
Cp. We then prove wL = wg. By definition of (P*)L, we have 

wL = sup inf (4x) + f(x(x))) 
fZ0 x 

= SUP inf C@(x, v) + f(y)1 
f 30 X(X)GY 

= sup inf CW, Y) -f(y)]. 
fQO.%Y 

Here the last equality comes from the fact that elements x, y for which 
x(x) < y is not satisfied, give @(x, y) = cc, and so do not contribute to the 
i&mum. But now the expression on the right-hand side is just -@*(O, f ), 
where (0, f) stands for the operator (x, y) + f(y) on E x G. It remains to 
prove 

sup {-@*(o, f)} = WB. 
fC0 

But this follows from the fact that elements f E Y(G, q having f 6 0 do not 
contribute to the supremum here. Indeed, D(@*(O, .)) consists of those 
f E Y(G, F) for which 

Uf = s/PY {f(Y) - 4(x,> < 02. 
< 

Fixing XE D(4) n D(x), we find that ~(2) < ~(2) + z =: y for z 2 0 in G, so 

f (2) G q + 46) - f (x(Z)) 

for all z >, 0 in G. But clearly this is possible only in the case where f < 0. 
This establishes wL = wg. 

The above calculation also shows that optimal solutions of (P*)L, (P*)8 
are in l-l correspondence in the way stated. 1 

Combining Proposition 9 with the stability Theorem 8 for bifunctional 
duality, we obtain stability criteria for (P)= . 
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THEOREM 10. Let (P)= be defined as in Section 4. Suppose the following 
condition (R), , called Rockafellar’s condition, is satisfied: 

(R), for every y E F there exist A> 0 and x E D(b) having x(x) 6 Ay. 

Then problem (P),. is algebraically stable. Topological stability is provided 
by any one of the following conditions: 

(1) The projection of (D(d) x G) n Epi(X) onto the G-coordinate is a 
neighborhood of 0 in G. 

(2) E, F, G are separable Banach spaces, (R)L is satisfied, and 4,~ 
have Bore1 measurable epigraphs. 

(3) E, F, G ‘are Banach spaces, (R)L is satisfied, and q5, x have 
CS-closed epigraphs. 

(4) E, F, G are weakly X-analytic Banach spaces, (R)L is satisfied, 
and 4, x have weakly X-analytic epigraphs. 

Proof The algebraic condition (R)L translates into (R)B for the 
associated bifunctional problem (P)B. So the algebraic part of the state- 
ment follows from the algebraic part of Theorem 8. Concerning the 
topological part, we must show that conditions (l)(4) translate into 
conditions (l)-(4) from Theorem 8. 

Condition (1) above translates to (1) from Theorem 8, because of 
D(Q) = (D(d) x G) n Epi(X). Concerning condition (2) observe that 

Epi(@) = (Epi(4) x G) n (Epi(X) x F); 

hence Epi(@) is analytic if Epi(4), Epi(X), and G, Fare. The same equality 
also shows that Epi(@) is CS-closed, if Epi(b), Epi(X) are CS-closed. This 
means that Theorem 8, part (3), applies when we translate problem (P)L 
into the corresponding bifunctional problem. 

Finally, the above equality also shows that in the case of condition (4), 
Epi(@) is weakly X-analytic, as Epi(4), Epi(X) and F, G are. So 
Theorem 8, part (4) applies here. i 

Remarks. (1) The stability criterion (1) should be compared with the 
criteria in [7, p. 63 ff 1. Essentially, it was first used by Rockafellar [8] in 
the form (R)L, under additional continuity assumptions on 4, x. Note that 
its advantage over the Slater condition (S), (cf. Section 4) is that the 
positive cone G, need not have interior points. For instance, condition 
(R)L also permits a treatment of problem (P),. with afIine equality con- 
straints x(x) = 0, for in this case, the positive cone G + has just to be chosen 
as G + = (0). Although G, does not have interior points then, (R)L will be 
satisfied in this case when the afftne operator x is onto. In particular, our 

4OY!l61,2-15 



520 DOMINIKUS NOLL 

formulation of problem (P)L also covers the case of mixed constraints (cf. 
[7, p. 66ff]); i.e., (R)L is still a reasonable condition for stability of (P)L 
then. 

(2) The translation of (P)L into (P)s presented in this section also 
shows that (S), translates into (S),. So (S), is a stability criterion for (P)L 
without any additional continuity assumptions on 4 resp. x. Again we refer 
to the results in [7, p. 63 ff], where stability of (P)L is deduced from (S), 
plus additional requirements on 4, x, using a different technique. 

9. CONCLUSION 

Closing the Circe1 started in Section 6, we could translate the Fenchel 
optimization problem ( P)F into an associated Lagrange optimization 
problem (P)L, such that dual programs (P*), and (P*), correspond. This 
would also translate the stability criteria (R)F (resp. (l)-(4) for (P)F) into 
(R)= (resp. (l)-(4) for (P)L.) Starting with (P)F, defined by 4, $ as in 
Section 5, we just had to define &x, y) = b(x) - #(y), 2(x, y) = y -x, then 
the problem (P)L of minimizing $(x, y) subject to the affme equality 
constraint 1(x, y) = 0 would suit. We refer to [7, p. 82 ff ] for the treatment 
of the case F= R. 

Clearly the stability criteria (S),, (S),, (S), imply the weaker (R)F (resp. 
(1) for (P)d, (RIB (rev. (1) for (P)d and @IL (rev. (1) for (P)d. 

But (S),, (S),, (S), are KZO? mutually equivalent. While (S), implies (S), 
without any continuity assumptions on 4, x, condition (S), translates into 
(S), only in the case where F has an order-unit (see Section 7). Finally, the 
translation of (P)F into (P)L described above has no effect at all on condi- 
tions (S),, (S),, for (S), is not appropriate when aff’ne equality con- 
straints are involved. Nevertheless, translating (P)F into (P)t has the 
desired effect on (R)F, (R)L. 
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