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1. Introduction. The augmented Lagrangian method was proposed indepen-
dently by Hestenes [34] and Powell [47] in 1969 and, since its inauguration, continues
to be an important option in numerical optimization. With the introduction of succes-
sive quadratic programming (SQP) in the 1970s and the rise of interior point methods
in the 1980s, the interest in the augmented Lagrangian somewhat declined but never
completely ceased. For instance, in the 1980s, some authors proposed to combine
SQP with augmented Lagrangian merit functions, and today the idea of the aug-
mented Lagrangian is revived in the context of interior point methods, where it is one
possible way to deal with nonlinear equality constraints. A history of the augmented
Lagrangian from its beginning to the early 1990s is presented in [20].

Here we are concerned with a partially augmented Lagrangian method, a natural
variation of the original theme. Partial refers to when some of the constraints are
not included in the augmentation process but kept explicitly in order to exploit their
structure. Surprisingly enough, this natural idea appears to have been overlooked
before 1990. In a series of papers [20, 21, 22, 23] starting in the early 1990s, Conn
et al. finally examined this approach, and a rather comprehensive convergence analysis
for traditional nonlinear programming problems has been obtained in [23, 49].

In the present work we discuss optimization programs featuring matrix inequality
constraints in addition to the traditional equality and inequality constraints. Such
programs arise quite naturally in feedback control and have a large number of inter-
esting applications. We propose a partially augmented Lagrangian strategy as one
possible way to deal with these programs.

Semidefinite programming (SDP) is the most prominent example of a matrix in-
equality constrained program. With its link to integer programming [32] and because
of a large number of applications in control [12], SDP has become one of the most
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active research topics in nonlinear optimization. During the 1990s, problems like H2-
or H∞-synthesis, linear parameter varying (LPV) synthesis, robustness analysis, and
analysis under integral quadratic constraints (IQCs), among others, have been iden-
tified as linear matrix inequality (LMI) feasibility or optimization problems, solvable
therefore by SDP [2, 35, 50, 40, 30, 12].

It needs to be stressed, however, that the most important problems in feedback
control cannot be solved by SDP. Challenging problems like parametric robust H2- or
H∞-output feedback synthesis, reduced or fixed-order output feedback design, static
output feedback control, multimodel design or synthesis under IQC-constraints, syn-
thesis with parameter-dependent Lyapunov functions, robust controller design with
generalized Popov multipliers, and stabilization of delayed systems are all known to
be NP-hard problems, which are beyond convexity methods, and the list could be
extended.

Most of these hard problems in control have been deemed largely inaccessible
only a couple of years ago [6, 18, 48, 42]. In response to this challenge, we have
proposed three different strategies beyond SDP which address these hard problems
[28, 29, 4, 5], and one of the most promising approaches is the partially augmented
Lagrangian discussed here. In this work we will mainly consider convergence issues,
but several numerical test examples in reduced order H∞-synthesis and in robust
H∞-control synthesis are included in order to validate the approach numerically. We
mention related work on reduced order synthesis by Leibfritz and Mostafa [37, 38],
and a very different algorithmic approach by Burke, Lewis, and Overton [15, 16] based
on nonsmooth analysis techniques. The appealing aspect of their strategy is that it
seems better adapted to large-size problems.

A general feature of the mentioned hard problems in feedback control is the fact
that they may all be cast as minimizing a convex or even linear objective function
subject to bilinear matrix inequality (BMI) constraints:

(B)

minimize cTx, x ∈ R
n,

subject to A0 +

n∑
i=1

xiAi +
∑

1≤i<j≤n

xixjBij � 0,

where B(x) := A0 +
∑n

i=1 xiAi +
∑

1≤i<j≤n xixjBij is a bilinear matrix function with
values in a space Sp of symmetric p × p matrices, and where � 0 means negative
semidefinite. Such a program may be transformed to minimizing a linear objective
subject to LMI-constraints in tandem with nonlinear equality constraints:

(S)

minimize cTx, x ∈ R
n,

subject to gj(x) = 0, j = 1, . . . ,m,

A0 +

n∑
i=1

xiAi � 0,

where A(x) := A0 +
∑n

i=1 xiAi is now an affine matrix function, and where the
nonconvexity in (B) has been shifted to the equality constraints g(x) = 0. Notice,
however, that the way in which the cast (S) is obtained from (B) is usually critical
for a successful numerical solution.

Once a suitable form (S) has been found, the following partially augmented La-
grangian strategy seems near at hand. Augmenting the nonlinear equality constraints,
g(x) = 0, and keeping the LMI-constraints, A(x) � 0, we expect to solve the difficult
problem (S) through a succession of easier SDPs. This is convenient from a practical
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point of view, as existing software for SDP may be exploited. We have successfully
applied this strategy in [28, 5, 4, 29] to problems in robust control and static out-
put feedback control. Here we shall corroborate our experience by presenting two
applications in robust control classified as difficult.

The paper is structured as follows. Section 2 presents the partially augmented
Lagrangian method, sections 3–5 provide convergence results, followed by a discussion
in section 6. Applications are presented in section 7.

Our presentation is inspired by the work of Conn et al. [20, 21, 22, 23], even
though their techniques strongly rely on the polyhedral nature of the constraint set
C. It will become clear at which points new ideas are required to account for the
more complicated boundary structure of LMI or BMI constrained sets.

2. Problem setting. Our convergence analysis applies to more general situa-
tions than program (S). We consider the program

(P )
minimize f(x), x ∈ R

n,
subject to gj(x) = 0, j = 1, . . . ,m,

x ∈ C,

where C is a closed convex set, and the data f, gj are of class C2. For later use, let
g(x) = [g1(x), . . . , gm(x)]T , and let J(x) be the m× n Jacobian of g(x), that is,

J(x)T = [∇g1(x), . . . ,∇gm(x)].

For a given penalty parameter µ > 0 and a Lagrange multiplier estimate λ ∈ R
m, we

define the partially augmented Lagrangian of program (P ) as

Φ(x;λ, µ) = f(x) +

m∑
j=1

λjgj(x) +
1

2µ

m∑
j=1

gj(x)2.(1)

Following the classical idea of the augmented Lagrangian method, we replace program
(P ) by the following approximation:

(Pλ,µ)
minimize Φ(x;λ, µ), x ∈ R

n,
subject to x ∈ C.

The rationale of this choice is that (Pλ,µ) is easier to solve than (P ) and that, with
appropriate λ and µ, a solution to (Pλ,µ) will be close to a solution of the original
program (P ). The first condition is in particular met for polyhedral sets C = {x ∈
R

n : A(1)x ≤ b(1), A(2)x = b(2)}. The application we have in mind is when C is an
LMI-constrained set,

C = {x ∈ R
n : A(x) � 0}, where A(x) = A0 +

n∑
i=1

xiAi(2)

with Ai ∈ Sp, the space of p× p symmetric matrices, and where � 0 means negative
semidefinite.

For later use, let us fix some notation. Along with the augmented Lagrangian
(1), we also consider the traditional Lagrangian of program (P ), defined as

L(x;λ) = f(x) + λT g(x).(3)
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The first order Lagrange multiplier update rule is now defined as

λ�(x;λ, µ) := λ +
g(x)

µ
(4)

and the useful relation

∇Φ(x;λ, µ) = ∇L(x;λ�(x;λ, µ))(5)

is satisfied. Here and later on, whenever a gradient symbol as in ∇Φ(x;λ, µ) or
∇L(x;λ) occurs, it is applied to the variable x. For simplicity we will exclusively
use the Euclidean norms on the spaces R

n and Sp. The scalar product on Sp is
X • Y = tr(XY ).

We need some more notation from nonsmooth analysis. For x ∈ C let N(C, x)
be the normal cone, and let T (C, x) be the tangent cone of C at x. When there is no
ambiguity as to the meaning of the set C, the orthogonal projection PT (C,x) onto the
tangent cone T (C, x) will be written as P (x). Let V (C, x) denote the largest linear
subspace or lineality space of T (C, x), that is, V (C, x) = T (C, x)∩−T (C, x) (see [19]).
Again, if the meaning of the set C is clear, the orthogonal projection onto V (C, x)
will be denoted by Π(x).

During our analysis we assume that the nonsmoothness in program (P ) has been
shifted to the set C, whereas the other program data are smooth. Throughout we
make the following hypothesis.

(H1) The functions f, gj are of class C1.
The method we investigate is now the following, built along the models by Conn

et al. [20, 21, 22, 23].
Partially Augmented Lagrangian

1. (Preparation) Fix an initial Lagrange multiplier estimate λ and an initial
penalty µ > 0, (µ < 1), and let x be an initial guess of the solution. Fix
the tolerance parameters ω, η > 0 at the initial values ω0, η0 > 0, and choose
final tolerance values ω∗ � ω0, η∗ � η0. Let 0 < τ < 1 and α > 0, β > 0.
Let success be a boolean variable with the values yes and no, and initialize
success = no.

2. (Stopping test) Stop the algorithm if success == yes and if ω and η are
sufficiently small, that is, ω ≤ ω∗ and η ≤ η∗.

3. (Optimization step) Given the current λ and µ > 0, ω > 0, approximately
solve program (Pλ,µ), possibly using x as a starting value. Stop the optimiza-
tion (Pλ,µ) as soon as an iterate x+ close to the true solution of (Pλ,µ) has
been found: Stop if the solution d+ of

inf
{
‖ − ∇Φ(x+;λ, µ) − d‖ : d ∈ T (C, x+)

}
(6)

satisfies ‖d+‖ ≤ ω.
4. (Decision step) If ‖g(x+)‖ ≤ η, put success = yes and do a multiplier update

step:

µ+ = µ,
λ+ = λ + g(x+)/µ+,
ω+ = ωµβ ,
η+ = ηµβ ,
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else put success = no and do a constraint reduction step:

λ+ = λ,
µ+ = τµ,
ω+ = ω0(µ

+)α,
η+ = η0(µ

+)α.

5. Go back to step 2.
The mechanism is the following. Having solved the approximate program (Pλ,µ)
within the allowed tolerance ω, we check whether the approximate solution x+ in
step 3 satisfies the constraints g(x+) = 0 within the currently acceptable tolerance
level η. If this is the case, we consider this step as successful and proceed to a new in-
stance of (Pλ,µ) with λ updated according to the first order multiplier update rule (4).
On the other hand, if g(x) = 0 is significantly violated, the solution of (Pλ,µ) is consid-
ered unsuccessful. Here we reduce µ and perform (Pλ,µ) again with λ unchanged. The
choice of the term successful versus unsuccessful is understood from the perspective
that we want to update λ according to the first order rule in order to drive it toward
an optimal Lagrange multiplier λ∗. Our convergence theorems, Theorems 4.4 and 5.1,
will clarify in which sense the first order updates λ� may be expected to converge.

3. Multiplier estimates. Let us suppose that x∗ ∈ C is a Karush–Kuhn–
Tucker (KKT) point of program (P ) in the sense that g(x∗) = 0 and there exist a
Lagrange multiplier λ∗ ∈ R

m and an exterior normal vector y∗ ∈ N(C, x∗) such that

∇f(x∗) + J(x∗)
Tλ∗ + y∗ = 0.(7)

Let us further assume that the linear subspace V (C, x∗) has dimension r ≥ 1, and
let Π∗ : R

n → R
n be the orthogonal projection onto that subspace. Then Π∗ may

be decomposed as Π∗ = Z∗Z
T
∗ , where the columns of the n × r matrix Z∗ form an

orthonormal basis of V (C, x∗). Notice that ZT
∗ Z∗ = Ir. Since y∗ ∈ N(C, x∗), we have

Π∗y∗ = 0, and by the orthogonality of Z∗ this gives ZT
∗ y∗ = 0. Hence from (7) we

derive

ZT
∗ ∇f(x∗) + ZT

∗ J(x∗)
Tλ∗ = 0,

which gives rise to the relation

λ∗ = −
(
J(x∗)Z∗Z

T
∗ J(x∗)

T
)−1

J(x∗)Z∗Z
T
∗ ∇f(x∗),(8)

valid as soon as J(x∗)Z∗ has column rank ≥ m. This suggests that for vectors x in
a neighborhood of x∗, where J(x)Z∗ also has column rank ≥ m, a natural Lagrange
multiplier estimate would be

λ∗(x) := −
(
J(x)Z∗Z

T
∗ J(x)T

)−1
J(x)Z∗Z

T
∗ ∇f(x).(9)

This estimate is indeed used by Conn et al. as the main analytical tool to analyze
convergence of the partially augmented Lagrangian method for polyhedral sets C.
In the case of LMI-constrained sets C, it encounters problems related to the more
complicated boundary structure, and a better suited construction will be elaborated
on below. First, let us observe that the following hypothesis was needed to introduce
λ∗(x).

(H2) J(x∗)Z∗ has column rank ≥ m.
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During the following, assume that (H1), (H2) are satisfied.
Remark. Notice that (H2) is a constraint qualification hypothesis. To see this

consider the case where C is described by a finite set of inequality constraints, h1(x) ≤
0, . . . , hs(x) ≤ 0, each of which is active at x. Moreover, assume that the active
gradients at x, ∇h1(x), . . . ,∇hs(x), are linearly independent.

Lemma 3.1. Under these circumstances, the validity of (H2) at x is equivalent
to linear independence of the set ∇h1(x), . . . ,∇hs(x),∇g1(x), . . . ,∇gm(x) of equality
and active inequality constraint gradients at x.

Proof. (1) To see that (H2) implies linear independence of the active gradi-
ents, suppose these vectors were linearly dependent. Then p :=

∑m
i=1 µi∇gi(x) =∑s

j=1 νj∇hj(x), where µ 
= 0. Hence vT p = 0 for every v ∈ V (C, x), these v being
orthogonal to all ∇hj(x). However, then the image of V (C, x) under the operator
J(x) could no longer have dimension m, as required by (H2), because J(x)p = 0 with
p 
= 0.

(2) Conversely, suppose ∇h1(x), . . . ,∇hs(x),∇g1(x), . . . ,∇gm(x) are linearly in-
dependent. Suppose J(x)Z(x) is not of rank m; then it is not surjective, so Z(x)TJ(x)T

is not injective. Therefore there exists λ 
= 0 such that Z(x)TJ(x)Tλ = 0, but linear
independence of ∇g1(x), . . . ,∇gm(x) means J(x)T is injective, so µ = J(x)Tλ 
= 0
with Z(x)Tµ = 0. This means µ ⊥ V (C, x), so µ is a linear combination of the ∇hi(x),
a consequence of the special boundary structure of C at x. However, µ−J(x)Tλ = 0,
so ∇hi(x),∇gj(x) are linearly dependent, which is a contradiction.

Let us now resume our line of investigation and see in which way trouble with
(9) could be avoided for a reasonable rich class of sets C. Suppose that for every x in
a neighborhood U(x∗) of x∗ there exists a linear subspace L(C, x) of V (C, x) which
depends smoothly on x and coincides with V (C, x∗) at x∗. This means that dim
L(C, x) = r, and that the orthogonal projector Π̃(x) onto L(C, x) varies smoothly
with x. We may represent Π̃(x) = Z̃(x)Z̃(x)T , with an orthonormal n × r matrix
Z̃(x) varying also smoothly with x. Then we define

λ̃(x) := −
(
J(x)Z̃(x)Z̃(x)TJ(x)T

)−1
J(x)Z̃(x)Z̃(x)T∇f(x),(10)

which is now Lipschitz in a neighborhood of x∗. Moreover, λ̃(x∗) = λ∗. We observe
that as a consequence of (H2), the matrix J(x)Z̃(x)Z̃(x)TJ(x)T is invertible in a
neighborhood U(x∗) of x∗.

Definition 1. A closed convex set C is said to admit a stratification into dif-
ferentiable layers at x ∈ ∂C if for x′ ∈ C in a neighborhood of x there exists a linear
subspace L(C, x′) of the tangent cone T (C, x′) varying smoothly with x′ such that at
x′ = x, L(C, x) coincides with the lineality space V (C, x) of the tangent cone at x.

Example 1. Let C = S
−
p , the negative semidefinite cone. Let A be in the boundary

of S
−
p ; then V (S−

p , A) = {Z ∈ Sp : Y T
1 ZY1 = 0}, where the columns of the p×r matrix

Y1 form an orthonormal basis of the eigenspace of the leading eigenvalue λ1(A) = 0
of A, whose multiplicity is r.

For a perturbation E of A, there exists a matrix Y1(A + E) whose columns form
an orthonormal basis of the invariant subspace associated with the first r eigenvalues
of A + E. Then (cf. [53])

Y1(A + E) = Y1 + (λ1(A)Ip −A)†EY1 + o(‖E‖),

where M† denotes the pseudoinverse of M . Then we define the subspace L(C,A+E)
as L(C,A + E) = {Z ∈ Sp : Y1(A + E)TZY1(A + E) = 0}. This means that the
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semidefinite order cone S
−
p has a differentiable stratification in the sense of Defini-

tion 1. In this example the layers or strata are the sets Sr = {A ∈ S
−
p : λ1(A) has

multiplicity r}.
Example 2. Now let C be an LMI-constrained set given by (2). Since C is the

preimage of S
−
p under an affine operator A : R

n → Sp, the elements V (C, x) and
L(C, x) are just the preimages of V (S−

p ,A(x)) and L(S−
p ,A(x)) under the linear part

A∗ of A. Therefore, LMI-sets satisfy the condition in Definition 1.

4. Convergence. Consider a sequence of iterates xk generated by our algorithm.
Let λk be the corresponding multiplier estimates, µk be the penalty parameters, and
ωk, ηk be the tolerance parameters. Suppose ωk → 0. Suppose x∗ is an accumulation
point of the sequence xk, and select a subsequence K ⊂ N such that xk, k ∈ K,
converges to x∗. Suppose hypotheses (H1), (H2) are met at x∗. Moreover, suppose
x∗ ∈ C admits a stratification into differentiable layers as in Definition 1.

Lemma 4.1. Suppose the xk satisfy the stopping test (6) in step 3 of the algorithm.
Then

‖Z̃(xk)
T∇Φ(xk;λk, µk)‖ ≤ ωk.(11)

Proof. Since Π̃(xk) = Z̃(xk)Z̃(xk)
T is the projection onto L(C, xk), and since

L(C, x) ⊂ T (C, x), we have ‖Π̃(xk)∇Φ(xk;λk, µk)‖ ≤ ‖P (xk)(−∇Φ(xk;λk, µk))‖,
where P (x) is the orthogonal projector onto the tangent cone T (C, x) at x. However,
now the stopping test (6) gives ‖P (xk)(−∇Φ(xk;λk, µk))‖ ≤ ωk.

To conclude, observe that ‖Z̃(xk)
T∇Φ(xk;λk, µk)‖ = ‖Π̃(xk)∇Φ(xk;λk, µk)‖,

since Z̃(x) is orthogonal.
Lemma 4.2. Under the same assumptions,
1. λ�

k := λ�(xk;λk, µk), k ∈ K, converges to λ∗ = λ̃(x∗).
2. There exists a constant K > 0 such that

‖λ�
k − λ∗‖ ≤ K(ωk + ‖xk − x∗‖)

for every k ∈ K.
3. ∇Φ(xk;λk, µk) → ∇L(x∗;λ∗), k ∈ K.
4. There exists a constant K ′ > 0 such that for every k ∈ K,

‖g(xk)‖ ≤ K ′ µk

(
ωk + ‖λk − λ∗‖ + ‖xk − x∗‖

)
.

Proof. (1) Starting out with

‖λ�
k − λ∗‖ ≤ ‖λ�

k − λ̃(xk)‖ + ‖λ̃(xk) − λ∗‖,

we observe that since λ∗ = λ̃(x∗), the second term on the right-hand side is of the order
O(‖xk − x∗‖), since λ̃ is Lipschitz on U(x∗). Let us say ‖λ̃(xk)− λ∗‖ ≤ K0‖xk − x∗‖
for some K0 > 0. So in order to establish items 1 and 2, it remains to estimate the
first term on the right-hand side. We have

‖λ�
k − λ̃(xk)‖ = ‖[J(xk)Z̃(xk)Z̃(xk)

TJ(xk)
T ]−1J(xk)Z̃(xk)Z̃(xk)

T∇f(xk) + λ�
k‖

≤ K1 ‖J(xk)Z̃(xk)Z̃(xk)
T∇f(xk) + J(xk)Z̃(xk)Z̃(xk)

TJ(xk)
Tλ�

k‖
≤ K1 K2 ‖Z̃(xk)

T∇f(xk) + Z̃(xk)
TJ(xk)

Tλ�
k‖

= K3 ‖Z̃(xk)
T∇Φ(xk;λk, µk)‖

≤ K3 ωk.
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Here the second line comes from ‖[J(xk)Z̃(xk)Z̃(xk)
TJ(xk)

T ]−1‖ ≤ K1 on a neigh-
borhood U(x∗), which is guaranteed by the rank hypothesis (H2). From the same
reason, in line 3, ‖J(xk)Z̃(xk)‖ ≤ K2 on U(x∗) for some K2 > 0. We let K3 = K1K2

and use the definition of λ�, which gives line 4. Finally, the last line follows from
Lemma 4.1. Altogether, we obtain the estimate in item 2 with K = max{K0,K3}.

(2) Now consider item 3. Observe that by our assumptions xk → x∗, (k ∈ K), and

ωk → 0, so item 2 gives λ�
k → λ∗. Therefore, ∇Φ(xk;λk, µk) = ∇L(xk;λ

�
k) converges

to ∇L(x∗;λ∗), k ∈ K.
(3) Finally, to see estimate 4 we multiply (4) by µk and take norms, which gives

‖g(xk)‖ = µk‖λ�
k − λk‖ ≤ µk

(
K(ωk + ‖xk − x∗‖) + ‖λk − λ∗‖

)
.

This is just the desired estimate in item 4 with K ′ = max{K, 1}.
Lemma 4.3. With the same hypotheses, suppose g(x∗) = 0; then x∗ is a KKT

point, with corresponding Lagrange multiplier λ∗.
Proof. To prove that x∗ is a KKT point, we must show P (x∗)(−∇L(x∗;λ∗)) = 0,

i.e., that −∇L(x∗;λ∗) is in the normal cone to C at x∗. Since C is convex, this is
equivalent to proving that for every test point y ∈ C, the angle between −∇L(x∗;λ∗)
and y − x∗ is at least 90◦, i.e., that −∇L(x∗;λ∗)

T (y − x∗) ≤ 0. Writing ∇Φk =
∇Φ(xk;λk, µk), we first observe that by the stopping test (6),

‖P (xk)(−∇Φk)‖ ≤ ωk → 0.

Let us now decompose the vector −∇Φk into its normal and tangential components
at xk, that is,

−∇Φk = P (xk)(−∇Φk) + P+(xk)(−∇Φk),

where P+(xk) denotes the orthogonal projection onto N(C, xk), P (xk) as before the
orthogonal projection onto T (C, xk). Such a decomposition is possible because the
normal and tangent cones are polar cones of each other. Using this decomposition
gives

−∇ΦT
k (y − xk) = P (xk)(−∇Φk)

T (y − xk) + P+(xk)(−∇Φk)
T (y − xk)

≤ P (xk)(−∇Φk)
T (y − xk)

≤ ωk ‖y − xk‖ → 0, (k ∈ K),

where the last line uses the stopping test and Cauchy–Schwarz, while the second line
comes from P+(xk)(−∇Φ)T (y − xk) ≤ 0, which is a consequence of the definition
of P+(xk) and the convexity of C. Altogether the term −∇ΦT

k (y − xk) converges
to a quantity ≤ 0, but by item 3 in Lemma 4.2, the same term also converges to
−∇L(x∗;λ∗)

T (y − x∗), (k ∈ K). This proves −∇L(x∗;λ∗)
T (y − x∗) ≤ 0.

Theorem 4.4. Let x∗ be an accumulation point of a sequence xk generated
by the partially augmented Lagrangian algorithm such that hypotheses (H1), (H2) are
satisfied at x∗. Suppose further that C admits a stratification into differentiable layers
at x∗. Let K ⊂ N be the index set of a subsequence converging to x∗. Let λ∗ := λ̃(x∗).
Then we have the following:

1. λ�
k, k ∈ K, converges to λ∗. In particular, there exists a constant K > 0 such

that ‖λ�
k − λ∗‖ ≤ K(ωk + ‖xk − x∗‖) for every k ∈ K.

2. x∗ is a KKT point, and λ∗ is an associated Lagrange multiplier.
3. ∇Φ(xk;λk, µk), k ∈ K, converges to ∇L(x∗;λ∗).
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Proof. Suppose first that µk is bounded away from 0. Then the algorithm even-
tually decides to do a first order update step at each iteration. Then ‖g(xk)‖ ≤ ηk,
eventually, and ηk+1 = µβηk with µβ < 1 implies ηk → 0. Therefore g(x∗) = 0.
However, now the assumptions of Lemma 4.3 are all met, so we have the correct
conclusions.

Now assume µk is not bounded away from 0. Assume µk → 0 for a subsequence.
Then the construction of the parameters µk ensures that µk‖λk − λ∗‖ → 0. This
is exactly the argument from [20, Lemma 4.2], whose statement we reproduce below
for the reader’s convenience. So we arrive at the same conclusions, because now
estimate 4 in Lemma 4.2 implies g(x∗) = 0.

Lemma 4.5 (see [20, Lemma 4.2]). Suppose µk, k ∈ K, converges to 0. Then
µk‖λk‖, k ∈ K, also converges to 0.

The proof of Lemma 4.5 uses the specific form of the parameter updates in step
4 of the augmented Lagrangian algorithm. Any other update µ → µ+ for which the
statement of Lemma 4.5 remains correct gives the same convergence result.

Remark. Notice that the weak convergence statement of Theorem 4.4 in terms of
subsequences is the best we can hope to achieve in general. Reference [20] gives an
example where the sequence xk generated by the augmented Lagrangian algorithm
has two accumulation points. A strict convergence result requires strong additional
assumptions, like, for instance, convexity, which is not satisfied in cases we are inter-
ested in. On the other hand, in our experiments the method often converges nicely
even without these hypotheses, so we consider Theorem 4.4 a satisfactory result.

5. SDP-representable sets. In this section we indicate in which way Theo-
rem 4.4 may be extended to a larger class of convex constraint sets C. The motivating
example are SDP-representable sets, a natural extension of LMI-sets as in (2). Recall
that a closed convex set C is SDP-representable [10, 11] if it may be written in the
form

C = {x ∈ R
n : A(x, u) � 0 for some u ∈ R

q},

where A : R
n×R

q → Sp is an affine operator. In other terms, SDP-representable sets
are orthogonal projections of LMI-sets and may be considered the natural class of sets
described by semidefinite programs. Notice that despite the similarity to LMI-sets,
SDP-representable sets are a much larger class, including very interesting examples
(see [10, 11]).

More generally, we may consider the class of closed convex sets C which are
orthogonal projections of sets C̃ admitting a stratification into differentiable layers
according to Definition 1. It is not clear whether Definition 1 is invariant under
projections, which means that sets C of this type do not necessarily inherit this
structure, and we cannot apply Theorem 4.4 directly to this class. Nonetheless, there
is an easy way in which the partially augmented Lagrangian method can be extended
to this larger class of sets C.

Consider program (P ) with C the orthogonal projection of a set C̃, which admits
a stratification into differentiable layers. Suppose without loss that C is the set of
x ∈ R

n such that there exists u ∈ R
q with (x, u) ∈ C̃. It seems natural to consider the

following program (P̃ ), which contains u as a slack variable and is equivalent to (P ):

(P̃ )

minimize f(x), x ∈ R
n, u ∈ R

q

subject to gj(x) = 0, j = 1, . . . ,m,

(x, u) ∈ C̃.
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This program is amenable to our convergence theorem as soon as the corresponding
constraint qualification hypothesis is satisfied. At first sight, replacing (P ) by (P̃ )
does not seem attractive, because we have introduced a slack variable. On second
sight, however, we see that the impact of adding u is moderate.

Suppose we apply the partially augmented Lagrangian algorithm to program (P ),

generating iterates xk ∈ C, so that (xk, uk) ∈ C̃ for suitable uk ∈ R
q. Can we interpret

(xk, uk) as a sequence of iterates generated by the same algorithm, but running for

program (P̃ ) in (x, u)-space? If so, then convergence could be proved in (x, u)-space
and would immediately imply convergence in x-space. This idea requires that we
analyze the different steps of the algorithm in both settings.

Let us begin with the augmented version (P̃λ,µ) of program (Pλ,µ). Since the
partially augmented Lagrangian Φ(x, λ, µ) does not depend on u, we realize that these
two programs are exactly the same. This is good news, because on solving (Pλ,µ) in

x-space, as we naturally plan to do, we also implicitly solve (P̃λ,µ) in (x, u)-space.
What really needs to be done in (x, u)-space and not in x-space is the stopping

test (6) in step 3 of our algorithm. What we propose to do is to modify the augmented
Lagrangian scheme and accept x+ ∈ C as an approximate solution of (Pλ,µ), and hence

as the new iterate in x-space, if there exists u+ such that (x+, u+) ∈ C̃ satisfies the

stopping test (6) for the lifted program (P̃λ,µ). Explicitly this leads to the following
test. Accept x+ as soon as the solution (dx, du) of

inf
{
‖
(
−∇Φ(x+, λ, µ), 0

)
− (dx, du) ‖ : (dx, du) ∈ T (C̃, (x+, u+))

}
(12)

satisfies ‖(dx, du)‖ ≤ ω. For definiteness, we may require here that u+ be the smallest

element in norm satisfying (x+, u+) ∈ C̃.
The last element of the algorithm to analyze concerns the parameter updates in

step 4, and in particular the first order update rule. This is again identical in both
settings, because the variable u does not intervene.

Altogether we have the following consequence of Theorem 4.4.
Theorem 5.1. Let C be a closed convex set which is the orthogonal projection

of a closed convex set C̃ admitting a stratification into differentiable layers. Gen-
erate sequences xk ∈ C, ωk, ηk, λk, λ�

k, µk according to the partially augmented
Lagrangian algorithm, with the difference that the stopping test (12) is applied at

the point (xk, uk) ∈ C̃. Suppose (x∗, u∗) is an accumulation point of (xk, uk) such
that hypotheses (H1), (H2) are satisfied at (x∗, u∗). Let K ⊂ N the index set of a
convergent subsequence. Let λ∗ = λ̃(x∗); then

1. λ�
k, k ∈ K, converge to λ∗. In particular, there exists a constant K > 0 such

that ‖λ�
k − λ∗‖ ≤ K(ωk + ‖xk − x∗‖) for every k ∈ K.

2. x∗ is a KKT point for (P ), and λ∗ is an associated Lagrange multiplier.
3. ∇Φ(xk;λk, µk), k ∈ K, converges to ∇L(x∗;λ∗).

One may wonder whether it is really necessary to solve the stopping test in (x, u)-

space all the time. Obviously, as soon as the orthogonal projection of T (C̃, (x+, u+))
is identical with T (C, x+), solving (6) and (12) is equivalent. In general, however,

this is not the case. We have only the trivial inclusion π(T (C̃, (x+, u+))) ⊂ T (C, x+),
where π denotes the projection (x, u) → x, which also shows that the stopping test
(12) is stronger than (6).

A particular case where equality holds is when (x+, u+) is a smooth point of the
boundary of C̃, because then x+ is also smooth for C. Since almost all points in the
boundary of a convex set are smooth points, this is quite satisfactory.
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6. Discussion. In this section we briefly discuss the hypotheses in Theorems
4.4 and 5.1 and then pass to practical aspects of the algorithm. Both results use the
constraint qualification hypothesis (H2), which as we have seen reduces to a familiar
condition in the case of classical programming. Notice that for m ≥ 1, (H2) excludes
in particular corner points x of the constraint set C, which would have V (C, x) = {0}.
An assumption like (H2) is already required to obtain suitable KKT conditions.

The additional hypothesis of boundedness of the gradients ∇Φ(xk;λk, µk) has
been made in several approaches (see [20]). Our present approach shows that this
hypothesis can be avoided.

We recall that the original idea of the augmented Lagrangian method [47] was
to improve on pure penalty methods insofar as the penalty parameter µk no longer
needed to be driven to 0 to yield convergence—a major advantage because ill-
conditioning is avoided. For the partially augmented Lagrangian method with poly-
hedral sets, a similar result is proved in [23]. We can establish such a result for matrix
inequality constraints if a second order sufficient optimality condition stronger than
the no-gap condition in [13] is satisfied. Details will be presented elsewhere. The phe-
nomenon is confirmed by experiments, where µk is very often frozen at a moderately
small size.

Let us now consider some practical aspects of the partially augmented Lagrangian
for LMI constrained sets C = {x ∈ R

n : A(x) � 0}. Observe that the stopping test
(6) may be computed by solving an SDP. According to [52], the tangent cone at
x0 ∈ C is T (C, x0) = {d ∈ R

n : Y T
1 (A∗d)Y1 � 0}, where the columns of Y1 form an

orthonormal basis of the eigenspace of λ1(A(x0)), and where A∗ is the linear part of
A, i.e., A∗d =

∑n
i=1 Aidi. Letting ∇Φ := ∇Φ(x+;λ, µ), the stopping test (6) leads to

the LMI constrained least squares program

min{‖ − ∇Φ − d‖ : Y T
1 (A∗d)Y1 � 0, d ∈ R

n}.(13)

An equivalent cast as an SDP is

minimize t

subject to

(
In ∇Φ + d
∗ t

)
� 0, Y T

1 (A∗d)Y1 � 0,
(14)

where the decision variable is now (t, d) ∈ R×R
n. Notice that in general the column

rank r of Y1 is much smaller than the size of A, so a full spectral decomposition of
A(x0) is not required and the program data of (13) or (14) are obtained efficiently.
For large-dimension n, it may therefore be interesting to solve the dual of (13), which
is readily obtained as

min

{
1

2

∥∥AT
∗
(
Y1ZY T

1

)∥∥2
+ A∗∇Φ •

(
Y1ZY T

1

)
: Z � 0, Z ∈ Sr

}
,

with return formula d = −∇Φ−AT
∗
(
Y1ZY T

1

)
relating dual and primal optimal solu-

tions.
Most of the time the multiplicity r of λ1(A(x0)) even equals 1. Then the LMI-

constraint Y T
1 (A∗d)Y1 � 0 in (13) and (14) becomes the scalar constraint eT1 (A∗d)e1 ≤

0, where e1 is the normalized eigenvector of λ1(A(x0)). This may also be written
as [AT

∗ e1e
T
1 ]T d ≤ 0, where the adjoint AT

∗ of the linear part of A(x) is defined as
AT

∗ Z = (A1 • Z, . . . , An • Z), and where e1e
T
1 is of rank 1. Then (13) is an inequality

constrained least squares program, min{‖g − d‖ : d ∈ R
n, hT d ≤ 0}, which has an
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explicit solution:

d =

⎧⎨
⎩ g − gTh

‖h‖2
h if gTh ≥ 0,

g if gTh ≤ 0,
where g := −∇Φ, h := AT

∗ e1e
T
1 .

In practice g = −∇Φ clearly points away from the half space hT d ≤ 0, so that the first
case occurs, which we recognize as the projection of g onto the hyperplane hT d = 0.

To conclude, recall that the partially augmented Lagrangian scheme clearly hinges
on the possibility of solving the approximate programs (Pλ,µ) much faster than the
full program (P ). To this end, the structure of C should be sufficiently simple, since
(Pλ,µ) has to be solved many times.

7. Applications. In our experimental section we test the augmented Lagrangian
method on two typical applications of program (S) in feedback control synthesis. We
start with static output-feedback H∞-synthesis in section 7.1 and present numerical
tests in sections 7.2 and 7.3. A second application is parametric robust control de-
sign, which is considered in section 7.4. A case study in section 7.5 concludes the
experimental part.

7.1. Static H∞-synthesis. Static H∞-control design is an NP-hard problem.
Due to its great practical importance many heuristic approaches have been proposed;
see, e.g., [8, 24, 41, 26]. Solutions based on nonlinear optimization are, for instance,
[37, 38] or [16]. We have proposed several optimization-based approaches in [5, 4, 28,
29]. Here we show how this problem may be solved with the help of our augmented
Lagrangian algorithm.

A detailed description of the static H∞-problem and a comprehensive discussion
are presented in [5, 6]. Here we only briefly recall the outset. Consider a linear
time-invariant plant described in standard form by its state-space equations:

P (s) :

⎡
⎣ ẋ
z
y

⎤
⎦ =

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦
⎡
⎣ x
w
u

⎤
⎦,(15)

where x ∈ R
n is the state vector, u ∈ R

m2 are the control inputs, w ∈ R
m1 is an

exogenous signal, y ∈ R
p2 is the vector of measurements, and z ∈ R

p1 is the vector
of controlled or performance variables. After substitution into (15), any static output
feedback control law u = Ky induces a closed-loop transfer function Tw,z(s) from w
to z, called the performance channel. Our aim is now to compute a static controller
K which meets the following design requirements:

Stability. It stabilizes the plant.
Performance. Among all stabilizing controllers, K minimizes the H∞-norm
‖Tw,z(s)‖∞.

The closed-loop system is first transformed into a matrix inequality using the Bounded
Real Lemma [1]. Then the Projection Lemma [31] is used to eliminate the unknown
controller data K from the cast. We obtain the following.

Proposition 7.1. A stabilizing static output feedback controller K with H∞-gain
‖Tw,z(s)‖∞ ≤ γ exists provided there exist X,Y ∈ S

n such that
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Table 1

Problem dimensions.

pb. n m2 p2 m1 p1 var LMI const

pb5 5 2 2 2 2 31 25 25
pb10 10 2 3 3 3 111 48 100
pb15 15 3 3 3 3 241 67 225
pb20 20 3 4 5 5 421 94 400
pb25 25 3 4 5 5 651 114 625
pb30 30 5 6 6 7 931 136 900
pb35 35 5 6 6 7 1261 156 1225

N T
Q

⎡
⎣ATX + XA XB1 CT

1

BT
1 X −γI DT

11

C1 D11 −γI

⎤
⎦NQ ≺ 0,(16)

N T
P

⎡
⎣Y AT + AY B1 Y CT

1

BT
1 −γI DT

11

C1Y D11 −γI

⎤
⎦NP ≺ 0,(17)

X � 0, Y � 0, XY − I = 0,(18)

where NQ and NP denote bases of the null spaces of Q := [C1 D21 0 ] and P :=
[BT

1 DT
12 0 ].

It is convenient [26] to replace positive definiteness in (18) by[
X I
I Y

]
� 0.(19)

On the other hand, the nonlinear equality XY −I = 0 cannot be removed and renders
the problem difficult. The cast (16)–(18) and (19) is now of the form (S) if we replace
strict inequalities ≺ 0 by suitable � −ε. The objective to be minimized is γ. The
dimension of the decision variable x = (X,Y, γ) is 1 + n(n + 1), displayed as var in
Table 1. The size of the LMIs is displayed in the column labeled LMI. It depends on
the dimensions of NP and NQ and due to possible rank deficiency cannot be computed
in advance. The nonlinear equality constraint in the terminology of (S) corresponds to

a function g : R
n(n+1) → R

n2

. The last column const in Table 1 therefore displays n2.
Once solved via the augmented Lagrangian method, this procedure requires an

additional step, where the controller K, which has been eliminated from the cast,
needs to be restored from the decision parameters of (S). This last step may be based
on the method in [31] and, as a rule, does not present any numerical difficulties.

7.2. Numerical experiment I. In our first experiment we solve a series of
static output-feedback H∞-synthesis problems randomly generated via the procedure
in [43] at different sizes n ranging from 5 to 35. In each case it is known that a
stabilizing static controller K exists, but the global optimal gain γ = ‖Tw,z(s)‖∞ is
not known. Dimensions of our test problems are described in Table 1.

While n,m2, p2,m1, p1 refer to the plant (15), columns var, LMI, and const display
for each problem the number of decision variables, the LMI size, and the number of
nonlinear equality constraints in g(x) = 0.

In Table 2, the column Pλ,µ gives the number of instances of the augmented
Lagrangian subproblem. Each of these programs is solved by a succession of SDPs,
and the column labeled SDP therefore gives the total number of SDPs needed to solve
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Table 2

Results of static H∞-synthesis.

pb. Pλ,µ SDP µ ω ‖g‖∞ Full/static

pb5 16 20 1.42e−2 1.12e−2 5.71e−6 9.63e−5; 3.49
pb10 20 21 5.58e−5 0.63e−2 2.08e−7 3.44; 3.48
pb15 21 27 2.18e−4 3.28e−2 7.55e−6 3.44; 3.48
pb20 16 21 9.07e−4 8.05e−3 9.14e−6 3.25; 3.74
pb25 21 22 5.50e−5 5.35e−2 5.90e−6 4.60; 4.61
pb30 26 32 3.34e−6 4.23e−2 9.77e−6 1.099; 1.317
pb35 28 35 8.26e−6 2.07e−2 4.43e−6 6.47; 8.46

(P ). As a rule, only between one and two SDPs per subproblem (Pλ,µ) are needed.
The number of SDPs needed to solve the augmented Lagrangian problem (P ) may be
considered the crucial parameter to judge the speed of our approach.

In our tests, SDPs are solved with an alpha version of our own spectral SDP code,
which minimizes convex quadratic objectives subject to LMI-constraints

minimize cTx + 1
2x

TQx
subject to A(x) � 0.

(20)

In contrast, currently available SDP solvers are often based on the cast

min{c�x : A(x) � 0}.

We have observed that those run into numerical problems very early, since the
quadratic term x�Qx in the objective of (20) has to be converted into an LMI via
Schur complement. This leads to large-size LMIs very quickly. For the problems in
Table 1 the corresponding augmented LMIs are of size 57 × 57 in pb5, 160 × 160 in
pb10, 309 × 309 in pb15, 516 × 516 in pb20, 766 × 766 in pb25, 1068 × 1068 in pb30,
and 1418 × 1418 in pb35.

The remaining entries in Table 2 are as follows. Column µ gives the final value
of the penalty parameter, while ‖g‖∞ gives the final precision in the equality con-
straint. In each of our test cases this precision was small enough in order to enable
the procedure in [31] to find a controller K meeting both design specifications, stabil-
ity and H∞-performance. This may be regarded as the ultimate test of success of the
method. The column ω gives the final value ‖P (−∇Φ)‖ used in the stopping test (6).
We have observed that (6) should be employed rather tolerantly, which suggests using
a comparatively large stopping tolerance ω∗ in step 2 of the augmented Lagrangian
algorithm. (This is also reflected by the fact that the covering sequence ωk converges
to 0 fairly slowly.)

The column full/static should be interpreted with care. It compares the perfor-
mance γ = ‖Tw,z(s)‖∞ achieved by the solution of (S) to the lower bound γ∞ of the
full H∞-controller, computed by the usual SDP or Riccati method. In general γ∞
cannot be a tight lower bound for the best possible γ in (S), but in a considerable
number of cases both gains are fairly close. This indicates that our method, as a
rule, gets close to the global minimum of (S), even though theoretical evidence for
this is lacking. Notice here that even cases with a large gap between γ and γ∞ do
not contradict this supposition. One may always artificially arrange a large gap by
creating a poorly actuated system, that is, a system where the number of control
inputs is much smaller than the state of the system, m2 << n.

For the set of test examples (S) in automatic control we observed that the partially
augmented Lagrangian method required a rather limited number of SDP subproblems.
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Fig. 1. Stabilizing static gains and stabilizing region.

This makes our approach based on a succession of SDPs attractive. Moreover, we
observed that a solution to the control problem is practically always found provided
the SDP subproblems can be solved in a reasonable time. The bottleneck of our
approach is the SDP solver. The alpha version of our own solver performed well up to
systems of size n = 35, which means 1261 decision variables and LMIs of size 156×156
(or of size 1418 × 1418 if the quadratic term is Schur complemented into an LMI).

7.3. Numerical experiment II. In this section we present an experiment im-
ported from [41]. Numerical data are

A =

[
1 1 + η

−(1 + η) 0

]
, B2 =

[
0
1

]
, C2 = [ 0 1 ] ,

where η is some small positive parameter. We consider the static stabilization problem
for various values of η, so this example does not include performance, meaning B1 = 0,
D11 = 0, C1 = 0, D12 = 0. The attractive feature of this example is that feasible
values for the gain reduce to a small interval K ∈ (−(1 + η)2, −1) whose length
decreases quickly as η tends to zero. As a consequence, most existing algorithms fail
when the interval shrinks significantly. Also, this example provides an indication on
the accuracy and reliability of the proposed augmented Lagrangian algorithm.

Using the proposed technique, we computed a stabilizing gain K for a set of values
η ∈

{
1, 10−1, 10−2, 10−3, 10−4, 10−5

}
. The results are shown in Figure 1, where

in logarithmic scale the tube of admissible values K appears as the zone between
the horizontal line at K = −1 and the curved lower bound. The achieved values of K
are indicated through small circles and, as expected, lie within the stabilizing region.
Note that the stabilizing region shrinks dramatically as η gets smaller. For η = 10−6

the algorithm fails since the system can be regarded as numerically unstabilizable. The
admissible interval length has then been reduced to about 2.0 · 10−6. The problem
has 13 decision variables.

In parallel with the experiments presented in sections 7.2 and 7.3, we point the
reader to the testing in [5], where reduced order synthesis (including the static case)
is examined from various other points of view.
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7.4. Robust synthesis with time-varying uncertainties. In this section
we consider a second class of automatic control applications of program (S), the
robust control problem for an uncertain plant subject to parametric uncertainties.
These system uncertainties may be described by so-called linear fractional transforms
(LFTs):

⎡
⎢⎣

ẋ
z∆

z
y

⎤
⎥⎦ =

⎡
⎢⎣

A B∆ B1 B2

C∆ D∆∆ D∆1 D∆2

C1 D1∆ D11 D12

C2 D2∆ D21 0

⎤
⎥⎦
⎡
⎢⎣

x
w∆

w
u

⎤
⎥⎦ ,

w∆ = ∆(t) z∆.

(21)

Here ∆(t) is a time-varying matrix-valued parameter, usually assumed to have a
block-diagonal structure

∆(t) = diag (. . . , δi(t)I, . . . ,∆j(t), . . .) ∈ RN×N(22)

normalized such that

∆(t)T∆(t) ≤ I ∀ t ≥ 0.(23)

According to the µ analysis and synthesis literature [27, 24], blocks δiI and ∆j are
referred to as repeated-scalar blocks and full blocks, respectively. Straightforward
computations lead to the state-space representation⎡

⎣ ẋ
z
y

⎤
⎦ =

⎧⎨
⎩
⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦

+

⎡
⎣ B∆

D1∆

D2∆

⎤
⎦∆(t)(I −D∆∆∆(t))−1 [C∆ D∆1 D∆2 ]

⎫⎬
⎭×

⎡
⎣ x
w
u

⎤
⎦,

which means that the state-space data of the plant with inputs w and u and outputs
z and y are fractional functions of the time-varying uncertain parameter ∆(t). Hence
we have the name LFT. In (21), u is the control input, w denotes the exogenous input,
z denotes the controlled performance variables, and y denotes the measurement signal
or output. Given the uncertain plant (21)–(23), the robust control problem requires
finding a linear time-invariant (LTI) controller

ẋK = AKxK + BKy,
u = CKxK + DKy,

(24)

such that for all admissible parameter trajectories (22), (23),
• the closed-loop system, obtained by substituting (24) into (21)–(23), is inter-

nally stable.
• the L2-induced gain of the operator connecting w to z is bounded by γ.

Note that the performance specification says that∫ ∞

0

z(t)T z(t)dt ≤ γ2

∫ ∞

0

w(t)Tw(t)dt ∀w ∈ L2, ∀∆(t) as in (22), (23).
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It has been shown that such problems may be handled via a version of the Bounded
Real Lemma [1], which translates these conditions into matrix inequalities. The re-
sulting sufficient conditions are the following: Find a Lyapunov matrix Xc�, Xc� � 0
and appropriately structured scalings S and T such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
c�Xc� + Xc�Ac� ∗ ∗

BT
c�Xc� +

[
T 0
0 0

]
Cc� −

[
S 0
0 γI

]
∗

+

[
T 0
0 0

]
Dc� + DT

c�

[
T 0
0 0

]T

Cc� Dc� −
[
S 0
0 γI

]−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0.

(25)

Here Ac�, Bc�, Cc�, and Dc� are the state-space data of the closed-loop system (21)–
(24) with the loop w∆ = ∆(t) z∆ still open. Appropriately structured means that the
scalings are compatible with the uncertainty structure (22), (23), for which we use
the shorthand notation ∆ ∈ ∆. The set of symmetric scalings associated with the
parameter structure ∆ is defined as

S∆ :=
{
S : ST = S, S∆ = ∆S ∀∆ ∈ ∆

}
.

Similarly, the set of skew-symmetric scalings associated with the parameter structure
∆ is defined as

T∆ :=
{
T : TT = −T, T∆ = ∆TT ∀∆ ∈ ∆

}
.

The idea here is that as soon as ∆ ∈ ∆ and S � 0, S ∈ S∆, T ∈ T∆, the quadratic
constraint

[
∆
I

]T [
−S TT

T S

] [
∆
I

]
� 0(26)

is automatically satisfied. With the above definitions and notation, the following
algebraically constrained LMI characterization for the solvability of the problem can
be established. The reader is referred to [45, 44, 2, 3, 33, 51, 25] for more details and
additional results.

Theorem 7.2. Consider the plant (21) with uncertain trajectories ∆(t) as in
(22), (23). The following conditions guarantee the existence of an LTI output-feedback
controller (24), which stabilizes the closed-loop system (21)–(24) for all admissible
trajectories ∆ ∈ ∆ such that, in addition, the L2 gain performance γ is achieved:
There exist symmetric matrices X,Y, S,Σ and skew-symmetric matrices T,Γ such
that

S, Σ ∈ S∆ and T, Γ ∈ T∆,(27)

and such that the matrix inequalities
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N T
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ATX + XA XB∆ + CT
∆TT XB1 CT

∆S CT
1

BT
∆X + TC∆ −S + TD∆∆ + DT

∆∆TT TD∆1 DT
∆∆S DT

1∆

BT
1 X DT

∆1T
T −γI DT

∆1S DT
11

SC∆ SD∆∆ SD∆1 −S 0

C1 D1∆ D11 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N1 ≺ 0,(28)

N T
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

AY + Y AT Y CT
∆ + B∆ΓT Y CT

1 B∆Σ B1

C∆Y + ΓBT
∆ −Σ + ΓDT

∆∆ + D∆∆ΓT ΓDT
1∆ D∆∆Σ D∆1

C1Y D1∆ΓT −γI D1∆Σ D11

ΣBT
∆ ΣDT

∆∆ ΣDT
1∆ −Σ 0

BT
1 DT

∆1 DT
11 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N2 ≺ 0,(29)

[
X I
I Y

]
� 0,(30)

[
S 0
0 Σ

]
� 0(31)

in tandem with the algebraic constraints

(S + T )−1 = (Σ + Γ), or equivalently,

[
S T
TT −S

]−1

=

[
Σ ΓT

Γ −Σ

]
,(32)

are satisfied. Here N1 is a basis of the null space of [C2, D2∆, D21, 0], and N2 is a
basis of the null spaces of [BT

2 , D
T
∆2, D

T
12, 0].

Note that due to the algebraic constraints (32), the problem under consideration
is NP-hard [9] and not solvable via SDP. Even simpler instances of this problem
like those considered in [39] are already NP-hard. (This is in sharp contrast to the
associated nominal H∞-synthesis problem, which reduces to a standard SDP since
the nonlinear conditions (32) fully disappear.) This is our second example of how a
program of type (S) may be obtained in lieu of a program of type (B), based directly
on (25). Once again this rests on a diligent use of the Projection Lemma.

The explicit form (S) is obtained through the following steps. As previously
done, replace strict inequalities ≺ 0 by � −εI. For the structure (22), conditions
(27) imply a typical block structure for the matrices S,Σ, T,Γ, so the conditions
(31) reduce to blocks of LMIs, to which the nonlinear equality constraints (32) have
to be added. The cost function to be minimized is γ, and the decision vector is
x = (X,Y, γ, S, T,Σ,Γ), which regroups the gain γ, the multiplier variables S,Σ, T,Γ,
and the Lyapunov matrix variables X,Y . As before, due to the Projection Lemma,
the controller data do not directly enter the decision vector x and have to be recovered
from the optimal x through the procedure in [31]. With these elements, the problem
is directly open to our partially augmented Lagrangian algorithm, and the numerical
tests presented below have been obtained accordingly.

7.5. Numerical experiment III: Flexible satellite. We consider the design
of a robust attitude control system for a flexible satellite, adopted from [14, 17].
Despite its seemingly moderate size, this problem has been identified as a difficult case,
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where nominal H∞-synthesis fails and robust techniques are required. We confine our
study to the yaw axis of the satellite, whose dynamics are of the form

Mφ̈ + Dφ̇ + Kφ = Tu,

where φ = [φ1 φ2]
T and φ1 is the yaw angle displacement in radians, φ2 is the modal

displacement used to represent the flexible dynamics, and u is the control torque
(inch-pounds). Numerical data are given as

M =

[
77511 248.1
248.1 1

]
, D =

[
0 0
0 0.002288

]
,

K =

[
0 0
0 k0

]
, T =

[
0
1

]
,

(33)

with k0 = 0.104124. As is often convenient in applications, we augment the model by
the (redundant) integral of φ1. This introduces a new variable φ̇3 = φ1, whose role
will become clear when performance variables will be specified. The system can then
be rewritten in first order form as

ẋ = Ax + Bu,

where x = [φ1, φ2, φ̇1, φ̇2,
∫
φ1dt] ∈ R

5 and

A =

⎡
⎣ 02×2 I2 02×1

−M−1K −M−1D 02×1

[ 1 0 ] 01×2 0

⎤
⎦ , B =

⎡
⎣ 02×1

M−1T
0

⎤
⎦ .

The measured variables are y = [φ1, φ̇1,
∫
φ1dt] ∈ R

3. Specifications in this design
problem are twofold:

• We wish to maintain a pointing accuracy of ≤ 4.0 ·10−4 radian (0.023 degree)
in the yaw angle.

• This pointing accuracy must be guaranteed in the presence of 25% variation
in the structural frequency due to uncertainties in the stiffness matrix M .

It was shown in [17] that the requested 25% variation in the structural frequency
corresponds to the uncertainty 0.053296 ≤ k ≤ 0.154953 in the parameter k0. This in
turn leads to the uncertain model k = k0+Wδδ with k0 = 0.104124, the nominal value,
δ ∈ [−1, 1], and Wδ = 0.0050829. The satellite model incorporating uncertainty is
now obtained as ⎡

⎣ ẋ
z∆

y

⎤
⎦ =

⎡
⎣ A B∆ B
C∆ D∆∆ D∆2

C D2∆ D22

⎤
⎦
⎡
⎣ x
w∆

u

⎤
⎦ ,

w∆ = δz∆, δ ∈ [−1, 1],

where A,B are as before and

B∆ = [ 0 0 m12 m22 0 ] ,
C∆ = Wδ [ 0 1 0 0 0 ] ,

D∆∆ = 0, D∆2 = 0, D2∆ = 0, D22 = 0,

and where m12 and m22 are the (1, 2) and (2, 2) elements of −M−1, respectively. The
matrix C ∈ R

3×5 is such that y = Cx.
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y
satellite

controller

torque
disturbance

noise

w∆

z∆

WδWu

Wn

δ

u

z4

Wz

z =

⎡
⎢⎢⎣
z1

z2

z3

⎤
⎥⎥⎦

Fig. 2. Synthesis architecture.

This uncertain model has now to be completed by specifying exogenous input w
and controlled output signals z. The data of the synthesis structure were all taken
from [14] except for the noise weighting, Wn, which we have increased from 10−6

to 10−4 in order to comply with the increased performance request. This modification
will highlight the differences between nominal and robust syntheses.

Inspecting the overall synthesis architecture in Figure 2, we see in which way the
controller interacts with the satellite, and also how exogenous signals and performance
signals are specified. We note that as is common in control system design, the mea-
surements y are corrupted by noise. The noise magnitude is determined through the
so-called weighting filter Wn = 10−4 as discussed above, and this represents our first
exogenous signal noise = (w1, w2, w3) ∈ R

3. The satellite is also subject to torque
disturbance, which tends to deviate the yaw angle offset from its nominal zero level.
This disturbance represents the fourth exogenous input w4.

The loop featuring the δ block corresponds to the diagram representation of the
LFT uncertainty in the structural frequency. The magnitude of the uncertainty is
specified by the weighting Wδ = 0.0050829 introduced to obtain the normalization
|δ| ≤ 1.

A performance vector (z1, z2, z3) ∈ R
3 is introduced to reduce the impact of both

noise and torque disturbance on the yaw angle offset. The corresponding channel is
(z1, z2, z3) = Wz([φ1; φ̇1;

∫
φ1dt]+Wn noise), where the weighting is defined as Wz =

diag(400; 1; 20) and serves to specify the relative importance of the entries z1, z2, z3 in
the minimization. Indeed, z1 specifies high-, z2 specifies medium-, and z3 specifies low-
frequency parts of the yaw angle offset, and Wz allows us to address these components
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Fig. 3. Simulations of yaw angle for δ = 0; 1; −1. Left column: nominal controller. Right
column: robust controller.

individually. The effect of controlling (z1, z2, z3) on the torque disturbance w4 is
indirect, as w4 acts on the entry signal u to the satellite (see Figure 2).

Finally, in order to prevent unrealistic controller gains, the controller output u
is given an additional cost by introducing a performance variable z4 = Wuu. The
weighting associated with this specification has been set to Wu = 0.1. We stress that
choosing the weighting matrices reflects practical engineering specifications and is not
a trivial task, involving both engineering insight and trial and error at this stage.

Note that two controllers were designed in this example. A nominal H∞-controller
was synthesized (corresponding to δ = 0 above). A second robust H∞-controller was
synthesized using our augmented Lagrangian algorithm which explicitly accounts for
the uncertainty in the flexible dynamics. Simulations were then performed with a
torque step disturbance of 1 in-lbf at the plant input. The results are compared in
Figure 3 for a set of values of δ. We observe that as expected the nominal controller
(left-column simulations) is satisfactory in the nominal case (δ = 0) but exhibits
significant loss of performance and even of stability in the nonnominal situations
δ = ±1. This is in strong contrast with the robust controller obtained by our method,
which meets the prescribed performance requirements despite the uncertainties in the
flexible dynamics (right-column simulations).
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