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Abstract. We study constrained and unconstrained optimization programs for nonconvex maximum eigen-
value functions. We show how second order techniques may be introduced as soon as it is possible to reliably
guess the multiplicity of the maximum eigenvalue at a limit point. We examine in which way standard and
projected Newton steps may be combined with a nonsmooth first-order method to obtain a globally convergent
algorithm with a fair chance to local superlinear or quadratic convergence.
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1. Introduction

This paper continues the study of eigenvalue optimization programs initiated in [31].
We investigate programs featuring nonconvex maximum eigenvalue functions, like the
unconstrained eigenvalue program

minimize f (x) = λ1 (F(x)) , x ∈ R
n (1)

and the constrained eigenvalue program

minimize c�x, x ∈ R
n

subject to f (x) = λ1 (F(x)) ≤ 0
(2)

Here F : R
n → S

m is a class C2 operator with values in the space S
m of symmetric

m×m matrices, and λ1 : S
m → R is the maximum eigenvalue function, which is convex

but generally nonsmooth. In consequence, f is in general neither smooth nor convex.
We investigate in which way first-order spectral bundle techniques for programs (1) and
(2) developed in [10, 39, 31] can be combined with second-order steps in order to get
fast local convergence. This is of vital importance in practice, since first-order methods
have a tendency to get stalled toward the end of the optimization process. In smooth pro-
gramming, this phenomenon is addressed by the use of second-order techniques, which
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lead to superlinear or quadratic convergence as soon as iterates get close enough to a
local solution. It is a long standing research issue to identify similar second-order meth-
ods for nonsmooth programs. Presently we contribute two such methods for eigenvalue
optimization, and we discuss and clarify previous approaches in [10, 39].

Local second-order methods for eigenvalue optimization have been examined before.
Much pioneering work has been contributed by M. Overton in a series of papers [32–36]
beginning in the 1980s, where Newton type methods for (1) are considered. Further to
be mentioned among the earliest contributions are J. Cullum et al. [10], R. Fletcher [12],
A. Shapiro [44, 45] and A. Shapiro and M.K.H. Fan [46].

The specificity of our contribution is that we combine first and second-order tech-
niques in a unified framework. To our knowledge, the only source where this has been
explicitly proposed before is Oustry [39]; see also [18, 28], where such a combined
strategy has been examined for program (1) with a convex objective f = λ1 ◦ A.

The combined approach requires two elements, a first-order method, generating a
descent or Cauchy step, xC , and the second-order technique, proposing a Newton type
step xN . The Cauchy point xC could for instance be obtained by a spectral bundle algo-
rithm like the one analyzed in [31]. This algorithm is of ε-subgradient type and was
originally proposed by Cullum et al. [10] and further developed by Oustry [39] for con-
vex programs (1). But other techniques could be used instead, like for instance [40, 41,
2, 1, 3], where modifications of the ε-subgradient strategy are considered.

Second-order methods generating Newton steps xN are presently analyzed. We
examine the corresponding tangent quadratic programs in detail and show that it may
be profitable to use a projected Newton or quasi-Newton method, where the partial
smoothness of the maximum eigenvalue function along certain manifolds is exploited.
For related ideas we refer to Hare and Lewis [17], where the idea of semi-smoothness is
developed, and to Mifflin and Sagastizábal [30], where UV -analysis is used to generate
second-order steps.

General purpose bundle methods are discussed in Lemaréchal [25, 26], Wolfe [48]
or Kiwiel [22, 23]. Combining those with second-order steps may lead to complications
as soon as the bundle procedure builds up memory from previous steps. The subtle
mechanism which usually combines null steps and serious steps will have to be mod-
ified in order to accommodate steps xN proposed by the second-order method. Using
the memoryless spectral bundle method [10, 39, 31] avoids this fallacy. We mention,
however, that first and second-order techniques of our combined scheme are modulable
in the sense that any first-order nonsmooth technique producing the Cauchy step xC

with a convergence certificate could be used within the combined framework, as soon as
the mentioned difficulties are dealt with. For instance, in [41], Polak and Wardi present
an alternative approach, which could also be adapted to compute a Cauchy step xC . Yet
another possibility is proposed in [1], where this idea is further developed to include
semi-infinite cases like the H∞-norm. We also mention Fletcher [13, Ch. 14], where
composite optimization programs of the from minx∈Rn φ (F(x)) with smooth F and
nonsmooth convex φ are discussed. The author obtains a second order method if φ is a
polyhedral function. For non-polyhedral φ like λ1, it would again become necessary to
build up a polyhedral approximation of φ of increasing complexity.

The outline of the paper is as follows. The first-order method from [31] is briefly
recalled in Section 3. Section 4 examines the structure of the second-order tangent
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programs, while the idea of the projected Newton method is discussed in Sections 5
and 6. The affine case is discussed in Section 7, and a link with the method in [39] is
established. Section 8 presents an extension of the Dennis-Moré theorem to projected
quasi-Newton methods. The constrained eigenvalue program is discussed at some detail
in Sections 9 and 10.

2. Notation

We follow [19] and [8] for notions from convexity and nonsmooth analysis. We con-
sider the Euclidean space S

m of symmetric m × m matrices, equipped with the scalar
product X • Y = tr(XY). The differential of an operator F : R

n → S
m is denoted as

F ′(x). Its adjoint F ′(x)� is a linear operator S
m → R

n. For an affine A : R
n → S

m,
A(x) = A0 + ∑n

i=1 xiAi , the derivative A′ is simply the linear part A of A, given as
Ax = ∑n

i=1 xiAi . Its adjoint is then A�Z = (A1 • Z, . . . , An • Z).

3. The ε-management

The spectral bundle method analyzed in [31] was originally developed by Cullum et
al. [10] and Oustry [39] for convex f = λ1 ◦ A. It is based on the the following
mechanism. Let x ∈ R

n be the current iterate, and put X = F(x) ∈ S
m. Choose

ε > 0 and keep the indices i = 1, . . . , r(ε) of those eigenvalues λi(X) of X satisfying
λ1(X) ≥ λi(X) > λ1(X) − ε. Here r(ε) is called the ε-multiplicity of λ1(X). Now
choose a matrix Qε of size r(ε) × m, whose columns form an orthonormal basis of the
invariant subspace of X associated with the first r(ε) eigenvalues. Then define

δεf (x) =
{
F ′(x)�G : G = QεYQ�

ε , Y 	 0, tr(Y ) = 1, Y ∈ S
r(ε)

}
,

called the ε-enlarged subdifferential of f at x. This set satisfies ∂f (x) ⊂ δεf (x) ⊂
∂fε(x), as proved in [39], and serves as a good inner approximation of ∂εf (x).

As is well-known, the force of the ε-subdifferential for convex functions f is based
on the fact that 0 �∈ ∂fε(x) allows to decrease the value of the objective function by at
least ε > 0. This basic mechanism has to be refined if the approximation δεf of ∂εf is
used, as presented in Oustry [39]. If f = λ1 ◦ F is no longer convex, the ε-subdifferen-
tial and also δεf loose their global properties, which makes quantifying descent a more
complicated task. This is studied in the first part [31] of this work.

Choosing ε > 0 to generate a suitable descent step for f at x is referred to as the
ε-management (see [39], [31]). In the essence, ε must meet the following two criteria.
We need 0 �∈ δεf (x). This ensures that the direction d of steepest ε-enlarged descent,
obtained by solving the semidefinite program

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ δεf (x)}

is a descent direction of f at x. Secondly, if possible, the choice of ε should give the most
sizable descent away from x. In particular, descent should be quantifiable, and should be
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realizable by a finite line search. How all this should be organized is shown in [31] and
also [1, 3], where variations of the same theme are considered. During the following,
the first-order descent step in question will be denoted by xC , and will be referred to as
the Cauchy step. In the smooth case, it corresponds to a standard steepest descent step
away from the current x.

4. Second-order methods

Second-order techniques with local superlinear or quadratic convergence are brought
into play in eigenvalue optimization with the help of an oracle predicting the multiplicity
r̄ of λ1 at the limit X̄ = F(x̄) during the terminal phase of the algorithm. Naturally, there
cannot be any rigorous way of forecasting r̄ , hence the name of an oracle. But heuristic
methods have been proposed in the literature and work quite well in practice (see e.g.
[12, 32–34]). For instance, Overton [33, Section 4] suggests the following estimate r of
r̄ . Choose the smallest r such that

λ1(X) − λr(X) ≤ τ max (1, |λ1(X)|) , (3)

λ1(X) − λr+1(X) > τ max (1, |λ1(X)|) ,

where τ > 0 is some small tolerance, which has to be adjusted a few times during the
course of the minimization process.

Guessing the multiplicity of λ1(X̄) while visiting iterates Xk = F(xk) near X̄ =
F(x̄) may be expressed in terms of the ε-management. We aim at r(εk) = r̄ when xk

is close to x̄. As long as this works out successfully, our method will indeed guarantee
fast local convergence. On the other hand, if we fail to identify r̄ , our local quadratic
model will be incorrect. The risk we are then taking is that our higher computational
load, needed to generate second-order steps, is wasted in so far as convergence is no
better than that of the underlying first-order method. But we do not put convergence
itself at stake as long as we rely on first-order information based on the true objective
function f . The overall scheme is outlined in Figure 1.

The basic idea of the scheme in Figure 1 is clear. The Cauchy step xC gives a con-
vergence certificate in the sense elaborated in [31] or [1, 3]. The test in step 6 assures
that if the second-order trial step xN fails from various reasons, (progress too small:
pN < θpC , or even no progress at all: pN ≤ 0), we can at least fall back to the progress
pC > 0 achieved by xC , take this as the new iterate, and proceed. On the other hand, if
the information from the oracle was sound, and if the Newton step xN takes its grip, then
we have a fair chance to assure superlinear or quadratic convergence toward x̄. To our
knowledge, the only reference where such a combined scheme was proposed is Oustry
[39], who treats the case of a convex f = λ1 ◦ A.

Naturally, the scheme in Figure 1 leaves various questions to be resolved. First of all,
we have to clarify in which way the Newton step xN should be computed. Propositions
will be made in sections 5, 6 and 10. Secondly, if we decide for instance to use a trust
region strategy to compute xN , we have the problem that we cannot match the values
of the tangent quadratic model with the values of f = λ1 ◦ F , as we would naturally
do in the smooth case. This is because our model relies on the guess r , so if r �= r̄ , the
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Combined algorithm for (1)

1. If 0 ∈ ∂f (x) stop.
2. At current x, compute Cauchy point xC using the first

order spectral bundle method [31]. Compute progress
pC = f (x) − f (xC) > 0.

3. Using (3), make a guess r of the unknown multiplicity r̄ of
the leading eigenvalue λ1 in the limit. Pick ε > 0 such
that r = r(ε).

4. Form a second-order model based on r(ε) and compute a
Newton step xN by solving the tangent quadratic program,
using line search, trust regions or a filter.

5. Compute decrease pN = f (x) − f (xN ).
6. Accept xN as new iterate x+ if pN ≥ θpC for fixed 0 < θ < 1.

Otherwise let x+ = xC .
7. Replace x by x+ and go back to step 1.

Fig. 1.

local quadratic model does not represent f correctly. In consequence, the usual updat-
ing strategy for the trust region radius is not guaranteed to terminate finitely. Similar
comments apply to a line search strategy.

Another more technical question is whether elements needed to compute the first-
order step xC may be recycled to build second-order elements, and vice versa. Before
we settle these and other problems, we will have to elaborate the precise form of the
tangent program based on knowledge of r .

5. Merits of the oracle

Suppose at iterate xk we have correctly guessed the limiting multiplicity r̄ and chosen
εk so that r(εk) = r̄ . This means that at the local minimum x̄, the matrix X̄ = F(x̄) lies
in the smooth manifold

Mr̄ = {X ∈ S
m : λ1(X) = · · · = λr̄ (X) > λr̄+1(X) ≥ · · · ≥ λm(X)},

whose dimension is m(m+1)
2 + 1 − r̄(r̄+1)

2 (cf. [46, 21]). Now observe that on Mr̄ , the
maximum eigenvalue λ1 coincides with the average of the first r̄ eigenvalues:

λ̂r̄ (X) := 1

r̄

r̄∑

i=1

λi(X),

which is a convex and smooth function in the neighborhood U = {X ∈ S
m : λr̄ (X) >

λr̄+1(X)} of Mr̄ . Then we may replace the nonsmooth information contained in f =
λ1 ◦ F by the smooth information contained in the function f̂ = λ̂r̄ ◦ F by adding the
constraint F(x) ∈ Mr̄ . We replace program (1) by the nonlinear smooth constrained
program:

minimize f̂ (x) = λ̂r̄ (F(x)) , x ∈ R
n

subject to F(x) ∈ Mr̄
(4)
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A set of equations h1(X) = 0, . . . , hp(X) = 0 describing the manifold Mr̄ has been
presented independently in [4], [34], [46] and later in [38]. Here p = r̄(r̄+1)

2 − 1 is the
codimension of Mr̄ in S

m. The set Nr̄ = {x ∈ R
n : F(x) ∈ Mr̄} is then described by

the set of equations h1(F(x)) = 0, . . . , hp(F(x)) = 0.
To apply standard SQP methods to (4), we require a constraint qualification hypothe-

sis. Transversality used in [34, 46, 38, 39] may serve this purpose.An easy way to describe
it is to say that the Jacobian of the set of equations h1 (F(x)) = 0, . . . , hp (F(x)) = 0
has maximal rank p for x in a neighborhood of x̄. In that event, Nr̄ is also a smooth
manifold. Under transversality, local theory for (4) will therefore follow standard lines
in SQP theory. All this has been presented in [32, 34] and [46], and our only concern
here is how the local second order theory goes along with the first-order part needed for
global convergence.

Let us first examine the extra work required for the tangent quadratic program for
(4). The Lagrangian is L(x; σ) = λ̂r̄ (F(x))+∑p

i=1 σihi (F(x)). Therefore, the tangent
program used to compute the step δx about the current point x with current Lagrange
multiplier estimate σ is

minimize f̂ ′(x)�δx + 1
2δx�L′′(x, σ ) δx, δx ∈ R

n

subject to hi(x) + h′
i (x)�δx = 0, i = 1, . . . , p

(5)

Let us find the explicit forms of the gradient f̂ ′(x) and the Hessian L′′(x, σ ) of the
Lagrangian L.

Following [34, Cor. 3.10], f̂ is differentiable in the neighborhood U of Mr̄ . An
explicit formula for the gradient is

f̂ ′(x) = r̄−1 F ′(x)∗



∑


≤
̄

Qk

Q�

k




 , (6)

where k
 are the indices of the leading eigenvalues, that is,

λk
−1(X) > λk

(X) = · · · = λk
+1−1(X) > λk
+1(X),

and where k
̄ is the index of the leading eigenvalue of the group containing λr̄ , which is
itself at the end of this group, that is, r̄ = k
̄+1 − 1. Here the columns of Qk


form an
orthonormal basis of the eigenspace of λk


(X).
The Hessian of the Lagrangian on the other hand isL′′(x, σ ) = f̂ ′′(x)+∑p

i=1 σi h′′
i (x),

where the second derivative of the objective function is characterized by its quadratic
form

d�f̂ ′′(x)d = λ̂′
r̄ (X) • [d, F ′′(x)d] + D • λ̂′′

r̄ (X) D,

and the quadratic form of λ̂′′
r̄ (X) is explicitly given in [47, Prop. 1.3]:

D • λ̂′′
r̄ (X) D = 2

r̄

∑


≤
̄

tr
(
Q�

k

D

(
λk


Im − X
)†

DQk


)
. (7)



Spectral bundle methods 735

Finally, an explicit form of h′′(x) is presented in [46, 34], where the approach (4) has
been discussed among other eigenvalue programs.

The extra work involved in computing f̂ ′(xk) is minor, as the matrix Qεk
needed

for the steepest εk-enlarged descent direction in the first-order method requires the same
work. Suppose we compute the Cauchy point xC

k first, which involves computing the
r(εk)×m matrix Qεk

. Then we may re-arrange these columns into the different matrices
Q
k

, if necessary by adding some columns. The extra work for the second-order method
is therefore solely in computing the Hessian of the Lagrangian L′′(x; σ), and of course
in solving the tangent quadratic program.

Remark. As a result of this section we have a first realization of the general scheme
in Figure 1 in the case of program (4). The Cauchy point xC may be provided by the
method in [31] or any of the variants from [40, 2, 1, 3]. The Newton step xN is computed
by solving the tangent quadratic program (5), combined either with a line-search [6],
trust region [9] or filter method [15]. In each case, the progress of the model has to be
compared to the progress of the function f̂ , which assures that xN is found by a finite
procedure. If no progress in f̂ is possible, we fall back to xC , and only if xC provides
no progress over the current x, we stop at a critical point of f .

6. Projected Newton method for F (x) = 0

In this section we consider a more elaborate form of the tangent program, which exploits
the information obtained from the oracle a little further.

Provided we can trust our guess r of the limiting multiplicity r̄ of λ1, it seems attrac-
tive to force the iterates Xk to lie on the manifold Mr , because this is where we expect
X̄ to lie in, and because we will then benefit from the differentiable structure of Mr . In
the following we examine this option from a slightly more general point of view.

Suppose we want to solve the nonlinear system of equations F(x) = 0, where
F : R

n → R
n. Suppose further that a little bird tells us that a local solution x̄ lies on a

manifold M described by the system of equations G(x) = 0, where G : R
n → R

k for
some k < n. Then we may consider the projected Newton method proposed in Figure 2.

Bringing in the additional information x̄ ∈ M as in step 2 of the method seems
attractive, but we have to make sure that this is not in conflict with Newton’s method.
We have the following

Proposition 1. Suppose F(x̄) = 0 and G(x̄) = 0. Suppose F ′(x̄) is invertible with
‖ (

F ′(x̄)
)−1 ‖ ≤ β. Suppose further that F ′(x) is Lipschitz continuous with constant γ

Projected Newton method for F = 0

1. Given the current iterate xc , compute a Newton step
x+ = xc − (

F ′(xc)
)−1

F(xc).

2. Project x+ orthogonally onto M and obtain x++ ∈ M.
3. Replace xc by x++ and loop on with step 1.

Fig. 2.
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on a neighborhood B(x̄, r) = {x : ‖x − x̄‖ ≤ r} of x̄. Then there exists 0 < ρ ≤ r such
that for every x1 ∈ B(x̄, ρ), the sequence xk generated by the projected Newton method
in Figure 2 is well-defined, stays in B(x̄, ρ), and converges quadratically to x̄.

Proof. We closely follow [11, p. 90]. Let ρ = min{r, 1/3βγ }. Then the argument in that
reference shows that the Newton step x+ at the current xc satisfies

‖x+ − x̄‖ ≤ 3

4
βγ ‖xc − x̄‖2. (8)

Since by induction xc ∈ B(x̄, ρ), we have ‖xc − x̄‖ ≤ 1/3βγ , hence

‖x+ − x̄‖ ≤ 1

4
‖xc − x̄‖.

By the definition of x++ in step 3 of the algorithm we have ‖x+ − x̄‖ ≥ ‖x+ − x++‖.
Hence ‖x++ − x̄‖ ≤ ‖x+ − x̄‖ + ‖x+ − x++‖ ≤ 2‖x+ − x̄‖, so we obtain

‖x++ − x̄‖ ≤ 1

2
‖xc − x̄‖.

This last estimate proves ‖x++ − x̄‖ ≤ 1
2ρ, so that iterates stay in the ball B(x̄, ρ).

This proves that the projected Newton method in Figure 2 is well-defined, and that the
sequence of iterates x++ converges linearly to x̄. Going back to (8) with this information
proves quadratic convergence. Indeed, we now have

‖x++ − x̄‖ ≤ 2‖x+ − x̄‖ ≤ 3

2
βγ ‖xc − x̄‖2,

which proves the claim. ��
We use the projected Newton method to approach the second-order program (4) from

a different point of view. Consider the following equivalent cast of (4), lifted in the space
R

n × S
m:

minimize λ̂r̄ (X)

subject to h(X) = 0 (i.e. X ∈ Mr̄ )

F(x) − X = 0
(9)

The Lagrangian is L(x, X; σ, �) = λ̂r̄ (X) + σ�h(X) + � • (F(x) − X), and the
necessary optimality conditions read:

λ̂′
r̄ (X) + h′(X)∗σ − � = 0, F ′(x)∗� = 0, h(X) = 0, F(x) − X = 0, (10)

which defines a system of equations in (x, X, σ, �) ∈ R
n × S

m × R
p × S

m with a
corresponding self-map F . But the oracle told us that X̄ ∈ Mr̄ , the information we
already used to come up with the second-order cast. So why not use it again by defining
the manifold

M = R
n × Mr̄ × R

p × S
m,

described by the set of equations G(x, X, σ, �) = h(X) = 0, and stabilize or even
accelerate Newton’s method by projecting onto M as above? The projection operator
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onto M is readily found, it is (x, X, σ, �) �→ (x, Xr̄ , σ, �), where X �→ Xr̄ is the
orthogonal projection onto Mr̄ , which is given by (cf. [39, Section 5.3]):

X �→ Xr̄ := X + Qε

(
λ̂r̄ (X)Ir̄ − diag(λ1(X), . . . , λr̄ (X))

)
Q�

ε .

Here r(ε) = r̄ , and the columns of Qε are an orthonormal basis of the invariant sub-
space of X associated with the first r(ε) eigenvalues of X. The corresponding projected
Newton method is now the one given in Figure 3.

In [39] a similar approach is considered. Projecting X → Xr is referred to as a verti-
cal step, while the Newton type iteration is called a tangential step. Deriving these steps
from the general projected Newton method above not only proves local convergence of
the method, but clarifies the outset.

Naturally we should cast the Newton step as a tangent quadratic program. Its appeal-
ing feature is that due to linearity of the constraint F(x)−X = 0 in X, we may eliminate
the variable δX and obtain a program in δx. Omitting constant terms, this becomes

minimize
[
F ′(x)∗

(
λ̂′

r (Xr) + (λ̂′′
r (Xr) + h′′(Xr)σ )(F(x) − Xr)

)]�
δx

+ 1
2δx�[F ′(x)∗(λ̂′′

r (Xr) + h′′(Xr)σ )F ′(x) + F ′′(x)�] δx

subject to h(Xr) + h′(Xr)
∗(F(x) − Xr) + F ′(x)δx = 0

(11)

After obtaining the step δx and the multiplier update σ + δσ as the multiplier of the
constraint in (11), we obviously obtain the step δX = F ′(x)δx in matrix space, while
the matrix multiplier update � + δ� is obtained as

�+ = � + δ� = h′(X+)�(σ + δσ ) + σ�h′′(X+)δX,

a relation which is explicit since X is explicit in the artificial constraint F(x) − X = 0.
Program (11) is interesting since it contains an element which we already encountered
in the first part [31].

Lemma 1. Suppose r = r(ε) = r̄ . Then for X sufficiently close to X̄, λ̂′
r (Xr) is just the

smallest ε-enlarged subgradient of λ1 at X, i.e., λ̂′
r (Xr) = argmin{‖G‖ : G ∈ δελ1(X)}.

Proof. Since r(ε) = r = r̄ , [39, Prop. 9] shows that we have δελ1(X) = ∂λ1(Xr) =
{QεYQ�

ε : Y 	 0, tr(Y ) = 1, Y ∈ S
r}, where the latter uses the well-known charac-

terization of ∂λ1. Here Qε is of size r ×m and its columns form an orthonormal basis of
the eigenspace of λ1(Xr). Therefore the program defining steepest ε-enlarged descent is

min{‖QεYQ�
ε ‖ : Y 	 0, tr(Y ) = 1, Y ∈ S

r}.

Local second-order algorithm for f = λ1 ◦ F

1. Given the current iterates x, X and multiplier estimates σ , �,
choose ε and r = r(ε). Project X onto Mr and obtain Xr .

2. Do a Newton step (x, Xr , σ, �) + (δx, δX, δσ, δ�) for the KKT
system (10).

3. Obtain (x+, X+, σ+, �+) and loop on with step 1.

Fig. 3.
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Observe next that the function λ̂r is differentiable in a neighborhood of X̄, hence at Xr

in this neighborhood. As we have λ1(X̄) = · · · = λr(X̄) > λr+1(X̄) at the optimum
X̄, we also have λr(X) > λr+1(X) as soon as X is sufficiently close to X̄. In partic-
ular, Xr , the projection of X onto Mr , is then also close to X̄, and we deduce that
λ1(Xr) = · · · = λr(Xr) > λr+1(Xr). Then formula (6) simplifies to

λ̂′
r (Xr) = r−1QεQ

�
ε ,

because the only relevant eigenvalue gap of Xr is between r and r+1, and since r = r(ε).
It suffices now to argue that ‖QεYQ�

ε ‖ = ‖Y‖ and that the minimum over these ‖Y‖
with Y 	 0 and tr(Y ) = 1 is attained at Y = Ir . In fact, this comes down to

min

{
r∑

i=1

t2
i :

r∑

i=1

ti = 1, ti ≥ 0

}

,

which is attained at t1 = · · · = tr = 1/r . ��

Computing λ̂′
r (Xr) is even closer to what is required for the first-order method. The

matrix Qε is directly used for both, which is a slight advantage of the projection method
over the approach (4). Similarly, λ̂′′

r (Xr) in (7) comes out somewhat simpler. Since the
artificial variable δX may be eliminated in the tangent program, this means that the
additional projection step does not increase the numerical burden of the method.

Remark. Notice that gr = F ′(x)∗λ̂′
r (Xr) is the image of the minimum norm element

Gr = λ̂′
r (Xr) in δελ1(X) under F ′(x)∗, while the steepest ε-enlarged subgradient is the

minimum norm element amongst the g = F ′(x)∗G, G ∈ δελ1(X). This looks pretty
close, as if only a change of norms was involved. So could we use g instead of gr in
the second-order method? This would be convenient, as g is required for the first-order
algorithm. The answer is no, as can be seen from the fact that g will tend to 0, while gr ,
the gradient of the objective in (4), will only converge to 0 when x̄ is an unconstrained
minimum, a case we exclude when we assume r̄ > 1.

We conclude this part by relating the local algorithm in Figure 3 to the general
scheme from Figure 1. While xC is obtained as before, we now use the tangent quadratic
program (11) to compute the Newton step xN . Progress of xN over the current x has to be
evaluated with regard to the guessed model f̂ upon which (9) is built. When xN does not
offer sufficient progress over the current x, the second order method is dispensed with,
and the first-order step xC is taken. In this event, the second order model is restarted
at the next sweep with a new guess r+ based upon (3). Notice that when r+ �= r , new
Lagrange multiplier estimates will be required at the next iteration.

7. The affine case

In this section we compare the projected Newton approach to previous work in [39] for
affine A. Here we have the choice to representing the tangent quadratic program to (4)
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either in the variable δx as above, or in the variable δX. In the latter it looks as follows:

minimize λ̂′
r (Xr) • δX + 1

2δX •
(
λ̂′′

r (Xr) + h′′(Xr)σ
)

δX

subject to h(Xr) + h′(Xr)
∗δX = 0

A0 − Xr − δX ∈ range(A)

(12)

First observe that the Hessian (7) has a more amenable form at points Xr ∈ Mr :

D • λ̂′′(Xr) D = 2r−1tr
(
Q�

ε D (λ1(X)Im − Xr)
† DQε

)
.

This is again due to the fact that the only relevant eigenvalue gap is between k
 − 1 = r

and k
 = r + 1. Now let us recall the following

Definition 1. (cf. Oustry [37, 38], [29]). Let X ∈ Mr and G ∈ ∂λ1(X) and define a
linear operator H(X, G) : S

m → S
m by

H(X, G)D = GD (λ1(X)Im − X)† + (λ1(X)Im − X)† DG.

Let U(X) = {U ∈ S
m : Q�

1 UQ1 − r−1
(
tr Q�

1 UQ1
)

Ir = 0}, where the columns of Q1
form an orthonormal basis of the eigenspace of λ1(X) = · · · = λr(X). Then

∇2LU (X, G; 0) = proj∗U(x)H(X, G)projU(X)

is called the U-Hessian of λ1 at (X, G), where projU(X) is the orthogonal projection
onto U(X).

In [38, 39] the U-Hessian is obtained from the more general U-Lagrangian theory
developed in [29]. We reproduce it here in a slightly less general form, which is sufficient
for our purpose. Indeed, observe that in our case, r(ε) = r and Qε = Q1. Therefore,
we have the following

Lemma 2. Let r(ε) = r . Let Xr ∈ Mr and let Gr = λ̂′
r (Xr) ∈ δελ1(X) = ∂λ1(Xr)

be the steepest ε-enlarged subgradient. Then

1. The operator H(Xr, Gr) is identical with the Hessian λ̂′′
r (X).

2. U(Xr) is the tangent space to Mr at Xr .
3. For D ∈ U(Xr), the U-Hessian and λ̂′′

r (X) agree.

Proof. By the definition of H(Xr, Gr) we have

D • H(Xr, Gr)D = 2 tr
(
GrD (λ1(Xr)Im − Xr)

† D
)

.

Now recall that Gr = λ̂′
r (Xr) = r−1QεQ

�
ε , hence

D • H(Xr, Gr)D = 2r−1tr
(
G�

ε D (λ1(X)Im − Xr)
† DQε

)
= D • λ̂′′

r (Xr)D,

which proves equality in item 1. Items 2 and 3 are now clear. ��
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This brings us now to the following observation. In [39, 5.4 (51)] the author proposes
the following tangent program for the affine case f = λ1 ◦ A, f̂ = λ̂r ◦ A.

(∗)

minimize Gr • δX + 1
2δX • H(Xr, Gr) δX

subject to δX ∈ U(Xr)

Xr + δX ∈ A0 + range(A)

From Lemma 2, item 1, we now see that programs (12) and (*) are the same, up to
omission of the term h′′(Xr)σ in (∗) above. As Proposition 2 in the next section will
show, this omission entails that (∗) above and therefore Theorem 15 in [39] is incor-
rect. The same happens in program (3.47) of [28], where the omission of the constraint
Hessian foils quadratic convergence of the second-order proximal bundle algorithm 3.3
presented in that reference. Yet another instance of this error is [18], where the tangent
program (11.7.38) misses the very same term. The error may finally be traced back to
Algorithm 6.12 in [38], and to Theorem 6.13 of that paper.

8. Projected quasi-Newton method for F (x) = 0

In order to examine which digressions from the model projected Newton method in
Figure 2 are authorized without foiling superlinear convergence, we need a result in the
spirit of the classical Dennis-Moré theorem on quasi-Newton methods. We introduce a
projected quasi-Newton method via Figure 4.

By Proposition 1 this scheme exhibits local quadratic convergence in the default case
Ak = F ′(xk). We prove an extension to quasi-Newton methods under the hypothesis
that the projection P onto the manifold M is a differentiable operator.

Proposition 2. Let F : R
n → R

n, and let the solution x̄ of F(x) = 0 be an element of
the manifold M. Suppose F ′ is Lipschitz continuous on a neighborhood D of x̄, and that
F ′(x̄) is nonsingular. Suppose the orthogonal projector P onto M is differentiable. Let
Ak be a sequence of quasi-Newton matrices such that the sequences xk , x̂k generated by
the projected quasi-Newton algorithm remain in D. Then xk converges superlinearly to
x̄ if and only if

lim
k→∞

‖ (
Ak − F ′(x̄)

)
(xk+1 − xk)‖

‖xk+1 − xk‖ = 0. (13)

Projected quasi-Newton method for F = 0

1. Given the iterate xk , compute a quasi-Newton step
x̂k+1 = xk − A−1

k F (xk).
2. Project x̂k+1 onto M and obtain xk+1.
3. Update Ak → Ak+1, and loop on with step 1.

Fig. 4.
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Proof. 1) Assume that the sequence xk converges superlinearly to x̄. Consider all pos-
sible choices of matrices Rk such that

xk+1 = P
(
xk − A−1

k F (xk)
)

= xk − R−1
k F (xk).

Equivalently, Rk

(
xk − P

(
xk − A−1

k F (xk)
))

= F(xk), so Rk is not fixed by this secant

equation. Therefore choose Rk so that it is closest in norm to a given matrix B. By the
well-known Broyden formula this gives

Rk = B + (zk − Bwk)w
�
k

w�
k wk

, wk = xk − P
(
xk − A−1

k F (xk)
)

, zk = F(xk).

Notice that for almost every regular matrix B, the matrices Rk will be regular for some
k0 and all k ≥ k0.

With any of these Rk , the projected quasi-Newton method based on Ak has now
become a standard quasi-Newton method without projection. We may therefore invoke
the Dennis-Moré theorem [11, Thm. 8.2.4]. It gives

lim
k→∞

‖ (
Rk − F ′(x̄)

)
(xk+1 − xk)‖

‖xk+1 − xk‖ = 0.

In order to prove (13), it suffices to show that for every subsequence k ∈ K such that

lim
k∈K

xk+1 − xk

‖xk+1 − xk‖ = d̄ and lim
k∈K

Ak = Ā

we must have Ād̄ = F ′(x̄)d̄ . Moreover, passing to another subsequence K′ ⊂ K, we may
assume that Rk → R̄ (k ∈ K′) for some R̄. Then by the above we have R̄d̄ = F ′(x̄)d̄.
Passing to yet another subsequence K′′ ⊂ K′ if necessary, we may also assume that

lim
k∈K′′

A−1
k F (xk)

‖A−1
k F (xk)‖

= d̂

for some unit vector d̂ . Now observe that

zk

‖xk − x̄‖ = F(xk) − F(x̄)

‖xk − x̄‖ → F ′(x̄)d̄,

Furthermore, since xk = P(xk),

wk

‖xk − x̄‖ = −P(xk − A−1
k F (xk)) − P(xk)

‖ − A−1
k F (xk)‖

· ‖A−1
k F (xk)‖

‖xk − x̄‖ .

We deduce that

wk

‖xk − x̄‖ → ‖Ā−1F ′(x̄)d̄‖ · P ′(x̄)d̂ (k ∈ K′′)
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Now using the definition of Rk we see that R̄d̄ = F ′(x̄)d̄ implies

F ′(x̄)d̄ = Bd̄ +
(
F ′(x̄)d̄ − αBP ′(x̄)d̂

)
α

(
P ′(x̄)d̂

)�

α2‖P ′(x̄)d̂‖2
,

with α := ‖Ā−1F ′(x̄)d̄‖. Setting β := ‖P ′(x̄)d̂‖ and v̄ := P ′(x̄)d̂, γ = v̄�d̄, this
identity becomes

F ′(x̄)d̄ = B

(

d̄ − γ

β
v̄

)

+ 1

α2β2 F ′(x̄)d̄. (14)

Now observe that the constants α, β, γ do not depend on the choice of the matrix B, and
neither do d̄, d̂ and v̄. Since the only request on B was that the Rk were invertible, we
may choose B arbitrary in a dense set of matrices, with (14) still satisfied for the same
data α, β, γ and v̄, as those did not depend on B. We deduce that in (14), we must have
αβ = 1 and d̄ = γ

β
v̄. The latter gives

d̄ = γ
P ′(x̄)d̂

‖P ′(x̄)d̂‖ ,

hence γ = 1. By the definition of γ that means v̄�d̄ = 1. But notice that as a projection
operator, P has Lipschitz constant 1, hence ‖P ′(x̄)‖ ≤ 1, giving ‖v̄‖ ≤ ‖P ′(x̄)‖‖d̂‖ ≤
1. But the only vector v with norm ‖v‖ ≤ 1 having v�d̄ = 1 is v = d̄. Hence v̄ = d̄ or
rather P ′(x̄)d̂ = d̄. This implies ‖P ′(x̄)d̂‖ = ‖d̂‖ = 1.

Now observe that P ′(x̄) is the orthogonal projection onto the tangent space T (M, x̄)

of M at x̄. So vectors r having ‖P ′(x̄)r‖ = ‖r‖ must be parallel to the tangent space,
and in that event, already P ′(x̄)r = r . This implies d̂ = d̄.

By the definition of d̂ we have

d̂ = lim
k∈K′′

A−1
k (F (xk) − F(x̄))

‖xk − x̄‖ · ‖xk − x̄‖
‖A−1

k (F (xk) − F(x̄)) ‖ = Ā−1F ′(x̄)d̄

‖Ā−1F ′(x̄)d̄‖ .

Since α = ‖Ā−1F ′(x̄)d̄‖ = 1, we have d̂ = Ā−1F ′(x̄)d̄. But as we have seen, d̂ = d̄,
so Ād̄ = F ′(x̄)d̄ as claimed.

2) Conversely, starting with condition (13), we can prove that xk converge superlin-
early, by introducing matrices Rk as above, and showing that the Dennis-Moré condition
will be satisfied for Rk . This amounts to reading the first part of the proof backwards.
We skip over the details. ��

The result may seem puzzling at first, since the condition appears to be exactly
the same as the classical Dennis-Moré condition, where no projection onto M occurs.
The possibility of pushing the intermediate steps x̂k+1 toward the limit x̄ by projecting
x̂k+1 �→ xk+1 would seem to suggest that the choice Ak could be allowed more freedom.
And indeed, condition (13) is less restrictive than the classical Dennis-Moré condition.
In fact, consider the limiting condition Ād̄ = F ′(x̄)d̄, arising in the proof. Using (13)
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we can assure this to hold for all unit vectors d̄ arising as limits of quotients xk+1−xk

‖xk+1−xk‖ .

Since iterates xk lie in M, these d̄ are necessarily tangent vectors to M at x̄. Condition
(13) is therefore less binding than its classical alter ego, where we have in principle to
guarantee Ād̄ = F ′(x̄)d̄ for all d̄ , because without the presence of the manifold M, the
limiting directions d̄ could be arbitrary. The fact that d̄ ∈ T (M, x̄) does give the matri-
ces Ak more freedom to move x̂k in directions transversal to M. In order to highlight
this consider the following

Example. Let M be a linear subspace of R
n, P the linear orthogonal projection on M.

Fix any linear operator Q such that P ◦ Q = 0. Given any sequence Ak satisfying (13),
we generate another sequence Ãk such that Ã−1

k = A−1
k +ρkQ. Then xk − Ã−1

k F (xk) =
xk − A−1

k F (xk) − ρkQF(xk). Since P is linear, this implies P
(
xk − Ã−1

k F (xk)
)

=
P

(
xk − A−1

k F (xk)
)

− ρkPBF(xk) = P
(
xk − A−1

k F (xk)
)

, meaning that the iterates

xk generated by Ãk and Ak are the same, while the x̂k differ. Playing with the factors ρk ,
we may arrange that x̂k generated by the Ãk converge to x̄ with arbitrarily slow speed,
or even, fail to converge. This shows that superlinear convergence of the xk need not
imply superlinear convergence of x̂k . The argument of Proposition 1 on the other hand
shows that if x̂k converge superlinearly, the same is true for the xk .

9. The constrained program (2)

Let us use our findings to analyze the constraint eigenvalue program (2). A smooth ver-
sion based on the eigenvalue multiplicity oracle is obtained by the same mechanism. We
replace (2) by

minimize c�x

subject to λ̂r (F(x)) ≤ 0
F(x) ∈ Mr

(15)

which may be treated by standard SQP methods. As this follows the usual lines, let us
examine the more interesting case where intermediate projections on a smooth manifold
are used.

Let us look at the lifted version of (15), which allows to bring in the projection onto
Mr in alternance with the tangent step. Writing the program artificially in the space
R

n × S
m gives

minimize c�x

subject to λ̂r (X) ≤ 0
h(X) = 0 (i.e. X ∈ Mr )

F(x) − X = 0

(16)

with the associated Lagrangian L(x, X; τ, σ, �) = c�x + τ λ̂r (X) + σ�h(X) + � •
(F(x) − X). The KKT conditions are

c + F ′(x)�� = 0, τ λ̂′
r (X) + h′(X)�σ − � = 0,

h(X) = 0, F(x) − X = 0, τ ≥ 0, λ̂r (X) ≤ 0, τ λ̂r (X) = 0
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The usual tangent quadratic program may be written in δx, δX or in the joint variable
(δx, δX). In δx space we obtain

minimize c�δx + 1
2δx� [F ′(x)�h′′(X)σF ′(x) + F ′′(x)�

]
δx

subject to λ̂r (X) + λ̂′
r (X)F ′(x)δx ≤ 0

h(X) + h′(X)F ′(x)δx = 0
(17)

As usual, the new Lagrange multipliers τ+ = τ + δτ ≥ 0, σ+ = σ + δσ are the mul-
tipliers of the corresponding constraints in (17). The update X+ is obtained as F(x+).
Finally, due to the special structure of the artificially augmented program, the matrix
multiplier update �+ = � + δ� is obtained as

�+ = h′(X+)�σ+ + τ+λ̂′
r (X

+) +
[
τ+λ̂′′

r (X
+) + h′′(X+)�σ+

]
δX. (18)

Similar to (4) in Section 6 we may now use an intermediate projection step X �→ Xr

in order to keep iterates close to the manifold Mr on which we expect the limit X̄ to lie.
This leads to the scheme in Figure 5.

Convergence analysis of the projected Newton scheme follows known lines. We have
the following result, based on Bonnans [5].

Theorem 1. Let x̄ be a local minimum of (2). Let r̄ the multiplicity of λ1(X̄), so that x̄

is a local minimum of (15) with r = r̄ . Suppose that in (16) the gradients of the active
constraints at x̄ are linearly independent. Let τ̄ ≥ 0, σ̄ , �̄ be the Lagrange multipliers
associated with x̄, X̄ and suppose the second-order sufficient optimality condition is
satisfied. Let (xk, Xk, τk, σk, �k) be the sequence generated by the local second-order
algorithm based on tangent program (17), where the estimated eigenvalue multiplicity
is rk = r̄ , and where an intermediate projection step X �→ Xr̄ ∈ Mr̄ is performed, so
that each Xk ∈ Mr̄ . Then the sequence (xk, Xk, τk, σk, �k) converges quadratically to
(x̄, X̄, τ̄ , σ̄ , �̄).

Proof. We follow the argument in [5], where the KKT-system is embedded in a varia-
tional inequality, and the tangent quadratic program is interpreted as a Newton step for
that variational inequality. Adopting the notation of section 2 of that reference, where
the variable z replaces (x, X, τ, σ, �), we first observe that the second-order sufficient

Local second-order algorithm for (2)

1. Given iterate x, X = F(x) and Lagrange multiplier estimates
τ ≥ 0, σ , obtain an estimate r of the limiting multiplicity r̄ of λ1.

2. Compute the orthogonal projection Xr of X onto Mr .
3. Compute the matrix multiplier estimate � via (18).
4. Solve tangent quadratic program (17) and obtain the Newton step

(x, τ, σ ) + (δx, δτ, δσ ), where τ + δτ ≥ 0, σ + δσ are the multipliers
in (17).

5. Compute x++ = x + α(x+ − x) via line search. Adjust τ++, σ++
and compute X++ = F(x++).

6. Replace x by x++, τ by τ++, σ by σ++, and loop on with step 1.

Fig. 5.
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optimality condition implies strong regularity in the sense of Robinson and therefore
semi-stability and hemi-stability in the sense of [5]. It therefore remains to accommodate
the projection step X �→ Xr in the analysis of [5, Theorem 2.2].

Observe that the projection step X �→ Xr̄ corresponds to an orthogonal projec-
tion step z �→ zr̄ onto the manifold M = R

n × Mr̄ × R × R
p × S

m. Starting with
ε0 ≤ min(c1, 1/4c2), instead of 1/3c2 in the proof of [5, Theorem 2.2], we obtain the
estimate ‖z+ − z̄‖ ≤ 1

3‖z − z̄‖ (instead of ≤ 1
2‖z − z̄‖ there), where z+ is the usual

Newton step away from z. Now let z++ be the projection of z+ onto M, then obviously
‖z++−z̄‖ ≤ ‖z++−z+‖+‖z+−z̄‖ ≤ ‖z̄−z+‖+‖z+−z̄‖ = 2‖z+−z̄‖, where the sec-
ond inequality uses the fact that z̄ ∈ M. So we obtain the estimate ‖z++−z̄‖ ≤ 2

3‖z−z̄‖,
(replacing ≤ 1

2‖z − z̄‖ in [5]). Then ‖z++ − z+‖ ≤ 3ε, which proves that the sequence
stays in the ball of radius 3ε (instead of 2ε in [5]). The argument now remains the same
as in [5] and shows that the Newton iterates are well-defined and converge with quadratic
speed. ��

10. Combined Algorithm

The elements in sections 6 and 9 may now be assembled to a globally convergent method
which attempts second order steps xN with the help of the oracle, based on an underly-
ing first order method, which produces Cauchy points xC to give a global convergence
certificate.

The improvement function used at the first-order level is

κ(x, x+) = max
(
c�(x − x+), f (x+)

)
(19)

cf. [22, 31] or [20, 7], but other choices are possible. For instance, an alternative which
works for the maximum of a finite number of smooth functions is given in [40,Algorithm
2.4.1] under the name of an optimality function. An extension of that idea to maximum
eigenvalue functions and to the H∞-norm is considered in [1, 3]. Alternatives for infinite
maxima are considered in chapter 3 of [40]. If we work with (19), pC = 0 respectively
κ = 0 implies that x is a F. John stationary point. In [31, Sect. 4, Prop. 1] reasonable
conditions are given which imply that x is even a KKT-point. This justifies the stopping
test in step 1 of Figure 6.

As we have pointed out before, if step 4 in Figure 6 uses a trust region strategy, finite
termination of the trust region radius updating should be based on program (15), while
the final acceptation of xN is controlled through xC . Similarly, if a filter algorithm is
used, it has to be guaranteed that the filter accepts some iterate after a finite number of
steps. This is only possible if the smooth model (16) is temporarily used. As new entries,
either

(
c�xC, max

(
0, λ1

(F(xC
)))

or
(
c�xN, max

(
0, λ1

(F(xN
)))

or even both are
added afterward to give global convergence.

An additional difficulty arises when xC is the new iterate, as is the case when xN

does not provide satisfactory progress due to failure to estimate r̄ correctly. Here the
multiplier estimates obtained in the tangent step are meaningless, and a good idea how
to generate new τ+ ≥ 0, σ+ and �+ at the next sweep is required. The situation is
of course similar to the classical one in cases when the Newton steps is poor. In such
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Combined algorithm for (2)

1. Given the current iterate x, compute a Cauchy point xC using the first-order
spectral bundle method from [31]. Compute progress pC ≥ 0 of xC over x

using the improvement function (19). If pC = 0 stop.
2. Using XC = F(xC), compute estimate r of limiting multiplicity r̄ using (3).
3. Compute orthogonal projection X+ of X onto Mr . Obtain new multiplier

estimate �.
4. Solve tangent quadratic program (17) to compute Newton trial step

(δx, δX, δτ, δσ, δ�) away from (x, X+, τ, σ, �). Use merit function, trust
region strategy or filter for program (15) to find step (xN , τN , σN ).

5. Compute progress pN of xN over x using the improvement function (19). If
pN ≥ θpC , let x+ = xN , τ+ = τN , σ+ = σN . Otherwise let x+ = xC . In the
latter case, compute new multiplier estimates τ+ ≥ 0, σ+.

6. Replace old elements by ++ elements and go back to step 1.

Fig. 6.

a situation, multiplier estimates from (17) are also of bad quality. Similar numerical
recipes may therefore be employed (cf. [9]).
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25. Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Nonsmooth Optimization, Proc. IIASA
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