
Computing the structured distance to instability

Pierre Apkarian∗ Dominikus Noll† Laleh Ravanbod†

Abstract

We analyze robust stability and performance of dynamical

systems with real uncertain parameters. We compute cri-

teria like the distance to instability, the worst-case spectral

abscissa, or the worst-case H∞-norm, which quantify the de-

gree of robustness of such a system when parameters vary in

a given set ∆. As computing these indices is NP-hard, we

present a heuristic which finds good lower bounds fast and

reliably. Posterior certification is then obtained by an intel-

ligent global strategy. A test bench of 87 systems with up to

70 states 39 uncertain parameters with up to 11 repetitions

demonstrates the potential of our approach.

1 Problem Specification.

Robustness specifications limit the loss of performance
and stability in a system where differences between
the mathematical model and reality crop up. Robust-
ness against real parametric uncertainties is among the
most challenging calls in this regard. Already deciding
whether a given system with uncertain real parameters
δ is robustly stable over a given parameter range δ ∈∆
is NP-hard, and this is aggravated when it comes to de-
ciding whether a given level of H2- or H∞-performance
is guaranteed over that range. In this work we address
this type of uncertainty by computing three key criteria,
which quantify the degree of parametric robustness of a
system. These are (a) the worst-case H∞-norm, and (b)
the worst-case spectral abscissa over a given parameter
range, and (c) the distance to instability, or stability
margin, of a system with uncertain parameters.

Consider a Linear Fractional Transform [23] with
real parametric uncertainties as in Figure 1, where

P (s) :

 ẋ = Ax + Bpp + Bww
q = Cqx + Dqpp + Dqww
z = Czx + Dzpp + Dzww

(1.1)

and x ∈ Rn is the state, w ∈ Rm1 a vector of exogenous
inputs, and z ∈ Rp1 a vector of regulated outputs.
The uncertainty channel is defined as p = ∆q, where
the time-invariant uncertain matrix ∆ has the block-
diagonal form

∆ = diag [δ1Ir1 , . . . , δmIrm] ,(1.2)

∗ONERA, Control System Department, Toulouse, France
†Université de Toulouse, Institut de Mathématiques

with δ1, . . . , δm representing real uncertain parameters,
and ri giving the number of repetitions of δi. Here we
assume without loss that δ = 0 ∈ ∆ represents the
nominal parameter value, and we consider δ ∈ ∆ in
one-to-one correspondence with the matrix ∆ in (1.2).
For practical applications it is generally sufficient to
consider the case ∆ = [−1, 1]m.

To analyze the performance of (1.1) in the presence
of the uncertain δ ∈ Rm we compute the worst-case
H∞-performance

h∗ = max{‖Twz(δ)‖∞ : δ ∈∆},(1.3)

where ‖·‖∞ is the H∞-norm, and where Twz(s, δ) is the
transfer function z(s) = Fu(P (s), ∆)w(s), obtained by
closing the loop between (1.1) and p = ∆q with (1.2)
in Figure 1. The solution δ∗ ∈ ∆ of (1.3) represents a
worst possible choice of the parameters δ ∈ ∆, which
may be an important element in analyzing performance
and robustness of the system, see e.g. [1].

Our second criterion is similar in nature, as it allows
to verify whether the uncertain system (1.1) is robustly
stable over a given parameter range ∆. This can be
tested by maximizing the spectral abscissa of the system
A-matrix over the parameter range

α∗ = max{α(A(δ)) : δ ∈∆},(1.4)

where A(δ) = A + Bp∆(I − Dpq∆)−1Cq, and where
the spectral abscissa of a square matrix A is defined
as α(A) = max{Reλ : λ eigenvalue of A}. Since A
is stable if and only if α(A) < 0, robust stability of
(1.1) over ∆ is certified as soon as α∗ < 0, while a
destabilizing δ∗ ∈∆ is found as soon as α∗ ≥ 0.

Note however that a decision in favor of robust
stability over ∆ based on α∗ < 0 is only valid when the
global maximum over ∆ is computed. This renders (1.4)
a difficult problem, and it is in fact known that solving
(1.4) globally is NP-hard. In [18] Poljak and Rohn
have shown that for a given set of matrices A0, . . . , Ak,
deciding whether A0 + r1A1 + . . . + rkAk is stable for
all ri ∈ [0, 1] is NP-hard, and Braatz et al. [6] have
shown that deciding whether a system with real (or
mixed or complex) uncertainties is robustly stable over
a range ∆ = [−1, 1]m is harder than globally solving
a nonconvex quadratic programming problem, hence is
NP-hard.

∆

P wz

Figure 1: Robust system interconnection

Our third analysis problem is related to the previ-
ous ones and concerns computation of the distance to
instability. Assuming A(δ) stable at the nominal value
δ = 0, we ask for the largest variation in the parameter
δ under which the system remains stable. This leads to

d∗ = max{d : A(δ) stable for all |δ|∞ < d},(1.5)

where |δ|∞ = max{|δ1|, . . . , |δm|} is the maximum
norm. This quantity is also known as the stability
margin, or the radius of stability of (1.1). A formulation
of (1.5) which does not require A(0) to be stable is

d∗ = min{|δ|∞ : A(δ) unstable},

and this still works when A(δ) is stable for all δ, because
then d∗ = min ∅ = +∞. This version can be given the
form of a constrained optimization program

minimize t
subject to −t ≤ δi ≤ t, i = 1, . . . ,m

−α(A(δ)) ≤ 0
(1.6)

with decision variable (t, δ) ∈ R1+m.

2 Methods

The fact that the analysis problems (1.3) – (1.5) are
NP-hard has practical consequences. It means that it
is vain to address them frontally, and that heuristic
methods and tailored approaches are required. Once
the importance of these problems had been recognized
in the 1980s, a number of heuristic attempts were made,
altogether with limited success. The most principled
among them are based on the structured singular value
µ∆, introduced in [10], and use overestimations. Since
P is certified robust over ∆ = [−1, 1]m as soon as
µ∆(P) < 1, it is near at hand to construct outer
approximations µ̃∆ ≥ µ∆ which are easier to compute,
and then seek a certificate by showing µ̃∆(P) < 1. If
only µ̃∆(P) = 1 + ε can be proved, one has at least a
certificate over the box (1 + ε)−1∆. The approximation
[19] is a prominent example in this class.

In terms of program (1.4), outer approximations
work similarly. Find an overestimation α∗ ≤ α which
is easier to compute, and try to prove α < 0, as this
entails the desired certificate α∗ < 0. Examples of such
α are Trefethen’s pseudo-spectral abscissa [21], or the
approximation proposed by Hinrichsen and Pritchard
[14]. LMI-relaxations of the robust analysis problem
are also in this class, see [4].

In this work we prefer inner approximations. In
a first stage this means that we compute good lower
bounds for h∗, α∗, d∗ using a local optimization algo-
rithm. These bounds are then in a second stage used
within, or in tandem with, global optimization tech-
niques to get certificates. There is general agreement
that inner approximations give better practical results,
but it is often held against them that they are less rig-
orous, the argument being that they give no immediate
certificates. This argument is not tenable, because there
is no guarantee either in an outer approximation tech-
nique that it succeeds in computing a certificate. And
even when an outer approximation method obtains a
certificate, it is usually conservative, so that an inner
approximation technique, had it to deal with such a
sub-optimal value only, would not have any particular
difficulty certifying it. We hold that inner approxima-
tions are stronger in both respects. They give better
heuristic results, and they present also the theoretically
preferable way to certify them.

3 Optimization program

In this section we discuss a general optimization pro-
gram of the form

minimize f(x)
subject to x ∈ C(3.7)

where C is a convex set with a simple structure, and
where f : Rm → R is a nonsmooth and nonconvex objec-
tive, which in this work has the specific property of be-
ing representable as a semi-infinite minimum of smooth
functions. As we shall see, this covers programs (1.3) –
(1.5), and we show how this can be exploited algorith-
mically. To understand the structure of programs (1.3)
– (1.5), we recall the following

Definition 1. (Spingarn [20]). A locally Lipschitz
function f : Rm → R is lower-C1 at x0 ∈ Rm if there
exists a neighborhood U of x0, a compact Hausdorff
space K, and a function F : Rm × K → R such that
for every x ∈ U ,

f(x) = max
y∈K

F (x,y)(3.8)

and F and ∂F/∂x are jointly continuous. The function
f is upper-C1 at x0 if −f is lower-C1 at x0. �

Lower- and upper-C1 functions behave very differ-
ently when minimized. In a lower-C1 function the nons-
moothness goes downward, so in descending we are mov-
ing into the zone of nonsmoothness, where we expect
difficulties. In contrast, an upper-C1 function has its
nonsmoothness going upward. Therefore on minimizing
it we move away from the zone of nonsmoothness, which
is why we expect less trouble.

Minimizing lower-C1 functions is of min-max type.
This form of nonsmoothness is preponderant in nons-
mooth optimization and therefore well-studied. A typi-
cal case in control is H∞-synthesis [2], where the semi-
infinite character of the objective is at the origin of the
difficulty. To cope with min-max problems one has to
minimize active or near active branches simultaneously.

In contrast, minimizing upper-C1 functions is of
min-min type. This highlights the difficulty, as it is
disjunctive and may run into a combinatorial explosion.
Yet min-min problems have some favorable features
when local minima are computed. Namely, as opposed
to the min-max case, when several branches are active
at x in a min-min problem, then it is enough to select
one and proceed. This is what we exploit favorably.

4 Algorithm

In order to solve (3.7) algorithmically, we propose a
nonsmooth trust-region strategy, which we now explain.
At the current iterate x consider the standard model

φ](y,x) = f(x) + f◦(x,y − x)(4.9)

of f at x, where f◦(x,d) is the Clarke directional
derivative of f at x in direction d; cf. [8]. We may
regard (4.9) a natural nonsmooth analogue of the first-
order Taylor expansion at x.

Recall that f◦(x,d) = max{g>d : g ∈ ∂f(x)},
where ∂f(x) is the Clarke subdifferential of f at x. We

generate finite approximations φ]k of φ] by selecting a
finite subset Gk of ∂f(x), and putting

φ]k(y,x) = f(x) + max{g>(y − x) : g ∈ Gk},(4.10)

where k is the counter of the inner loop of our algo-
rithm. Note that φ]k(x,x) = φ](x,x), φ]k ≤ φ], and

∂1φ
]
k(x,x) ⊂ ∂1φ](x,x).
At serious iterate x and inner loop counter k,

current trust-region radius Rk, and current working
model φ]k, we solve the trust-region tangent program

minimize φk(y,x)
subject to y ∈ C

‖y − x‖ ≤ Rk
(4.11)

Let yk be an optimal solution of (4.11). Fixing 0 < θ <

1, we allow as a trial step any zk ∈ B(x, Rk) satisfying

f(x)− φ]k(zk,x) ≥ θ
(
f(x)− φ]k(yk,x)

)
.(4.12)

Trial steps zk are candidates to become the next serious
step x+, and this is tested by the usual condition

ρk =
f(x)− f(zk)

f(x)− φk(zk,x)

?
≥ γ

where 0 < γ < 1. In the case of acceptance ρk ≥ γ
we call x+ = zk a serious step. The crucial question
is what action to take when ρk < γ, in which case zk

is not accepted and termed a null step. Here we have
to form a better model φ]k+1(·,x), and we may have to
reduce the trust-region radius. The details are covered
by the following trust-region algorithm:

Algorithm 1. Trust-region method for program (3.7)

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ , 0 < θ � 1.

. Step 1 (Initialize). Choose x1 ∈ C and initial

R]1 > 0. Put outer loop counter j = 1.

. Step 2 (Stopping). Stop if outer loop iterate xj at
counter j is critical. Otherwise goto inner loop.

. Step 3 (Initialize inner loop). Put k = 1.

Initialize φ]1(·,xj) = f(xj) + g>j (· − xj), where gj ∈
∂f(xj). Initialize trust-region radius R1 = R]j .

. Step 4 (Trial step). Given φ]k and Rk, compute
solution yk of (4.11). Find trial step zk with (4.12).

. Step 5 (Acceptance). If

ρk =
f(xj)− f(zk)

f(xj)− φk(zk,xj)
≥ γ

put xj+1 = zk (serious step) and go to step 7.
Otherwise find gk ∈ ∂f(xj) with f◦(xj , zk − xj) =

g>k (zk − xj), and add it to Gk+1. Build new φ]k+1.

. Step 6 (Update trust-region radius). If

ρ̃k =
f(xj)− φ]k+1(zk,xj)

f(xj)− φ]k(zk,xj)
≥ γ̃

put Rk+1 = 1
2Rk, else Rk+1 = Rk. Increase k and

goto step 4.

. Step 7 (Update memory trust-region radius).

R]j =

{
Rk if ρk < Γ
2Rk if ρk ≥ Γ

Increase outer loop counter j and go back to step 2.

It is crucial to observe that as soon as xj is a point
of strict differentiability of f , then ∂f(xj) = {∇f(xj)},
hence φ](·,xj) = φ]k(·,xj) = f(xj)+∇f(xj)>(·−xj) for
all k. Then algorithm 1 reduces to the standard smooth
(first-order) trust-region method, where the only action
in case of a null step is reduction of the trust-region
radius. Namely, subgradients gj in step 3 and gk in step
5 then all coincide with ∇f(xj), and the test quotient
ρ̃k equals 1. Therefore if f is strictly differentiable
almost everywhere on C, and if zk is drawn at random
according to a continuous probability law on C, then
algorithm 1 is the classical trust-region scheme with
probability 1. This is what happens in practice and
explains why our method works fast and reliably.

5 Convergence

The convergence properties of algorithm 1 will be con-
sidered next. We recall a concept which was first used
in [17] to prove convergence of a bundle method. We
specialize it here to the standard model. We say that
the standard model φ] of f is strict at x if for any se-
quences xk,yk → x there exists εk → 0+ such that
f(yk) ≤ f(xk) + φ](yk,xk) + εk‖yk −xk‖. The follow-
ing was proved in [16]:

Lemma 5.1. Suppose f is upper-C1 at x. Then the
standard model φ] is strict at x. �

We have the following

Theorem 5.1. Suppose the standard model φ] of f is
strict. Let x1 ∈ C be such that {x ∈ C : f(x) ≤ f(x1)}
is bounded. Then every accumulation point x∗ of the xj

generated by algorithm 1 is a critical point of (3.7). �

The proof is outside the scope of the present con-
tribution and can be found in [3]. By an observation
first made in [9], it is possible to say more when f is
upper-C1. Namely, we may then fix gj ∈ ∂f(xj) drawn
in step 3 of the algorithm, letting gk = gj for the gk in
step 5. Then, regardless whether or not xj is a point of
strict differentiability of f , the algorithm reduces to its
classical first-order antecedent.

Theorem 5.2. Let f be upper-C1 and suppose {x ∈
C : f(x) ≤ f(x1)} is bounded. Let xj ∈ C be generated
by the classical first-order trust-region algorithm. Then
every accumulation point x∗ of the xj is critical. �

6 Amenability

We still have to show that the criteria used in programs
(1.3) – (1.5) are amenable to the theory presented in
section 5. We start with the following

Lemma 6.1. Let f be defined as f(δ) = −‖Twz(δ)‖∞,
then f is upper-C1 on the set D = {δ ∈ Rm :
Twz(δ) is internally stable}.

Proof. We use the variational representation of the
maximum singular value

σ(G) = sup
‖u‖=1

sup
‖v‖=1

∣∣u>Gv∣∣ .
Observing that z → |z| is convex and therefore lower-
C1, we write it in the form |z| = supl∈L Ψ(z, l) for Ψ and
∂Ψ/∂z jointly continuous and a suitable compact set L.
Then

−f(δ) = sup
jω∈S1

sup
‖u‖=1

sup
‖v‖=1

sup
l∈L

Ψ(u>Tzw(jω, δ)v, l),

which is a representation of the form (3.8) with the
compact space K = S1×{u : ‖u‖ = 1}×{v : ‖v‖ = 1}×L
and F (δ, jω, u, v, l) = Ψ(u>Twz(jω, δ)v, l). Hence −f is
lower-C1. �

As a consequence, algorithm 1 may be applied to
program (1.3) even in its reduced classical form. The
constraint set is C = ∆, a hypercube, and it is therefore
natural to choose the maximum norm |·|∞ for the trust-
regions. That makes (4.11) a linear program, which can
even be solved explicitly, as we may restrict the number
of cuts in φ]k to one.

Let us next look at the spectral abscissa, f(δ) =
−α(A(δ)). Here the situation is more complicated. It
has been observed in [7] that α(A(δ)) may even fail
to be locally Lipschitz, so difficulties may be expected
when α(A(δ)) is minimized. Here we are minimizing
−α(A(δ)), which is better behaved. In our experiments
we observe that f(δ) = −α(A(δ)) behaves consistently
like an upper-C1 function. Nonetheless, since this is not
always guaranteed, it is prudent to treat f under the
weaker hypothesis that it has a strict standard model
φ], in which case the full version of algorithm 1 may
be needed. It turns out that if all active eigenvalues at
α(A(δ)) are semi-simple, then f is locally Lipschitz in
a neighborhood of δ, and the strictness condition on φ]

is satisfied at least directionally. This gives at least a
partial theoretical explanation why algorithm 1 works
successfully on problems (1.4) and (1.5).

For (1.4) we choose C = ∆ and | · |∞, so that (4.11)
is again a linear program. As for (1.5), using exact
penalization this can be transformed to

min{t+cmax(0,−α(A(δ))) : −t ≤ δi ≤ t, i = 1, . . . ,m},

with x = (t, δ). Here C = {(t, δ) ∈ R1+m : −t ≤ δi ≤
t, i = 1, . . . ,m} is again a simply structured convex set,
and the standard model of the objective has properties
similar to those of −α(A(δ)). With these choices local
solutions of (1.5) are computed fast and reliably.

7 Stopping

Stopping a nonsmooth optimization method is not
an easy task in general due to the occasionally slow
convergence. Moreover, one can easily convince oneself
that contrary to the smooth case the subdifferential
∂f(xj) does not give a valid test, because in general
min{‖g‖ : g ∈ ∂(f + iC)(xj)} 6→ 0 as xj → x∗,
where iC is the indicator function of the set C; cf.
[8]. Fortunately, the optimality conditions of (4.11) give
the indication how to proceed. The solution yk gives
gk ∈ ∂

(
φk(·,xj) + iC

)
(yk) and vk in the normal cone

to the ball B(xj , Rk) at yk such that gk + vk = 0.
Following classical lines in bundle methods, gk is called
the aggregate subgradient. The convergence proof in
[3] shows that if gj is the aggregate subgradient at
acceptance of zk = xj+1 for the corresponding yk =
x̃j+1, then gj → 0. That leads to the following stopping
test. If on acceptance of xj+1 in the outer loop

‖gj‖
|f(xj+1)|+ 1

< tol1

is satisfied, then xj+1 is returned as optimal. On the
other hand, it is also necessary to stop the algorithm in
case the inner loop has difficulties converging. That can
be tested as follows. If the inner loop gives ν consecutive
unsuccessful trial steps yk where

‖gk‖
|f(xj)|+ 1

< tol2,

then xj is returned as optimal. It may also help to add
tests as to the progress of the method, like

‖xj − xj+1‖
‖xj‖+ 1

< tol3,
f(xj)− f(xj+1)

|f(xj)|+ 1
< tol4,

but one has to be aware that the latter are based on
convergence of the sequence xj , not on convergence to
a critical point. Note that gj ∈ ∂(f + iC)(xj) is of
the form gj = pj + qj , where pj ∈ ∂f(xj) and qj a
normal vector to C at xj in the boundary of ∆. That
means, smallness of PC(−pj) is the correct indicator of
optimality, where PC is the orthogonal projection of C.

8 Experiments

Our first test concerns program (1.3), which we solve
by Algorithm 1. Table 1 shows the characteristics of
27 benchmarks with n states, and uncertain structure
[r1 . . . rm], where m = length(δ), and ri the number of
repetitions in (1.2). Here [1 1 1 3 1] is further compressed
to 133111. The values achieved by algorithm 1 are shown
as h∗ in column 3 of table 2, the CPU is t∗.

To certify the result h∗ of algorithm 1, we use the
function WCGAIN of [5, 24], which is a branch-and-bound

method combined with a frequency sweep. WCGAIN

computes lower and upper bounds h, h for the global
maximum of (1.3) in twc seconds, and a solution δwc

realizing h. These results are shown in table 2.

] Benchmark n Structure

1 Beam1 11 133111

2 Beam2 11 133111

3 DC motor1 7 1122

4 DC motor2 7 1122

5 DVD driver1 10 11331131

6 Four-disk system1 16 113514

7 Four-disk system2 16 113514

8 Four-tank system1 12 14

9 Four-tank system2 12 14

10 Hard disk driver1 22 132414

11 Hard disk driver2 22 132414

12 Hydraulic servo1 9 19

13 Hydraulic servo2 9 19

14 Mass-spring1 8 12

15 Mass-spring2 8 12

16 Missile1 35 1363

17 Missile2 35 1363

18 Filter1 8 11

19 Filter2 8 11

20 Filter-Kim1 3 12

21 Filter-Kim2 3 12

22 Satellite1 11 116111

23 Satellite2 11 116111

24 Mass-spring-damper1 13 11

25 Mass-spring-damper2 13 11

26 RobToy1 3 1121

27 RobToy2 3 112231

Table 1: Benchmark problems for (1.3) and (1.5).

The interpretation of table 2 is that algorithm
1 and wcgain are in agreement in the majority of
cases 1-5,7-9,11-13,16,17. Case 15 leaves a doubt,
while cases 6,10,14,24,27 are failures of WCGAIN. On
average algorithm 1 was 121-times faster than WCGAIN.
Altogether, the fact that both methods are in good
agreement in the majority of cases is a good sign and
can be considered as an endorsement of our method.

8.1 Robust stability over ∆. Our second test con-
cerns program (1.4). We use a bench of 32 cases (num-
bers 28-59) gathered in Table 3. Algorithm 1 converges
very fast and delivers the values α∗ in column 3 of table
4 in t∗ seconds.

To certify α∗ we have implemented the integral
global optimization method of [22], also known as the

] h h∗ h t∗ h/h∗ twc/t
∗

1 1.70 1.71 1.70 1.02 0.99 13.29

2 1.29 1.29 1.29 0.36 1 32.68

3 0.72 0.72 0.72 0.51 1.01 14.49

4 0.50 0.50 0.50 0.13 1 45.02

5 45.45 45.45 45.46 0.23 1 189.31

6 3.50 4.56 3.50 0.44 0.77 343.35

7 0.69 0.68 0.69 0.34 1.01 558.03

8 5.60 5.60 5.60 0.32 1 5.72

9 5.60 5.57 5.60 0.29 1 7.32

10 243.9 7526.6 Inf 0.96 Inf 73.10

11 0.03 0.03 0.03 0.20 1.12 314.92

12 1.17 1.17 1.17 0.34 1 10.94

13 0.7 0.70 0.7 0.33 1.01 11.69

14 3.71 6.19 3.71 0.31 0.60 3.54

15 6.84 6.84 7.16 0.13 1.05 7.05

16 5.12 5.15 5.12 0.46 0.99 272.54

17 1.83 1.82 1.83 0.22 1 1183.5

18 4.86 4.86 4.86 0.32 1 3.41

19 2.63 2.64 2.63 0.27 1 4.06

20 2.95 2.96 2.95 0.24 1 3.4

21 2.79 2.79 2.79 0.07 1 12.95

22 0.16 0.17 0.16 0.33 1 86.17

23 0.15 0.15 0.15 0.70 1 41.09

24 7.63 8.85 7.63 0.21 0.86 4.88

25 1.65 1.65 1.65 0.08 1 13.70

26 0.12 0.12 0.12 0.56 1 4.24

27 20.85 21.70 20.91 0.24 0.96 29.19

Table 2: Results for worst-case H∞-norm on ∆

Zheng-method, for short ZM. In algorithm 2, µ is
any continuous finite Borel measure on ∆. Numerical
implementations use Monte-Carlo methods to compute
the integral, and we refer to [22] for details. Our
numerical tests are performed with 2000 · m initial
samples, where m = dim(δ), and the stopping criterion
is chosen at variance = 10−12. The result obtained by
ZM is αZM in column 3 of table 4, obtained within tZM
seconds CPU.

Algorithm 2. Zheng-method for α∗ = max
x∈∆

f(x)

. Step 1 (Initialize). Choose initial α < α∗.

. Step 2 (Loop). Compute α+ =

∫
[f≥α] f(x) dµ(x)

µ[f ≥ α]
.

. Step 3 (Stopping). If progress of α+ over α is
marginal, stop, otherwise α→ α+ and goto step 2.

An interesting feature of ZM is that it can be
initialized with the lower bound α∗, and this often leads
to a significant speedup. Altogether ZM and our local
method are in very good agreement on the test bench,

] Benchmark n Structure

28 Beam3 11 133111

29 Beam4 11 133111

30 Dashpot system1 17 16

31 Dashpot system2 17 16

32 Dashpot system3 17 16

33 DC motor3 7 1122

34 DC motor4 7 1122

35 DVD driver2 10 11331131

36 Four-disk system3 16 113514

37 Four-disk system4 16 113514

38 Four-disk system5 16 113514

39 Four-tank system3 12 14

40 Four-tank system4 12 14

41 Hard disk driver3 22 132414

42 Hard disk driver4 22 132414

43 Hydraulic servo3 9 19

44 Hydraulic servo4 9 19

45 Mass-spring3 8 12

46 Mass-spring4 8 12

47 Missile3 35 1363

48 Missile4 35 1363

49 Missile5 35 1363

50 Filter3 8 11

51 Filter4 8 11

52 Filter-Kim3 3 12

53 Filter-Kim4 3 12

54 Satellite3 11 116111

55 Satellite4 11 116111

56 Satellite5 11 116111

57 Mass-spring-damper3 13 11

58 Mass-spring-damper4 13 11

59 Mass-spring-damper5 13 11

Table 3: Benchmarks for (1.4).

which we consider an argument in favor of our approach.

8.2 Distance to instability In this last part we
apply our algorithm to program (1.5) using the test
bench in Table 5. The distance computed by algorithm
1 is d∗ in column 2 of Table 6. To certify d∗ we use three
different tools. Firstly, ZM is used in the following way.
For a given confidence level γ = 0.05 we compute

α = max{α(A(δ)) : δ ∈ (1− γ)d∗∆}(8.13)

and

α = max{α(A(δ)) : δ ∈ (1 + γ)d∗∆}.(8.14)

Then d∗ is certified by ZM with confidence level γ if
α < 0 and α > 0. This happened in all cases except 87.

A very elegant way to certify parametric robust sta-
bility over a given set ∆ uses the method of Lasserre

] α∗ αZM t∗ tZM

28 -1.2e-7 -1.2e-7 0.19 32.70

29 -1.7e-7 -1.7e-7 0.04 33.00

30 0.0186 0.0185 0.23 90.25

31 -1.0e-6 -1.0e-6 0.39 39.63

32 -1.0e-6 -1.0e-6 0.08 39.63

33 -0.0010 -0.0010 0.02 20.63

34 -0.0010 -0.0010 0.02 20.74

35 -0.0165 -0.0165 0.04 49.29

36 0.0089 0.0089 0.10 159.91

37 -7.5e-7 -7.5e-7 0.29 73.86

38 -1.0e-7 -1.0e-7 0.29 74.63

39 -6.0e-6 -6.0e-6 0.02 26.03

40 -6.0e-6 -6.0e-6 0.02 26.2

41 266.70 266.70 0.09 297.21

42 -1.6026 -1.6026 0.06 80.4

43 -0.3000 -0.3000 0.04 51.41

44 -0.3000 -0.3000 0.02 50.95

45 -0.0054 -0.0054 0.01 31.59

46 -0.0368 -0.0370 0.01 16.94

47 22.6302 22.1682 0.07 104.18

48 -0.5000 -0.5000 0.07 51.78

49 -0.5000 -0.5000 0.07 52.24

50 -0.0148 -0.0148 0.06 7.05

51 -0.0148 -0.0148 0.02 6.89

52 -0.2500 -0.2500 0.01 12.83

53 -0.2500 -0.2500 0.01 12.9

54 3.9e-5 3.9e-5 0.02 44.02

55 -0.0269 -0.0269 0.02 26.02

56 -0.0268 -0.0268 0.02 26.08

57 0.2022 0.2022 0.01 8.30

58 -0.1000 -0.1000 0.01 6.91

59 -0.1000 -0.1000 0.01 6.94

Table 4: Results for worst-case spectral abscissa (1.4).

[15], where BMI problems are solved globally by a hi-
erarchy of LMI approximations. When written as mini-
mization problems, the value vk of the kth approximat-
ing LMI is an upper bound of, and decreases toward, the
global minimum value v∗ of the BMI as k →∞. More-
over, convergence is often finite, that is, there exists k
such that vk = v∗. In that case, to solve the BMI, it
suffices to find k and solve the corresponding kth LMI.

Following [12] one can certify robust stability over
∆ by showing that the value of the following polynomial
optimization problem is > 0:

minimize det(H(δ))
subject to δ ∈∆

(8.15)

where H(δ) is the so-called Hermite-matrix; see [12].
For ∆ = [−1, 1]m in (8.15), the method [15] gives finite

] Benchmark n Structure

60 Academic example 5 11

61 Academic example 4 13

62 Academic example 4 22

63 Inverted pendulum 4 13

64 DC motor 4 1321 11

65 Bus steering system 9 2131

66 Satellite 9 2112

67 Bank-to-turn missile 6 14

68 Aeronautical vehicle 8 14

69 Four-tank system 10 14

70 Re-entry vehicle 6 312131

71 Missile 14 14

72 Cassini spacecraft 17 14

73 Mass-spring-damper 7 16

74 Spark ignition engine 4 17

75 Hydraulic servo system 8 18

76 Academic example 41 2113

77 Drive-by-wire vehicle 4 1227

78 Re-entry vehicle 7 136141

79 Space shuttle 34 19

80 Rigid aircraft 9 114

81 Fighter aircraft 10 31151162111

82 Flexible aircraft 46 120

83 Telescope mockup 70 120

84 Hard disk drive 29 1824111

85 Launcher 30 122212316111228

86 Helicopter 12 304

87 Biochemical network 7 3913

Table 5: Benchmarks for (1.5) available in [25].

convergence. We follow [12] and apply GloptiPoly [13]
to (8.15), where Maple 14 is used beforehand to compute
the determinant of H(δ) formally. Based on (8.13) and
(8.14) this leads to a procedure to certify or reject our
heuristic d∗.

The method was indeed able to certify d∗ in cases
20, 21, 26 and 27. In the tests of table 6 the method was
not able to furnish a decision even when the feasibility
radius of the SDP-solver SeDuMi was enlarged to 103,
and a large number of LMIs was considered. The
bottleneck of the proposed method appears to be slow
convergence vk → v∗, the fact that lower bounds cannot
be taken into account, and the necessity to compute the
determinant of H(δ) formally, which is impossible for
matrices larger that 11 × 11. In all other aspects the
method remains very promising.

Finally, we have also matched our heuristic d∗ in
Table 6 with the result dF of another heuristic [11],
which is tailored to problem (1.5). The results are in
total agreement (see column 3 of table 6), and given the
highly dedicated nature of [11], this can be understood
as a further endorsement of our approach.

] d∗ dF/d
∗ DZM t∗ tZM

60 0.79 1
√

0.15 7.3

61 3.41 1
√

0.13 23.9

62 0.58 1
√

0.15 97.4

63 0.84 1
√

0.22 24.7

64 1.25 1
√

0.19 37.7

65 1.32 0.99
√

0.37 13.8

66 1.01 0.99
√

0.3 20.2

67 0.60 0.99
√

0.17 167.7

68 0.61 0.99
√

0.19 38.9

69 6.67 0.99
√

0.27 24.9

70 6.20 1
√

0.44 21.8

71 7.99 1
√

0.25 24.9

72 0.06 1
√

0.13 25.1

73 1.17 1
√

0.17 2536.3

74 1.22 0.99
√

0.41 42.8

75 1.50 0.99
√

0.41 62.8

76 1.18 0.99
√

0.57 36.5

77 1 0.99
√

0.96 97.0

78 1.02 0.98
√

0.42 132.4

79 0.79 0.99
√

0.8 60.9

80 5.42 1
√

0.54 252.5

81 0.59 0.99
√

1.31 171.3

82 0.22 0.99
√

1.26 180.3

83 0.02 0.99
√

1.37 274.8

84 0.82 1
√

2.87 202.1

85 1.16 0.99
√

4.08 271.2

86 0.08 0.99
√

0.85 70.7

87 1.4e-3 1 failed 36.76 -

Table 6: Results for (1.5).

9 Conclusion

We have presented a local trust-region optimization
method, which allows to compute good lower bounds for
three NP-hard criteria in parametric robustness analy-
sis. These are (a) the worst-case H∞-norm of a system
with real uncertain parameters over a given range, (b)
the worst-case spectral abscissa of an uncertain system
over that range, and (c) the distance to instability of
a nominally stable system with real parametric uncer-
tainty. A bench of 87 cases with systems up to 70 states,
and with up to 39 uncertain parameters repeated up to
13 times, has been tested. It was shown that our local
method gives excellent lower bounds, which in the ma-
jority of cases can be certified a posteriori as globally
optimal using different global optimization tools.

References

[1] P. Apkarian, M.N. Dao, D. Noll, Parametric robust struc-

tured control design. IEEE Trans. Autom. Control, to ap-
pear 2015.

[2] P. Apkarian, D. Noll, Nonsmooth H∞ synthesis. IEEE

Trans. Autom. Control 51(1):2006,71-86.
[3] P. Apkarian, D. Noll, L. Ravanbod, Nonsmooth bundle

trust-region algorithm. http://arxiv.org/abs/1504.00648

[4] V. Balakrishnan, Linear matrix inequalities in robust-
ness analysis with multipliers, Systems Control Letters,

25(4):1995,265-272.

[5] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R.
Smith, µ-Analysis and synthesis toolbox: User’s Guide. The

MathWorks, Inc., 1991.
[6] R. D. Braatz, P. M. Young, J. C. Doyle, M. Morari,

Computational complexity of µ calculation. IEEE Trans.

Autom. Control, 39:1994,1000-1002.
[7] J. V. Burke, M. L. Overton, Differential properties of the

spectral abscissa and the spectral radius for analytic matrix-

valued mappings. Nonlinear Anal. 23(4):1994,467-488.
[8] F. H. Clarke, Optimization and Nonsmooth Analysis. John

Wiley & Sons, Inc., New York, 1983.

[9] M. N. Dao, Bundle method for nonconvex nonsmooth
constrained optimization, J. Convex Analysis, 2015.

[10] M. K. H. Fan, A. L. Tits, J. C. Doyle, Robustness in the

presence of mixed parametric uncertainty and unmodelized
dynamics, IEEE Trans. Aut. Con., AC-36:1991, 25-38.

[11] A. Fabrizi, C. Roos, J.M. Biannic, A detailed comparative
analysis of lower bound algorithms. European Control Con-

ference 2014, Strasbourg, France.

[12] D. Henrion, J. B. Lasserre, GloptiPoly: global optimization
over polynomials with Matlab and SeDuMi. ACM Trans.

Math. Software, 29(2):2003,165-194.

[13] D. Henrion, D. Arzelier, D. Peaucelle, J.-B. Lasserre, On
parameter-dependent Lyapunov functions for robust stabil-

ity of linear systems. 43rd IEEE Conf. Dec. Con., 2004

Atlantis, Paradise Island, Bahamas
[14] D. Hinrichsen, A.J. Pritchard, Mathematical System The-

ory I. Modeling, State Space Analysis, Stability and Ro-

bustness. Springer Verlag 2005.
[15] J.-B. Lasserre, Global optimization with polynomials and

the problem of moments. SIAM J. Optim. 11:2001,796-817.
[16] D. Noll, Convergence of non-smooth descent methods using

the Kurdyka- Lojasiewicz inequality. J. Optim. Theory Appl.

160(2):2014, 553-572.
[17] D. Noll, O. Prot, A. Rondepierre, A proximity control

algorithm to minimize nonsmooth and nonconvex functions.

Pac. J. Optim. 4(3):2008,571-604.
[18] S. Poljak, J. Rohn, Checking robust nonsingularity is NP-

hard. Math. Control Signals Sys. 6:1993,1-9.
[19] J. Sreedhar, P. van Dooren, A.L. Tits, A fast algorithm to

compute the real structured stability radius. Int. Series of
Numer. Math., Birkhäuser Verlag, pp. 219-230:1996.

[20] J. E. Spingarn, Submonotone subdifferentials of Lipschitz
functions. Trans. Amer. Math. Soc. 264(1):1981,77-89.

[21] L. N. Trefethen, Computation of pseudospectra. Acta Nu-
merica, vol. 8,1999.

[22] Q. Zhen and D. Zhuang, Integral global minimization:
algorithms, implementations, and numerical tests. Journal
of Global Optimization, 7:1995,421-454.

[23] K. Zhou, J. C. Doyle, K. Glover. Robust and Optimal

Control. Prentice Hall, New Jersey, 1996.
[24] Robust Control Toolbox 5.0. MathWorks, Natick, MA,

USA, Sept 2013.

[25] SMAC Toolbox, ONERA 2012-15, http://w3.onera.fr/smac

http://arxiv.org/abs/1504.00648
http://w3.onera.fr/smac

	Problem Specification.
	Methods
	Optimization program
	Algorithm
	Convergence
	Amenability
	Stopping
	Experiments
	Robust stability over .
	Distance to instability

	Conclusion

