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Abstract. Many challenging problems in automatic control may be cast as optimization programs subject to
matrix inequality constraints. Here we investigate an approach which converts such problems into non-convex
eigenvalue optimization programs and makes them amenable to non-smooth analysis techniques like bundle
or cutting plane methods. We prove global convergence of a first-order bundle method for programs with
non-convex maximum eigenvalue functions.
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1. Introduction

The importance of linear matrix inequalities (LMIs) and bilinear matrix inequalities
(BMIs) for applications in automatic control has been recognized during the past decade.
Semidefinite programming (SDP) used to solve LMI problems has found a widespread
interest due to its large spectrum of applications [9]. But many challenging engineering
design problems lead to BMI feasibility or optimization programs no longer amena-
ble to convex methods. Some prominent BMI problems are parametric robust feedback
control [60, 61], static and reduced-order controller design [1, 14], design of structured
controllers [13], decentralized synthesis, or synthesis with finite precision controllers
[72]. These problems are in fact known to be NP-hard (see e.g. [45]).

Due to their significance for industrial applications, many solution strategies for
BMI problems have been proposed. The most ambitious ones use ideas from global
optimization such as branch-and-bound methods [20, 8, 22] or concave programming
[6, 7] in order to address the presence of multiple local minima. On the other hand,
in many situations, semidefinite programming relaxations, or heuristic approaches like
coordinate descent schemes or alternating techniques (analysis versus synthesis) have
been used with considerable success; see [10, 71, 28, 21, 31].

The general nature of BMI problems, which include for instance quadratic constraint
quadratic (QCQP) programming, all polynomial problems and mixed binary program-
ming, makes it evident that a general strategy may hardly be expected. We have observed
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that BMIs in control applications may usually be solved by local methods. This is sig-
nificant, since global methods have a prohibitive computational load and are therefore
of very limited applicability. We have contributed several local nonlinear programming
approaches, which are capable to deal with matrix inequality constraints [1, 2, 14, 15,
47, 3, 67–69]; see [30] for another approach. Here we investigate a strategy which con-
verts BMI problems into non-convex eigenvalue optimization programs, which are then
solved by non-smooth analysis tools.

1.1. BMIs and eigenvalue programs

We consider affine A : R
n → S

m and bilinear operators B : R
n → S

m into the space
S

m of symmetric m × m matrices,

A(x) = A0 +
n∑

i=1

Aixi, B(x) = A(x) +
∑

1≤i<j≤n

Bij xixj . (1)

Then a BMI-optimization program is of the form

minimize c�x, x ∈ R
n

subject to B(x) � 0
(2)

where � 0 means negative semidefinite. Semidefinite programming is a special case
where an affine operator A is used. The simpler BMI-feasibility problem seeks x ∈ R

n

satisfying B(x) � 0. This is a special case of (2) if solved as min{t : B(x) � tIm}.
These problems are clearly related to eigenvalue optimization. We consider the

unconstrained

minimize λ1 (B(x)) , x ∈ R
n, (3)

and the constrained eigenvalue optimization program

minimize c�x, x ∈ R
n

subject to λ1 (B(x)) ≤ 0.
(4)

Here λ1 : S
m → R is the maximum eigenvalue function, which is convex but non-

smooth in general. The non-convexity of (3) and (4) is induced by the operator B.
Clearly (2) is equivalent to (4), while the BMI-feasibility problem may be solved using
(3). Programs of the form (4) may be transformed into (3) via exact penalization, even
though it may be preferable to use the structure of (4) explicitly.

Eigenvalue optimization has an interest of its own even outside control applications.
Much pioneering work has been contributed by M. Overton in a series of papers [48–52]
beginning in the 1980s, where Newton type methods for (3) are considered. Further to
be mentioned among the earliest contributions are J. Cullum et al. [12], R. Fletcher [16],
A. Shapiro [63, 64] and A. Shapiro and M.K.H. Fan [65].

Bundle methods have been invented by C. Lemaréchal [38] and Wolfe [73] and devel-
oped mostly in the 1980s by numerous contributions, in particular from Lemaréchal [39,
41] and K. Kiwiel (see e.g. [32, 35, 34]). A survey is [40], see also [29, 32, 62]. E. Polak
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and co-workers have contributed several methods for eigenvalue optimization and for
minimizing the H∞-norm, see [56–58] and the references given there. Bundle methods
have recently been revived in the context of semidefinite programming; see [55, 42, 25,
43, 44, 37, 59]. Early contributions to non-convex programs are Kiwiel [35, 33, 36], a
recent non-convex bundle algorithm is presented in Fuduli et al. [18, 19], a convex filter
bundle method is given in [17].

1.2. Purpose

As a rule, bundle methods maintain a finite set of affine estimates of the objective function
f at the current iterate. This set is used to predict a descent step. This trial step is either
accepted (serious step) if the actual descent is sufficient, or it is used to improve the local
model (null step) by adding another affine approximation of f . It has been observed in
[12] (and used in [54, 55, 25, 42] and also [23, 26, 27, 24]) that maximum eigenvalue
functions f allow for specific bundling strategies, where infinite sets of affine estimates
of f are manageable. Here we develop a similar strategy for non-convex eigenvalue
functions. Compared to the convex case, the main difficulty is that approximate subgra-
dients of f do no longer provide global information. This complicates the analysis of
the bundling procedure. In Section 3 we develop a first-order algorithm for (3), which
extends the approach of [12] and [55] to the non-convex case. In Section 4 we solve (4)
using an improvement function as proposed in [32].

2. Preparation and preliminary results

We recall some general notions and definitions and prepare the setting for the analysis
of eigenvalue functions.

2.1. General definitions

Along with the operators A, B of (1) we consider more general matrix-valued operators
F : R

n → S
m of class C2. For such F let F ′(x) : R

n → S
m denote its derivative,

whose adjoint F ′(x)∗ maps S
m into R

n. For affine A we write A := A′, which is the
linear part of A, defined as Ax = ∑n

i=1 Aixi . Its adjoint is A∗ : S
m → R

n, defined
as A∗Z = (A1 • Z, . . . , An • Z). The scalar product in S

m is X • Z = tr(XZ). The
second derivative F ′′(x) of F is a linear operator R

n → L(Rn, S
m). For bilinear B it

is independent of x and defined via the tensor [d, B′′d] = 2
∑

1≤i<j≤n Bij didj ∈ S
m.

With these preparations we are ready to consider the class of (generally non-convex)
maximum eigenvalue functions f of the form f = λ1 ◦ F . For an affine operator A,
f = λ1 ◦ A is convex and has been analyzed by many authors; see in particular [12,
53–55].

We use notions from convexity and non-smooth analysis as in [29] or [11]. Given
ε ≥ 0 and a convex function φ on some Euclidean space E, following [29, ch. XI] the
ε-subdifferential of φ at x is

∂εφ(x) = {y ∈ E∗ : 〈y, h〉 ≤ φ(x + h) − φ(x) − ε for all h ∈ E}.
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For ε = 0 this is the usual subdifferential in convex analysis, which we denote ∂φ(x) as
usual. The ε-subdifferential gives rise to the ε-directional derivative, (cf. [29, ch. XI])

φ′
ε(x; d) = max{〈y, d〉 : y ∈ ∂εφ(x)} = inf

t>0

φ(x + td) − φ(x) − ε

t
,

where ε = 0 reproduces the usual directional derivative φ′(x; d) of convex analysis.
Notice that the ε-subdifferential of the maximum eigenvalue function λ1 has the equiv-
alent representation (cf. [29, Example XI.1.2.5]):

∂ελ1(X) = {G ∈ S
m : G  0, tr(G) = 1, G • X ≥ λ1(X) − ε}. (5)

This is a consequence of the fact that λ1 is the support function of the set Cm = {X ∈
S

m : X  0, tr(X) = 1}.

2.2. Concepts relating to f = λ1 ◦ F

Let us introduce a notation which we will use systematically. Given x, d ∈ R
n, let

X = F(x) ∈ S
m and D = F ′(x)d ∈ S

m. If xk , dk arise in an algorithm, we use Xk and
Dk accordingly.

Let us now extend ε-subgradients and ε-directional derivatives to functions f =
λ1 ◦ F . Let

∂εf (x) = F ′(x)∗[∂ελ1 (F(x))] = F ′(x)∗[∂ελ1(X)].

For ε = 0 we obtain ∂f (x) = F ′(x)�[∂λ1(X)], which is the Clarke subdifferential of the
composite function f = λ1 ◦F . Notice that ∂f (x) so defined coincides with the convex
subdifferential when F happens to be an affine operator A, so there is no ambiguity in
the notations ∂f (x) and ∂εf (x).

Given ∂εf (x), the ε-directional derivative is defined as

f ′
ε(x; d) = max{g�d : g ∈ ∂εf (x)}

= max{G • D : G ∈ ∂ελ1(X)}
= (λ1)

′
ε(X; D).

For ε = 0, we obtain the Clarke directional derivative, which we denote f ′(x; d) as
usual. It is well-known that for ε > 0 the ε-directional derivative is difficult to compute.
Following Cullum et al. [12] and Oustry [55], we consider the so-called ε-enlargement
δελ1(X) of the subdifferential of the maximum eigenvalue function, which is somewhere
in between the purely local subdifferential ∂λ1(X) and the global ∂ελ1(X) and turns out
a good estimate of the latter.

Following [12] and in particular [55, Def. 1], fix ε > 0 and let r(ε) be the largest
index i such that λi(X) > λ1(X)−ε, called the ε-multiplicity of λ1(X). Notice that r(ε)
is always at the end of a block of equal eigenvalues, that is, λ1(X) ≥ · · · ≥ λt−1(X) >

λt (X) = · · · = λr(ε)(X) > λr(ε)+1(X) ≥ · · · ≥ λm(X), where of course t = 1 and
t = r(ε) are admitted. We therefore define the spectral separation of ε as

�ε(X) = λr(ε)(X) − λr(ε)+1(X) > 0. (6)
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Let Qε be a m × r(ε) matrix whose columns form an orthonormal basis of the invariant
subspace of X spanned by the eigenvectors of the first r(ε) eigenvalues of X. Now define

δελ1(X) = {G : G = QεYQ�
ε , Y  0, tr(Y ) = 1, Y ∈ S

r(ε)},
then δελ1(X) ⊂ ∂ελ1(X). We extend this concept to the class of functions f = λ1 ◦ F
by setting

δεf (x) = F ′(x)∗[δελ1(X)],

so ∂f (x) ⊂ δεf (x) ⊂ ∂εf (x), and the ε-enlarged subdifferential δεf (x) may be con-
sidered as an inner approximation of the ε-subdifferential ∂εf (x).

There is a natural analogue of the ε-directional derivative based on the new set
δεf (x). Indeed, following [12, 55], define the ε-enlarged directional derivative of λ1 by

(λ̃1)
′
ε(X; D) = max{G • D : D ∈ δελ1(X)} = σδελ1(X)(D),

where σK denotes the support function of a convex set K . Extend this to functions
f = λ1 ◦ F by setting

f̃ ′
ε(x; d) = max{g�d : g ∈ δεf (x)}

= max{G • D : G ∈ δελ1(X)}
= (λ̃1)

′
ε(X; D).

The advantage of δεf (x) over the larger ε-subdifferential ∂εf (x) is that an explicit
formula is available (cf. [12], [55, Prop. 3]):

f̃ ′
ε(x; d) = σδεf (x)(d) = λ1

(
Q�

ε (F ′(x)d)Qε

)
= λ1

(
Q�

ε DQε

)
.

Notice that ε = 0 leads back to the standard Clarke directional derivative, f̃ ′
0 = f ′.

Remark. The new ε-directional derivatives f ′
ε(x; d) introduced for composite functions

f = λ1 ◦ F coincides with the f ′
ε(x; d) known from convex analysis [29] in those

cases where F is affine. Similarly, the new notion f̃ ′
ε(x; d) for nonconvex f = λ1 ◦ F

coincides with the concept introduced in [55] for convex f = λ1 ◦ A if F happens to
be affine. So there is no ambiguity in these notations.

One of the main contributions from the work [55] is the following

Theorem 1. [55, Thm. 4] Let ε ≥ 0, η ≥ 0 and X ∈ S
m and define

ρ(ε, η) =
(

2η

�ε(X)

)1/2

+ 2η

�ε(X)
. (7)

Then

∂ηλ1(X) ⊂ δελ1(X) + ρ(ε, η) B, (8)

where B is the unit ball in S
m.

An immediate consequence of this theorem is the estimate:

f ′
η(x; d) ≤ f̃ ′

ε(x; d) + ρ(ε, η)‖D‖. (9)
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2.3. Steepest descent

The direction of steepest descent plays an important role in the analysis of smooth func-
tions. In the case of a non-smooth function it may be obtained by solving the program

min
‖d‖≤1

f ′(x; d).

Fenchel duality shows that

min
‖d‖≤1

f ′(x; d) = min
‖d‖≤1

max
g∈∂f (x)

g�d

= max
g∈∂f (x)

min
‖d‖≤1

g�d

= max
g∈∂f (x)

−g� g

‖g‖ ,

so the direction d of steepest descent is obtained as the solution of a convex program:

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ ∂f (x)}.

As in the classical case, d will be a direction of descent if there is any, and in that case
the relation

f ′(x; d) = −‖g‖ = −dist(0, ∂f (x)) < 0

is satisfied. What is important is that the very same conclusions hold for the ε-subdiffer-
ential and the ε-enlarged subdifferential.

Definition 1. If 0 �∈ ∂εf (x), the direction of steepest ε-descent d is

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ ∂εf (x)}

and satisfies f ′
ε(x; d) = −dist(0, ∂εf (x)) < 0. Similarly, if 0 �∈ δεf (x), then the

direction of steepest ε-enlarged descent is

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ δεf (x)} (10)

and satisfies f̃ ′
ε(x; d) = −dist(0, δεf (x)) < 0.

These notions are crucial for our present work. In particular, δεf will be used to com-
pute qualified descent steps via (10). For a practical implementation it will be convenient
to accept approximate solutions of program (10). We have the following

Lemma 1. Let 0 < ω ≤ 1 and 0 �∈ δεf (x), and consider a direction d which solves
(10) approximately in the sense that

d = − g

‖g‖ , f̃ ′
ε(x; d) ≤ −ω‖g‖. (11)

Then

−dist(0, δεf (x)) ≤ f̃ ′
ε(x; d) ≤ −ω dist(0, δεf (x)). (12)
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Proof. Let d̃ = −g̃/‖g̃‖ be the solution of (10), then ‖g̃‖ = dist(0, δεf (x)) and
f̃ ′

ε(x; d̃) = −‖g̃‖. As g ∈ δεf (x), we have ‖g̃‖ ≤ ‖g‖. Therefore (11) gives f̃ ′
ε(x; d) ≤

−ω‖g‖ ≤ −ω‖g̃‖ = −ω dist(0, δεf (x)) < 0. The left hand estimate follows from
f̃ ′

ε(x; d) = max{g�d : g ∈ δεf (x)} ≥ g̃�d ≥ −‖g̃‖ = −dist(0, δεf (x)). ��

3. First-order analysis

In this chapter we derive and analyze a first-order bundle algorithm for minimizing non-
convex maximum eigenvalue functions f = λ1 ◦ F for C2-operators F . Occasionally
we will specify F to a bilinear B or even to an affine A.

3.1. Optimality conditions

It is well-known that the ε-subdifferential may be used to obtain approximate optimality
conditions, which lead to finite termination criteria in a convex minimization algorithm.
See [29, 40, 41, 32] on how this is done. How about the meaning of an approximate
optimality condition like 0 ∈ ∂εf (x) for non-convex maximum eigenvalue functions f ?
It is not surprising that without convexity, the consequences of 0 ∈ ∂εf (x) are weaker:

Lemma 2. Let f = λ1 ◦ B with B bilinear. Let

c := max
‖d‖=1

max
Z∈Cm

∣∣∣∣∣∣

∑

i<j

Z • Bijdidj

∣∣∣∣∣∣
,

where Cm = {Z ∈ S
m : Z  0, tr(Z) = 1}. Let θ > 0, ε ≥ 0, σ ≥ 0 and define

r = r(ε, σ, θ, c) as

r = −σ + √
σ 2 + 4θcε

2c
.

Then every x such that dist(0, ∂εf (x)) ≤ σ is (1+θ)ε-optimal within the ball B(x, r) :=
{x′ ∈ R

n : ‖x′ − x‖ ≤ r}. That means, f (x) ≤ minx′∈B(x,r) f (x′) + (1 + θ)ε.

Proof. Let X = B(x). By assumption there exists G ∈ ∂ελ1(X) such that g = B′(x)∗G
satisfies ‖g‖ ≤ σ . Now let x′ ∈ B(x, r) be written as x′ = x + td with ‖d‖ = 1,
t = ‖x − x′‖. Put X′ = B(x′). By definition of the ε-subdifferential, G • X′ ≤ λ1(X

′)
and G • X ≥ λ1(X) − ε = f (x) − ε. Therefore

f (x) ≤ G • X + ε

= G • X′ + G • (X − X′) + ε

≤ λ1(X
′) + G • (B(x) − B(x′)

) + ε

= f (x′) + G •
(
tB′(x)d + t2[d, B′′d]

)
+ ε

≤ f (x′) + σ‖x − x′‖ + c‖x − x′‖2 + ε

≤ f (x′) + σr + cr2 + ε = f (x′) + (1 + θ)ε

by the definition of r . This proves the claim. ��
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The result includes several limiting cases. Clearly σ = 0 is interesting, where we get
r(ε, 0, θ, c) = (

θεc−1
)1/2

. The case c = 0 is also possible. It corresponds to an affine
operator A, where the second derivative B′′ vanishes. We obtain r(ε, 0, θ, 0) = +∞,
meaning that the estimate is a global one. A third limiting case is when σ > 0 and
c = 0. Here r(ε, σ, θ, 0) = θεσ−1. Notice however that in the case c < ∞ the look-
ahead character of this result is limited. Even while it is true that for σ = 0 the radius
r ∼ ε1/2 decreases slower than the discrepancy in the values, which behaves like ∼ ε,
we have no way to know whether a local minimum is within the horizon r of our current
iterate x.

Lemma 3. Let f = λ1 ◦F . Suppose dist(0, ∂εk
f (xk)) → 0, xk → x̄ and εk → 0. Then

0 ∈ ∂f (x̄).

Proof. The proof is straightforward. By the definitions we have Gk ∈ ∂εk
λ1(Xk) for

some Gk such that F ′(xk)
∗Gk = gk → 0. In particular, Gk • X ≤ λ1(X) for every

X ∈ S
m and Gk • Xk ≥ λ1(Xk) − εk . Passing to the limit in every convergent subse-

quence of Gk , say Gk → Ḡ, gives Ḡ • X ≤ λ1(X) for every X and Ḡ • X̄ = λ1(X̄), so
Ḡ ∈ ∂λ1(X̄). By the continuity of F ′ we have F ′(x̄)∗Ḡ = 0. That means 0 ∈ ∂f (x̄). ��

Taken together these two Lemmas justify a stopping test based on the smallness
of dist(0, ∂εf (x)) in tandem with the smallness of ε. Such a test is used e.g. in the
non-convex bundle method [18, 19], where the Goldstein ε-subdifferential is used.

Let us fix x and ε and see what happens when 0 �∈ δεf (x). Choose 0 < ω ≤
1 and suppose d is an approximate direction of steepest ε-enlarged descent satisfy-
ing (11). The function η → ρ(ε, η) in (7) is unbounded and monotonically increas-
ing on [0, ∞). Therefore if F ′(x)d �= 0, there exists a unique η = η(ε) such that
ρ(ε, η(ε)) ‖F ′(x)d‖ = − 1

2 f̃ ′
ε(x; d) > 0. Using (9) gives the following consequence of

Theorem 1:

f ′
η(ε)(x; d) ≤ 1

2
f̃ ′

ε(x; d) < 0. (13)

The same estimate also holds in the case F ′(x)d = 0. Straightforward calculus with (7)
now shows that in the case F ′(x)d �= 0

η(ε) = �ε(X)

8



−1 +
√

1 − 2 f̃ ′
ε(x; d)

‖F ′(x)d‖




2

. (14)

We summarize these observations in the following

Lemma 4. Suppose 0 �∈ δεf (x) for some ε > 0. Let 0 < ω ≤ 1 and let d be a direc-
tion of approximate steepest ε-enlarged descent satisfying (11), (12). Then choosing
η = η(ε) as in (14) gives f ′

η(x; d) ≤ 1
2 f̃ ′

ε(x; d) < 0, i.e., d is a direction of η-descent.
Moreover, η(ε) satisfies the estimate

η(ε) ≥






�ε(X) ω2

18‖F ′(x)d‖2 dist(0, δεf (x))2, for 0 > f̃ ′
ε(x; d) ≥ −(3/2)‖F ′(x)d‖

�ε(X) ω

16‖F ′(x)d‖ dist(0, δεf (x)), for f̃ ′
ε(x; d) ≤ −(3/2)‖F ′(x)d‖

(15)
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Proof. The proof starts with (14) and uses the elementary estimate

(
−1 + √

1 + t
)2 ≥

{
1
9 t2, 0 ≤ t ≤ 3,

1
4 t, t ≥ 3

,

which is applied to t = −2f̃ ′
ε(x; d)/‖F ′(x)d‖ > 0. Bringing in (12) yields (15). ��

3.2. Actual and predicted decrease

Our approach to (3) is to estimate the decrease of f in direction d with the help of the
convex model t �→ λ1(X + tD). The following definition will be helpful.

Definition 2. Let f = λ1 ◦F , and fix x, d ∈ R
n. Then αt = f (x + td)−f (x) is called

the actual decrease of f at x in direction d with step t , while πt = λ1(X + tD) − f (x)

is called the predicted decrease at x in direction d with step t .

Naturally, a true decrease of f in direction d with step t only occurs when αt < 0,
and similarly for πt . During the following, we will use the interplay between πt and αt

in order to find suitable steps t which allow us to quantify αt . We have the formula

αt = f (x + td) − f (x)

= f (x + td) − λ1(X + tD) + λ1(X + tD) − f (x)

= f (x + td) − λ1(X + tD) + πt

so for non-convex f we will have to estimate the mismatch αt − πt = f (x + td) −
λ1(X + tD).

Expanding the C2 operator F in a neighborhood of x gives F(x + td) = X +
tD + t2H + t2Kt , where Kt → 0 as t → 0. [In the case of a bilinear B, Kt = 0 and
H = [d, B′′d] is independent of x.] Then f (x + td) = λ1(X + tD + t2(H + Kt)) and
by Weyl’s theorem we obtain

t2λm(H + Kt) ≤ λ1(X + tD + t2(H + Kt)) − λ1(X + tD) ≤ t2λ1(H + Kt).

Altogether, |f (x + td) − λ1(X + tD)| ≤ t2‖H + Kt‖. This motivates the following

Definition 3. Let x, d ∈ R
n, ‖d‖ = 1 and 0 < t < +∞ and expand F as above. Define

Lx,d,t := sup{‖H +Kτ‖ : 0 ≤ τ ≤ t} < +∞. When F is of class C2
b , i.e., has bounded

second derivative, then t = +∞ is allowed and the Lx,d,∞ are uniformly bounded on
bounded sets of x. For bilinear B, Lx,d,t = Ld = ‖H‖ = ‖[d, B′′d]‖ is independent of
x and t > 0 and therefore uniformly bounded.

We summarize our findings by the following

Lemma 5. Let 0 < T ≤ ∞ such that Lx,d,T < ∞. Then for every t ≤ T the actual
decrease αt satisfies

αt = � t2 + πt for some |�| ≤ Lx,d,T . (16)

If F is of class C2
b , we may choose T = ∞. In the bilinear case Lx,d,T = Ld =

‖[d, B′′d]‖, and in the affine case, Lx,d,T = Ld = 0.



710 D. Noll, P. Apkarian

This result allows us to proceed as follows. We quantify the predicted decrease
πt < 0 of the convex model t �→ λ1(X + tD). Then we find suitable steps t for which
the mismatch �t2 is smaller in absolute value than the predicted decrease πt , so that
αt = �t2 +πt < 0 in a controlled fashion. This program is carried out in the next section.

3.3. Directional analysis

Let x be the current iterate in a tentative algorithm, and let d with ‖d‖ = 1 be a direction
such that for some η > 0, f ′

η(x; d) < 0, i.e., d is a direction of η-descent at x. This
could happen with η = η(ε) and d an approximate direction of steepest ε-enlarged
descent as in (11). Then 0 �∈ ∂ηf (x). As usual let X = F(x) and D = F ′(x)d, then
by definition, f ′

η(x; d) = (λ1)
′
η(X; D), so (λ1)

′
η(X; D) < 0. Following [29, XI.1],

there exists a hyperplane supporting the epigraph of λ1, which passes through the point
(X, λ1(X)−η) and touches the epigraph of λ1 at a point (X+ tηD, λ1(X+ tηD)), except
when t �→ λ1(X + tD) is affine on [0, ∞), or has an asymptote with slope f ′

η(x; d). In
those cases let tη = ∞ for consistency. If there are several steps with this property, then
for definiteness let tη be the smallest one. We shall say that the step tη realizes the η-direc-
tional derivative. Notice that λ′

1(X + tηD; D) ≤ (λ1)
′
η(X; D) ≤ −λ′

1(X + tηD; −D),
so for almost all tη we have equality (λ1)

′
ε(X; D) = λ′

1(X + tηD; D). In general there
exists at least a subgradient G ∈ ∂λ1(X + tηD) such that (λ1)

′
η(X; D) = G • D.

All this being a purely directional situation, we could also describe the case by intro-
ducing the function φ(t) = λ1(X + tD). Then the line passing through (0, φ(0) − η)

touches the epigraph of φ at (tη, φ(tη)). The reader may want to inspect Figure 2.1.2 on
page 105 of [29] for some illustration of these on-goings.

For the following assume that φ is not affine on [0, ∞). The case tη = ∞ with
an asymptote is allowed. Suppose we backtrack and consider all lines passing through
(0, φ(0) − η′) for some 0 ≤ η′ ≤ η, touching the epigraph of φ at the corresponding
points (tη′ , φ(tη′)), where again tη′ is the smallest step if there are several. Then we intro-
duce a function η′ → tη′ with the following properties: t0 = 0, and tη = tη′ at η′ = η. It
is monotonically increasing by convexity of φ. (Notice that its inverse, t → η(t), is not
a function in the strict sense unless φ is differentiable. But we can introduce the notation
to indicate any choice such that η(t (η)) = η.)

Recall that we assume f ′
η(x; d) < 0. Then the decrease of φ on [0, tη] is

φ(tη) − φ(0) = −η + tηf
′
η(x; d) < −η < 0. (17)

Therefore the secant joining the points (0, φ(0)) and (tη, φ(tη)) has slope −σ , where

σ = η − tηf
′
η(x; d)

tη
= η

tη
− f ′

η(x; d) > 0. (18)

We can then get a pessimistic estimate of πt by using the weaker decrease of the secant,
which for a step t ≤ tη decreases by −σ t . Therefore αt = �t2 + πt ≤ Lt2 − σ t for
every t ≤ tη, where L := Lx,d,tη . (If tη = ∞ and Lx,d,∞ = ∞, then this estimate will
only be true for some finite T , L := Lx,d,T and all t ≤ T .) The minimum of the term
Lt2 −σ t on [0, tη] is attained either at t = σ/2L if σ/2L ≤ tη, or at t = tη. Substituting
these two possibilities into αt gives the two cases (a) and (b) of the following
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Lemma 6. Let d be an approximate direction of steepest ε-enlarged descent satisfying
(11) and let η = η(ε) be as in (14), so f ′

η(x; d) < 0. Suppose tη < ∞.

(a) If σ defined by (18) satisfies σ ≤ 2Lx,d,tη tη, then the step tσ := σ/2Lx,d,tη gives a
guaranteed decrease

αtσ ≤ − σ 2

4Lx,d,tη

= − 1

4Lx,d,tη

(
η

tη
− f ′

η(x; d)

)2

(19)

≤ − 1

4Lx,d,tη

(
η

tη
− 1

2
f̃ ′

ε(x; d)

)2

< 0.

(b) If on the other hand σ > 2Lx,d,tη tη, then the step tη guarantees the decrease

αtη ≤ −σ tη

2
= 1

2
πtη = −1

2

(
η − tηf

′
η(x; d)

)
< 0. (20)

The remaining case tη = ∞ will be settled in Lemma 7 below. Before we do this,
let us comment on Lemma 6, as it is crucial for the convergence analysis obtained in
Section 3.7 and the central estimate in (22).

At first sight we would probably prefer case (b) over case (a) in Lemma 6, as it
seems to give a better rate of decrease, O(η) versus O(η2). Moreover, the constant L

is likely to be large, so αtσ is expected to be small. In the same vein, tη could be large,
so the main contribution in αtσ probably comes from the term f ′

η(x; d) respectively

f̃ ′
εk

(xk; dk), which also occurs with order 2, as opposed to the second branch in (15).
But (a) has a surprising advantage over (b). Namely, when later on in Section 3.7 our
algorithm will take steps tk which force the terms αtk to tend to zero, tk = tσk

in case
(a) will imply f̃ ′

εk
(xk; dk) → 0. On the other hand, steps tk = tηk

in case (b) only lead

to ηk → 0, which implies �εk
(Xk) f̃ ′

εk
(xk; dk) → 0 by estimate (15). Dealing with the

extra term �εk
(Xk) will cause some trouble.

The reason why we have to accept this extra term is that in case (b) of Lemma 6, we
have no information as to the size of tη, so the term tηf

′
η(x; d) < 0 may not be used to

quantify the actual descent αtη . What remains in case (b) is αtη ≤ −η/2, which leads to a
quantifiable descent via formula (15). Here, for small η, we have to take the pessimistic
lower branch in that formula, which gives αtη ≤ −η/2 ≤ −K|�ε(X)f̃ ′

ε(x; d)|2 for
some K > 0. This goes into the central estimate (22) in Section 3.7.

Likewise, if case (a) of Lemma 6 occurs, the term which allows to quantify descent,
as step tσ is taken, is αtσ ≤ −K|f̃ ′

ε(x; d)|2 < 0. Here it is the term −η/tη, which does
not seem to allow an apriori estimate of the actual descent. [Despite these theoretical
facts, there are heuristic arguments, to be presented in Section 3.9, which indicate that
the difference in the order of η in cases (a) and (b) of Lemma 6 may still be relevant
numerically.] The corresponding estimate will be the left hand side of the maximum in
(22).

Notice that as a rule we have to expect case (b) in Lemma 6. In particular, for convex
f = λ1 ◦ A, we have L = 0, so here case (b) is always on (compare the discussion in
[55]).

Let us catch up with the case where tη = ∞. This may happen if φ : t �→ λ1(X+tD)

is affine on [0, ∞) or has an asymptote with slope f ′
η(x; d) < 0. Then φ is below the
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line with slope −σ = f ′
η(x; d) passing through the point (0, φ(0)), and we may use this

line to estimate πt . The result is the same as in Lemma 6, with tη = ∞ and η/tη = 0.

Lemma 7. Suppose f ′
η(x; d) < 0 and tη = ∞. Fix T > 0 such that L := Lx,d,T < ∞.

Then the largest possible decrease of f in direction d amongst steps of length t ≤ T is
obtained either (a) at tσ = σ/2L with αtσ ≤ −σ 2/4L if tσ ≤ T , or (b) at t = T with
αt ≤ LT 2 − σT ≤ − 1

2T σ .

For F of class C2
b we let T = ∞. In particular, this works for bilinear B, so there is

no restriction on the steplength tσ . For general C2 operators the result seems to pose a
little problem, as we need to know T to compute L = Lx,d,T , and L in order to check
whether tσ ≤ T . Notice, however, that Lx,d,T T increases as T → ∞, while tσ > T for
all T meant Lx,d,T T remained bounded by σ/2. This is only possible when Lx,d,T = 0.
So there is always the possibility to escape this dilemma. But section 3.8 will show an
even simpler way to deal with general C2 operators.

3.4. Decrease of the order O(η)

Let us look more systematically at those cases where a quantifiable decrease of the order
O(η) is possible. This requires a sufficiently small trial step tη. We have the following

Lemma 8. Let 0 < ρ0 < 1. Then the trial step tη gives a decrease αtη ≤ −(1 − ρ0) η

provided tη ≤ ϑ , where ϑ is the critical stepsize

ϑ :=
−f ′

η(x; d) +
√

f ′
η(x; d)2 + 4Lρ0η

2L
. (21)

Here L = Lx,d,tη , and the limiting case Lx,d,tη = 0 is allowed and gives ϑ = ∞.

Proof. Since |�| ≤ L, the inequality αtη = �t2
η − η + tηf

′
η(x; d) ≤ −(1 − ρ0) η is

satisfied as soon as the stronger quadratic inequality Lt2
η + tηf

′
η(x; d) − ρ0η ≤ 0 holds.

The corresponding quadratic equation has two real solutions, and the positive solution
is ϑ in (21). Therefore the quadratic inequality holds as soon as tη ≤ ϑ . ��
Remark. Notice that Lemma 8 is not required for the convergence proof in Section 3.7.
In particular, it does not enter into estimate (22). However, checking whether the step tη
satisfies tη ≤ ϑ gives the algorithm a chance to take steps with a better rate of decrease
than the pessimistic estimates in Lemmas 6, 7 and in formula (22). This is done in steps
6 and 8 of the algorithm. For instance, in the convex case f = λ1 ◦ A, we have ϑ = ∞,
so here Lemma 8 guarantees that the descent steps have the rate O(η), a fact already
established in [55].

3.5. The ε-management

The dependence of the estimate (14) on the gap �ε(X) suggests that we choose �ε(X)

as large as possible. This strategy is indeed best when we aim at a finite termination
theorem (see [12], [55]). If we want to prove convergence, the situation is, as we shall
see, more subtle. Here we want �ε(X) large, but with the proviso that ε → 0.
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Lemma 9. Let ε̄ > 0. Then there exists ε ≤ ε̄ such that �ε(X) ≥ ε̄/m.

Proof. By definition of r(ε̄) we have λ1(X) ≥ · · · ≥ λr(ε̄)(X) ≥ λ1(X) − ε̄ >

λr(ε̄)+1(X). That means the r(ε̄) gaps λi(X) − λi+1(X), i = 1, . . . , r(ε̄), add up to
λ1(X)−λr(ε̄)+1(X), which exceeds ε̄. So at least one of these gaps is larger than ε̄/r(ε̄),
hence larger than ε̄/m. Suppose a gap exceeding ε̄/m is λi(X)−λi+1(X). Then we put
ε = λ1(X) − λi(X). ��

In practice we could either choose i smallest possible with λi(X)−λi+1(X) ≥ ε̄/m,
or we could pick i so that λi(X) − λi+1(X) is largest possible. In the first case we get
a small ε, which reduces the numerical burden to compute Qε . In the second case we
render (14) the most efficient, possibly with a larger ε.

Definition 4. The maximum eigenvalue function f = λ1 ◦F is called linearly bounded
below if for every x ∈ R

n, the mapping e �→ λ1
(F(x) + F ′(x)e

)
is bounded below.

The significance of this definition is in the following

Lemma 10. Suppose f = λ1 ◦ F is linearly bounded below. Let x ∈ R
n be such that

0 �∈ ∂f (x). Then there exists ε̄ > 0 such that 0 ∈ δε̄f (x) but 0 �∈ δεf (x) for all
0 ≤ ε < ε̄.

Proof. Let ε̄ = λ1(X) − λm(X), then δε̄f (x) = F ′(x)∗ (Cm), where as before Cm =
{X ∈ S

m : X  0, tr(X) = 1}. By [55, Lemma 6] we have 0 ∈ F ′(x)∗ (Cm) because
e �→ λ1

(F(x) + F ′(x)e
)

is bounded below. So we have proved 0 ∈ δε̄f (x). On the
other hand, 0 �∈ δεf (x) if ε is sufficiently small. Take for instance ε so small that r(ε)

equals the multiplicity of λ1(X). Then δεf (x) = ∂f (x), hence 0 �∈ δεf (x) by our
hypothesis. By reducing ε̄ we can make it smallest possible with 0 ∈ δε̄f (x). ��

It is easy to force a maximum eigenvalue function to be linearly bounded below on a
bounded set C. More generally, if f is bounded below by γ ∈ R on a set C, then define
F̃(x) = diag(γ, F(x)) ∈ S

m+1. Clearly f̃ = λ1 ◦ F̃ agrees with f on C and is linearly
bounded below. During the following we will assume that f is linearly bounded below
on the level set {x ∈ R

n : f (x) ≤ f (x0)}.

3.6. Line search

We need one more element before our first-order bundle algorithm may be presented in
detail. The analysis so far suggests several steps t which give a quantifiable decrease αt .
But we have to make sure that such a step is found by a finite procedure.

Suppose the parameter ε has been chosen, f̃ ′
ε(x; d) < 0 has been computed and

η = η(ε) has been found as in (14). Then we need to find tη realizing f ′
η(x; d). If done

in a precise way, this search is likely to be very costly. We therefore choose a relaxation.
Fix a tolerance parameter 0 < θ0 < 1 and seek t > 0 such that λ′

1(X + tD; D) <
1
4 f̃ ′

ε(x; d) < 0 and η(t) > θ0η. The set of these t is nonempty and contains tη as an
interior point. This means a line search procedure like bisection can find t > 0 with
these properties in a finite number of steps. So altogether replacing the original η by



714 D. Noll, P. Apkarian

θ0η still gives the same order of decrease, but has the benefit to locate an approximation
of the realizing abscissa in a finite procedure. This relaxation means that some of the
estimates in previous Lemmas will get an extra factor θ0 or θ2

0 .
Naturally, while trying to locate tη, we should not forget our original purpose of

reducing f . After all, tη relates only to t �→ λ1(X + tD), and not directly to f . We
should therefore evaluate αt at each intermediate step t visited during the search for
tη. Using the parameter ρ0 ∈ (0, 1) from Section 3.4, we may accept an intermediate t

immediately if αt ≤ −(1 − ρ0)η, because this is the best order of decrease we can hope
to achieve in general.

Suppose tη respectively its substitute has been found. Keep among the intermediate
steps the one with maximum decrease αt and call it ζ . If necessary continue and com-
pute the decrease αtσ at tσ , where σ is as in (18) and compare αtσ to αζ . This covers all
possible cases. For instance, if tη < ϑ with ϑ as in (21), we will get a decrease of the
order O(η).

Remark. Except in the bilinear case, we need to estimate Lx,d,t for various stepsizes t .
Strictly speaking this could not be done in a finite procedure. However, t and therefore
‖Kt‖ are expected to be small, so Lx,d,t ∼ ‖H‖ for sufficiently small t , meaning that
good estimates are available. In any case, the constants Lx,d,t need not be known exactly.
An upper bound L for all the Lx,d,t with x ranging over the level set {x : f (x) ≤ f (x0)}
is all that is needed to prove convergence.

3.7. First-order algorithm

In this section we present our first-order bundle algorithm for the unconstrained mini-
mization of f = λ1 ◦ F (see Figure 1) and prove convergence.

Let us consider sequences xk , dk and ε
�
k, ε̄k, εk generated by the bundle algorithm.

Suppose the sequence xk is bounded, the f (xk) are bounded below, and that F is of
class C2

b . Then f (xj ) − f (x0) = ∑j−1
k=0 f (xk+1) − f (xk) = ∑j−1

k=0 αtk is bounded, and
since each coefficient αtk is negative, the series

∑∞
k=0 αtk converges. By boundedness

of F ′′ and the xk , the constants Lxk,dk,tηk
are uniformly bounded. Then Lemmas 6 and

7 and the choice of tk in step 8 give

αtk ≤ −K max

{(
ηk/tηk

− f̃ ′
εk

(xk; dk)
)2

, ηk

}
< 0 (22)

for some K > 0 independent of k. This implies f̃ ′
εk

(xk; dk) → 0 for the subsequence
where the maximum is attained by the left hand expression, corresponding to case (a)
in Lemmas 6 and 7. On the other hand, for the subsequence where the maximum in
(22) is attained at the second term we obtain ηk → 0, which by formula (15) implies
�εk

(Xk) f̃ ′
εk

(xk; dk) → 0. This corresponds to case (b) in Lemmas 6,7. Therefore, by
(12), and since δεk

f (xk) ⊂ ∂εk
f (xk), this implies dist(0, ∂εk

f (xk)) → 0 in the first
case, and �εk

(Xk) dist(0, ∂εk
f (xk)) → 0 in the second.

Let F = ⋃
k Fk and S = ⋃

k Sk be the flat respectively steep iterates. There are two

cases. Suppose first that there is an infinite number of flat iterates k ∈ F . Then ε
�
k → 0

by step 9, because ε
�
k = γ�k

, with �k the number of flat steps that occurred among the
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Spectral bundle Algorithm for (3)

1. Choose an initial iterate x0 and fix 0 < θ0, ρ0 < 1 and 0 < ω ≤ 1.
Let γk > 0 be a sequence converging slowly to 0. Fix ε

�
0 = ρ0. Initialize

S0 = ∅, F0 = ∅ and let slope ∈ {steep,flat} be a binary variable.
2. Given the current iterate xk , stop if 0 ∈ ∂f (xk). Otherwise let ε̄k > 0

such that 0 ∈ δε̄k
f (xk) but such that 0 �∈ δεf (xk) for ε < ε̄k . Choose

εk ≤ min{ε̄k, ε
�
k} such that �εk

(Xk) ≥ min{ε̄k/m, ε
�
k/m}.

3. Compute a direction dk of approximate steepest εk-enlarged descent

dk = − gk

‖gk‖ , f̃ ′
εk

(xk; dk) ≤ −ω‖gk‖.
4. If |f̃ ′

εk
(xk; dk)| ≤ ε

�
k put slope = flat, otherwise put slope = steep.

5. Compute ηk = η(εk) according to (14).
6. Search for tηk

using a backtracking line search. If during the search t

satisfying αt ≤ −(1 − ρ0) ηk is found, put tk = t and goto 9. Otherwise
stop as soon as t satisfying λ′

1(Xk + tDk; Dk) < 1
4 f̃ ′

εk
(xk; dk) and

η(t) ≥ θ0ηk is found. Replace ηk by η(t) and tηk
by t . Let ζk be the

step which gave the best αζk
during the search.

7. Compute L = Lxk,dk,tηk
, the trial step tσk

in (6) and αtσk
.

8. Compute ϑk by (21) and αϑk
. Let tk ∈ {ζk, ϑk, tηk

} the step which
gives the best decrease.

9. Put xk+1 = xk + tkdk . If slope == steep let Fk+1 = Fk , ε
�
k+1 = ε

�
k

Sk+1 = Sk ∪ {k}. If slope == flat, let Fk+1 = Fk ∪ {k}, Sk+1 = Sk

and put ε
�
k+1 = γ�, where � = card(Fk+1). Replace k by k + 1 and go

back to step 2.

Fig. 1.

first k + 1 steps, so �k → ∞. Therefore also εk → 0. On the other hand, the flat steps
k ∈ F satisfy |f̃ ′

εk
(xk; dk)| ≤ ε

�
k → 0. Then dist(0, ∂εk

f (xk)) → 0 because of (12).
Therefore if x̄ is an accumulation point of the flat subsequence xk , k ∈ F , we conclude
with Lemma 3 that 0 ∈ ∂f (x̄).

Let us next assume that all but a finite number of steps are steep, i.e., k ∈ S for all
k ≥ k0. By step 4, |f̃ ′

εk
(xk; dk)| > ε

�
k , k ≥ k0, and by step 9 the algorithm stops driving

ε
�
k to 0. That means f̃ ′

εk
(xk; dk) stays away from 0. Then we must have �εk

(Xk) → 0. (In

particular, this rules out case (a) in Lemma 6.) Now min{ε̄k, ε
�
k} = ε̄k eventually, because

by step 2 this minimum tends to 0, while ε
�
k stays away from 0. Hence ε̄k → 0, and since

0 ∈ δε̄k
f (xk) ⊂ ∂ε̄k

f (xk), Lemma 3 implies 0 ∈ ∂f (x̄) for every accumulation point x̄

of the entire sequence of iterates xk . Altogether we have proved the following
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Theorem 2. Let f = λ1 ◦ F be a (non-convex) maximum eigenvalue function with F
of class C2

b . Let x0 be fixed so that the level set {x ∈ R
n : f (x) ≤ f (x0)} is com-

pact. Suppose the sequence xk , starting with x0, is generated by the first-order bundle
algorithm.

Then xk is bounded and the f (xk) decrease monotonically. If all but finitely many
iterates are steep, (k ∈ S, k ≥ k0,) then every accumulation point of xk is a critical
point. If F is infinite, then every accumulation point of the flat subsequence xk , k ∈ F ,
is a critical point of f .

In [55] the author considers the convex case f = λ1◦A and aims at finite termination.
The following is therefore a complement to [12] and [55, Thm. 7]:

Corollary 1. Suppose f = λ1 ◦ A is convex. Let x0 be such that the level set {x ∈ R
n :

f (x) ≤ f (x0)} is compact. Then every accumulation point of the sequence of iterates
xk generated by the first-order bundle algorithm starting with x0 is a minimum of f .

Proof. By convexity every critical point x̄ of f is a (global) minimum. Therefore, if all
but finitely many k are steep, the Theorem tells us that we are done. Suppose then that
the subsequence k ∈ F is infinite. Then by the above xk , k ∈ F , has an accumulation
point, x̄, which is a minimum of f . Since the algorithm is of decent type, potential other
accumulation points x̃ of the steep subsequence k ∈ S satisfy f (x̃) = f (x̄), hence by
convexity are also minima. That proves the claim. ��

Clearly this argument also applies when f is non-convex and the accumulation point
x̄ above is a global minimum of f in {x ∈ R

n : f (x) ≤ f (x0)}.
Remark. In the convex case the bundle algorithm essentially agrees with that of Cullum
et al. [12] and Oustry [55], except that we force εk → 0 in certain cases in order to assure
convergence. In [26] Helmberg and Rendl propose an alternative way to maintain an
approximation Ŵ of ∂ελ1(X), using an orthogonal matrix P other than Qε . Moreover,
they include the possibility to remember previous steps via an aggregate subgradient.
Both approaches are compared in [25], and some merits of Ŵ are observed. In [26] the
authors prove convergence of their method and in 3.1 claim that convergence based on
δεf (x) requires partial knowledge of the multiplicity r̄ of λ1(X̄) at the limit X̄. More
precisely, they claim that r(εk) ≥ r̄ at iterates Xk near X̄ is needed. While this is true
if the ε-management from [12, 55] is used, Corollary 1 shows that our way of choosing
εk gives at least subsequence convergence without guessing r̄ correctly. (Naturally, if
f = λ1 ◦A has a strict minimum, our method gives convergence. Helmberg and Rendls’
method converges without this hypothesis.)

Remark. The reader will have understood already that we intend the covering sequence
γk to converge so slowly that the flat case almost never occurs. Nonetheless, it may seem
a little puzzling that when F and S are both infinite, it is the flat subsequence which gets
the merit of (subsequence) convergence, while the steep subsequence, seemingly doing
all the work on the way, does not get rewarded by subsequence convergence. Indeed,
the estimates suggest that steps where |f̃ ′

εk
(xk; dk)| is large give the best decrease in the

cost, and those are the ones in S.
Let us therefore examine the case where both F and S are infinite more closely.As we

shall see, in most cases the subsequence S will still have many convergent subsequences.
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Notice first that it is possible that f̃ ′
εk

(xk; dk) → 0, for a subsequence k ∈ S′ ⊂ S, even

though the speed is necessarily slower than that of ε
�
k → 0. Since εk → 0, a conse-

quence of the fact that F is infinite, we conclude in that case (via Lemma 3) that every
accumulation point x̃ of S′ is critical. Altogether, subsequences like S′ are welcome.

Let us next examine a subsequence S′′ ⊂ S where f̃ ′
εk

(xk; dk) ≤ τ < 0, k ∈ S′′. In
that case we know that �εk

(Xk) → 0, k ∈ S′′. In particular, this may not happen if case
(a) in Lemma 6 is on. Assuming that we are in case (b) of that Lemma, suppose we have
ε̄k → 0, k ∈ S′′. Then we are again done, ending up with another good subsequence S′′
exhibiting subsequence convergence.

So finally the bad case is when ε̄k , k ∈ S′′, stay away from 0. Then by step 2 of
the algorithm, we will eventually have ε

�
k < ε̄k , k ∈ S′′. Now we have to remember

that
∑

k αtk is even summable, a fact we have never exploited so far. From estimate

(14) we deduce that
∑

k∈S′′ �εk
(Xk)

2 < ∞, hence
∑

k∈S′′(ε
�
k)

2 < ∞ by the above. Put
differently, a subsequence S′′ of this last type must be extremely sparse, because as we
agreed, γk tends to 0 very slowly. We may for instance decide that it converges so slowly
that

∑
k γ 2

k = ∞. Then also
∑

k(ε
�
k)

2 = ∞.
This observation at least partially resolves the following dilemma caused by our

algorithm. Suppose our method proposes iterates xk with k ∈ F and k ∈ S fairly mixed.
Then in order to be on the safe side, we would probably stop the process when k ∈ F .
But what to do when all the iterates are in S? In practice this will be satisfactory, as we
are probably in the case where F is finite. But of course we can never be sure, having to
stop after a finite number of steps. It will then be reassuring to know that the probability
to be in a subsequence S′′ of the last type, where subsequence convergence may fail,
is in some sense very low. For instance, the probability to meet an element of S′′ in an
interval of fixed length �, say in In = [n, n + �], will tend to 0 (as n → ∞), which
makes it very likely that stopping the algorithm in In gives an iterate belonging to some
of the ”good” subsequences of S.

Remark. The above observations rise the question of how εk should be chosen in practice,
and whether the failure of subsequence convergence may be avoided by a different ε-
management. Our tests in [5] show that if the problem size is not too large, it may be
worthwhile to compute all the eigenvalue gaps �εk

(Xk) with εk ≤ ε̄k and their corre-
sponding descent αt , and retain the best one. In that reference we also show that with
this extra information the convergence properties of the algorithm are somewhat better
and pathological subsequences S′′ as above may be avoided. Needless to say, for large
size X, this option is impractical, and on picking r(εk) � m, we have to be content to
work with low dimensional approximations of the large matrix inequality. This situation
is at the basis of the methods in [23, 24, 26] and also [55, 25].

3.8. Bounding tη

For general C2 operators F our algorithm has to be mildly modified. Here we encounter
the problem that the constants Lx,d,tη may become arbitrarily large due to the fact that
the trial steps tη may become arbitrarily large. In particular, we then cannot allow cases
where tη = ∞. As we have seen, this does not occur for bilinear B, so we might regard
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this case as of minor importance for the applications we have in mind. But eigenvalue
programs with general C2 operators F have frequently been treated in the literature;
for applications in automatic control see for instance [4], [5]. We therefore include a
discussion of this case here. The way it is handled is by brute force. We oblige the steps
tη to be uniformly bounded by a constant T > 0.

In order to understand the difficulty, consider the known case of an affine operator
A. If the minimization of f = λ1 ◦ A is to be well-defined, i.e., if f is to be bounded
below, then the linear part A of A needs to satisfy λ1(Ad) ≥ 0 for every d. That is, Ad

is not negative definite for any d . Moreover, if the set of minimizers of f = λ1 ◦ A is to
be bounded, we even require coercivity of f , which means λ1(Ad) > 0 for every d �= 0.

What happens for general non-convex C2 operators? Here we notice a difference
to the affine case. Even when f = λ1 ◦ F is nicely bounded below and coercive, that
is f (x) → +∞ as ‖x‖ → ∞, there is no reason why its linearizations about a point
x, that is, e �→ λ1

(F(x) + F ′(x)e
)
, should share this property. In fact some of the

linearizations may fail to be coercive, and this may lead to arbitrarily large values tη as
above. This effect motivates the following

Definition 5. A representation f = λ1 ◦ F of f is called linearly coercive if e �→
λ1

(F(x) + F ′(x)e
)

is coercive for every x.

The meaning of this definition becomes clear with the following

Lemma 11. Suppose f = λ1 ◦F is linearly coercive. Then for every R > 0 there exists
T = T (R) such that for every ‖x‖ ≤ R, every direction ‖d‖ = 1 and every η > 0
having f ′

η(x; d) < 0, the abscissa tη realizing f ′
η(x; d) satisfies tη ≤ T .

Proof. Suppose on the contrary that there exist ‖xk‖ ≤ R, ‖dk‖ = 1 and ηk > 0
such that −λ′

1

(
Xk + tηk

Dk; −Dk

) ≤ f ′
ηk

(xk; dk) < 0 is satisfied, where tηk
realize

f ′
ηk

(xk; dk) and tηk
→ ∞. Then each of the functions φk : t �→ λ1(Xk + tDk) decreases

on the interval [0, tηk
]. In particular, for every intermediate 0 < t < tηk

we have
λ′

1(Xk + tDk; Dk) < 0 and λ1(Xk) > λ1(Xk + tDk).
Passing to subsequences, we may assume xk → x, dk → d, hence Xk → X,

Dk → D. Now consider an arbitrary t > 0. Then tηk
> t for k large enough, hence

λ1(Xk) > λ1(Xk + tDk) for k large enough. Then in the limit, λ1(X) ≥ λ1(X + tD).
Since t > 0 was arbitrary, t �→ λ1(X + tD) is bounded above by λ1(X) on [0, ∞). That
contradicts linear coercivity. ��

The proof is not constructive, so it is not clear at the moment how T should be
computed. However, as we shall see, T will not be required explicitly in the algorithm
and rather serves as a theoretical parameter to obtain convergence. Let us now see how
a given maximum eigenvalue function f = λ1 ◦ F could be forced to linear coercivity.

Lemma 12. Let f = λ1 ◦ F be given. For R > 0 and ε0 > 0, there exists a linearly
coercive maximum eigenvalue function f̃ = λ1 ◦ F̃ such that

(i) f (x) = f̃ (x) for every ‖x‖ ≤ R.
(ii) For every 0 ≤ ε ≤ ε0 and ‖x‖ ≤ R, the ε-enlarged subdifferentials δεf (x) and

δεf̃ (x) coincide.
(iii) If f is coercive, so is f̃ .
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Proof. Recall that F : R
n → S

m by our standing notation. Now let A : R
n → S

p

be any affine matrix function such that λ1 ◦ A is coercive, and consider the following
augmented functions

F̃ν(x) =
[A(x) − νIp 0

0 F(x)

]
∈ S

m+p (23)

with ν ∈ N a parameter to be chosen. Define open sets �ν := {x ∈ R
n : λ1(A(x))−ν <

λ1(F(x))}, then the entire sequence satisfies ∪∞
ν=1�ν = R

n. For ν large enough, let’s
say for ν ≥ ν0, the ball ‖x‖ ≤ R is contained in �ν . By construction

λ1

(
F̃ν(x)

)
= λ1 (F(x)) for every x ∈ �ν,

hence every fν = λ1 ◦ F̃ν with ν ≥ ν0 is now running as a candidate to becoming the
function f̃ we are looking for.

Indeed, consider the linearization of fν = λ1 ◦ F̃ν about some fixed x. This is

e �→ λ1

(
F̃ν(x) + F̃ ′

ν(x) e
)

= max{λ1
(F(x) + F ′(x) e

) ; λ1 (A(x + e)) − ν},

because A is its own linearization. As A is coercive, so is e �→ A(x + e) − νIp, hence
the linearization of each F̃ν is now coercive, i.e., fν is linearly coercive.

Let ν ≥ max{ν0, ε0}, then for every 0 ≤ ε ≤ ε0 and ‖x‖ ≤ R we have

λ1 (A(x)) − 2ν ≤ λ1 (A(x)) − ν − ε < λ1 (F(x)) − ε < λr(ε) (F(x))

by the definition of r(ε) and since x ∈ �ν . Therefore the first r(ε) eigenvalues of
F̃2ν(x) and of F(x) are the same. The corresponding r(ε) × (m + p) matrix Q̃ε is
simply Q̃ε = [0p×r(ε); Q�

ε ]�.
The conclusion is that for 0 ≤ ε ≤ ε0, the ε-enlarged subdifferential off2ν = λ1◦F̃2ν

at x ∈ �ν is the same as that of f = λ1 ◦ F . In consequence, also steepest ε-enlarged
descent directions at x ∈ �ν are the same for both representations of f . ��

This is in contrast with the η-subdifferentials ∂ηf and ∂ηf2ν , which are global con-
cepts in the sense that they change even when the function is modified far away from
the current position x. The conclusion is that changing ∂ηf (x) into ∂(f2ν)η(x) without
affecting δεf (x) allows to bound the abscissae tη. The situations is explained by the
following

Example. Consider B(x) = x2 ∈ S
1, then f (x) = λ1 (B(x)) = x2 is coercive, but the

linearizations e → λ1
(B(x) + B′(x)e

) = x2 + 2ex are not. Now consider the follow-

ing construction. Let B̃(x) = diag(−1 + x, −1 − x, x2) ∈ S
3, then λ1

(
B̃(x)

)
= x2,

so f is represented as λ1 ◦ B̃, now on S
3. In the terminology above we have cho-

sen A(x) = diag(x, −x) and ν = 1 with �ν = R. The linearization of B̃ about
a point x is now B̃(x) + B̃′(x)e = diag(−1 + x + e, −1 − x − e, x2 + 2ex), so

λ1

(
B̃(x) + B̃′(x)e

)
= max{−1 + |x + e|, x2 + 2xe} → ∞ as |e| → ∞. In other

words, the representation f = λ1 ◦ B̃ is now linearly coercive. �
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The first-order bundle algorithm for (3) with general C2 operators is now obtained
as follows. We follow the same steps, but use a linearly coercive representation f̃ of f

on the compact set {x : f (x) ≤ f (x0)} in step 2 and during the search for tη in step 6.
The rest of the procedure remains unchanged, and the convergence or finite termination
properties are the same.

3.9. Comments and extensions

From a practical point of view it may be attractive to modify the bundle method by
allowing larger sets of subgradients δεk

f (xk) ⊂ Gk ⊂ ∂εk
f (xk), as proposed in [25].

For instance, some of the elements gk−j = F ′(xk−j )
∗Gk−j from previous steps may

be recycled at the step xk . As opposed to the convex case [25], there are two ways how
this could be arranged. We could either keep the old gk−j , or we could keep only the old

Gk−j and create new g
�
k−j = F ′(xk)

∗Gk−j at the actual point xk . We would then accept
as trial subgradients g any convex combination g = ∑

j αjgk−j + αg′, αj , α ≥ 0,∑
j αj + α = 1, with g′ ∈ δεk

f (xk), such that g ∈ ∂εk
f (xk). At any rate, the sets Gk

so obtained are finite extensions of δεk
f (xk). Notice that our convergence theory covers

this case as well, even though the estimates based on δεk
f (xk) get the more conservative,

the larger the gap between δεk
f (xk) and Gk . Moreover, in each case we have to specify

in which way the minimum norm element analogous to (11) is computed.
A question of practical importance is whether we can expect a decrease of the order

O(η) as in the convex case (see [55]), or whether we will frequently have to be con-
tent with the order O(η2). The following result gives some indication. Concerning ter-
minology, recall that if the maximum eigenvalue λ1(X) has multiplicity r , we call
sep(X) = λr(X) − λr+1(X) > 0 the separation of X.

Lemma 13. Let R > 0 be fixed. There exist constants K > 0 and α > 0 such that
for every x with ‖x‖ ≤ R, every d with ‖d‖ = 1 and every η > 0 with f ′

η(x; d) =
λ′

1(X + tηD; D), the following expansion is valid

η

t2
η

= 1

2
λ′′

1(X; D) + κ tη

for some |κ| ≤ K and all 0 < tη ≤ α sep(X).

Proof. According to Torki [70, Thm. 1.5], the maximum eigenvalue function is twice
directionally differentiable and admits an expansion

λ1(X + tD) = λ1(X) + tλ′
1(X; D) + t2

2
λ′′

1(X; D) + O(t3).

Inspecting [66, Thm. 2.8] on which the result is built shows that the O(t3) term may
more accurately be written as O(t3) = κ1t

3, where |κ1| ≤ K1 for a constant K1 which is
uniform for a bounded set of X and D, and for 0 ≤ t ≤ α sep(X), where α is independent
of t .

A similar directional expansion holds at the second order level. We have

λ′
1(X + tD; D) − λ′

1(X; D) = t λ′′
1(X; D) + κ2t

2
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where |κ2| ≤ K2 with K2 uniform on a bounded set of X and D, but for t only in
0 ≤ t ≤ α sep(X).

Substituting these two estimates with t = tη into (17) gives the relationship

η = 1

2
t2
ηλ′′

1(X; D) + κt3
η

for |κ| ≤ K and some constant K which is the same for a bounded set of X and D, and
for all tη ≤ α sep(X). ��

Let us substitute this estimate into (21) and check whether tη < ϑ , i.e., whether a
decrease of the order O(η) may be expected. Taking squares this is equivalent to

t2
η ≤

|f ′
η(x; d)|

(
|f ′

η(x; d)| +
√

f ′
η(x; d)2 + 4Lρ0η

)

2L2 + ρ0λ
′′
1(X; D)

2L
t2
η + Kt3

η

where the first term on the right hand side is positive, and the third term is negligible.
Concerning the second term, Torki shows,

λ′′
1(X; D) = λ1(2U�Q�D(λ1(X)Ir − X)†DQU),

where Q is a r × m matrix whose columns span the eigenspace of λ1(X), and U is a
similar matrix for the eigenspace of λ1(Q

�DQ). This means that λ′′
1(X; D) behaves

roughly like sep(X)−1 = (λr(X) − λr+1(X))−1, the order of magnitude of the pseudo-
inverse. This term is expected to explode as the iterates Xk approach a limit X̄ with
λ1(X̄) of multiplicity greater than 1. At least this will happen when the λ1(Xk) have
smaller multiplicity than λ1(X̄), as is usually the case. In other terms, ρ0λ

′′
1(X; D)/2L is

expected to be (way) larger than 1, so tη ≤ ϑ is expected to be satisfied asymptotically.

Remark. Unfortunately this argument remains heuristic, since Torki’s expansion at each
step k is only valid on a neighborhood t ≤ α sep(Xk) (for the same fixed α > 0 which
depends neither on k, nor on t). But it is to be expected that sep(Xk) → 0, so we cannot a
priori render these estimates uniform over k. In fact, we could do so provided sep(Xk) →
0 converged slower than ‖Xk − X̄‖ → 0. This meant that the Xk approached X̄ trans-
versally to the smooth manifold Mr = {X ∈ S

m : λ1(X) = · · · = λr(X) > λr+1(X)}.
Only iterates Xk approaching Mr tangentially cause problems. Ironically, the situation
is also o.k. for iterates which are exactly on the manifold Mr . Then sep(Xk) stays away
from 0 and Torki’s local estimates again hold uniformly over k. This strange behavior
highlights the non-smooth character of the maximum eigenvalue function. In the past,
similar phenomena have motivated approaches, where in order to avoid the tangential
zone, iterates have been forced to lie on the manifold Mr . We will re-examine this idea
in part 2 [46] of this paper.

4. Constrained program

Let us now address the constrained eigenvalue program (4). A first idea, often used in
non-smooth optimization, is exact penalization. While this has been reported to induce
irregular numerical behavior of bundle methods due to inconveniently large penalty con-
stants (cf. [34]), we believe that the situation is less dramatic for (4) with its single scalar
constraint. We have the following
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Proposition 1. Let x̄ be a local minimum of (4) such that x̄ is not a critical point of
f = λ1◦F alone. Then x̄ is a KKT-point of (4). If at least one of the associated Lagrange
multipliers ρ̄ ≥ 0 is known to satisfy ρ̄ ≤ β, then x̄ is a critical point of the following
unconstrained program of the form (3):

min{c�x + β λ1 (diag (01×1, F(x))) : x ∈ R
n}.

Proof. Since c�x and f = λ1 ◦F are locally Lipschitz functions, the F. John necessary
optimality conditions are satisfied at x̄ (see [11, Thm. 6.1.1]). That is, there exist σ̄ ≥ 0,
ρ̄ ≥ 0, not both zero, such that

σ̄ c + ρ̄ F ′(x̄)∗Ḡ = 0, Ḡ ∈ ∂λ1 (F(x̄)) , ρ̄ λ1 (F(x̄)) = 0, λ1 (F(x̄)) ≤ 0.

Clearly ρ̄ = 0 is impossible, while σ̄ = 0 would imply that x̄ was a KKT point for
λ1 ◦ F alone, which was excluded by hypothesis. Therefore x̄ is a KKT-point for (4). In
other terms, we may assume σ̄ = 1, ρ̄ > 0 above.

Now we show that the set of ρ̄ above is bounded. Indeed, suppose on the contrary that
we have KKT-conditions with σ̄ = 1, ρn → ∞ and Gn ∈ ∂λ1 (F(x̄)). By compactness
of the subdifferential, we may assume Gn → G∞ ∈ ∂λ1 (F(x̄)) for a subsequence.
Dividing by ρn and passing to the limit then implies F ′(x̄)∗G∞ = 0, which means that
x̄ is a KKT-point for λ1 ◦ F alone, contradicting our hypothesis. Hence the set of ρ̄ is
bounded.

What we have shown is that program (4) is calm at x̄ in the sense of Clarke [11, 6.4].
Hence it may be solved by exact penalization. That is, we find β > 0 such that

min c�x + β max{0, λ1 (F(x̄))}
is equivalent to (4). But observe that max{0, λ1 (F(x̄))} = λ1 (diag(01×1, F(x)), so the
exact penalty program is of the form (3). The fact that every β ≥ ρ̄ will do is standard.
��

Let us now look at a second way to address (4), which builds on Kiwiel’s improve-
ment function [32]. In the convex case f = λ1 ◦ A, this has more recently been used by
Miller et al. [43, 44], where ideas from [26] have been amalgamated with those of [32].
The emerging numerical method is reported to perform nicely.

Given the current iterate xk in a minimization algorithm for (4), consider the improve-
ment function

φ(xk; x) = max
{
c�(x − xk), λ1 (F(x))

}
= λ1

([
c�(x − xk) 0

0 F(x)

])
. (24)

The algorithm given in Figure 2 essentially follows the line of the unconstrained
case, where at each instance k the new search direction is computed with respect to the
improvement function φ(xk; ·) instead of f .

Then we have the following

Theorem 3. Consider program (4). Let x0 be fixed and suppose F is of class C2
b . Sup-

pose c�x is bounded below on the feasible set {x ∈ R
n : f (x) ≤ 0}. Let the sequence xk

starting with x0 be generated by the spectral bundle algorithm for (4). Then the following
cases may occur:
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Spectral bundle algorithm for program (4)

1. Let ω, ρ0, θ0, ε
�
0, x0, γk , S, F ⊂ N and slope ∈ {steep,flat} be as in

the unconstrained algorithm.
2. Given the current xk , stop if 0 ∈ ∂φ(xk; xk). Otherwise let ε̄k such

that 0 ∈ δε̄k
φ(xk; xk), but 0 �∈ δεφ(xk; xk) for ε < ε̄k . Choose εk ≤ ε

�
k

such that �εk
(Xk) ≥ min{ε̄k/m, ε

�
k/m}.

3. Compute a direction dk of approximate steepest εk-enlarged descent
at xk with respect to the function φ(xk; ·).

4. If |φ̃′(xk; ·)εk
(xk; dk)| ≤ ε

�
k put slope =flat, otherwise put slope =

steep.
5. Compute ηk as in (14) using φ(xk; ·).
6. Search for tηk

as in the unconstrained algorithm using φ(xk; ·) and
the corresponding Fk = diag{c�(x − xk), F} in lieu of f and F .

7.-9. In analogy with the unconstrained case.

Fig. 2.

1. All iterates are infeasible, i.e., f (xk) > 0 for all k. If x̄ is an accumulation point
of the entire sequence xk (when F is finite) and of the flat subsequence xk , k ∈ F

(when F is infinite), then x̄ is a critical point of f .
2. The iterates xk are strictly feasible, i.e., f (xk) < 0, for some k0 and all k ≥ k0. If

x̄ is an accumulation point of the entire sequence xk (if F is finite) and of the flat
subsequence xk , k ∈ F otherwise, then x̄ satisfies the F. John necessary optimality
conditions for program (4).

Proof. 1) Let us first examine the situation where the initial point x0 is infeasible,
f (x0) > 0. Then there are two possibilities. Either feasibility is reached in finite time,
i.e., f (xk) ≤ 0 at some stage k. Or f (xk) > 0 for all k, so that feasibility is never
reached. In the second case φ(xk, x) = f (x) around xk , and the algorithm essentially
behaves like the unconstrained bundle algorithm, that is, it reduces f . Since the f (xk)

are bounded below by 0, the same conclusions are obtained. More precisely, every accu-
mulation point x̄ of xk is a critical point of f if the set F is finite, and so is every
accumulation point of the flat subsequence if F is infinite. Such an accumulation point
may or may not be feasible.

2) Let us now suppose that some iterate k is feasible, f (xk) ≤ 0. Then φ(xk; xk) = 0.
Unless the algorithm halts with 0 ∈ ∂φ(xk; xk), the new dk is a direction of descent of
φ(xk; ·) at xk , so the line search will give a descent step with φ(xk; xk+1) < φ(xk; xk) =
0. Then f (xk+1) ≤ φ(xk; xk+1) < 0. Therefore iterate xk+1 is even strictly feasible.

3) Suppose next that f (xk) < 0 for some k. Then by repeating the argument in 2), all
iterates xj , j ≥ k stay strictly feasible. What is more, c�(xk+1 − xk)) ≤ φ(xk; xk+1) <

φ(xk; xk) = 0, so the algorithm now reduces the objective function at each step and
continues to do so during the following steps.
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Altogether iterates now decrease in value and remain strictly feasible. Since by
hypothesis the problem is bounded below, the series

∑
k αtk converges. By construction,

this yields then the same cases as discussed in the unconstrained algorithm.
4) Suppose for instance that some subsequence k ∈ N has ε̄k → 0, where 0 ∈

δε̄k
φ(xk; xk). Let x̄ be one of its accumulation points, then the argument of Lemma 3

shows 0 ∈ ∂φ(x̄; x̄). In that case x̄ satisfies the F. John necessary optimality conditions,
so it must be either a KKT-point, or a critical point of f alone.

Feasibility f (x̄) ≤ 0 is clear. But f (x̄) < 0 is not possible, for in that case we would
have ∂φ(x̄; x̄) = {c}, a contradiction. So f (x̄) = 0. Then both c�(x − xk) and F(x)

are active at xk , hence 0 = αc + (1 − α)g for some 0 ≤ α ≤ 1 and g ∈ ∂f (x̄). If α > 0
we have a KKT point. If α = 0, then x̄ is a critical point of f alone, whose value is 0.

5) Suppose next that φ̃′
εk

(xk; ·)(xk; dk) → 0 in tandem with εk → 0 for a subse-
quence k ∈ N . Here the argument of Lemma 3 shows that every accumulation point x̄

of xk , k ∈ N , has 0 ∈ ∂φ(x̄; x̄), so the conclusion is the same.
6) Finally suppose 0 ∈ ∂φ(xk; xk) at some k, in which case the algorithm halts. Here

if f (xk) > 0, we must have a critical point of f alone. If f (xk) ≤ 0, the discussion is
the same as in 4) above. This completes the proof. ��
Remark. Clearly when 0 ∈ ∂f (x̄) with f (x̄) > 0, the algorithm fails. While this always
happens when the problem is infeasible, it is clear that even in the feasible case we
may create situations, where a first-order method like the proposed one must fail. For
instance, we could arrange that feasible points can only be reached from x0 by increas-
ing the improvement function, which the method never does. Nonetheless, Theorem 3
seems practically useful, as local minima or critical points of f alone are not expected
to occur frequently in practice.

Notice that for a convex constraint, f (x) = λ1 (A(x)) ≤ 0, the algorithm never
fails. We have the following

Corollary 2. Suppose f = λ1 ◦A is convex and program (4) is bounded below and has
a strictly feasible point. Then every accumulation point of the sequence xk generated by
the constraint bundle algorithm is a minimum of (4).

Proof. Suppose we had f (xk) > 0 for all k. Then some accumulation point x̄ of the
xk is critical for f alone, which by convexity means x̄ is a minimum of f . Suppose
f (x̄) > 0, then the program has no feasible points, a contradiction. But f (x̄) = 0 is also
impossible, because no point is strictly feasible. This means f (xk) become strictly fea-
sible after a finite number of iterations. Now Theorem 3 shows that every accumulation
point x̄ of the xk satisfies the F. John optimality condition. If x̄ is a KKT-point, then it is
a minimum by convexity, so we are done. The other possibility is that x̄ is a minimum
of f . But the proof of Theorem 3 shows that f (x̄) = 0, while a minimum of f (if any)
must have strictly negative value. So this is impossible. This completes the proof. ��

5. Conclusion

We have proved a global convergence result for constrained and unconstrained optimi-
zation problem using non-convex maximum eigenvalue functions, which assures sub-
sequence convergence of the sequence of iterates towards critical points under mild
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assumptions. The proposed method computes qualified descent steps using an inner
approximation of ε-subdifferentials proposed in [12] and [55]. Recent numerical tests,
to be published in [4, 5], seem to indicate that the method performs fairly well in practice.
An extension to second order methods will be presented in part 2 [46] of this work.
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30. Hol, C.W.J., Scherer, C.W., van der Meché, E.G., Bosgra, O.H.: A nonlinear SDP approach to fixed-order
controller synthesis and comparison with two other methods applied to an active suspension system.
submitted, 2002

31. Iwasaki, T.: The dual iteration for fixed order control. Proc. Am. Control Conf., 1997, pp. 62–66
32. Kiwiel, K.C.: Methods of descent for nondifferentiable optimization. Lect. Notes in Math. vol. 1133,

Springer Verlag, Berlin, 1985
33. Kiwiel, K.C.: A linearization algorithm for optimizing control systems subject to singular value inequal-

ities. IEEE Trans. Autom. Control AC-31, 1986, pp. 595–602
34. Kiwiel, K.C.: A constraint linearization method for nondifferentiable convex minimization. Numerische

Mathematik 51, 395–414 (1987)
35. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math.

Programming 46, 105–122 (1990)
36. Kiwiel, K.C.: Restricted-step and Levenberg-Marquardt techniques in proximal bundle methods for non-

convex nondifferentiable optimization. SIAM J. Optim. 6, 227–249 (1996)
37. Krishnan, K., Mitchell, J.E.: Cutting plane methods for semidefinite programming. Submitted, 2002
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39. Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Nonsmooth Optimization, Proc. IIASA
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