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Abstract. Since the late 1990s, the interest in augmented Lagrangian methods has been

revived, and several models with smooth penalty functions for programs with inequality con-

straints have been proposed, tested and used in a variety of applications. Global convergence

results for some of these methods have been published. Here we present a local convergence

analysis for a large class of smooth augmented Lagrangian methods based on spectral penalty

functions. Our analysis shows that linear convergence in the neighborhood of a local min-

imum may be expected. Similar to the case of the Hestenes-Powell-Rockafellar augmented

Lagrangian, this may be achieved without driving the penalty parameter to zero.

1. Introduction

We consider optimization programs of the form

minimize f(x), x ∈ Rn

subject to gi(x) = 0, i ∈ E

gi(x) ≤ 0, i ∈ I

(1)
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where the program data are functions of class C2, and E, I are finite. The

Lagrangian associated with (1) is

L(x, λ) = f(x) +
∑

i∈E∪I

λigi(x) (2)

where λ = (λE , λI) ∈ RE × RI
+ is the Lagrange multiplier vector.

In order to solve (1), the classical augmented Lagrangian method uses a

succession of unconstrained optimization programs, where at each step the aug-

mented Lagrangian function

F (x, p, λ) = f(x) +
∑

i∈E

(
λigi(x) + 1

2p gi(x)2
)

+
p

2

∑

i∈I

(
max

{
0, λi + gi(x)

p

}2
− λ2

i

)
(3)

is minimized with respect to x. Let x+ be the solution, then the penalty param-

eter is updated (p+ ≤ p) and the multipliers are modified according to:

λ+
i = λi + 1

pgi(x+), i ∈ E, (4)

λ+
i = λi + 1

p max {−λip, gi(x+)} = max
{
0, λi + gi(x

+)
p

}
, i ∈ I,

and the process is repeated. Ultimately, the solutions x+ = x+(p, λ) of the un-

constrained program minx∈Rn F (x, p, λ) are expected to converge to a solution

x∗ of (1), while the first-order multiplier updates (4) converge to an associated

Lagrange multiplier λ∗. The role of local convergence theory is to analyze un-

der what conditions this happens, and moreover, whether convergence may be

achieved without driving the penalty parameter p to 0.

Since its creation by Hestenes [11] and Powell [15] in 1969, and its extension

to inequality constraints proposed by Rockafellar [16] in 1972, the augmented
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Lagrangian method has been one of the most prominent algorithmic tools in

constrained programming. An excellent overview covering the period until the

early 1990s is presented by Conn et al. in [8].

Given the fact that the last term on the right hand side of (3) is not of class

C2, several authors [9,2,5,3,7,17,1,4] have argued that using smooth penalty

terms for the inequality constrained part gI(x) ≤ 0 might be numerically prefer-

able, and would allow the use of second-order methods in the subproblems.

In this paper we present a local convergence theory for a promising class of

smooth aumented Lagrangian, which was originally proposed by Ben-Tal et al.

in [1] and [17], and which has been intensely studied by several groups since

1997. In [1], the authors already presented numerical tests for a variety of large

scale convex problems, while nonconvex studies were added in [6]. The same

smooth augmented Lagrangian method was successfully used for truss design

problems by Kocvara et al. [12], and compared to other NLP solvers such as

MINOS, LOQO and KNITRO. Extensions to matrix inequality constraints are

presented in [13], and have led to the creation of the PENNON package.

In [4], a systematic comparison of several augmented Lagrangian methods on

a collection of 173 problems from the Cute library was organized. While 80.92

% of these problems were solved by the traditional Powell-Hestenes-Rockafellar

method (3), the method proposed in [1] based on (6) was successful in 78.03

% of the cases, while the method based on (7), proposed for the first time in

[4], worked for 75.72 %. These experiments show the potential of smooth AL
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methods, in particular for large problems, and that it is time to thoroughly

investigate their global and local convergence properties.

Global convergence for smooth augmented Lagrangian methods was already

considered in [1] using convexity, and in [4] and [14] for general programs. In the

present paper we focus on local convergence, which has not been investigated

to date. We observe that the speed of convergence is linear, as in the case of

the classical augmented Lagrangian. Moreover, we prove that local linear con-

vergence may be achieved without driving the penalty parameter to zero. This

is of the essence for the practical utility of the method, as an exceedingly small

p leads to numerical ill-conditioning. The second class of methods (7) analyzed

gives even superlinear convergence for inactive multipliers.

The structure of the paper is as follows. In Section 2 we describe the penalty

functions F1, F2 examined in the sequel, introduce and comment on the algo-

rithm, and prepare a few facts for the local convergence analysis. Section 3 es-

tablishes convergence for the algorithm with penalty function (6). In particular,

Section 3.2 proves a complexity result which allows to prove that the penalty

parameter is frozen, the key property of all succesfull augmented Lagrangian

schemes. Penalty function (7) is studied in Section 4, while Section 5 concludes

with an example illustrating the differences between the two classes of methods

(6) and (7).
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2. Preparation

2.1. Nonquadratic augmented Lagrangians for inequality constraints

The following scheme to generate smooth penalty functions is proposed by Ben-

Tal et al. in [1,17]. Starting out with a function φ : R → R ∪ {+∞} of the

form

φ(t) =






t + 1
2 t2, t ≥ − 1

2

− 1
4 log(−2t) − 3

8 , t ≤ − 1
2

or φ(t) =






1
1−t − 1, t < 1

+∞, else
(5)

the augmented Lagrangian is defined as

F1(x, p, λ) = f(x) +
∑

i∈E

(
λigi(x) + 1

2p gi(x)2
)

+ p
∑

i∈I

λiφ
(

gi(x)
p

)
. (6)

Other choices of the generator function φ are possible. Bertsekas [3, Section 4.2.5]

already proposed the exponential method of multipliers φ(t) = et − 1 and the

modified barrier method based on φ(t) = − log(1 − t). An even larger variety of

choices φ is discussed and compared in [4]. A common feature of all of these is

that in a neighborhood of 0, they behave roughly like φ(t) = t + 1
2 t2. In other

words, the right hand branch of φ is more or less the same as that of the usual

augmented Lagrangian function (3). Smoothing rather concerns the negative

branch.

In [4] several augmented Lagrangian models have been compared numerically.

An interesting alternative to (6) is for instance

F2(x, p, λ) = f(x) +
∑

i∈E

(
λigi(x) + 1

2p gi(x)2
)

+ p
∑

i∈I

λ2
iφ

(
gi(x)
pλi

)
, (7)
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which is now non-linear in the multiplier vector λI . As we shall see, this has

some advantages over (6).

Let us elaborate the first-order multiplier update rules for the smooth aug-

mented Lagrangian functions (6) and (7), replacing the second part of (4). In

the case of F1(x, p, λ) we find the rule

λ+
i = λiφ

′
(

gi(x+)
p

)
, i ∈ I, (8)

whereas the use of F2(x, p, λ) leads to

λ+
i = λiφ

′
(

gi(x+)
pλi

)
, i ∈ I. (9)

In particular, in the case of (9), the multiplier updates λI are maintained strictly

positive at all times.

Proof. Let us assume that λi > 0. Then, using (9) and (5), we have that

λ+
i =






λi + gi(x
+)

p , gi(x+) + pλi

2 ≥ 0

− 1
4

λ2
i

gi(x+) , gi(x+) + pλi

2 ≤ 0

In the first case, λ+
i = 1

p (gi(x+) + pλi) > 1
p

(
gi(x+) + pλi

2

)
≥ 0. In the sec-

ond case, we have gi(x+) < 0. Then λ+
i = − 1

4
λ2

i
gi(x+) > 0. So, as soon as λI is

initialized with a strictly positive value, it remains so through the subsequent

iterations. !

For convenience we will rewrite (8) and (9) as λ+
I = φ′ (gI(x+)/p) λI , respec-

tively λ+
I = φ′ (gI(x+)/(pλI)) λI , where φ′ (gI(x+)/p), resp. φ′ (gI(x+)/(pλI)),
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denote the diagonal matrices with entries φ′ (gi(x+)/p), resp. φ′ (gi(x+)/(pλi)),

i ∈ I. Those notations will be used systematically in the sequel.

The last element needed for the augmented Lagrangian scheme is a measure

of progress to control the penalty parameter p. For equality constraints, following

[2], we leave the penalty unchanged as soon as sufficient progress towards feasi-

bility is made. That is, ‖g(x+)‖ ≤ τ‖g(x)‖ for some fixed 0 < τ < 1. Here the

progress measure is σ(x) := ‖g(x)‖. Using Rockafellar’s method of slacks, this

generalizes to the standard augmented Lagrangian (3), where we leave p+ = p

unchanged as soon as

‖gE(x+)‖ + ‖max{−λIp, gI(x+)}‖ ≤ τ
(
‖gE(x)‖ + ‖max{−λ−I p−, gI(x)}‖

)
.

The progress measure is now σ(x, p, λ) = ‖gE(x)‖ + ‖max{−λIp, gI(x)}‖; see

[2, Ch. 3]. This is in fact a primal-dual measure, as it includes information not

only about the iterate x, but the Lagrange multiplier estimates and the penalty

parameter p. In the case of (6) we shall use

σ1(x, p, λ) := ‖gE(x)‖ + ‖φ′ (gI(x)/p)λI − λI‖, (10)

for (7) we shall use

σ2(x, p, λ) = ‖gE(x)‖ + ‖φ′ (gI(x)/(pλI))λI − λI‖. (11)

Let us now recall the general scheme of the augmented Lagrangian algorithm.

Augmented Lagrangian Algorithm
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1. Fix 0 < τ < 1 and c > 1. Produce an initial guess x of the solution

and an initial Lagrange multiplier estimate λ > 0, an initial penalty

parameter p > 0.

2. Given the Lagrange multiplier estimate λ > 0, the penalty parameter

p > 0 and the current x, solve

(Pp,λ) min
x∈Rn

F (x, p, λ)

possibly using x as the starting point for the inner iteration. Let x+

be the solution.

3. Update multiplier and penalty as follows

λ+
E = λE + gE(x+)/p,

λ+
I = φ′ (gI(x+)/p)λI respectively λ+

I = φ′ (gI(x+)/(pλI)) λI

and

p+ =






p if σ(x+, p, λ) ≤ τσ(x, p−, λ−)

p/c else

4. Replace λ+ by λ, p+ by p, x+ by x, and go back to step 2.

The mechanism follows that of the usual augmented Lagrangian algorithm. Driv-

ing the penalty parameter p to 0 makes the algorithm behave like a pure penalty

method. However, when iterates get close to the neighborhood of attraction of

a local minimum, x∗, it may be hoped that the multiplier update λ+ takes its

grip and generates iterates x+ where σ(x+, p, λ) < σ(x, p−, λ−) improves signif-
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icantly. The test in step 3 of the algorithm will then allow to freeze the penalty

parameter at a decent positive value, avoiding ill-conditioning due to exceedingly

small p. The role of the local convergence analysis below is to examine under

what circumstances such a freezing of p will occur.

2.2. Notation

In an algorithm, x, λ, p denote the current data, x+, λ+ and p+ those at the

next sweep, x−, λ− and p− those from the previous sweep.

We let I= ⊂ I be the set of active constraints at x∗, I< ⊂ I the set of the

remaining inactive constraints. For a matrix (possibly a vector) M , the notation

M= (respectively M<) stands for the submatrix of M obtained by extracting

the columns of M whose indicies are in I= (respectively I<). Similarly M= and

M< are obtained by selecting the corresponding rows.

By strict complementarity we have λ∗i > 0 for i ∈ I=, while of course λ∗i = 0

for i ∈ I<. The critical cone is

C(x∗) = {d ∈ Rn : dT g′i(x
∗) = 0 for every i ∈ I=}.

2.3. Wedge convergence

The following technical notion will be helpful in our convergence proof.

Definition 1. The sequence (yk, pk, λk) ∈ RI ×R×RI is said to wedge-converge

to (y, p, λ) if yk → y, pk → p, λk → λ, such that yk
i −yi

pk−p → 0 and λk
i −λi

pk−p → 0

for every i ∈ I. We shall use the notation (yk, pk, λk) w→ (y, p, λ). Similarly, we
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define wedge convergence (xk, pk, λk) w→ (x, p, λ) ∈ Rn × R × RI and (pk, λk) w→

(p, λ) ∈ R × RI .

Remark. Suppose pk → 0, yk → y, λk → λ and y, λ are complementary.

Then wedge-convergence (yk, pk, λk) w→ (y, 0, λ) is equivalent to λk
i yk

i /pk → 0

for every i ∈ I. Indeed, using λiyi = 0, this follows from the identity

yk
i λ

k
i

pk
=

(yk
i − yi)λk

i

pk
+

yi(λk
i − λi)
pk

.

The following concept is also linked to wedge-convergence in those cases where

pk → 0.

Definition 2. For ε > 0, define the wedge neighborhood W(ε) of (x∗, 0, λ∗) ∈

Rn × R × RI as

W(ε) = {(x, p, λ) ∈ Rn × R × RI : ‖x − x∗‖ ≤ pε, ‖λ− λ∗‖ ≤ pε, 0 ≤ p ≤ ε}.

2.4. Hypotheses

Let us now introduce a list of properties which the penalty functions φ : R →

R ∪ {+∞} have to satisfy. We assume that dom(φ) = (−∞, b) for some b > 0,

including the possibility b = +∞.

(φ1) φ is strictly convex, increasing and of class C2 on dom(φ).

(φ2) φ(0) = 0.

(φ3) φ′(0) = 1.

(φ4) tφ′(t) = O(1) as t → −∞.

(φ5) t2φ′′(t) = O(1) as t → −∞.
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Remark. Some of these axioms have already been used in [1] and [17,14,13] to

prove global convergence of the augmented Lagrangian method under convexity

assumptions. Notice that (φ1)−(φ5) are satisfied for several among the examples

in [4],[3]. Let us just mention that (φ2) and (φ3) are local properties, which assure

that the right hand branch of φ behaves roughly like t + t2

2 in a neighborhood

of 0. In contrast, (φ4) and (φ5) are global properties, which ensure that on the

left hand branch t < 0, pφ(y/p) → 0 sufficiently fast as p → 0.

In addition to axioms (φ1) - (φ5), we will constantly use the following hy-

potheses:

(H1) The second-order sufficient optimality condition at (x∗, λ∗).

(H2) Strict complementarity at (x∗, λ∗).

(H3) The linear independence constraint qualification (LICQ).

3. Convergence for F1

In this section we prove convergence of the augmented Lagrangian method for

model (6). For simplicity we consider inequality constraints only. As a matter of

fact, equality constraints are even easier to handle, see e.g. [2, Prop. 2.2.4].

3.1. First steps

Lemma 1. Consider (P ) with inequality constraints only, and let x∗ be a local

minimum of (P ) such that (x∗, λ∗) is a KKT-pair with associated Lagrange mul-

tiplier λ∗ ≥ 0. Suppose axioms (φ1) - (φ5) and (H1) - (H3) are satisfied. Then
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there exists a wedge neighborhood W(ε1) of (x∗, 0, λ∗) and some r > 0 such that

Fxx(x, p, λ) + rI , 0 for every (x, p, λ) ∈ W(ε1). Therefore we also have

‖Fxx(x, p, λ)−1‖ ≤ K1 < ∞ (12)

for some K1 > 0 and every (x, p, λ) ∈ W(ε1).

Proof. Suppose on the contrary that there exist sequences xk → x∗, λk → λ∗

and pk → 0 such that ‖xk − x∗‖/pk → 0, ‖λk − λ∗‖/pk → 0, but

dT
k Fxx(xk, pk, λk)dk ≤ δk → 0

for certain unit vectors dk. Passing to a subsequence if required, we may assume

that dk → d for a unit vector d. Observe that

dT
k Fxx(xk, pk, λk)dk = dT

k Lxx

(
xk, φ′ (g(xk)/pk)λk

)
dk + (13)

+p−1
k (g′(xk)T dk)TΛkφ′′ (g(xk)/pk) (g′(xk)T dk),

where Λk denotes the diagonal matrix with diagonal entries Λk
ii = λk

i , Λkφ′′ (g(xk)/pk)

the diagonal matrix with entries λk
i φ

′′ (gi(xk)/pk).

Now observe that for i ∈ I= we have gi(xk)/pk = (gi(xk) − gi(x∗)) /pk → 0.

This implies λk
i φ

′ (gi(xk)/pk) → λ∗iφ
′(0) = λ∗i for i ∈ I=, using axiom (φ3).

Similarly, λk
i φ

′′ (gi(xk)/pk) → λk
i φ

′′(0) for i ∈ I=.

On the other hand, for i ∈ I<, we have gi(xk) ≤ −κ for some κ > 0, when xk

is sufficiently close to x∗. Hence gi(xk)/pk → −∞, which proves φ′ (gi(xk)/pk) →

0 by axiom (φ4), and φ′′ (gi(xk)/pk) → 0 by axiom (φ5). Therefore, as λk
i → λ∗i =

0 for i ∈ I<, we have λk
i φ

′ (gi(xk)/pk) → 0 and λk
i φ

′′ (gi(xk)/pk) → 0.
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Altogether, we have proved that φ′ (g(xk)/pk)λk → φ′(0)λ∗ = λ∗, and, not-

ing Λ∗ = diag(λ∗), that Λkφ′′ (g(xk)/pk) → Λ∗φ′′(0). The first of these state-

ments implies in particular that the first term on the right hand side of (13)

converges to dT L′′(x∗, λ∗)d.

We have proved two things. Firstly, the first term on the right hand side of

(13) converges as k → ∞. Since the term on the left hand side of (13) converges,

we infer that the second term on the right hand side of (13) converges as well.

Now this term is of the form p−1
k Ξk, where p−1

k → ∞. This clearly implies

Ξk → 0. But Ξk converges to Ξ :=
(
g′(x∗)T d

)T
Λ∗φ′′(0)

(
g′(x∗)T d

)
= 0. By

the structure of the diagonal matrix Λ∗, φ′′(0) > 0 (since φ is assumed strictly

convex), and strict complementarity, this implies g′i(x∗)T d = 0 for every i ∈ I=.

Consequently, d is a critical direction: d ∈ C(x∗).

Going back with this information to (13), we infer that the first term on the

right hand side of (13) converges to dT Lxx(x∗, λ∗)d, which is strictly positive

by the second order sufficient optimality condition, given that d ∈ C(x∗) and

d -= 0. Since the second term on the right hand side of (13) is nonnegative by

φ′′(0) > 0, this contradicts δk → 0. Altogether this proves indeed the existence

of W(ε1) as claimed. !

The following preparatory result uses similar arguments.

Lemma 2. Under the same assumptions as in Lemma 1, there exists a constant

K2 > 0 and a wedge neighborhood W(ε2) of (x∗, 0, λ∗) such that

‖Fxλ(x, p, λ)‖ ≤ K2
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for every (x, p, λ) ∈ W(ε2).

Proof. Observe that Fxλ (x, p, λ) = g′(x)φ′ (g(x)/p). By assumption gj(x)/p → 0

for j ∈ I=, giving φ′(gj(x)/p) → 1. On the other hand, φ′ (gj(x)/p) → 0 for j ∈

I< by axiom (φ4). This shows Fxλ (x, p, λ) is bounded on a wedge neighborhood

W(ε2). !

Let us introduce the matrix

H(x∗, λ∗, 0, λ∗) =




Lxx(x∗, λ∗) [g′(x∗)]=

[
Λ∗φ′′(0)g′(x∗)T

]
=

0



 , (14)

where Λ∗ = diag(λ∗). Then we have the following

Lemma 3. Under the assumptions (φ1) - (φ5) and (H1) - (H3), the matrix

H(x∗, λ∗, 0, λ∗) is invertible.

Proof. Let [d, µ] be a test vector in Rn × RI= such that

H(x∗, λ∗, 0, λ∗)




d

µ



 =




0

0



 .

We need to show [d, µ] = [0, 0]. First observe that the second line in (14) gives

[Λ∗φ′′(0)g′(x∗)T ]= d = 0, which by strict complementarity and φ′′(0) > 0 is the

same as [[g′(x∗)]=]T d = 0. Altogether we have shown that either d = 0 or if

d -= 0, then necessarily d ∈ C(x∗).

Clearly d = 0, when substituted in the first line of (14), implies [g′(x∗)]= µ =

0, which in explicit form reads
∑

i∈I=
µig′i(x∗) = 0. Linear independence of the

active constraint gradients implies µ = 0. In this case we are done. So let us now

consider the case where d -= 0, but d ∈ C(x∗). Then the first line of (14) reads
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Lxx(x∗, λ∗)d + [g′(x∗)]= µ = 0. Multiplying from the left with d ∈ C(x∗) gives

dT Lxx(x∗, λ∗)d + dT [g′(x∗)]= µ = dT Lxx(x∗, λ∗)d = 0, a contradiction because

as a nonzero critical direction, d ought to satisfy dT Lxx(x∗, λ∗)d > 0 by second

order optimality. This proves invertibility of H(x∗, λ∗, 0, λ∗). !

Let us now consider matrices of the form

H(x, λ+, p, λ) =




Lxx(x, λ+) [g′(x)]=

[
Λφ′′ (g(x)/p) g′(x)T

]
=

−pI



 (15)

for x ∈ Rn, λ+ ∈ RI , p > 0 and λ ∈ RI , where Λ = diag(λ). Then:

Lemma 4. Assuming (φ1) - (φ5) and (H1) - (H3), there exists a wedge neighbor-

hood W(ε3) of (x∗, 0, λ∗), a neighborhood U0 of λ∗, and a constant K3 > 0 such

that ‖H(x, λ+, p, λ)−1‖ ≤ K3 < ∞ whenever (x, p, λ) ∈ W(ε3) and λ+ ∈ U0.

Proof. It suffices to show that if ‖λk − λ∗‖/pk → 0, ‖xk − x∗‖/pk → 0, pk → 0

and λ+
k → λ∗, then H(xk, λ+

k , pk, λk) → H(x∗, λ∗, 0, λ∗), because the limiting

matrix H(x∗, λ∗, 0, λ∗) is invertible by Lemma 3. This, however, is clear because,

as we have seen in the proof of Lemma 1 already, Λkφ′′ (g(xk)/pk) → Λ∗φ′′(0).

!

Putting ε = min{ε1, ε2, ε3}, we get a wedge neighborhood W(ε) which guar-

antees the properties of Lemma 1, 2 and 4. Let us now consider the system of

nonlinear equations

Fx(x, p, λ) = 0,
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then (x∗, p, λ∗) is solution for every p > 0. By Lemma 1 we have ‖Fxx(x, p, λ)−1‖ ≤

K1 < ∞ for all (x, p, λ) ∈ W(ε), which invites using the implicit function theo-

rem.

Let us fix 0 < p1 < p2 ≤ ε and consider the compact interval I = [p1, p2]. We

apply the implicit function theorem under the specific form Lemma 13 given in

Appendix: There exists an open neighborhood Np1,p2 of the set [p1, p2]×{λ∗} in

R × RI , an open neighborhood Mp1,p2 of {x∗} × [p1, p2] × {λ∗} with Mp1,p2 ⊂

W(ε), together with a function x+(·, ·) : Np1,p2 → Rn of class C1 on Np1,p2 such

that

Fx

(
x+(p, λ), p, λ

)
= 0 (16)

for all (p, λ) ∈ N and such that x+(p, λ∗) = x∗ for all p ∈ I = [p1, p2]. Moreover,

this function is unique in the sense that (x+, p, λ) ∈ Mp1,p2 and Fx(x+, p, λ) = 0

if and only if x+ = x+(p, λ) and (p, λ) ∈ Np1,p2 . In other words,

{(x+, p, λ) ∈ Mp1,p2 : Fx(x+, p, λ) = 0} = {
(
x+(p, λ), p, λ

)
: (p, λ) ∈ Np1,p2}.

In fact, Lemma 13 is applied to Ψ = Fx, the compact set K∗ in question is

[p1, p2]×{λ∗}, and y = (p, λ), while x is x+. During the following, with a slight

abuse of notation, we shall use the expression x+(p, λ) for the ensemble of these

implicit functions. We shall say that a particular x+(p, λ) is associated with the

choice of an interval I = [p1, p2].

Notice that we may arrange that Mp1,p2 = Up1,p2 ×Np1,p2 for an open neigh-

borhood Up1,p2 of x∗. In the same vein, we may have Np1,p2 = Ip1,p2 × Np1,p2
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where Np1,p2 is an open neighborhood of λ∗, Ip1,p2 an open interval contain-

ing I = [p1, p2]. Finally, as part of the implicit function theorem, we have the

following formulae for the derivatives of x+(p, λ) with respect to λ and p:

(x+)λ(p, λ) = −Fxx

(
x+(p, λ), p, λ

)−1
Fxλ

(
x+(p, λ), p, λ

)
, (17)

(x+)p(p, λ) = −Fxx

(
x+(p, λ), p, λ

)−1
Fxp

(
x+(p, λ), p, λ

)
. (18)

Let us now fix p2 ≤ ε, and consider 0 < p = p1 < p2 as mobile. Then

we may may without loss assume that Up,p2 ⊂ Up′,p2 and Np,p2 ⊂ Np′,p2 for

0 < p < p′ < p2. On the other hand, Ip,p2 will typically shrink at the right end

p2, but of course grow at the left end p, so there is no monotonicity. We have

the following very helpful

Lemma 5. Assume (φ1) - (φ5) and (H1) - (H3). Then we have the following

unicity results:

(1) Let 0 < p1 < p2. Suppose (p, λ) ∈ Np1,p2 . Then x+(p, λ) is the unique local

minimum (even the unique critical point) of program (Pp,λ) in the neighbor-

hood Up1,p2 of x∗.

(2) Suppose 0 < p′ < p2 and 0 < p′′ < p2. Let (p, λ) ∈ Np′,p2 ∩ Np′′,p2 . Then

the two implicit functions x+(·, ·) associated with [p′, p2] and [p′′, p2] give the

same value x+(p, λ).

Proof. Both results follow from the unicity part of the implicit function theorem

Lemma 13. Indeed, in item (1) it suffices to recall that if Fx(x+, p, λ) = 0 and

(x+, p, λ) ∈ Mp1,p2 , then x+ = x+(p, λ) for the implicit function associated
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with [p1, p2]. Now if (p, λ) ∈ Np1,p2 and x+ ∈ Up1,p2 , then we have (x+, p, λ) ∈

Mp1,p2 = Up1,p2 ×Np1,p2 . Therefore, x+ = x+(p, λ) as claimed.

The proof of (2) is based on the same argument. !

Remark. This result justifies our notation x+(·, ·), where we suppress depen-

dency on the interval Ip,p2 .

Remark. By construction of the neighborhoods Mp1,p2 ⊂ W(ε1) and Np1,p2 ,

we observe that whenever
(
x+(pk, λk), pk, λk

)
is defined for some implicit func-

tion and (pk, λk) wedge converges to (0, λ∗), then
(
x+(pk, λk), pk, λk

)
wedge

converges to (x∗, 0, λ∗). Due to unicity in Lemma 5, this holds regardless of the

choice of the implicit function.

Lemma 6. Under the assumptions (φ1) - (φ5) and (H1) - (H3), there exists a

constant K4 > 0 such that for fixed p2 ≤ ε, and for every interval I = [p1, p2]

and implicit function x+(·, ·) associated with I, we have

‖(x+)λ(p, λ)‖ ≤ K4 (19)

for every (p, λ) ∈ Np1,p2 . In other words, the constant K4 is independent of the

choice I = [p1, p2] as long as p2 ≤ ε.

Proof. Observe that ‖F−1
xx ‖ is bounded by K1 on W(ε) by Lemma 1, while ‖Fxλ‖

is bounded by K2 on W(ε) by Lemma 2.

Now observe that by construction, we have (x+(p, λ), p, λ) ∈ W(ε) whenever

(p, λ) ∈ Np1,p2 . This is because we arranged that Mp1,p2 ⊂ W(ε) for the open

sets arising in the implicit function theorem. Formula (17) then proves that

‖(x+)λ‖ is bounded by K1K2 =: K4. !
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Remark. Let us now take a time and indicate the principal idea of our lo-

cal convergence proof. At some stage we will have to fix I = [p1, p2] by fixing

the lower index p at some value p1. This will obviously fix the implicit function

x+(λ, p), and the neighborhoods Up1,p2 and Np1,p2 . However, before doing this,

we will have to collect information which depends only on the wedge neighbor-

hood W(ε). For instance, constant K4 in Lemma 4 is of this type. It is universal

for all the implicit functions x+(p, λ), regardless of the choice of Ip1,p2 , as long

as p2 ≤ ε.

The rationale of this will become clear. We have to provide those constants

beforehand, because our choice of the lower p = p1 will depend on them. This

mechanism will become clear in Lemma 10. !

Let us introduce the multiplier update function:

λ+(p, λ) := φ′
(
g

(
x+(p, λ)/p

))
λ, (20)

defined on Np1,p2 . As λ+ is defined with the help of x+(p, λ), its domain Np1,p2

depends on the choice of 0 < p1 < p2 ≤ ε, just as in the case of x+(p, λ). But we

have the following

Lemma 7. Under the assumptions (φ1) - (φ5) and (H1) - (H3), the Lipschitz

constant of x+ := x+(p, λ) with respect to the second variable λ is independent

of the choice of I = [p1, p2], as long as p2 ≤ ε. The same is true for the Lipschitz

constant of λ+(p, λ) with respect to λ.

Proof. 1) Indeed, in view of (19), the Lipschitz constant of x+ := x+(p, λ) is the

same for every Np1,p2 , as long as p2 ≤ ε is respected.
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2) Let us now prove the statement for λ+
<, the inactive part of λ+. We first

differentiate (20) with respect to λ:

(λ+)λ = φ′
(
g(x+)/p

)
+ p−1Λφ′′

(
g(x+)/p

)
g′(x+)T (x+)λ. (21)

Now for j ∈ I< we have gj(x+)/p → −∞, so the first term on the right hand side

of (21) is bounded by axiom (φ4). As for the second term, again for inactive j, we

have from axiom (φ5) that φ′′ (gj(x+)/p) → 0, while λj/p = (λj −λ∗j )/p → 0 by

wedge convergence. Since the remaining terms g′(x+) and (x+)λ are bounded,

the latter by (19), we conclude that (λ+
<)λ is bounded.

3) To prove the result for the active part, λ+
=, we argue as follows. Observe

the following formula, whose classical analogue is well-known:

Fx(x+, p, λ) = Lx(x+, λ+),

hence Lx (x+, λ+) = 0 by (16). Differentiating this relation with respect to λ

gives

Lxx

(
x+, λ+

)
(x+)λ + g′(x+)(λ+)λ = 0.

Splitting the second term in its I= and I< parts gives:

[
g′(x+)

]= (λ+
=)λ = −Lxx

(
x+, λ+

)
(x+)λ −

[
g′(x+)

]< (λ+
<)λ.

From what we have seen in part 2) of this proof, the last term on the right hand

side is bounded. As for the first term on the right hand side, given that x+ and

λ+ are bounded on a wedge neighborhood and using (19), this term is bounded

as well. This proves that [g′(x+)]= (λ+
=)λ is bounded.
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What we need, though, is boundedness of (λ+
=)λ, and this follows as soon as

we show that the operator [g′(x+)]= is injective. This is now where the LICQ

(hypothesis (H3)) comes in. Indeed, it says that [g′(x∗)]= is of maximal rank.

Since x+ → x∗ under wedge convergence, we are done, because [g′(x+)]= is then

of maximal rank in the neighborhood of (0, λ∗). !

Let us now define the matrix H(p, λ) as

H(p, λ) = H
(
x+(p, λ), λ+(p, λ), p, λ

)
, (22)

where the right hand side is defined in (15). Again the definition depends on a

choice of I = [p1, p2], because the implicit functions x+(p, λ) and λ+(p, λ) are

used.

Lemma 8. Under the standing assumptions (φ1) - (φ5) and (H1) - (H3), there

exists a constant K5 > 0 such that

‖H(p, λ)−1‖ ≤ K5

for every (p, λ) ∈ Np1,p2 and for all implicit functions x+(p, λ), λ+(p, λ) associ-

ated with any Ip1 = [p1, p2], provided that p2 ≤ ε.

Proof. This follows from Lemma 4, as soon as we show that (x+(p, λ), p, λ) ∈

W(ε) and λ+(p, λ) ∈ U0, where U0 appears in Lemma 4. Now according to the

choice of Mp1,p2 in the implicit function theorem, the first of these properties is

guaranteed. As for the second property, notice that by Lemma 7, λ+ is Lipschitz

with the same Lipschitz constant on each Np1,p2 with p2 ≤ ε. So λ+ (Np1,p2) ⊂ U0

may be arranged for all p1 simultaneously. What matters is p2 ≤ ε. !
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We are now ready to prove the following major step towards the local con-

vergence proof.

Lemma 9. There exists ε > 0 and a constant K > 0 such that for every interval

I = [p1, p2] with p2 ≤ ε and implicit functions x+(p, λ) and λ+(p, λ) defined on

the neighborhood Np1,p2 of [p1, p2] × {λ∗}, the following estimates are satisfied:

‖x+(p, λ) − x∗‖ ≤ Kp‖λ− λ∗‖, ‖λ+(p, λ) − λ∗‖ ≤ Kp‖λ− λ∗‖. (23)

Proof. For 0 < p1 < p2 ≤ ε let us consider the following system of n + |I=|

nonlinear equations for n + |I| + 1 + |I| variables x+, λ+, p, λ:





f ′(x+) +
∑

i∈I

λ+
i g′i(x

+) = 0

p λiφ′ (gi(x+)/p) − p λ+
i = 0, i ∈ I=

(24)

Let us write Ψ(x+, λ+, p, λ) = 0 in abridged form. By construction, setting

(x+, λ+) := (x+(p, λ), λ+(p, λ)) gives a solution of (24) for every (p, λ) ∈ Np1,p2 .

That is,

Ψ
(
x+(p, λ), λ+(p, λ), p, λ

)
= 0.

Let us differentiate (24), respectively Ψ = 0, with respect to λ ∈ RI . We obtain



Lxx(x+, λ+) [g′(x+)]=

[
Λφ′′ (g(x+)/p) g′(x+)T

]
=

−p I








(x+)λ

(λ+
=)λ



 =




−[g′(x+)]<

(
λ+

<

)
λ

−p [φ′ (g(x+)/p)]=





(25)

where λ+
= = [λ+(p, λ)]= = λ+

=(p, λ), λ+
< = [λ+(p, λ)]< = λ+

<(p, λ), and similarly

for (λ+
=)λ. The matrix on the left hand side of (25) is just H(p, λ) introduced
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in (22). We claim that the right hand side in (25) is of the form




−pΞ

−pΘ



 for

bounded terms Ξ and Θ. Indeed, we have

Θ = [φ′
(
g

(
x+

)
/p

)
]=,

which is bounded on each Np1,p2 , because (x+(p, λ), p, λ) belongs to the wedge

neighborhood W(ε) for every (p, λ)inNp1,p2 . For the first coordinate on the right

hand side of (25), equation (21) gives

− [g′(x+)]< (λ+
<)λ = −[g′(x+)]< [φ′

(
g(x+)/p

)
]<

− p−1[g′(x+)]< [Λφ′′
(
g(x+)/p

)
]< g′(x+)T (x+)λ,

which means

Ξ = p−1[g′(x+)]< [φ′
(
g(x+)/p

)
]<

+ p−2[g′(x+)]< [Λφ′′
(
g(x+)/p

)
]< g′(x+)T (x+)λ.

Here the first term is bounded by axiom (φ4). As for the second term, notice

that (x+)λ is bounded by Lemma 7. With axiom (φ5) we deduce that the second

term in Ξ is bounded.
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Now we have the identities



x+(p, λ) − x+(p, λ∗)

λ+
=(p, λ) − λ+

=(p, λ∗)



 =
∫ 1

0

d

dη




x+ (p, λ∗ + η(λ− λ∗))

λ+
= (p, λ∗ + η(λ− λ∗))



 dη

=
∫ 1

0




(x+)λ(p, λη) · (λ− λ∗)

(λ+
=)λ(p, λη) · (λ− λ∗)



 dη

=
∫ 1

0




(x+)λ(p, λη)

(λ+
=)λ(p, λη)



 (λ − λ∗) dη

=
∫ 1

0
H(p, λη)−1




−pΞη

−pΘη



 (λ − λ∗) dη (26)

where λη := λ∗ + η(λ − λ∗), and where Ξη and Θη refer to the elements Ξ, Θ

at the intermediate points (x+)η = x+(p, λη).

From Lemma 8 we know that ‖H(p, λ)−1‖ ≤ K5 on any set Np1,p2 , where

K5 depends only on ε, as long as 0 < p1 < p2 ≤ ε.

From what we have seen above, Ξη and Θη are bounded on a wedge neigh-

borhood. Therefore, the right hand term under the integral above is bounded

by K6 p ‖λ − λ∗‖ for some K6 > 0. Then, regarding that x+(p, λ∗) = x∗ and

λ+(p, λ∗) = λ∗ for p ∈ Ip1,p2 = [p1, p2], we have

(
‖x+(p, λ) − x∗‖2 + ‖[λ+

=(p, λ) − λ∗=‖2
)1/2 ≤ K7p‖λ− λ∗‖ (27)

for K7 = K5K6 depending on ε, as long as 0 < p1 < p2 ≤ ε and p ∈ Ip1,p2 . Here

we use Lemma 8.

In order to prove (23), it remains to estimate ‖λ+
<(p, λ)−λ∗<‖ against ‖λ< −

λ∗<‖. But notice that by complementarity λ∗< = 0, hence we have to compare



Augmented Lagrangian methods with smooth penalty functions 25

‖λ+
<‖ to ‖λ<‖, which leads us back to the update formula. Its I<-part reads:

λ+
<(p, λ) = [φ′

(
g(x+(p, λ)/p

)
λ]<.

Let i ∈ I<, then gi (x+(p, λ)) /p → −∞. Therefore, by axiom (φ4), we have

φ′ (gi (x+(p, λ)) /p) ≤ K8p for some constant K8 > 0. This proves λ+
i (p, λ) ≤

K8 pλi for i ∈ I<. Combining with (27) proves (23) with K = max{K7, K8}. !

Remark. Notice that the constant θ := Kε in (23) may be chosen arbitrarily

small. In particular, we will assure that θ = Kε < 1
2 , so that Kp < 1

2 for each of

the p involved in the estimates (23). We then have to choose the neighborhoods

U , N , which requires fixing 0 < p1 < p2 ≤ ε. Here we will first fix p2, the

only request being p2 ≤ ε. Then, when fixing p1, we will make sure that p1 <

p2/c, where c > 1 is the constant used in step 3 of the augmented Lagrangian

algorithm. Namely, the fact that pk+1 ∈ {pk, pk/c} will then guarantee that

as the pk get smaller, some pk will fall within the range [p1, p2], where the

conclusions of Lemma 9 are valid. !

3.2. Complexity for F1

In order to prove convergence of the augmented Lagrangian method based on F1,

we need one last element. We know that the penalty parameter p may be frozen

when λ is sufficiently close to λ∗. However, what is needed is a mechanism in

the algorithm which does this automatically. This last element is assured by the

progress measure σ1(x, p, λ) from (10), whose role is to fix p as soon as iterates

make sufficient progress towards feasibility.
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Lemma 10. Under hypotheses (φ1) - (φ5) and (H1) - (H3), there exists ε > 0,

p < ε and neighborhoods N of λ∗, U of x∗ such that the sequences xk, pk and λk

generated by the augmented Lagrangian algorithm for (6) with p ≤ p1 ≤ ε and

λ1 ∈ N have the following properties: The sequence xk stays in U , the sequence

λk stays in N , and the sequence pk stays bounded away from 0. Moreover, xk+1

is the unique local minimum (even the unique critical point) of program (Ppk,λk)

in U .

Proof. 1) Let K, ε be the constants in (23). Choose p ≤ ε such that θ := Kp < 1
2 .

Then θ
1−θ ∈ (0, 1). Without loss we may even arrange that θ

1−θ = τ , where

τ ∈ (0, 1) is the parameter used in the algorithm.

Choose a neighborhood N0 of λ∗ -= 0 such that 0 < m ≤ ‖λ‖ ≤ M < +∞

for λ ∈ N0. Then choose neighborhoods U0 of x∗ ∈ Rn and W0 of 0 in R such

that g has Lipschitz constant Lip(g, x∗) < +∞ on U0, φ′ has Lipschitz constant

Lip(φ′, 0) < +∞ on W0. Put K ′ = K Lip(g, x∗) Lip(φ′, 0). We may assume

without loss that K ′M > 1.

Let us now next select 0 < p < p such that p < p/cβ, where

β =
⌈

log (θ + (1 − θ)MK ′)
log c

⌉
+ 2.

We now consider the interval I = [p, p] fixed, and also the implicit functions

x+ = x+(p, λ) and λ+ = λ+(p, λ) associated with it.

Let the neighborhoods U = Up,p of x∗ and N = Np,p of λ∗ be fixed as well.

Assume without loss of generality that N ⊂ N0, U ⊂ U0 and g(U) ⊂ W0, so that
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the Lipschitz constant of g on U is ≤ Lip(g, x∗), the Lipschitz constant of φ′ on

g(U) is ≤ Lip(φ′, 0).

We will ultimately show that the sequence pk stays in the interval [p, p]. We

may assume that there exists a first index k0 such that pk0 ≤ p, otherwise there

is nothing to prove. Notice that pk0 > p/c. Also, by the choice of p we have

pk−2 < K−1 for k ≥ k0 + 2, where K is the constant in (23).

2) We will now obtain an estimate σ1(xk+1, pk, λk) ≤ τkσ1(xk, pk−1, λk−1)

for certain constants τk approaching τ = θ/(1 − θ).

Let us first consider indicies i ∈ I=. Then we have

∣∣λk
i (1 − φ′ (gi(xk+1)/pk))

∣∣ ≤ |λk
i |Lip(φ′, 0) | (gi(xk+1) − gi(x∗)) /pk|

≤ |λk
i |Lip(φ′, 0) Lip(g, x∗) ‖xk+1 − x∗‖/pk

≤ |λk
i |Lip(φ′, 0) Lip(g, x∗)Kpk‖λk − λ∗‖/pk

= |λk
i |K ′‖λk − λ∗‖

where the first estimate uses gi(x∗) = 0, gi(xk)/pk → 0 and φ′(0) = 1, while the

last estimate is (23).

Using the definition of the first-order update rule (8) at stage k−1, we have:

‖λk − λ∗‖ ≤ Kpk−1‖λk−1 − λ∗‖

≤ Kpk−1

(
‖λk−1 − λk‖ + ‖λk − λ∗‖

)

and therefore

‖λk − λ∗‖ ≤
(
K−1p−1

k−1 − 1
)−1 ‖λk−1 − λk‖,

where K−1p−1
k−1 > 1 by assumption.
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Now consider i ∈ I<. Recall that θ = Kp, and that λ∗i = 0 by complemen-

tarity. Hence by (23) in Lemma 9 we have λk+1
i = θk

i λ
k
i and λk

i = θk−1
i λk−1

i for

certain 0 ≤ θk
i , θk−1

i ≤ θ, k ≥ k0 + 1. Then

λk
i − λk+1

i = (1 − θk
i )λk

i = (1 − θk
i ) θk−1

i λk−1
i

and

λk−1
i − λk

i = (1 − θk−1
i )λk−1

i .

This gives

λk
i − λk+1

i =
(1 − θk

i )θk−1
i

1 − θk−1
i

(λk−1
i − λk

i ) ≤ θ

1 − θ
(
λk−1

i − λk
i

)

for every i ∈ I<.

Suppose now without loss of generality that the norm used to define σ1 is

the maximum norm. Then piecing together the two ends in I= and the estimate

in I< just found, we obtain

σ1

(
xk+1, pk, λk

)
≤ τkσ1

(
xk, pk−1, λ

k−1
)
,

where

τk := max

{
θ

1 − θ ,
‖λk‖K ′

K−1p−1
k−1 − 1

}
.

This proves what was claimed in part 2).

3) Observe that the second term in the definition of τk tends to zero as soon

as pk → 0. This is because ‖λk‖ ≤ M as long as the multiplier estimates stay in

the neighborhood N of λ∗, which is the case as long as estimate (23) in Lemma

9 applies. Therefore, if pj is reduced sufficiently often, we will eventually have
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τk = θ/(1 − θ) = τ < 1. Could the term on the right hand side in τk also get

smaller because ‖λk‖ → 0? The answer is no, because ‖λk‖ ≥ m > 0 as long as

λk ∈ N . Therefore, if eventually τ = τk, this is due to the fact that pk becomes

too small.

Let us estimate the index k where τk = τ for the first time. This index

satisfies

θ

1 − θ <
‖λk−1‖K ′

K−1p−1
k−2 − 1

,
θ

1 − θ ≥ ‖λk‖K ′

K−1p−1
k−1 − 1

.

The left hand estimate implies

p−1
k−2 < K

(
1 +

(1 − θ)K ′‖λk−1‖
θ

)
.

Now observe that

pk−2 =
p

cα
,

where α < k− k0 − 1. Indeed, at each step, either pj+1 = pj, or pj+1 = pj/c and

cα = p/pk−2 < cpk0/pk−2 ≤ ck−k0−1. This implies

α ≤
log

(
Kp

(
1 + (1−θ)‖λk−1‖K′

θ

))

log c
=

log
(
θ + (1 − θ)‖λk−1‖K ′)

log c
≤ β − 2

by the definition of β and p. Here we use again that λk−1 ∈ N , hence ‖λk−1‖ ≤

M . That means pk > p. But, according to its definition, k is the moment

where the algorithm definitely stops reducing p (if it did not do so before).

This is because τk = τ means the test in step 3 of the algorithm accepts p, and

keeps doing so because the τk decrease monotonically. That means, the iterates

pk+1, pk+2, . . . do not decrease any further. Since p is not yet reached at stage

k, it is never reached. This proves that the pk are trapped in [p, p].
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Since the iterates now satisfy λk ∈ N and pk ∈ [p, p] at each k, the hypotheses

of Lemma 9 are all met, and the conclusions are therefore valid for every k ≥ k0.

This completes the proof. !

As a consequence we have the following:

Theorem 1. Let x∗ be a local minimum of (1) with inequality constraints only.

Let λ∗ be an associated Lagrange multiplier such that (x∗, λ∗) is a KKT-pair

where hypotheses (H1) - (H3) are satisfied. Suppose further that the penalty func-

tion φ satisfies axioms (φ1) - (φ5), and that the augmented Lagrangian function

(6) with progress measure (10) is used. Then there exists a neighborhood N of

λ∗, a neighborhood U of x∗ and ε > 0 such that for every λ1 ∈ N , and every

p1 with ε/c < p1 ≤ ε, the sequences xk, λk and pk generated by the augmented

Lagrangian algorithm have the following properties:

1. For every k, program min
x∈Rn

F1

(
x, pk, λk

)
has a unique strict local minimum

xk+1 ∈ U .

2. The sequence xk converges R-linearly to x∗.

3. The sequence λk with λk+1 = φ′ (g(xk+1)/pk) λk stays in N and converges

Q-linearly to λ∗.

4. The sequence pk stays bounded away from 0.

Proof. As a consequence of the initial condition, Lemma 10 tells us that the

sequence pk stays in the interval I = [p, p]. Since the neighborhoods U and N

are chosen with respect to I, we have xk+1 = x+(p, λk) and λk+1 = λ+(p, λk)

from some index k0 onwards, where p = pk ∈ I for k ≥ k0. As a consequence of
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estimate (23) with Kp < 1
2 , we immediately deduce Q-linear convergence of λk,

while the left hand part of (23) gives R-linear convergence of xk. That completes

the proof. !

4. Convergence for F2

In this section we prove the analogue of Theorem 1 for the augmented Lagrangian

(7) with progress measure (11). Again, we only consider the case of inequality

constraints.

4.1. First steps

What we plan to do is follow the proof of Theorem 1 and indicate the necessary

changes in Lemmas 1 - 9 and Lemma 10 as we go. We make the same assumptions

(H1) - (H3) and (φ1) - (φ5).

Lemma 11. Under axioms (φ1) − (φ5) and (H1) - (H3), the conclusions of

Lemma 9 remain valid when model (7) with associated progress measure (11)

is used. In addition to what is claimed in Lemma 9, however, the sequence λk
<

of multipliers associated with inactive inequality constraints now converges even

Q-superlinearly to λ∗< = 0.

Proof. We follow the steps in Lemmas 1 - 9, and indicate what changes have to

be made.
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1) In Lemma 1 it is shown that Fxx + rI , 0 on a wedge neighborhood of

(x∗, 0, λ∗). We now need to replace (13) by the equation

dT
k Fxx

(
xk, pk, λk

)
dk = dT

k Lxx

(
xk, φ′

(
g(xk)/(pkλ

k)
)
λk

)
dk +

+p−1
k

(
g′(xk)T dk

)T
Λkφ′′

(
g(xk)/(pkλ

k)
) (

g′(xk)T dk

)
.

Strict complementarity implies gi(xk)/(pkλk
i ) → 0 for i ∈ I=, and gi(xk)/(pkλk

i ) →

−∞ for i ∈ I<. Therefore the same conclusions φ′
(
g(xk)/(pkλk)

)
λk → φ′(0)λ∗ =

λ∗ and Λkφ′′
(
g(xk)/(pkλk)

)
→ Λ∗φ′′(0) are obtained, using axioms (φ4), (φ5).

The argument remains essentially the same and proves Fxx + rI , 0.

Similarly, the prior estimate in Lemma 2 carries over to the new objective

F2.

2) In Lemma 3 the matrix H(x∗, λ∗, 0, λ∗) is introduced. Its definition is now

as follows:

H(x∗, λ∗, 0, λ∗) =




Lxx(x∗, λ∗) [g′(x∗)]=

[
φ′′(0)g′(x∗)T

]
=

0



 .

Showing that H(x∗, λ∗=, 0, λ∗) is invertible follows the same line as in the proof

of Lemma 3, and we omit the details.

3) Following the lead of Lemma 4, we now define H(x, λ+, p, λ) as

H(x, λ+, p, λ) =




Lxx(x, λ+) [g′(x)]=

[
φ′′ (g(x)/(pλ)) g′(x)T

]
=

−pI



 ,

where φ′′ (g(x)/(pλ)) stands for the diagonal matrix whose diagonal entries are

φ′′ (gi(x)/(pλi)). As in Lemma 4, we plan to prove

H(x, λ+, p, λ) w→ H(x∗, λ∗=, 0, λ∗).
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In order to do this, notice first that φ′′ (gi(x)/(pλi)) → φ′′(0) for i ∈ I=.

Indeed, for i ∈ I=, strict complementarity gives gi(x)/(pλi) → 0, because λi →

λ∗i > 0 and gi(x)/p = (gi(x) − gi(x∗)) /p → 0. On the other hand, for i ∈ I<

we have gi(x)/(pλi) → −∞. By axiom (φ5) we deduce φ′′ (gi(x)/(pλi)) → 0.

Altogether we have shown that wedge convergence (x, p, λ) w→ (x∗, 0, λ∗) together

with λ+ → λ∗ implies H(x, λ+, p, λ) → H(x∗, λ∗, 0, λ∗). Therefore there exists a

wedge neighborhood W(ε2) of (x∗, 0, λ∗) and a neighborhood U0 of λ∗ such that

H(x, λ+, p, λ) is invertible and its inverse is bounded for all (x, p, λ) ∈ W(ε2)

and λ+ ∈ U0.

4) Right after Lemma 4, the implicit function theorem is applied to a full

family of reference intervals I = [p1, p2], where p2 is considered fixed but suffi-

ciently small, while the lower end p1 is kept mobile. The procedure is now the

same. In particular, the unicity result Lemma 5 is obtained in precisely the same

fashion.

What changes is the expression for the derivative x+
λ = −F−1

xx Fxλ. We have

Fxλ (x, p, λ) = g′(x)φ′ (g(x)/(pλ)) − p−1g′(x)Λ−1φ′′ (g(x)/(pλ)) G(x), (28)

where Λ−1φ′′ (g(x)/(pλ)) G(x) denotes the diagonal matrix with diagonal entries

λ−1
i φ′′ (gi(x)/(pλi)) gi(x). This notation will be kept in the sequel. In order to

prove the analogue of Lemma 6, we have to show that Fxλ is bounded on a

wedge neighborhood of (x∗, 0, λ∗).

Let us start with the first term on the right hand side of (28). Assume

(x, p, λ) w→ (x∗, 0, λ∗). For i ∈ I= we have gi(x)/(pλi) → 0 by strict comple-
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mentarity, so φ′ (gi(x)/(pλi)) → φ′(0) = 1. On the other hand, for i ∈ I<

we have gi(x)/(pλi) → −∞. By (φ4), the first term of Fxλ is indeed bounded

on a wedge neighborhood of (x∗, 0, λ∗). Let us now consider the second term

on the right hand side of (28). For i ∈ I=, (gi(x)/p)φ′′ (gi(x)/(pλi)) → 0 by

wedge convergence and strict complementarity. On the other hand, for i ∈ I<,

(gi(x)/(pλi))φ′′ (gi(x)/(pλi)) converges to zero because tφ′′(t) = O(1) as t →

−∞ by axiom (φ5). This completes the proof of the boundedness of Fxλ, and

therefore proves the analogue of Lemma 7.

5) Let us now examine what changes need to be made in the proof of Lemma

8. Here we define λ+(p, λ) differently, namely as

λ+
i (p, λ) = λiφ

′ (gi(x+(p, λ))/(pλi)
)
.

Then we introduce H(p, λ) in the same way as in (22). By the new version of

Lemma 7, obtained in step 4) above, the conclusion is that H(p, λ)−1 is bounded

on Np1,p2 of p2 ≤ ε. This proves the analogue of Lemma 8.

6) In the proof of Lemma 9, a system of nonlinear equations is considered.

It is now the following





f ′(x+) +
∑

i∈I

λ+
i g′i(x

+) = 0

p λi φ′ (gi(x+)/(pλi)) − pλ+
i = 0, i ∈ I=

The vector (x+(p, λ), λ+(p, λ), p, λ) is solution for (p, λ) ∈ N , just as in the proof

of Lemma 9. Differentiation with respect to λ leads to



Lxx(x+, λ+) [g′(x+)]=

[
φ′′ (g(x+)/(pλ)) g′(x+)T

]
=

−pI








(x+)λ

(λ+
=)λ



 =




−pΞ

−pΘ



 ,
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where Ξ = p−1[g′(x+)]< (λ+
<)λ, or, explicitly:

Ξ = p−1[g′(x+)]< [φ′
(
g(x+)/(pλ)

)
]<

− p−2[g′(x+)]< [Λ−1φ′′
(
g(x+)/(pλ)

)
G(x+)]<

+ p−2[g′(x+)]< [φ′′
(
g(x+)/(pλ)

)
]< g′(x+)T (x+)λ, (29)

and Θ = [φ′ (g(x+)/(pλ))]= − p−1[Λ−1φ′′ (g(x+)/(pλ)) G(x+)]=.

The first term on the right-hand side in (29) is bounded by (φ4), whereas the

two remaining terms are bounded by (φ5). On the other hand, boundedness of

Θ is clear since gi(x+)/(pλi) → 0 for i ∈ I=.

Now we get litterally the same estimate (26) as in the proof of Lemma 9,

where Ξη, Θη refer to the expressions Ξ,Θ at the intermediate points (x+)η,

but of course have to be actualized as in 6) above. As in Lemma 9 it follows

that Θη, Ξη are bounded. The conclusion are then the same as in the proof of

Lemma 9, i.e., we get the estimate (27).

It remains to prove the second part of estimate (23) for the i ∈ I<. This is

done in much the same way as in the proof of Lemma 9, where we consider the

I< part of the update formula:

λ+
i (p, λ) = λiφ

′ (gi(x+(p, λ))/(pλi)
)
.

Recall that gi (x+(p, λ)) < 0 for x+(p, λ) sufficiently close to x∗, which may be ar-

ranged to hold as soon as (p, λ) ∈ Np1,p2 . In other words, φ′ (gi (x+(p, λ)) /(pλi)) →

0 . This proves even a superlinear rate of convergence λ+
i (p, λ) = o(λi) for i ∈ I<,

which completes the proof of Lemma (11). !
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4.2. Complexity for F2

Let us next examine the proof of Lemma 10 for the new augmented Lagrangian

(7) with associated progress measure (11).

Lemma 12. Under the assumptions (φ1) - (φ5) and (H1) - (H3), the conclusions

of Lemma 10 remain valid if the augmented Lagrangian method with objective

(7) and progress measure (11) are used.

Proof. We follow the arguments in Lemma 10. Let τ = θ/(1−θ) with Kp = θ < 1
2

and p ≤ ε. Now define

β =
⌈

log (θ + (1 − θ)K ′)
log c

⌉
+ 2,

where K ′ = KLip(g, x∗)Lip(φ′, 0). Let p < p/cβ . We will show that if k0 is

the smallest index with pk0 ∈ [p, p], then the pk (k ≥ k0) never leave this

interval. As in Lemma 10 we establish this by showing that σ2(xk+1, pk, λk) ≤

τkσ2(xk, pk−1, λk−1) with τk → τ .

Let us first consider indicies i ∈ I=. Then we have

∣∣λk
i

(
1 − φ′

(
gi(xk+1)/(pkλ

k
i )

))∣∣ ≤ |λk
i |Lip(φ′, 0) | (gi(xk+1) − gi(x∗)) /(pkλ

k
i )|

≤ |λk
i |Lip(φ′, 0) Lip(gi, x

∗) ‖xk+1 − x∗‖/(pkλ
k
i )

≤ Lip(φ′, 0) Lip(gi, x
∗)Kpk‖λk − λ∗‖/pk

≤ K ′‖λk − λ∗‖

where K ′ := maxi∈I={Lip(φ′, 0) Lip(gi, x∗)K}.

As in the proof of Lemma 10 we have the estimate

‖λk − λ∗‖ ≤
(
K−1p−1

k−1 − 1
)−1 ‖λk−1 − λk‖.
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For constraints i ∈ I< the argument is literally the same as in the proof of

Lemma 10. Altogether we get again that

σ2

(
xk+1, pk, λk

)
≤ τkσ2

(
xk, pk−1, λ

k−1
)

now for

τk = max

{
θ

1 − θ ,
K ′

K−1p−1
k−1 − 1

}
.

As in Lemma 10 we estimate the index k ≥ k0 where for the first time τk = τ .

Letting pk = p/cα, we have α < k − k0 − 1, and we find that

α ≤ log (θ + (1 − θ)K ′)
log c

≤ β − 2.

Hence pk > p. Since the test in step 3 of the algorithms leaves pk unchanged as

soon as τk = τ , we see that the pk (k ≥ k0) never leave [p, p], as claimed. !

Theorem 2. Under the assumptions of Theorem 1, the sequences of iterates xk,

λk and pk generated by the augmented Lagrangian algorithm based on model

(7) and (11) have the same properties 1. - 3. as in that theorem. In addition,

either the sequence xk converges Q-linearly, or xk (and then also λk) converges

R-superlinearly.

Proof. The proof is covered by the previous Lemmas and follows the overall

scheme of the previous section.

The major difference with F1 is that now xk converges locally Q-linearly.

To prove this we consider the situation of Lemmata 11, 12. We may assume
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that the sequence pk = p is already constant. Then xk+1 = x+(p, λk). Using

x+(p, λ∗) = x∗, we have the Taylor expansion

x+(p, λ) − x∗ = (x+)λ(p, λ∗)(λ− λ∗) + o(‖λ− λ∗‖). (30)

Now observe that (x+)λ = −F−1
xx Fxλ by the differentiation rule for the implicit

function (Lemma 5 and its alter ego), where Fxλ is given in (28). We now consider

separately the terms of the right-hand side in (28), when approaching (x∗, p, λ∗).

Let us start with the second term in (28). Obviously entries associated with

active constraints tend to 0. The same follows for entries related to inactive

constraints, because of axiom (φ5). Thus the second term in (28) ultimately

vanishes. As for the first term in (28), we can assume without loss of general-

ity that g′(x) = [g′=(x), g′<(x)]. Combining axioms (φ3) and (φ4), we have the

following:

Fxλ(x∗, p, λ∗) = [[g′(x∗)]=, 0],

which means that

Fxλ(x∗, p, λ∗)(λ− λ∗) = [g′(x∗)]=[λ− λ∗]=.

Altogether, substituting this back into formula (30) gives

Fxx(x∗, p, λ∗)
(
x+(p, λ) − x∗) = −[g′(x∗)]= (λ= − λ∗=) + o(‖λ− λ∗‖).

Now we observe a difference between F1 and F2. With F2 inactive multipliers

converge Q-superlinearly to 0, because λ+
i /λi = φ′ (gi(x+)/(pλi)) = O(λi) by

axiom (φ4), and λi → λ∗i = 0 for i ∈ I<. On the other hand, for active multipliers

i ∈ I= we have only estimate (23), which assures Q-linear convergence. There are
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now two possibilities. Case 1 is when λ< → λ∗< = 0 faster than ‖λ= − λ∗=‖ → 0.

This is the situation we expect. Here we will establish Q-linear convergence

x → x∗. On the other hand, we cannot apriori exclude the possibility that

‖λ= − λ∗=‖ → 0 with the same speed as λ< → λ∗< = 0. This is case 2. Here,

λ → λ∗ R-superlinearly (and Q-linearly), so in that case estimate (23) shows

that xk → x∗ converges even R-superlinearly.

Let us concentrate on the more likely case 1, where λ= → λ∗= with Q-linear

speed, while λ< → λ∗< = 0 Q-superlinearly. This means ‖λ−λ∗‖ ≤ K ′ ‖λ=−λ∗=‖,

for some K ′ > 0, as soon as λ is close to λ∗. As a consequence we obtain

x+(p, λ) − x∗ = Fxx(x∗, p, λ∗)−1 [g′(x∗)]= (λ= − λ∗=) + o(‖λ= − λ∗=‖). (31)

If follows that, sufficiently close to λ∗,

‖x+(p, λ) − x∗‖ ≤ 2 ‖F−1
xx ‖ ‖[g′(x∗)]=‖ ‖λ= − λ∗=‖

By assumption [g′(x∗)]= is of maximal rank |I=|. From (31) we then also have

‖λ= − λ∗=‖ ≤ 2 ‖[g′(x∗)]=†‖ ‖Fxx‖ ‖x+(p, λ) − x∗‖.

We apply these to λ and to λ+ = λ+(p, λ) and then combine with (23). The

result is

‖x+(p, λ+) − x∗‖ ≤ 2 ‖F−1
xx ‖ ‖[g′(x∗)]=‖ ‖λ+

= − λ∗=‖

≤ 2 ‖F−1
xx ‖ ‖[g′(x∗)]=‖ ‖λ+ − λ∗‖

≤ 2 ‖F−1
xx ‖ ‖[g′(x∗)]=‖Kp‖λ− λ∗‖

≤ 2 ‖F−1
xx ‖ ‖[g′(x∗)]=‖K ′Kp‖λ= − λ∗=‖

≤ 4 ‖F−1
xx ‖ ‖[g′(x∗)]=‖K ′Kp‖[g′(x∗)]=†‖ ‖Fxx‖ ‖x+(p, λ) − x∗‖.
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If p is chosen so small that 4‖F−1
xx ‖‖[g′(x∗)]=‖KK ′p‖[g′(x∗)]=†‖‖Fxx‖ < 1, Q-

linear convergence of xk+1 = x+(p, λk) follows readily. !

Remark. Notice that the argument above applies as soon as ‖λ − λ∗‖ =

O(‖λ= − λ∗=‖). In particular, with this extra assumption, the proof would also

work for model F1.

5. An example

The reader will have noticed a difference between (6) and (7). We can see that

multipliers for inactive constraints i ∈ I< converge faster to 0 when (9) is used.

Indeed, while (8) gives linear speed for active and inactive multipliers, (9) gives

superlinear speed λi → 0 for i ∈ I<. This should be an advantage, and indeed,

(7) seems to perform somewhat better in a neighborhood of attraction of a

local minimum with strict complementarity. To demonstrate this we consider

the following example

minimize f(x) = 1
2 (x2

1 + x2
2)

subject to g1(x) = x1 − 2 ≤ 0

g2(x) = 1 − x2 ≤ 0

The optimal solution is at x∗ = (0, 1), constraint g1 is inactive, constraint g2 is

active. The Lagrange multiplier is λ∗ = (0, 1). We use the left hand φ in (5) and

compare both augmented Lagrangian models (6) and (7).
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To begin with consider F1, which is

F1(x, p, λ) =
1
2
(x2

1 + x2
2) + pλ1

(
−1

4
(log(4 − 2x1) − log p) − 3

8

)

+ λ2(1 − x2) +
λ2

2p
(1 − x2)2.

The optimality conditions F ′
1 = 0 imply

x1 = 1 −
√

1 +
pλ1

4
x2 =

pλ2 + λ2

p + λ2

The update rules are

λ+
2 = λ2

(
1 +

1 − λ2

p + λ2

)
λ+

1 = λ1
p

8 − 4x1
= λ1

p

4 + 4
√

1 + pλ1
4

Since λ2 is supposed to converge to 1, we consider the quotient

λ+
2 − 1
λ2 − 1

=
p

p + λ2
→ p

p + 1
∈ [0, 1[.

Here we have convergence with linear rate p/(p + 1).

For the inactive multiplier, which is supposed to converge to 0 we have

λ+
1

λ1
=

p

4 + 4
√

1 + pλ1
4

→ p

8

which is again a linear rate for p < 8.

Next consider F2, which is

F2(x, p, λ) =
1
2
(x2

1 + x2
2) + pλ2

1

(
−1

4
(log(4 − 2x1) − log(pλ1))

)

+ λ2 (1 − x2) +
1
2p

(1 − x2)2.

Taking derivatives F ′
2 = 0 gives

x2 =
pλ2 + 1
p + 1

x1 = 1 −
√

1 +
pλ2

1

4
.
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The first-order update rule is

λ+
2 = λ2

(
1 +

1 − x2

pλ2

)
λ+

1 =
λ2

1p

4(2 − x1)

Now remember that λ2 converges to 1, while λ1 converges to 0. Then

λ+
2 − 1
λ2 − 1

=
p

1 + p
,

which is a linear rate of convergence. Concerning the inactive constraint (g1) :

λ+
1

λ1
=

pλ1

4(1 +
√

1 + pλ2
1

4 )
∼ pλ1

8
→ 0.

So the inactive multiplier converges to 0 with quadratic speed. !

Appendix: Implicit function theorem

Below we state the following implicit function theorem from Hestenes [10, The-

orem 7.2].

Lemma 13. Let Ω be an open subset of Rn × Rm and let Ψ : Ω → Rn be of

class Ck(Ω) for some k ≥ 1. Let K∗ be a compact subset of Rm and suppose

there exists a vector x∗ ∈ Rn with {x∗} × K∗ ⊂ Ω such that Ψ(x∗, y) = 0 for

every y ∈ K∗. Suppose Ψx(x∗, y) is invertible for every y ∈ K∗. Then there

exists a neighborhood W of {x∗}×K∗, a neighborhood V of K∗, and a function

x(·) : V → Rn of class Ck such that Ψ (x(y), y) = 0 for every y ∈ V and

x(y) = x∗ for every y ∈ K∗. The function is unique in the sense that for every

(x, y) ∈ W , Ψ(x, y) = 0 if and only if y ∈ V and x = x(y). Moreover,

x′(y) = − [Ψx (x(y), y)]−1 Ψy (x(y), y) .
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!

This coincides with the usual implicit function theorem when the set K∗ = {y∗}

is a singleton set.
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