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Abstract. We present a class of nonlinear adaptive image restoration filters which may be
steered to preserve sharp edges and contrasts in the restorations. From a theoretical point of view
we discuss the associated variational problems and prove existence of solutions in certain Sobolev
spaces W 1,p or in a BV -space. The degree of regularity of the solution may be understood as a
mathematical explanation of the heuristic properties of the designed filters.
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1. Motivation and purpose. Various inverse problems require reconstructing
an unknown density function u(x), x ∈ Ω ⊂ Rn, from a finite number of measurements
of the form ∫

Ω

(
ak(x)u(x) + bk(x) · ∇u(x)

)
dx = ck, k = 1, . . . , N.(1.1)

Examples of particular interest are in medical imaging, where the data ck represent
attenuation coefficients of transmission x-rays, or in image restoration, where the ck
are gray levels at pixels k of a blurred version of the true image u(x). Restoring the
original u(x) is usually an ill-posed problem, and the inevitable measurement noise
may make this a difficult task. One way to restore u(x) in the presence of noise is to
stabilize inversion of (1.1) by introducing a regularizing functional of the form

I[u] =

∫
Ω

h
(
u(x),∇u(x)) dx,(1.2)

closely related to the specific restoration problem. Introducing linear operators A,B
by

(Au)k =

∫
Ω

ak(x)u(x) dx, (Bv)k =

∫
Ω

bk(x) · v(x) dx,(1.3)

we consider the following inverse methods which we call the tolerance and the penal-
ization approaches, respectively:

(P )tol

minimize I[u]
subject to

∣∣Au+B∇u− c| ≤ ε,∫
Ω

u(x) dx = 1
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and

(P )pen

minimize I[u] + α
2 |Au+B∇u− c|2

subject to

∫
Ω

u(x) dx = 1

(| · | = Euclidean norm). A well-known method based on the scheme (P )pen is
Tychonov-regularization, where the functional (1.2) is a square norm of u(x) or ∇u(x)
(cf. [16, 12, 13]). However, in image restoration this choice is known to produce poor
results, and more sophisticated functionals I[u] are required. In our present work,
we shall consider a class of functionals I[u] of information type that are particularly
suited for image restoration problems and that we motivate by a heuristic argument.
The remaining parts of the paper address the mathematical problems arising from
this choice.

The values u(x) are relative gray levels of the unknown image, hence the nor-
malization

∫
u dx = 1. Since gray levels are nonnegative, we require reconstructions

u(x) ≥ 0, and this may be guaranteed by our choice of I[u]. For the moment consider
the model (P )tol. The data being noisy, we should not force equality Au+B∇u = c,
but allow for a tolerance ε > 0, typically estimated using a χ2-statistics (cf. [18]).
The role of the functional I[u] is now to avoid picking highly irregular objects u which
would fit the tolerance condition. In other terms, minimizing I[u] subject to the con-
straint |Au+B∇u− c| ≤ ε to some degree means filtering the unknown object u(x).
However, as mentioned before, default choices like I[u] =

∫
Ω
|∇u|2 dx tend to smooth

away sharp edges in the image. Smoothing while retaining edges is needed, and this
requires adapting the filter to the image.

Consider the class of functionals (1.2) defined through the integrands

h(u, ξ) =



uφ

(
ξ/u) if u > 0,

φ0+(ξ) if u = 0,

+∞ otherwise,

(1.4)

where φ : Rn → R is a convex functional and φ0+ denotes its recession function,
needed to render the functional h lower semicontinuous (lsc),

φ0+(ξ) = sup
t>0

φ(η + tξ)− φ(η)
t

,

for an arbitrary fixed η in domφ (cf. [21, p. 66ff]). Then h is jointly convex in (u, ξ),
and (1.4) will be called Csiszár information measures. An important special case is
φ(t) = |t|2, which is Fisher’s information (cf. [19]). Notice that since h(u, ξ) = +∞
for u < 0, the objectives (1.4) force nonnegative solutions, as required.

In order to motivate the inverse approach based on (1.4), let us specialize even
further by considering functionals of the form φ(ξ) = ψ(|ξ|) for convex ψ : R → R.
Since |∇u| is invariant under rigid motions, so is h(u,∇u) defined through (1.4);
hence, this choice will lead to methods invariant under rigid motions of the image.
Proceeding in a purely formal way, we first do a change of variables u(x) = ev(x) to
account for the condition u(x) > 0. The Euler–Lagrange equation for the transformed
problem (P )pen is then

− div

(
ψ′(|∇v|)
|∇v| ∇v

)
− ψ′(|∇v|)|∇v|+ ψ(|∇v|)(1.5)

+ α(AT − divBT )(Aev +B(∇ev)− c) = 0
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with adjoints AT , BT , and div BT defined as

AT (λ) =

N∑
k=1

λkak, BT (λ) =

N∑
k=1

λkbk, divBT (λ) =

N∑
k=1

λkdivbk.

Consider the case Ω ⊂ R
2. Following an idea originating from [8] and extended in

[2, 26], sharp edges (contrasts) in the image v(x, y) occur along level curves v(x, y) = c,
the indication being that the gradient ∇v(x, y) becomes large. In this case, smoothing
across the edge v(x, y) = c should be dispensed with, while smoothing along the edge
is still needed to suppress irregular behavior.

For a point (x, y) on the level curve v = c, consider the adapted cartesian coor-
dinates T (x, y), N(x, y) meaning tangential and normal directions to the level curve
v = c at (x, y):

N(x, y) =
∇v(x, y)
|∇v(x, y)| , T (x, y) ⊥ N(x, y).

Expanding the divergence term in (1.5) gives

−div

(
ψ′(|∇v|)
|∇v| ∇v

)
= −ψ

′(|∇v|)
|∇v| ∆v −

(
ψ′′(|∇v|)
|∇v|2 − ψ′(|∇v|)

|∇v|3
)
∇v · ∇2v · ∇v.

Observe that the Laplacian is invariant under orthogonal transformations, ∆v =
vxx + vyy = vTT + vNN , and secondly that ∇v

|∇v| · ∇2v · ∇v
|∇v| = vNN . Then the Euler

equation in (T,N)-coordinates reads

−
(
ψ′(|∇v|)
|∇v|

)
vTT − ψ′′(|∇v|) vNN − ψ′(|∇v|)|∇v| + ψ(|∇v|)

+α(AT − divBT )(Aev +B(∇ev)− c) = 0.

Suppose |∇v| is small, indicating that v = c is not an edge, and hence smoothing
should be encouraged. Assuming (i) ψ′(0) = 0 and (ii) ψ′′(0) > 0, in a neighborhood
of (x, y), the Euler equation is qualitatively of the form

−ψ′′(0)
(
vTT + vNN

)
+ ψ(0) + α(AT − divBT )(Aev +B(∇ev)− c) = 0.

Due to vTT + vNN = vxx + vyy = ∆v, this may be considered as having a strong
smoothing effect around (x, y).

Assume, on the other hand, that |∇v| is large at (x, y), indicating an edge. Then
we wish to smooth in T -direction but not inN -direction. This is achieved, for instance,
by having

(iii)
ψ′(t)
t

� ψ′′(t)

for large t. The coefficient of vNN then being negligible in a neighborhood of (x, y),
the differential equation is qualitatively of the form

−C vTT − ψ′(|∇v|)|∇v|+ ψ(|∇v|) + α(AT − divBT )(Aev +B(∇ev)− c) = 0,

indicating a preference for smoothing in T -direction, since as before the tendency to
smoothing is governed by the second order terms. As an example for (iii), consider a
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ψ which for large t behaves like ψ(t) = tp for some p > 1. This gives ψ′(t)
t

/
ψ′′(t) =

1/(p− 1), which could be made as large as desired by choosing p close to 1.
The conditions (i)–(iii) do not entirely fix the function ψ, so further evidence

(theoretical and numerical) is needed to propose a best choice. The present paper,
rather, addresses the theoretical aspects of the models (P )tol and (P )pen, particularly
the question of existence of solutions. Our method of proving existence may be
considered a fairly general scheme including a large variety of possible applications. It
does not rely on compactness arguments but exploits the convexity of the problems.

A second problem associated with the variational methods (P )pen and (P )tol is
to justify the Euler–Lagrange equation (1.5), formally derived above. This problem,
which is difficult, is treated in [10].

It is intuitively clear that the choices ψ(t) = |t|p discussed above should lead to
image restorations exhibiting more and more sharp edges when p > 1 approaches
1. One way to corroborate this in the variational context is by showing that the
solutions of the corresponding programs (P )pen and (P )tol are in a Sobolev space
W 1,1+ε(p), with ε(p) → 0 as p → 1 (cf. Example 3 at the end of section 6). In the
limiting case p = 1, we would get solutions which degrade to BV -functions, allowing
even for discontinuities. We mention that the latter is sometimes considered as a
natural setting for image processing, particularly if the purpose is segmentation or
edge detection (cf. [17, 5, 24, 27]).

Numerical experiments for special choices ψ(t) have been presented in [19, 20].
The authors of [2, 26] report experiments with objectives of the form h(u, ξ) = φ(|ξ|)
built on a related philosophy. A comparative study of adaptive filters will be presented
elsewhere. We mention that the class of functionals (1.4) has various other applica-
tions. See in particular [18] for variational problems involving Fisher’s information
(p = 2).

2. Outline of the method. We start by giving an outline of our method of
proving existence of solutions and then point to the steps which cause particular
difficulties. Our approach may be called a bidual relaxation scheme: Writing (P ) for
any of the formulations (P )pen or (P )tol and proceeding in a formal way, we first
obtain a concave dual program (P ∗). Formal means that we do not try to find a dual
pair of Banach spaces in which the duality may be justified rigorously. In a second
step we repeat the same for (P ∗), but this time we use the full convexity machinery.
This means we prove a Lagrange multiplier theorem for (P ∗). The multiplier ū is an
element of the dual Banach space M(Ω̄) of signed Radon measures and an optimal
solution to a properly defined convex bidual (P ∗∗). We may therefore interpret ū
as a generalized solution to the original program (P ). In a third step we show that
under mild additional conditions, we get a solution ū in a Sobolev space or even in a
classical space C1(Ω̄).

Notice that this scheme has been used various times. However, the difficulties
are in the details; in particular, technical problems arise if we are not satisfied with
solutions in a BV -space, but wish to prove regularity results (cf. section 4). For
complementary literature we refer to [7, 3, 4, 2].

Let us now consider some of the details. First, dualizing (P ∗) requires a Lagrange
multiplier theorem. This type of result typically needs a constraint qualification
hypothesis, which should not be artificial in the light of the original problem (P ).
The existence result Proposition 4.1 in fact avoids any such hypothesis by providing
a solution u ∈M(Ω̄), the space of Radon measures.

The second step in our scheme is to show that the generalized solution u ∈M(Ω̄)
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is a BV -function. This is done in Proposition 4.3 and requires a richness hypothesis
(A1). Condition (A1) excludes objectives (1.2) where h(x, ξ) is linear in ξ. With
h(x, ξ) = g(x) + η · ξ linear in ξ, it is possible to construct examples where the
generalized solution ū is not a BV -function, although this may be guaranteed under
coercivity assumptions on g(x). We consider objectives (1.2) linear in ξ as of minor
importance for possible applications and therefore do not pursue their analysis here.

In a third step of Proposition 4.6, we show that the solution ū, so far a BV -
function, is an element of the Sobolev space W 1,1(Ω) if a slightly stronger regularity
hypothesis (A2) is satisfied. Hypothesis (A2) may be understood as a weak coercivity
condition on h, implying in particular that for fixed x, h(x, ξ) grows stronger than
linearly in ξ as |ξ| → ∞.

In practice, it is often enough to have solutions in W 1,1(Ω), in particular, if
the natural domain of the functional Ih is a better Sobolev space W 1,p(Ω) for some
p > 1. Here the solution will automatically be an element of W 1,p(Ω). In section
6 we present an extended version of this observation, showing that under a stronger
hypothesis (A3), the solution ū is improved to be of classW 1,p(Ω) for some p > 1, with
the possibility to having classical solutions if p is large enough. Hypothesis (A3) is
seen to be a coercivity condition on h, satisfied, e.g., if h∗ grows at most polynomially
(see section 6).

We mention that bidual relaxation as presented here is not aimed at image restora-
tion exclusively. In fact, the hypotheses (A1)–(A3) are fairly general and ensure a
broad applicability. Nonetheless, in image enhancement, (A2) and (A3) might be con-
sidered too strong, in particular under the agreement that images be best represented
as BV -functions. This point of view, initiated by Osher and Rudin [23, 24, 25], is
widely accepted if the aim is edge detection or segmentation (cf. [13, 15, 6]), although
it is clear that many images continue to be modeled as continuous or even smooth
functions. This is particularly so in cases where the physical image generating process
is taken into account (astronomy, medical imaging). We hold that our approach of
modeling images in Sobolev spaces may offer a compromise.

3. Lagrangian formulation for (P )pen. In this section we present the first
part of the scheme for program (P )pen. We provide a suitable Lagrangian formulation
and a corresponding concave dual program (P ∗). The second step of the relaxation
scheme, dualizing the dual to obtain the bidual, will be presented in section 4.

For the following, let us fix some notations and definitions. Let Ω be a bounded
open subset of R

N , and suppose ak ∈ C(Ω), bk ∈ C1(Ω)n for k = 1, . . . , N . (It would
be sufficient to require piecewise continuity of ak and piecewise continuous differen-
tiability of bk.) Then the linear operators A and B defined by (1.3) are bounded on
L1(Ω) and L1(Ω)

n, respectively.
Let h : R×R

n → R∪{∞} be a proper convex lsc function with nonempty domain
domh (cf. [21]). Then

Ih[u] =

∫
Ω

h(u(x),∇u(x)) dx

is a proper convex lsc functional defined for all u ∈ W 1,1(Ω). Notice that we do
not exclude the possibility Ih[u] = +∞, as would, for instance, occur for a classical
functional like

∫
Ω
|∇u|2 dx, whose natural domain is W 1,2(Ω). A value Ih[u] = +∞

simply means that u does not contribute to the minimization process. On the other
hand, Ih[u] = −∞ is impossible as a consequence of the lower semicontinuity of Ih
(cf. [22] for this and other facts about convex integral functionals).
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In cases when we wish to force positivity of the solution, we require h(u, ξ) = +∞
whenever u < 0. Then Ih[u] = +∞ unless u ≥ 0 almost everywhere (a.e.) on Ω.

To avoid trivial situations, we will generally assume that (P )pen and (P )tol are
feasible. More precisely, we assume existence of a function u ∈ C1(Ω) with Ih[u] <∞,∫
Ω
u(x) dx = 1, respectively, |Au + B∇u − c| ≤ ε in the case of the tolerance model.

The value of program (P ) will be denoted by V (P ), and we will require V (P ) > −∞
because otherwise no optimal solution exists. So altogether we adopt −∞ < V (P ) <
∞ as our standing hypothesis. In the present section we consider (P )pen. Analogous
results for (P )tol will be presented in section 5.

We proceed to give a Lagrangian formulation of (P )pen. By introducing dummy
variables v = ∇u and e = Au+Bv − c and by defining

Jh(u, v) :=

∫
Ω

h(u(x), v(x)) dx

we rewrite (P )pen in the form

minimize Jh(u, v) +
α

2
|e|2

subject to ∇u = v, Au+Bv − c = e,∫
Ω

u(x) dx = 1

(P )pen

with e ∈ R
N and u ∈ C1(Ω), v ∈ C(Ω)n. This suggests using the Lagrangian

L(u, v, e;w, λ, µ) = Jh(u, v) +
α

2
|e|2 + 〈w,∇u− v〉

+ λ · (Au+Bv − c− e) + µ
(∫

Ω

u(x) dx− 1

)
,

where 〈., .〉 denotes the dual form either between C(Ω̄)n andM(Ω̄)n or between L1(Ω)
n

and L∞(Ω)n. We can now write (P )pen in the equivalent form

inf
u,v,e

sup
w,λ,µ

L(u, v, e;w, λ, µ).(3.1)

As usual, the corresponding concave dual program is then defined by switching the
inf and sup:

sup
w,λ,µ

inf
u,v,e

L(u, v, e;w, λ, µ).(3.2)

We do not attempt to prove directly that (P ) and (P ∗) are equivalent or at least
have equal values, since this will follow later as a consequence of the bidual relaxation
scheme. Instead, we investigate (3.2) a little further by explicitly calculating the inner
infimum.

To do this, we start by calculating the partial Legendre–Fenchel transform of L
in its first three variables, defined as

L∗(y, z, d;w, λ, µ) = sup
u,v,e

(〈u, y〉+ 〈v, z〉+ e · d− L(u, v, e;w, λ, µ)),
and then recognize −L∗(0, 0, 0;w, λ, µ) as the objective of the dual (3.2), to be max-
imized over (w, λ, µ). While [21] is the basic reference for notions from finite di-
mensional convexity, a rigorous justification of (P ∗) as obtained below would call for
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methods as used in section 4 or in [7]. In particular, it would require calculating the
conjugate L∗ with respect to the space C(Ω̄) and its dual M(Ω̄), the space of signed
Radon measures on Ω̄. Instead of calculating (Jh)

∗, defined on a space of measures,
we restrict the dual to the classical spaces C(Ω̄) and C1(Ω̄)n, where it suffices to
calculate Jh∗ with the approach described as formal in section 2.

Written as a convex program, the dual is of the following form:

minimize Jh∗(y, z) +
1

2α
|λ|2 + λ · c+ µ

subject to y = div z + div BTλ−ATλ− µ,
y ∈ C(Ω), z ∈ C1(Ω)n, λ ∈ R

N , µ ∈ R.

(P ∗)

Here h∗ is the Legendre–Fenchel conjugate of h and Jh∗(y, z) :=
∫
Ω
h∗(y(x), z(x)) dx.

Example 1. For the class of Csiszár information measures (1.4) we have

h∗(y, z) =

{
0, y + φ∗(z) ≤ 0,

∞, y + φ∗(z) > 0.

As is easy to see, (P ∗) has feasible points, so the value V (P ∗) < +∞. Also, the
fact that the dual was obtained by flipping sup and inf gives V (P ∗) ≥ −V (P ) > −∞,
so V (P ∗) is finite. The relation V (P ∗) ≥ −V (P ) is often referred to as weak duality
(cf. [7]).

4. Existence of solutions for (P )pen. The second part of our scheme now
requires dualizing (P ∗) again to obtain what we call a bidual relaxation (P ∗∗) of
the original program (P )pen. As opposed to the formal way we employed to derive
(P ∗), we shall now have to rigorously dualize (P ∗). As a consequence, the bidual
(P ∗∗) will be formulated in a dual Banach space, a space of measures. In a third
step, also presented in the section, we will show that under reasonable conditions, the
generalized solutions are functions in the Sobolev space W 1,1(Ω). A fourth step, to
be presented in section 6, will examine under what circumstances a classical solution
in C1(Ω) may be obtained.

As before, duality requires an appropriate Lagrangian formulation, which we ob-
tain by attaching a multiplier u ∈M(Ω̄) to the equality constraint in (P ∗). The dual
Lagrangian is then

LD(y, z, λ, µ;u)=Jh∗(y, z) +
1

2α
|λ|2 + λ · c+ µ+ 〈u, div z + divBTλ−ATλ− µ− y〉,

and an equivalent way of writing (P ∗) is the minimax form:

inf
y∈C(Ω)

z∈C1(Ω)n

λ∈R
N , µ∈R

sup
u∈M(Ω)

LD(y, z, λ, µ;u).

(P ∗)

Switching inf and sup leads to the corresponding bidual program,

sup
u

inf
y,z,λ,µ

LD(y, z, λ, µ;u),(P ∗∗)

and immediately gives V (P ∗∗) ≤ V (P ∗) (weak duality). Proving equality requires
more work.
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Proposition 4.1. We have V (P ∗∗) = V (P ∗), and (P ∗∗) admits an optimal
solution u ∈M(Ω).

Proof. (a) Let us first consider the case where h is not affine. The function
f : C(Ω) → R ∪ {+∞}, defined by

f(η) = inf

{
Jh∗(y, z) +

1

2α
|λ|2 + λ · c+ µ : y ∈ C(Ω), z ∈ C1(Ω)n, λ ∈ R

N , µ ∈ R,

div z + divBTλ−ATλ− µ− y = η

}
,

is proper convex lsc and we have f(0) = V (P ∗), which is finite. According to the
general theory (cf. [7]) it remains to show that ∂f(0), the subdifferential of f at 0, is
nonempty, since every u with −u ∈ ∂f(0) is a solution to (P ∗∗), showing in addition
V (P ∗) = V (P ∗∗). Notice here that f , being defined on C(Ω), has subgradients in
the dual space M(Ω). Proving ∂f(0) �= ∅ requires two arguments. First we establish
the existence of a supporting functional. Then we argue that the latter must be
continuous since f is lsc.

(b) By the Hahn–Banach theorem, existence of a supporting functional will follow
if we show that 0 is an algebraic interior point of domf . That means for every
η ∈ C(Ω) we have to find ρ > 0 such that ρη ∈ domf . Equivalently, we have to show
that for every η ∈ C(Ω) we can find . > 0 such that the equation

div z + divBTλ−ATλ− µ− y = .η

admits a solution (y, z, λ, µ) with (y, z) ∈ dom Jh∗ .
As h is not affine, dom h∗ consists of at least two points. By convexity this means

that either the projection Πy(dom h∗) of dom h∗ on the first coordinate contains a
ball |y − y0| ≤ ε, or that Πz(domh

∗) contains a segment.
(c) First consider the case where Πy(domh

∗) has nonempty interior. By convexity
there exists an affine function y �→ z(y) such that (y, z(y)) ∈ dom h∗ for all |y−y0| ≤ ε
and some fixed y0. Let z(y) = ay+b, with a, b ∈ R

n. Setting y(x) = y0+ỹ(x), µ = −y0,
and λ = 0, we have to solve the linear equation

a · ∇ỹ − ỹ = .η

for ‖ỹ‖∞ ≤ ε. Assuming without loss that a1 �= 0, a possible solution is the smooth
function

ỹ(x) = . c(x) ex1/a1 , where c(x) =
1

a1

∫ x1

ξ1

η(ξ, x2, . . . , xn) e
ξ/a1 dξ

with a suitable ξ1 ∈ R. For . sufficiently small we get in fact ‖ỹ‖∞ ≤ ε; hence
(ỹ(x), z(ỹ(x))) ∈ dom h∗ for every x ∈ Ω and hence (ỹ, z(ỹ)) ∈ dom Jh∗ by continuity
of ỹ. So in the first case the problem is solved.

(d) Now consider the case where Πy(dom h∗) = {y0}. Since h is not affine,
Πz(domh

∗) contains at least two points. This means that (eventually with a change
of coordinates) domh∗ contains a convex set of the form

{y0} × {z01} × · · · × {z0r} ×Bn−r,

with Bn−r an open ball with center (z0,r+1, . . . , z0n) in a subspace of dimension n−r ≥
1. In the worst case n− r = 1, the first n− 1 coordinates are fixed, but zn is free to
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vary on an interval. Choosing y ≡ y0, µ = −y0, and z = z0+ z̃ with z̃ = (0, . . . , 0, z̃n),
defined by

z̃n = .

∫ xn

ξn

η(x1, . . . , xn−1, ξ) dξ,

we get a z having div z = .η. Also |z(x) − z0| ≤ ε for all x ∈ Ω if . is sufficiently
small. Then (y, z) ∈ dom Jh∗ as required. So in both subcases, 0 is an algebraic
interior point of dom f , and a supporting functional at 0 exists. Continuity of the
latter follows from the lower semicontinuity of Jh∗ . This completes the argument
started in (a).

(e) Finally, consider the case where h is affine, and hence dom h∗ consists of
a single point (y0, z0). Define the function f : C(Ω) → R ∪ {∞} as before. Since
the value V (P ∗) is finite, 0 ∈ dom f , and since the operators A,B have a finite
dimensional range, dom f itself is contained in a finite dimensional linear subspace L
of C(Ω). Linearity of A,B even gives domf = L. Choose a supporting functional at
0 ∈ L, and extend it to a continuous linear functional on all of C(Ω).

Proposition 4.1 gives existence of a solution of (P ∗∗) in M(Ω). We argue that
under mild additional assumptions, ū is in fact a function. We will even show a little
more, namely, every u feasible for (P ∗∗) satisfies u ∈ Lσ(Ω) for some σ > 1. Consider
u ∈M(Ω) with

inf
y,z,λ,µ

LD(y, z, λ, µ;u) > −∞,

where the infimum is over y ∈ C(Ω̄), z ∈ C1(Ω̄)n, and λ ∈ R
N , µ ∈ R as before.

Exploiting the form of LD leads to three conditions:

inf
y,z

(Jh∗(y, z) + 〈u, div z − y〉) > −∞,(4.1)

inf
λ

(
1

2α
|λ|2 + λ · c+ 〈u, divBTλ−ATλ〉

)
> −∞,(4.2)

inf
µ

(µ− 〈u, µ〉) > −∞, i.e.,

∫
Ω

du = 1.(4.3)

As we shall see, the first condition allows for regularity considerations, while (4.2)
and (4.3) will lead back to the original formulation of the constraints in (P ).

First consider condition (4.1). We want to show that under suitable assumptions
on h every feasible u possesses a Radon–Nikodym derivative lying in every space
Lσ(Ω) with 1 < σ < n

n−1 . To do this we will need the following estimation for the
Newton potential of a function ϕ ∈ C∞

0 (Ω): Let ϕ be an element of C∞
0 (Ω) and

consider the corresponding Newton potential

v(x) =

∫
Ω

Γ(x− s)ϕ(s) ds

with

Γ(x− s) =
{

1
2π log |x− s|, n = 2,

1
n(2−n)ωn

|x− s|−(n−2), n > 2,

where ωn is the volume of the unit ball in R
n. Then we have v ∈ C2(Ω), ∆v = ϕ, and

Dkv(x) =

∫
Ω

DkΓ(x− s)ϕ(s) ds(4.4)
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(cf. [9, Chapter 4]).
Lemma 4.2. Let 1 < σ < n

n−1 . Then

|Dkv(x)| ≤ K ‖ϕ‖σ′ for all x ∈ Ω and for every σ′ > n,(4.5)

where the constant K depends only on σ′ and Ω, and 1/σ + 1/σ′ = 1.
Proof. Using (4.4) and Hölder’s inequality

|Dkv(x)| ≤ ‖DkΓ(x− .)‖σ ‖ϕ‖σ′

provided ‖DkΓ(x− .)‖σ is finite. But for n ≥ 2 we have

∫
Ω

|DkΓ(x− s)|σ ds = C1

∫
Ω

( |xk − sk|
|x− s|n

)σ
ds ≤ C2

∫ R

0

r(n−1)(1−σ) dr

with Ω ⊂ {z ∈ R
n : |z| ≤ R} using n-dimensional spherical coordinates. As the last

integral is finite for (n− 1)(1− σ) > −1, or what is the same, σ < n
n−1 , the lemma is

proved.
Now we want to use (4.5) and (4.1) to show that the map ϕ �→ 〈u, ϕ〉 is bounded

on C∞
0 (Ω) with respect to the ‖.‖σ′ -norm, hence the Radon–Nikodym derivative of u

is an element of Lσ(Ω), (1/σ + 1/σ′ = 1). To do this, we need to impose a richness
condition on the domain of h∗:

Πz(dom h∗) contains a segment.(A1)

As before, Πz : (y, z) → z denotes the projection onto the last n coordinates.
Remark 1. Let us discuss the meaning of (A1). If Πz(dom h∗) does not contain

a segment, dom h∗ ⊂ R×{z} for some z ∈ R
n. This implies h(x, y) = g(x) + y · z for

a convex function g, that is, h is linear in its second variable. We observe in a first
place that z must be in the linear hull of the bk. Therefore, in cases where we have
no constraints on derivatives, b = 0 implies z = 0, leaving us with a problem without
reference to derivatives. In case b �= 0, the problem may be analyzed rather along
classical lines as found in [7], although in general the result of Proposition 4.3 below
is no longer valid. We consider objectives h(x, ξ) linear in ξ as of minor importance
for possible applications and do not pursue this class of objectives any further.

Proposition 4.3. Under the assumption (A1) every u ∈ M(Ω) feasible for
(P ∗∗) is absolutely continuous with respect to Lebesgue measure. Its Radon–Nikodym
derivative lies in Lσ(Ω) whenever 1 < σ < n

n−1 . Furthermore, for every such u there

exists a signed Borel vector measure m = m(u) ∈M(Ω)n satisfying

〈u, div z〉 = −〈m(u), z〉 for all z ∈ C1(Ω)n.

Remark 2. m(u) is an extension of the distribution vector ∇u on C(Ω)n and shall
as well be denoted as ∇u. Notice however that this measure contains singular parts
supported on ∂Ω.

Proof. Step 1. Using a reduction argument similar to the one employed in the
proof of Proposition 4.1, we may without loss assume that Πz(domh

∗) has nonempty
interior in R

n. The general case consists in repeating the same argument in the affine
subspace generated by Πz(domh

∗), which by (A1) has dimension ≥ 1.
With these arrangements, assumption (A1) guarantees the existence of a ball

|z − z0| ≤ ε and an affine function y = y(z) such that (y(z), z) ∈ dom h∗ for all
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|z − z0| ≤ ε. Consider ϕ ∈ C∞
0 (Ω) with ‖ϕ‖σ′ ≤ ε

K ( 1
σ + 1

σ′ = 1) for the constant
K from (4.5) and let v be the corresponding Newton potential. Then using (4.5) we
have |Dkv(x)| ≤ ε. Setting z = z0 +∇v and y = y(z) we get from (4.1)

Jh∗(y(z), z) + 〈u, ϕ− y(z)〉 > −∞.
Now by construction we have |Jh∗(y(z), z)+ 〈u,−y(z)〉| ≤ K1 for some K1 > 0, so we
get

inf
‖ϕ‖σ′≤ ε

K

〈u, ϕ〉 > −∞.

By linearity we conclude that the functional ϕ �→ 〈u, ϕ〉 is bounded on (C∞
0 (Ω), ‖.‖σ′)

which is a dense subspace of Lσ′(Ω). For short u ∈ Lσ(Ω).
Step 2. For the second statement we have to show that for feasible u the func-

tional z �→ 〈u, div z〉 is bounded on (C1(Ω), ‖.‖∞). This follows from (4.1) and the
boundedness of Jh∗(y(z), z) and 〈u,−y(z)〉 on the ball ‖z‖∞ ≤ r.

For the following suppose condition (A1) is satisfied. In order to simplify our
arguments, we continue to consider the case where Πz(domh

∗) has nonempty interior
in R

n. Performing the same steps in the affine subspace L generated by dom(h∗) will
settle the general case.

As a consequence of Propositions 4.1 and 4.3, and on exploiting the structure of
LD, (P

∗∗) now reads

(P ∗∗) inf
u

{
sup

{〈u, y〉+ 〈∇u, z〉 − Jh∗(y, z) : y ∈ C(Ω), z ∈ C1(Ω)n
}

+sup
{
− 1

2α
|λ|2 − λ · c+ 〈u,ATλ− divBTλ〉 : λ ∈ R

N
}
:

∫
Ω

u(x) dx = 1

}
.

To calculate the inner supremum over y and z we would like to use the following result
of Rockafellar’s [21] describing the conjugate of a convex integral functional Jh∗ with
respect to the dual pairing (C(Ω)× C(Ω)n,M(Ω)×M(Ω)n).

Lemma 4.4 (see Rockafellar [21]). Let Ω be a compact subset of R
n and suppose

int(dom h∗) �= ∅. Then for µ ∈ M(Ω) ×M(Ω)n with Lebesgue decomposition µ =
µa + µs the conjugate of Jh∗ equals

J∗
h∗(µ) =

∫
Ω

h∗∗
(
dµa
dx

)
dx+

∫
Ω

sup
w∈domh∗

(
w · dµs

dϑ

)
dϑ,

where µs is absolutely continuous with respect to the nonnegative Borel measure ϑ.
In order to apply Lemma 4.4 to (P ∗∗), we first need to replace the supremum over

z ∈ C1(Ω) by a supremum z ∈ C(Ω). That this may be done without changing its
value is guaranteed by the following lemma, whose proof will be given in the appendix.

Lemma 4.5. Let m be a measure inM(Ω), f ∈ L1(Ω,m), g ∈ L1(Ω,m)k (k ∈ N),
and Φ : R

k → R ∪ {∞} be a proper convex lsc function. Then for the proper convex
lsc functional

F (z) =

∫
Ω

[Φ(z(x))f(x) + z(x) · g(x) ] dm(x)

on L1(Ω,m)k we have

inf
z∈C1(Ω)k

F (z) = inf
z∈L1(Ω,m)k

F (z).



1234 ULRIKE HERMANN AND DOMINIKUS NOLL

Furthermore, the values of the infima over all function spaces F with C1(Ω)k ⊂ F ⊂
L1(Ω,m)k agree.

Applying Lemma 4.5 to (P ∗∗) with k = n + 1, letting z(x) stand for the pair
(y(x), z(x)), g(x) =∇u(x), and letting Φ(z(x))f(x) represent the term h∗(y(x), z(x))+
u(x)y(x), we are now allowed to calculate

sup
y∈C(Ω)

z∈C(Ω)n

(〈u, y〉+ 〈∇u, z〉 − Jh∗(y, z))(4.6)

in (P ∗∗), and Lemma 4.4 then shows that (4.6) equals

Jh∗∗(u, (∇u)a) +
∫

Ω

sup
z∈Πz(domh∗)

(
z · d(∇u)s

dϑ
(x)

)
dϑ(x),(4.7)

where ∇u = (∇u)a + (∇u)s denotes Lebesgue decomposition and d(∇u)s � dϑ. A
possible choice for ϑ is, for instance, the total variation of d(∇u)s. For every feasible
u we get in particular∫

Ω

sup
z∈Πz(domh∗)

(
z · d(∇u)s

dϑ
(x)

)
dϑ(x) =

∫
Ω

σΠz(domh∗)

(
d(∇u)s
dϑ

(x)

)
dϑ(x) <∞.

(4.8)

Here σΠz(domh∗)(y) denotes the support function of the convex set Πz(domh
∗) (cf.

[21]).
Example 2. For the Csiszár information measures (1.4) we have Πz(domh

∗) =
domφ∗. From [21, Theorem 13.3] we deduce σdomφ∗ = φ0+, the recession function
of φ:

φ0+(y) = lim
λ→∞

1

λ
(φ(x+ λy)− φ(x)) for an arbitrary x ∈ domφ.

For the particular case φ(t) = |t|p, p > 1, we have

φ0+(y) =

{
∞ if y �= 0,

0 if y = 0,

while the case p = 1, φ(t) = |t| gives φ0+(y) = |y|. So for p > 1 the singular part of ∇u
in (4.7) must vanish, since φ0+((d(∇u)s/dϑ)(x)) < ∞ only for (d(∇u)s/dϑ)(x) = 0
a.e. On the other hand, in case p = 1 we cannot argue that (∇u)s = 0, so we only
get u ∈ BV (Ω).

In general we need the assumption

Πz(domh
∗) is an affine subspace of dimension ≥ 1(A2)

to get u ∈ W 1,1(Ω). Notice that (A2) readily implies (A1). To understand the
meaning of (A2), consider the case where Πz(domh

∗) = R
n. Then h(x, ξ) is coercive

in its ξ-variable. More precisely, Πz(domh
∗) = R

n implies that for every fixed x,
h(x, ξ) grows stronger than linearly as |ξ| → ∞.

Proposition 4.6. If assumption (A2) is satisfied, every u which is feasible for
(P ∗∗) lies in W 1,1(Ω), and (P ∗∗) has the form

(P ∗∗) inf
u∈W 1,1(Ω)

{
Ih[u] +

α

2
|Au+B∇u− c|2 :

∫
Ω

u(x) dx = 1

}
.
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Remark 3. This means that (P ∗∗) coincides with (P )pen, formulated in the
Sobolev spaceW 1,1(Ω). Notice again here that this does not exclude situations where
the natural space for the objective Ih[u] is smaller, e.g., domIh ⊂ W 1,2(Ω). In this
case, u �∈ W 1,2(Ω) will have Ih[u] = ∞ and the solution will automatically be an
element of W 1,2(Ω).

Proof. As before, we present the argument in the case Πz(domh
∗) = R

n, i.e.,
where the affine subspace L generated by dom h∗ has dimension n. The general case
is settled by repeating the argument in L.

Under these circumstances, condition (A2) in tandem with h = h∗∗ allows reduc-
ing (4.7) to Jh(u,∇u) = Ih[u]. Indeed, with z ∈ Πz(domh

∗) arbitrary, the supremum
under the integral sign in (4.7) is +∞, unless (∇u)s = 0. Hence (∇u)a = ∇u, and
the claim follows. Further, we can write (4.2) in the form

sup
λ∈RN

(
− 1

2α
|λ|2 − λ · c+ 〈u,ATλ− divBTλ〉

)

= sup
λ∈RN

(
λ · (Au+B∇u− c)− α

2
|λ|2

)
=

1

2α
|Au+B∇u− c|2,

so (P ∗∗) is (P )pen formulated in the space W 1,1(Ω).
Propositions 4.3 and 4.6 now yield the main result for (P )pen.
Theorem 4.7. Under the hypothesis (A2), the penalization model (P )pen admits

a solution u ∈W 1,1(Ω).

5. Existence of solutions for (P )tol. Similar to (P )pen, the tolerance model
(P )tol can be written in the form

inf
u,v,e

sup
w,λ,µ,ν≥0

L̃(u, v, e;w, λ, µ, ν)

with

L̃(u, v, e;w, λ, µ, ν) = Jh(u, v) + 〈w,∇u− v〉+ λ · (Au+Bv − c− e)

+µ

(∫
Ω

u(x) dx− 1

)
+ ν(|e|2 − ε2).

Here we get the analogous results by similar reasoning so we will only cite the main
theorem.

Theorem 5.1. If (A2) is satisfied, the tolerance model (P )tol admits a solution
u ∈W 1,1(Ω).

6. Regularity. In this section we show that the regularity of the solutions ū of
(P )pen and (P )tol may be improved to give ū ∈ W 1,p(Ω) for some p > 1 if condition
(A2) is strengthened. For 1 ≤ . ≤ r consider the condition

there exists a measurable function y �→ y(z), R
n → R, such that

(i) |y(z)| ≤ K(1 + |z|)) for every z ∈ R
n, and

(ii) Jh∗(y(z), z) is bounded on a ball {z ∈ C1(Ω) : ‖z‖r ≤ C}.
(A3)

Clearly (A3) implies (A2) and may be understood as a coercivity condition on the
integrand h. Notice that (A3) is, for instance, satisfied if h∗ satisfies the growth
condition

(ii′) h∗(y, z) ≤ K(1 + |y|r/) + |z|r),
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which translates into a coercivity condition for h. In this case, y(z) = |z|ρ satisfies (i).
Corollary 6.1. Suppose (A3) (with 1 ≤ . ≤ r) is satisfied. Then every u

feasible for (P )pen (resp., (P )tol) lies in W
1,p(r,))(Ω) with

p(r, .)



= ∞, . = r = 1,

= r
r−1 , . = 1 < r,

= r
r−1 , . > 1 and r > n(.− 1),

< n()−1)
n()−1)−1 , . > 1 and r ≤ n(.− 1).

In particular, this is true for the solution u of (P )pen or (P )tol.
For the proof we need the following.
Lemma 6.2. Given u ∈ W 1,1(Ω) with ∇u ∈ Lp(Ω)

n for some p > 1 we have
u ∈W 1,p(Ω).

Proof. We have to show u ∈ Lp(Ω). Consider the sequence

un(x) =



u(x), |u(x)| ≤ n,

n, u(x) > n,

−n, u(x) < −n.

Then [28, Corollary 2.1.8] gives

∇un(x) =
{
∇u(x), |u(x)| < n,
0, |u(x)| ≥ n,

hence un ∈ W 1,p(Ω) for all n. We want to show that ‖un‖p is bounded so the Fatou
lemma will give the result. Following [1, Theorem 4.20] for each ε > 0 there exists a
set Ωε ⊂⊂ Ω such that for every v ∈W 1,p(Ω),

‖v‖p ≤ Kε‖∇v‖p +K‖v‖p,Ωε

with K = K(p,Ω). (Here ‖v‖pp,Ωε
=

∫
Ωε

|v(x)|p dx.) Now since u ∈ Lloc
p (Ω) (cf. [11,

Theorem 4.5.13]) we have ‖u‖p,Ωε <∞, and from the definition of un we get

‖un‖p ≤ Kε‖∇un‖p +K‖un‖p,Ωε ≤ Kε‖∇u‖p +K‖u‖p,Ωε = C <∞
for every n. Now, using un(x) → u(x) a.e., Fatou’s lemma provides

‖u‖p ≤ lim inf
n→∞ ‖un‖p ≤ C,

hence u ∈ Lp(Ω).
We proceed to complete the proof of the corollary.
Proof. We give the argument for (P )pen, the tolerance case being similar. Suppose

u ∈W 1,1(Ω) is feasible for (P )pen. By Proposition 4.6, it is then feasible for (P ∗∗) as
well, so we have

inf
z∈C1(Ω)n

(Jh∗(y(z), z) + 〈u, y(z)〉+ 〈∇u, z〉) > −∞.(6.1)

We want to construct a decreasing (possibly breaking off) sequence of exponents
rk ≥ r such that the term Jh∗(y(z), z) + 〈u, y(z)〉 is bounded on a ball ‖z‖rk ≤ C,
giving ∇u ∈ Lpk(Ω) with pk = rk

rk−1 by (6.1). Lemma 6.2 will imply u ∈W 1,pk(Ω).
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The procedure is the following. Suppose we have already constructed rk > r, pk =
rk/(rk − 1) > 1, with u ∈ W 1,pk(Ω) by the argument above. Then by the Sobolev
embedding theorem (cf. [1, p. 97]) we have u ∈ Lsk(Ω) with

sk

{
arbitrary if pk ≥ n,

= npk
n−pk if pk < n.

Using Hölder’s inequality and condition (i) of (A3) we have

|〈u, y(z)〉| ≤ ‖u‖sk‖y(z)‖s′k ≤ K̃ ‖u‖sk‖z‖)s′k
with 1

sk
+ 1
s′k

= 1. On the other hand, condition (ii) of (A3) implies that Jh∗(y(z), z)

is bounded on ‖z‖r ≤ C. Hence we choose rk+1 = max(r, .s′k). By construction the
sequence (rk) is strictly decreasing unless rk = r, the lowest exponent we can possibly
achieve. As soon as rk = r for some index k, the process stops giving u ∈W 1, r

r−1 (Ω).
(Notice that if pk ≥ n for some k, we can always choose sk large enough to guarantee
.s′k ≤ r, viz. rk+1 = r.)

Now we want to compute the rk explicitly: From Theorem 4.7 we know u ∈
W 1,1(Ω), i.e., p0 = 1, giving s1 = n

n−1 and r1 = max(r, .n). So we can actually stop
after the first step if r ≥ .n. Otherwise we get p1 = )n

)n−1 ,{
s1 = n)

n)−)−1 and r2 = max(r, n)
2

1+) ) for n)
n)−1 < n,

r2 = r if n)
n)−1 ≥ n.

Proceeding like this we get

rk =

{
n
k → 0 if . = 1,

n )−1
1−)−(k+1) ↘ n(.− 1) if . > 1,

so the process will break off, giving u ∈ W 1, r
r−1 (Ω), unless . > 1 and r ≤ n(. − 1).

In the latter case we still get u ∈W 1,p(Ω) for every p < n()−1)
n()−1)−1 .

Example 3. For the Csiszár information measures with φ(t) = |t|p discussed in
the preparatory section 1, we may choose y(z) = K|z|p′ ( 1

p +
1
p′ = 1), so r := . := p′

will do, and the corollary gives u ∈W 1,p̃(Ω) with

p̃

{
= p, p > n,

< n
n−p+1 = 1 + p−1

n−p+1 , p ≤ n.

In particular, for p close to 1 we have p̃ = 1 + ε(p) and u ∈ W 1,1+ε(p)(Ω) with
ε(p) := p−1

n−p+1 ↓ 0 for p ↓ 1.

Appendix. We still have to prove Lemma 4.5.
Lemma 4.5. Let m be a measure inM(Ω), f ∈ L1(Ω,m), g ∈ L1(Ω,m)k (k ∈ N),

and Φ : R
k → R ∪ {∞} be a proper convex lsc function. Then for the proper convex

lsc functional

F (z) =

∫
Ω

[Φ(z(x))f(x) + z(x) · g(x) ] dm(x)

on L1(Ω,m)k we have

inf
z∈C1(Ω)k

F (z) = inf
z∈L1(Ω,m)k

F (z).
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Furthermore, the values of the infima over all function spaces F with C1(Ω)k ⊂ F ⊂
L1(Ω,m)k agree.

Proof. We give the argument in the case where dom Φ has nonempty interior in
R
k, the general case being reducible to the former.

It is sufficient to show that for any z ∈ L1(Ω, µ)
m with F (z) < ∞ and any

ε0 > 0 we can find a y ∈ C1(Ω)m such that F (y) ≤ F (z) + ε0. The construction
of such a y will be divided into three steps. First we will prove the existence of a
function z̃ ∈ L1(Ω, µ)

m with values only in int(dom Φ) having F (z̃) ≤ F (z) + ε0
3 .

Then we will modify z̃ to get a function z̃n0
which maps Ω into a compact subset

of int(dom Φ), again having F (z̃n0) ≤ F (z̃) + ε0
3 . For the last step we will use the

Lipschitz continuity of Φ on compact subsets of int(dom Φ) to find a suitable measure
ν such that the approximation of z̃n0 with respect to ν by C1(Ω)m-functions will
also approach F (z̃n0). This will finally prove the existence of a y ∈ C1(Ω)m with
F (y) ≤ F (z̃n0) +

ε0
3 , giving F (y) ≤ F (z) + ε0 altogether.

Step 1. Consider z ∈ L1(Ω, µ)
m with F (z) <∞. Then we have z(x) ∈ domΦ a.e.

for every representative of z. In particular, we can choose a measurable representative
also denoted by z having z(x) ∈ domΦ for all x ∈ Ω.

For fixed ε > 0, δ > 0 we define the set-valued mapping

Γ(x) = {ζ ∈ int(dom Φ) : |ζ − z(x)| ≤ ε, Φ(ζ) ≤ Φ(z(x)) + δ} for all x ∈ Ω.

We want to show that Γ admits a measurable selector using the Kuratovski and Ryll-
Nardczevski measurable selection theorem [14]: Suppose Γ is a measurable set-valued
mapping with nonempty closed images. Then there exists a measurable z̃ : Ω → R

m

having z̃(x) ∈ Γ(x) for every x ∈ Ω.

As will be seen, for sufficiently small ε, δ, this selector satisfies F (z̃) ≤ F (z) + ε0
3 .

We have to verify three properties of Γ:

Γ(x) is closed for every x ∈ Ω: Fix x ∈ Ω and suppose (ζn) is a sequence in Γ(x)
converging to some ζ ∈ int(dom Φ). Then we have |ζ−z(x)| = limn→∞ |ζn−z(x)| ≤ ε
and Φ(ζ) ≤ lim infn→∞ Φ(ζn) ≤ Φ(z(x)) + δ, so ζ ∈ Γ(x) and Γ(x) is closed in
int(dom Φ).

Γ(x) is nonempty for all x ∈ Ω: Since Φ is proper convex and lsc, epi Φ is a closed
convex subset of R

m × R with

epiΦ = int(epi Φ)

(cf. [21, p. 46]). Hence any point (z(x),Φ(z(x))) ∈ epi Φ can be approximated by a
sequence (ζn,Φ(ζn) + δn) ∈ int(epi Φ); that means ζn ∈ int(dom Φ) and δn > 0. But
then we must have ζn ∈ Γ(x) for n sufficiently large, so Γ(x) is nonempty.

Γ is measurable: We have to show that for each measurableM ⊂ R
m the preimage

Γ−1(M) is a measurable subset of Ω. Here, without loss of generality, we can assume
M ⊂ int(dom Φ). We get

Γ−1(M)=
{
x ∈ Ω : ∃ ζ ∈M : z(x) ∈ B(ζ, ε),Φ(z(x)) ≥ Φ(ζ)− δ}

=
{
x ∈ Ω : ∃ y ∈ B(0, ε), ∃ ζ ∈M : z(x) = y + ζ, Φ(z(x)) ≥ Φ(ζ)− δ}

=
{
x ∈ Ω : ∃ y ∈ B(0, ε) : (z(x),Φ(z(x)))∈ epi (Φ− δ) ∩ (M × R) + {(y, 0)}}

=
{
x ∈ Ω : (z(x),Φ(z(x))) ∈ epi (Φ− δ) ∩ (M × R) +B(0, ε)× {0}}

= (z,Φ(z))−1 (epi (Φ− δ) ∩ (M × R) +B(0, ε)× {0}) .
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Since epi (Φ− δ) is closed and therefore measurable, Γ−1(M) is now the preimage of
a measurable set under the measurable map x �→ (z(x),Φ(z(x))); hence Γ−1(M) is
measurable.

Now we can apply the selection theorem of Kuratovski and Ryll-Nardczevski to
get a measurable function z̃ with z̃(x) ∈ Γ(x) for all x ∈ Ω. By the definition of Γ we
have z̃ ∈ L1(Ω, µ)

m and

F (z̃) ≤ F (z) + δ

∫
Ω

|f(x)| dµ(x) + ε
∫

Ω

|g(x)| dµ(x),

so for sufficiently small δ and ε, F (z̃) ≤ F (z) + ε0
3 , and the first step is proven.

Step 2. Without loss of generality, assume 0 ∈ int(dom Φ) and Φ(0) = 0. Now
choose an increasing sequence (Dn) of compact subsets of R

m having 0 ∈ D1 and

Dn ↑ int(dom Φ), Dn ⊆ {ζ ∈ R
m : |Φ(ζ)| ≤ n}, Dn ⊂ int (Dn+1).

Defining Ωn = z̃−1(Dn) = {x ∈ Ω : z̃(x) ∈ Dn} and letting z̃n = χΩn · z̃, we have
z̃n(x) → z̃(x) and Φ(z̃n(x)) → Φ(z̃(x)) pointwise, since Ωn ↑ Ω. Now

|F (z̃n)| ≤
∫

Ω

|Φ(z̃(x))f(x) + z̃(x) · g(x)| dµ(x) for all n ∈ N

and dominated convergence implies F (z̃n) → F (z̃), so we can choose some n0 ∈ N

with F (z̃n0
) ≤ F (z̃) + ε0

3 .
Step 3. Now we have z̃n0(x) ∈ Dn0 for all x ∈ Ω, so if we want to approach z̃n0

by smooth functions we can restrict ourselves to functions with values in Dn0+1 since
Dn0 is a compact subset of int (Dn0+1) having a positive distance from its boundary.
But for each y ∈ C1(Ω)m with values in Dn0+1 we get

|F (z̃n0)− F (y)| ≤
∫

Ω

|z̃n0(x)− y(x)| (Ln0+1|f(x)|+ |g(x)|) dµ(x),

where Ln0+1 denotes the Lipschitz constant of Φ onDn0+1. So we have to approximate
z̃n0

with respect to the measure dν = (Ln0+1|f |+ |g|) dµ. Choosing y ∈ C1(Ω)m with
‖z̃n0

− y‖L1(Ω,ν)m ≤ ε0
3 (notice z̃n0 ∈ L1(Ω, ν)

m, hence such a y exists), we finally get

F (y) ≤ F (z̃n0) +
ε0
3

≤ F (z̃) + 2
ε0
3

≤ F (z) + ε0,

and the proof is complete.
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