
Math. Control Signals Syst. manuscript No.
(will be inserted by the editor)

Minimizing memory effects of a system

Minh Ngoc Dao · Dominikus Noll

Received: 20 December 2013 / Accepted: 15 June 2014

Abstract Given a stable linear time-invariant system with tunable parame-
ters, we present a method to tune these parameters in such a way that undesir-
able responses of the system to past excitations, known as system ringing, are
avoided or reduced. This problem is addressed by minimizing the Hankel norm
of the system, which quantifies the influence of past inputs on future outputs.
We indicate by way of examples that minimizing the Hankel norm has a wide
scope for possible applications. We show that the Hankel norm minimization
program may be cast as an eigenvalue optimization problem, which we solve by
a nonsmooth bundle algorithm with a local convergence certificate. Numerical
experiments are used to demonstrate the efficiency of our approach.

Keywords System ringing · system memory · Hankel norm · system
reduction · controller design · system with tunable parameters

1 Introduction

Ringing generally designates undesired responses of a system to past excita-
tions. In electronic systems, ringing arises under various forms of noise, such as
gate ringing in converters, undesired oscillations in digital controllers, or input
ring back in clock signals. In mechanical systems, ringing effects, when com-
bined with resonance, may accelerate breakdown. In audio systems, ringing
may cause echoes to occur before transients.

M. N. Dao
Department of Mathematics and Informatics,
Hanoi National University of Education, Vietnam
and Institut de Mathématiques, Université de Toulouse, France
E-mail: minhdn@hnue.edu.vn

D. Noll
Institut de Mathématiques, Université de Toulouse, France
E-mail: noll@mip.ups-tlse.fr

2 Minh Ngoc Dao, Dominikus Noll

In more abstract terms, ringing may be understood as a tendency of the
system to store energy, which is retrieved later to produce undesired effects.
One way to quantify this capacity uses the Hankel norm of a system, which
measures the effects of past inputs on future outputs.

This paper focuses on the problem of minimizing system ringing by casting
it as a Hankel norm minimization program. This leads to an eigenvalue opti-
mization problem, for which we propose a nonsmooth bundle algorithm which
assures convergence to a critical point from an arbitrary starting point. We
demonstrate that a variety of problems such as Hankel synthesis, maximizing
the memory of a system, and control of flow in a graph, can be interpreted as
Hankel norm minimization programs and solved efficiently using the proposed
algorithm.

There is a considerable body of literature dedicated to Hankel norm sys-
tem reduction, the original contribution being [12]. Our present approach is
complementary to this classical line, as we focus on Hankel norm optimization
problems which cannot be solved by linear algebra techniques. This makes our
method closer in spirit to H2- or H∞-controller or filter design [26].

The structure of the paper is as follows. After presenting the problem in
abstract form in Sect. 2, we show in Sect. 3 how it can be cast as a nonconvex
eigenvalue optimization program. Section 4 describes how Clarke subgradients
of a Hankel norm objective can be computed. In Sect. 5 we extend the Hankel
norm to systems with direct transmission in a physically meaningful way.
Sections 6, 7 present typical applications for the purpose of motivation of the
Hankel minimization problem. Section 8 discusses a proximal bundle algorithm
used to solve the Hankel norm minimization program. We propose a smooth
relaxation of the Hankel norm in Sect. 9. Experiments with typical applications
are given in Sect. 10.

Notation

Terminology in nonsmooth optimization is covered by [8], system theory by
[26]. Following the latter reference, given a transfer matrix function G(s) =
C(sI −A)−1B +D, we use the standard notations

G(s) =

[
A B
C D

]
or G = (A,B,C,D)

to indicate that

G :

{
ẋ = Ax+Bw
z = Cx+Dw

is a state-space realization of z(s) = G(s)w(s). Similar notations apply to
discrete time systems.

We shall work in the set of rectangular matrices with the corresponding
scalar product 〈M,N〉 = Tr(M>N) = Tr(N>M), where M> and Tr(M)
are transpose and trace of a matrix. For symmetric matrices, M � 0 means
positive definite, M � 0 positive semidefinite.

Minimizing memory effects of a system 3

2 Hankel norm minimization

Consider a linear time-invariant system

G :

{
ẋ = Ax+Bw
z = Cx

with state x ∈ Rnx , input w ∈ Rm, and output z ∈ Rp. Suppose G is internally
stable in the sense that all eigenvalues of A have negative real part. If we
think of w(t) as an excitation at the input which acts over the time period
0 6 t 6 T with dynamics started at x(0) = 0, then the ring of the system
after the excitation has stopped at time T is z(t) for t > T . If signals are
measured in the energy norm, this leads to the definition of the Hankel norm
of an internally stable system G = (A,B,C) with input w and output z = Gw
as

‖G‖H = sup
T>0

{(∫ ∞
T

z>z dt

)1/2

:

∫ T

0

w>w dt 6 1, w(t) = 0 for t > T

}
.

For the discrete time case, the Hankel norm of an internally stable system

G :

{
x(t+ 1) = Ax(t) +Bw(t)
z(t) = Cx(t)

is given by

‖G‖H = sup
T>0


(∞∑
t=T

z(t)>z(t)

)1/2

:

T∑
t=0

w(t)>w(t) 6 1, w(t) = 0 for t > T

 ,

where now internally stable means that all eigenvalues of A have magnitude
< 1, and where it is again understood that z = Gw. A formula which works
in both cases is

‖G‖H = sup
T>0

{
‖z‖2,[T,∞) : ‖w‖2,[0,T] 6 1, w ∈ L2[0, T], w(t) = 0, t > T

}
. (1)

Note that the system G in the above definition has no direct transmission D.
This accounts for the fact, proved in Lemma 2 in Sect. 5, that D causes no
memory effects, and is therefore not seen by the Hankel norm (1). In conse-
quence, on the space of systems G = (A,B,C,D) with direct transmission,
‖ · ‖H is only a semi-norm and not a norm.

By definition, the Hankel norm can be interpreted as a measure of the
effects of past inputs, that is, the memory of the system, on the states and
future outputs. Here, we are interested in systems G(x) with tunable param-
eters x ∈ Rn, where the matrices A(x), B(x), C(x) depend smoothly on a
design parameter x varying in Rn or in some constrained subset of Rn. Our
goal is to tune x such that system ringing is avoided or reduced while internal

4 Minh Ngoc Dao, Dominikus Noll

stability of the system is guaranteed. This leads to the following Hankel norm
minimization program

minimize ‖G(x)‖H
subject to G(x) internally stable

x ∈ Rn.
(2)

We will discuss various instances, where program (2) may be of interest. Then,
we present a nonsmooth optimization method based on techniques from eigen-
value optimization to solve (2), and discuss a smooth relaxation motivated by
a result of Nesterov in [15].

3 Representation of the Hankel norm

A representation of the Hankel norm ‖ · ‖H amenable to computations is ob-
tained through the observability and controllability Gramians, defined in [26,
Section 3.8]. Based on the results in [12, Section 2.3], see also [26, Theorem
8.1], we have the following

Lemma 1 Let G = (A,B,C) be an internally stable linear time-invariant
system with input w and output z, and let ΓG : L2(−∞, 0] −→ L2[0,∞) be the
Hankel operator associated with G, defined by

(ΓGw)(t) =

∫ 0

−∞
CeA(t−τ)Bw(τ)dτ, t > 0.

Then, the following definitions are equivalent:

(i) ‖G‖H = supT>0

{
‖z‖2,[T,∞) : ‖w‖2,[0,T] 6 1, w ∈ L2[0, T], w(t) = 0, t > T

}
.

(ii) ‖G‖H = ‖ΓG‖ = sup
{
‖ΓGw‖2,[0,∞) : ‖w‖2,(−∞,0] 6 1, w ∈ L2(−∞, 0]

}
.

(iii) ‖G‖H =
√
λ1(XY), where λ1 denotes the maximum eigenvalue of a matrix,

and X,Y are the controllability and observability Gramians of the system.

Proof We assume x(−∞) = 0 for the Hankel operator ΓG and obtain

z(t) =

∫ t

−∞
CeA(t−τ)Bw(τ)dτ.

If we now focus on input signals w− that live for times t 6 0 and vanish for
t > 0, then the output restricted to t > 0 is

z+(t) =

∫ 0

−∞
CeA(t−τ)Bw−(τ)dτ = ΓGw−, t > 0.

Assuming x(0) = 0 in (i), it now follows from the time-invariance that

sup
T>0

06=w∈L2[0,T]
w(t)=0, t>T

‖z‖2,[T,∞)

‖w‖2,[0,T]
= sup

T>0
06=w∈L2[−T,0]
w(t)=0, t>0

‖z‖2,[0,∞)

‖w‖2,[−T,0]
= sup

06=w∈L2(−∞,0]
w(t)=0, t>0

‖z‖2,[0,∞)

‖w‖2,(−∞,0]

= sup
06=w−∈L2(−∞,0]

‖z+‖2,[0,∞)

‖w−‖2,(−∞,0]
= ‖ΓG‖.

Minimizing memory effects of a system 5

This gives the equivalence of (i) and (ii). Next, we have

〈w, Γ ∗Gz〉L2(−∞,0] = 〈ΓGw, z〉L2[0,∞)

=

∫ ∞
0

(∫ 0

−∞
w(τ)>B>eA

>(t−τ)C>dτ

)
z(t)dt

=

∫ 0

−∞
w(τ)>

(∫ ∞
0

B>eA
>(t−τ)C>z(t)dt

)
dτ,

which implies

(Γ ∗Gz)(τ) =

∫ ∞
0

B>eA
>(t−τ)C>z(t)dt, τ 6 0.

Note that the operator norm of ΓG is equal to its maximum singular value.
Therefore, to complete the proof, we show that σ2

i (ΓG) = λi(XY), where σi(·)
and λi(·) denote, respectively, the ith singular value and ith eigenvalue of an
operator or matrix. Suppose σ is a nonzero singular value of ΓG, and w is an
eigenvector corresponding to the eigenvalue σ2 of Γ ∗GΓG, i.e., Γ ∗GΓGw = σ2w.

Setting z(t) = (ΓGw)(t) = CeAtx0 with x0 =
∫ 0

−∞ e−AτBw(τ)dτ , and noting
by [26, Lemma 3.18] that

X =

∫ ∞
0

eAtBB>eA
>tdt, Y =

∫ ∞
0

eA
>tC>CeAtdt,

we have

σ2w = Γ ∗Gz = B>e−A
>τ

∫ ∞
0

eA
>tC>z(t)dt

= B>e−A
>τ

∫ ∞
0

eA
>tC>CeAtx0dt = B>e−A

>τY x0.

It follows that

σ2x0 =

∫ 0

−∞
e−AτBσ2w(τ)dτ =

∫ 0

−∞
e−AτBB>e−A

>τY x0dτ = XY x0.

Moreover, x0 6= 0 since otherwise σ2w = 0, which is impossible. Thus, σ2 is
an eigenvalue of XY . Conversely, if σ2 6= 0 is an eigenvalue and x0 6= 0 is a
corresponding eigenvector of XY , i.e., XY x0 = σ2x0, then by setting w =
B>e−AτY x0 we obtain w 6= 0 and Γ ∗GΓGw = σ2w. Hence, σ2

i (ΓG) = λi(XY),
and so

‖ΓG‖ = σ1(ΓG) =
√
λ1(XY).

The lemma is proved. �

Lemma 1 shows that the Hankel norm can be considered as a measure of
controllability and observability of the system, and that it does not depend on
the state-space representation of the system. It is now clear that problem (2)
may be cast as an eigenvalue optimization program. In the sequel, we examine
how this problem can be solved algorithmically.

6 Minh Ngoc Dao, Dominikus Noll

4 Subgradients of the Hankel norm

In this section, we compute Clarke subgradients [8, Section 2.1] of the noncon-
vex composite function f(x) = ‖G(x)‖2H . This is a fundamental tool for our
optimization method.

Let G(x) be a linear time-invariant system with state-space realization
(A(x), B(x), C(x)) depending smoothly on a design parameter x ∈ Rn. Let
X(x), Y (x) be the controllability and observability Gramians. Suppose the

maximum eigenvalue λ1 (Z(x)) of the matrix Z(x) = X(x)
1
2Y (x)X(x)

1
2 has

multiplicity r(x), and let R = R(x) be a matrix whose columns form an
orthonormal basis of the eigenspace associated with λ1 (Z(x)). For any matrix

function M(x), put Mk(x) = ∂M(x)
∂xk

and write M
1
2

k for (M
1
2)k, k = 1, . . . , n.

We have the following

Proposition 1 The function f(x) = ‖G(x)‖2H is well defined and locally Lip-
schitz on the set S = {x ∈ Rn : A(x) stable}. In addition, for every x in the
set S0 = {x ∈ S : (A(x), B(x)) controllable} the Clarke subgradients of f at
x have the form

gU =
[
Tr(UR>Z1(x)R) . . . Tr(UR>Zn(x)R)

]>
, (3)

where U is symmetric of size r × r, U � 0, Tr(U) = 1, and where the partial
derivatives Zk(x), k = 1, . . . , n are given by

Zk(x) = X
1
2

k (x)Y X
1
2 +X

1
2Yk(x)X

1
2 +X

1
2Y X

1
2

k (x). (4)

Here, Xk(x), Yk(x) and X
1
2

k (x) are the solutions of the following Lyapunov
equations

AXk(x) +Xk(x)A> = −Ak(x)X −XAk(x)> −Bk(x)B> −BBk(x)>, (5)

A>Yk(x) + Yk(x)A = −Ak(x)>Y − Y Ak(x)− Ck(x)>C − C>Ck(x), (6)

X
1
2X

1
2

k (x) +X
1
2

k (x)X
1
2 = Xk(x). (7)

Proof 1. By Lemma 1,

f(x) = ‖G(x)‖2H = λ1(X(x)Y (x)),

where the Gramians X(x) and Y (x) depend on the tunable parameters x
and are the solutions of the Lyapunov equations

A(x)X +XA(x)> +B(x)B(x)> = 0, (8)

A(x)>Y + Y A(x) + C(x)>C(x) = 0. (9)

Note that despite the symmetry of X and Y the product XY is not nec-
essarily symmetric, but stability of A(x) guarantees X � 0, Y � 0 in (8),
(9), so that we can write

λ1(XY) = λ1(X
1
2Y X

1
2) = λ1(Y

1
2XY

1
2),

Minimizing memory effects of a system 7

which brings us back to the realm of eigenvalue theory of symmetric matri-
ces. By positive semidefiniteness of X(x) and Y (x), the function f is now
well defined on S.

2. Let us next prove that f is locally Lipschitz on S. Using the Kronecker
product [3], Eq. (8) can be written as

(I ⊗A(x) +A(x)⊗ I)vec(X(x)) = −vec(B(x)B(x)>),

where I is a conformable identity matrix, and where vec(·) vectorizes a
matrix by stacking its columns in order. Since A(x) is smooth in x and
M(x) = (I ⊗ A(x) + A(x) ⊗ I) is invertible by the stability of A(x),
M(x)−1 is also smooth in x, and since B(x) depends smoothly on x, then so
does vec(X(x)) = −M(x)−1vec

(
B(x)B(x)>

)
. A similar argument shows

smooth dependence of Y (x) on x. This can also be justified based on the
explicit formulas

X(x) =

∫ ∞
0

eA(x)tB(x)B(x)>eA(x)>tdt, Y (x) =

∫ ∞
0

eA(x)>tC(x)>C(x)eA(x)tdt

(see e.g., [26, Lemmas 2.7 and 3.18]), where uniform convergence of these
integrals on any bounded set of x gives differentiability in x. We infer that
the coefficients of the characteristic polynomial of X(x)Y (x) also depend
smoothly on x. Since this characteristic polynomial is hyperbolic, that is,
has only real roots, we may invoke the multi-parameter version of Bron-
stein’s theorem [6], for which an elegant proof is given in [19, Theorem 2],
to conclude that f(x) = λ1(X(x)Y (x)) is locally Lipschitz on S.

3. Let us finally establish formula (3) for the subdifferential ∂f(x) at points
x ∈ S0. By the above argument, f(x) = λ1(Z(x)). Observe that control-
lability of (A(x), B(x)) implies that X(x) is positive definite [26, Theo-

rem 3.1], and since the operator X → X
1
2 is smooth on the set of ma-

trices X � 0, the chain rule gives smoothness of x → X
1
2 (x), and so of

Z(x) = X
1
2Y X

1
2 , on S0.

Applying [18, Theorem 3], the Clarke subgradients of f at x are of the

form gU =
[
g1 . . . gn

]>
, where

gk =
〈
U,R>Zk(x)R

〉
= Tr(UR>Zk(x)R)

for U symmetric of size r × r, U � 0, Tr(U) = 1. It now remains to
calculate Zk(x), k = 1, . . . , n. We first have (4) by the definition of Z.
Taking derivatives with respect to x on both sides of (8)–(9), we get (5)–

(6), and then also Xk(x), Yk(x). Finally, to compute X
1
2

k (x), we use (7),

which is obtained by differentiating X
1
2X

1
2 = X. Altogether, we obtain

Clarke subgradients of f at each x due to (3)–(9). �

Remark 1 Formula (3) also holds if controllability of (A(x), B(x)) is replaced
by observability of (A(x), C(x)) (cf. [26, Definition 3.4]). Here, we work with

Z = Y
1
2XY

1
2 instead.

8 Minh Ngoc Dao, Dominikus Noll

Remark 2 In the discrete time case, the Gramians X(x) and Y (x) are the
solutions of the discrete Lyapunov equations

A(x)XA(x)> −X +B(x)B(x)> = 0,

A(x)>Y A(x)− Y + C(x)>C(x) = 0,

so that Xk(x) and Yk(x) are solutions, respectively, of the following equations

AXk(x)A> −Xk(x) = −Ak(x)XA> −AXAk(x)> −Bk(x)B> −BBk(x)>,

A>Yk(x)A− Yk(x) = −Ak(x)>Y A−A>Y Ak(x)− Ck(x)>C − C>Ck(x).

Remark 3 Subgradients of f at x ∈ S \ S0 are no longer represented by (3),

since the solution of (7) need not exist, as only X
1
2 � 0 is guaranteed. Nonethe-

less, by Clarke subdifferentiability at points x ∈ S\S0 proved above, we can be
sure that for every sequence xk ∈ S0 converging to x ∈ S \S0 and gk ∈ ∂f(xk)
computed via (3), the gk stay bounded and each of their accumulation points
g is an element of ∂f(x). This guarantees stability of our numerical procedure
even when iterates get close to the set S \ S0.

Remark 4 Practical parametrizations G(x) use elementary computable op-
erations, which can be expressed in mathematical terms by assuming that
A(x), B(x), C(x) are smooth definable functions of x in the sense of [25, Chap.
1, Sect. 5.3]. In that case, one can say a little more about the behavior of f at
points x ∈ S. Namely, it then follows from [21, Theorem 4.12] that for every
smooth definable curve x(t) ∈ S the eigenvalues λi(t) = λi(X(x(t))Y (x(t)))
are smooth functions of t, so that f(x(t)) is a finite maximum of smooth
functions of t. On S0 this property is a consequence of symmetric eigenvalue
theory, which is true without the definability hypothesis. Note that this does
not mean that f is a finite maximum of smooth functions of x ∈ Rn, but it
nonetheless indicates a favorable structure.

5 An extension of the Hankel norm

Lemma 1 shows why the Hankel norm is only a semi-norm on the space of
internally stable systems G. It does not see a direct transmission D from w
to z, as the latter does not create memory transmitted from the past to the
future. This rises the question how to assess a direct transmission block in the
context of (1) or (2). Namely, in some applications, attributing no cost to a
block D(x) which is free to vary with the tunable parameters x bears the risk
that optimization favors a solution with a high energy direct transmission.

It is well known that ‖G‖H 6 ‖G‖∞ in the case D = 0 (See e.g., [5, Sect.
5.5]), and this may guide us to define an extension. Note first that

Lemma 2 ‖(A,B,C)‖H 6 ‖(A,B,C,D)‖∞ for every internally stable system
G = (A,B,C,D).

Minimizing memory effects of a system 9

Proof Let G0 = (A,B,C) be the system where the direct transmission is
ignored. Consider an input w with w(t) = 0 for t > T , and let z0 = G0w,
z = Gw. Then, z(t) = z0(t) for t > T , because the direct transmission creates
no memory, and since w(t) = 0 for t > T , its influence on the output ends at
T . Combining this with ‖w‖2,[0,T] = ‖w‖2 and ‖z‖2,[T,∞) 6 ‖z‖2, we obtain

‖(A,B,C)‖H = sup
T>0

0 6=w∈L2[0,T]
w(t)=0, t>T

‖z‖2,[T,∞)

‖w‖2,[0,T]
6 sup

T>0
06=w∈L2[0,T]
w(t)=0, t>T

‖z‖2
‖w‖2

6 sup
w 6=0

‖z‖2
‖w‖2

= ‖(A,B,C,D)‖∞.

�

This suggests the following extension of Hankel norm ‖ · ‖H to systems
G = (A,B,C,D) with direct transmission D.

Definition 1 LetG = (A,B,C,D) be an internally stable linear time-invariant
system. Then,

‖G‖H = max {‖(A,B,C)‖H , σ1(D)} (10)

is called the extended Hankel norm of the system. Here, σ1 denotes the maxi-
mum singular value of a matrix. �

This definition agrees with the usual Hankel norm for a system without
direct transmission, and also preserves the inequality ‖G‖H 6 ‖G‖∞, since
the term σ1(D) is part of the maximum ‖G‖∞ = maxω σ1 (G(jω)) at ω =∞.

As the proof of Lemma 2 shows, a direct transmission does not change the
value of ‖ · ‖H defined according to (1). In the sequel, we therefore adopt the
convention that in the case D 6= 0, ‖(A,B,C)‖H is the usual Hankel norm,
where the direct transmission is ignored, while ‖(A,B,C,D)‖H is the extended
Hankel norm.

An advantage of (10) is that the new function is still a maximum eigen-
value function. Namely, stability of G implies positive semidefiniteness of the
Gramians X and Y , and so

‖G‖2H = max
{
λ1(X

1
2Y X

1
2), λ1(D>D)

}
= λ1

[
X

1
2Y X

1
2 0

0 D>D

]
. (11)

Proceeding as in the proof of Proposition 1, we get immediately the fol-
lowing

Corollary 1 Let G(x) be a linear time-invariant system depending smoothly
on x ∈ S with S = {x ∈ Rn : A(x) stable}. Suppose the maximum eigenvalue
λ1(Z(x)) of the matrix

Z(x) =

[
X(x)

1
2Y (x)X(x)

1
2 0

0 D(x)>D(x)

]

10 Minh Ngoc Dao, Dominikus Noll

has multiplicity r = r(x), and R = R(x) is a matrix whose columns form
an orthonormal basis of the eigenspace associated with λ1(Z(x)). With the
notations of Proposition 1, the function f(x) = ‖G(x)‖2H is locally Lipschitz
on S and its Clarke subgradients on S0 = {x ∈ S : (A(x), B(x)) controllable}
have the form

gU =
[
Tr(UR>Z1(x)R) . . . Tr(UR>Zn(x)R)

]>
,

for U symmetric of size r× r, U � 0, Tr(U) = 1, where the partial derivatives
Zk(x), k = 1, . . . , n are given by

Zk(x) =

[
Zk(x) 0

0 Dk(x)>D(x) +D(x)>Dk(x)

]
and the Zk(x) are defined in Proposition 1. �

To justify the use of (10) rigorously, we consider the extended Hankel norm
minimization program (2) based on (10), and compare it to the following
constraint program

minimize f(x) = ‖(A(x), B(x), C(x))‖H
subject to h(x) = σ1 (D(x)) 6 η. (12)

For the following, recall from [13] that x∗ ∈ Rn is called a Fritz John critical
point of the constraint program min{f(x) : h(x) 6 η} if there exist multipliers
λ∗0 > 0, λ∗1 > 0, not both zero, such that

0 ∈ λ∗0∂f(x∗) + λ∗1∂h(x∗), h(x∗) 6 η, λ∗1 (h(x∗)− η) = 0.

If in addition λ∗0 > 0, then x∗ is called a Karush–Kuhn–Tucker point. Remem-
ber that every local minimum x∗ of the constraint program is automatically
a Fritz John critical point, while it will in general only be a Karush–Kuhn–
Tucker point if an additional constraint qualification is satisfied [13, Chapter
7]. For later on, we call x∗ a critical point of constraint violation if 0 ∈ ∂h(x∗)
and h(x∗) > η.

With these preparations, we have the following

Proposition 2 Let x∗ be a critical point of the extended Hankel norm min-
imization program (2) with (10). Then, x∗ is a Fritz John critical point of
program (12) for a suitable choice of η. More precisely, x∗ is either a Karush–
Kuhn–Tucker point of (12), or a critical point of h(x) = σ1(D(x)) alone.

Proof Note that ‖G(x)‖H = max{f(x), h(x)}. Now, if x∗ is a critical point of
‖G(x)‖H , then we have three possibilities, f(x∗) > h(x∗), f(x∗) = h(x∗), or
f(x∗) < h(x∗). In the first case, x∗ is a critical point of f alone, hence also a
Karush–Kuhn–Tucker point of (12). The third case corresponds to a critical
point of h alone. In the case of equality, the situation is more complex. There
exist multipliers λ∗0 > 0, λ∗1 > 0, not both zero, such that 0 ∈ λ∗0∂f(x∗) +
λ∗1∂h(x∗). If λ∗0 = 0 then λ∗1 6= 0 and 0 ∈ ∂h(x∗), so x∗ is a critical point of
h. In case λ∗0 6= 0, we have 0 ∈ ∂f(x∗) + (λ∗1/λ

∗
0)∂h(x∗). This is the first part

of the Karush–Kuhn–Tucker conditions. If we put η = f(x∗), then we also get
the second half. That completes the argument. �

Minimizing memory effects of a system 11

Remark 5 Suppose we solve program min{f(x) : h(x) 6 η} starting at an
infeasible point h(x1) > η, then we will usually try to minimize h alone to
find a feasible iterate. Suppose a descent method used to minimize h runs
into a local minimum x∗ of h satisfying h(x∗) > η. Such a local minimum of
constraint violation indicates a failure, since nothing better will be found in a
neighborhood of x∗ due to local optimality, so that the search for a feasible
point has to be stared anew elsewhere; cf. [20, Section 2.2] for this theme
complex.

By Proposition 2 we can now interpret minimization of the extended Hankel
norm (2) with (10) as a trade-off between minimizing the memory effects of
(A(x), B(x), C(x)), subject to a constraint σ1(D(x)) 6 η, or dually, as of
minimizing σ1(D(x)) subject to a constraint on the memory effects of G(x).
Since f(x) is a valid measure of the memory or ringing effects of G(x), such
an interpretation is physically meaningful.

We conclude this section by showing that the Hankel norm is amenable to
optimization techniques, as this will be needed later. According to Spingarn
[24] a function f : U → R, where U is an open set in Rn, is lower -C1 on U , if
for each x0 ∈ U , there are a compact space K, a neighborhood V of x0, and a
jointly continuous function F : V ×K → R whose partial derivative DxF with
respect to x exists and is jointly continuous, such that f(x) = maxz∈K F (x, z)
for all x ∈ V .

Proposition 3 Let G(x) = (A(x), B(x), C(x), D(x)) be a linear time-invariant
system depending smoothly on the set S0 of all x ∈ Rn such that A(x) is
stable and (A(x), B(x)) is controllable or (A(x), C(x)) is observable. Then,
f(x) = ‖G(x)‖2H is lower-C1 on S0.

Proof For each x ∈ S0, according to (11) and using the Rayleigh quotient,

f(x) = λ1(Z(x)) = max
‖z‖=1

z>Z(x)z,

where Z is symmetric and depends smoothly on x. Set K = {z ∈ Rm : ‖z‖ =
1} and F (x, z) = z>Z(x)z, then K is compact, f(x) = maxz∈K F (x, z), and
both F and its partial derivatives Fx are jointly continuous on S0 × K and
smooth in x. Therefore, f is lower-C1 on S0. �

6 Hankel synthesis

The first application of program (2) we consider is output feedback controller
synthesis, where performance is assessed by the Hankel norm. Consider a linear
time-invariant plant in standard form

P (s) :

ẋz
y

 =

A B1 B2

C1 D11 D12

C2 D21 D22

xw
u

 , (13)

12 Minh Ngoc Dao, Dominikus Noll

where x ∈ Rnx is the state, u ∈ Rm2 the control, w ∈ Rm1 the vector of
exogenous inputs, y ∈ Rp2 the measurements, and z ∈ Rp1 the controlled or
performance vector,

P (s) :=

[
P11(s) P12(s)
P21(s) P22(s)

]
=

[
C1

C2

]
(sI −A)−1

[
B1 B2

]
+

[
D11 D12

D21 D22

]
.

Without loss of generality, it is assumed that D22 = 0. Let u(s) = K(s)y(s)
be an output feedback controller for the open-loop plant (13), with

K :

[
ẋK
u

]
=

[
AK BK
CK DK

] [
xK
y

]
,

where xK ∈ Rk is the state of K. The closed-loop transfer function of the
performance channel w → z is obtained as

Tw→z(K, s) = P11(s) + P12(s)K(s)(I − P22(s)K(s))−1P21(s).

Our aim is to find an optimal controller K which stabilizes the system in
closed-loop such that ‖Tw→z(K)‖H is minimized among all stabilizing K. By
substituting u = Ky into (13), the state-space representation of the closed-loop
performance channel w → z is

Tw→z(K) :

[
ξ̇
z

]
=

[
A(K) B(K)
C(K) D(K)

] [
ξ
w

]
,

where ξ = (x, xK) and

A(K) =

[
A+B2DKC2 B2CK

BKC2 AK

]
, B(K) =

[
B1 +B2DKD21

BKD21

]
,

C(K) =
[
C1 +D12DKC2 D12CK

]
, D(K) = D11 +D12DKD21.

This problem is now a specific instance of (2), where in agreement with our
general theme we try to minimize the memory of a specific channel w → z
within the plant P . If we allow structured control laws K(x) in the sense of
[1], then we obtain the following optimization program

minimize ‖Tw→z(K)‖H
subject to K stabilizes (13) internally

K = K(x),x ∈ Rn.
(14)

Example 1 Typical examples of structured controllers are, for instance, PIDs
or observer-based controllers, which in state-space have the form

Kpid(x) =

 0 0 ri
0 −τ rd
1 1 dK

 , Kobs(x) =

[
A+B2Kc +KfC2 −Kf

Kc 0

]
.

For a PID, the tunable parameters are x = (ri, rd, dK , τ), while for observer-
based controllers Kobs(x) the vector x gathers the elements of Kc,Kf . Other
examples are decentralized, fixed reduced order controllers, and more generally,
control architectures combining basic building blocks such as PIDs with filters,
feed-forward blocks, and much else (see [1]).

Minimizing memory effects of a system 13

Remark 6 The norm in program (14) is the usual Hankel norm (1) ifD(K) = 0,
which is the case e.g., under standard assumption as in H2-synthesis, where
D11 = 0 and either D21 = 0 or D12 = 0 or K strictly proper. In contrast, if
D(K) 6= 0, then we should use the extended Hankel norm (10), or likewise, the
constraint program (12), to control the direct transmission. It is also possible
to neglect the direct transmission term D(K) and optimize the semi-norm
‖(A(K),B(K), C(K))‖H . We then exercise caution by monitoring the term
σ1(D(K)) during optimization to check whether a large direct transmission
gain σ1(D(K)) is favored. If that is the case, switching to the extended Hankel
norm becomes mandatory.

In the sequel of this section, we discuss two particular cases of the Hankel
synthesis problem (14).

6.1 System reduction

System reduction is the most widely known application of the Hankel norm
minimization problem. Given a stable system

G :

{
ẋ = Ax+Bw
z = Cx+Dw

of order nx, we wish to find a stable system

Gk :

{
ẋ = Akx+Bkw
z = Ckx+Dw

of reduced order k < nx with input–output behavior as close as possible to the
original system G. If the model matching error e = (G−Gk)w is measured in
the Hankel norm, then the program

minimize ‖G−Gk(x)‖H
subject to G−Gk(x) internally stable

x = (Ak, Bk, Ck)
(15)

is a particular case of (14), where we define plant and controller as

P :

A B 0
C D −I
0 I 0

 , K :

[
Ak Bk
Ck D

]
, (16)

the tunable parameters x being the elements of Ak, Bk and Ck.

-

-

G

Gred

?

6
c+

–
-
ew

(17)

14 Minh Ngoc Dao, Dominikus Noll

Due to the seminal work of Glover [12], program (15) has an explicit solution
based on linear algebra, at least when no additional structural constraints on
the matrices Ak, Bk, Ck are imposed. This allows us to implement a blind
testing of Algorithm 1 in Sect. 8, which is applied to (15), considered as a
particular case of (14) using (16). The value obtained by Algorithm 1 is then
compared to the theoretical value obtained by an explicit Hankel system re-
duction.

6.2 Maximizing the memory of a system

Within the present framework, it is also possible to maximize the memory
effects of a system G via feedback if a reference system Gref with desirable
memory properties is used. In other words, while minimizing ‖G(x)‖H leads
to a system which is the least biased, we now bias G(x) as much as possible
by bringing it as close as possible to Gref , and we achieve this by making
G(x)−Gref as less biased as possible.

Example 2 As a motivating example, we consider a 2-DOF synthesis scheme
of the following form

-q
- F

K- -?d -

-z2

z1Gd -
6

y

u

v

w e
−

+ +
−

- Gref
yref

6
d -

(18)

where the decentralized controller structure was chosen to challenge our method
in a typical situation in practice.

Assuming that Gref has desirable memory features which do not lead to
ringing, the idea is to tune the parameters in feed-forward filter F and con-
troller K in such a way that G in closed-loop follows Gref , independently of the
input w. That is, the undesirable part of the memory of G, which contributes
to the mismatch z1 = y − yref , is reduced by minimizing ‖Tw→z1(F,K)‖H .
It may be beneficial to arrange this by adding a constraint ‖z2‖2 6 η2 or
‖z2‖∞ 6 η∞, where z2 = u+ v, to avoid exceedingly large controller actions.
This problem can be cast as a particular case of program (14) if the following
plant and decentralized controller structures are used

P :


A 0 0 B B
0 Aref Bref 0 0
C −Cref −Dref D D
0 0 0 I I
−C 0 I −D −D
0 0 I 0 0

 , K :


AF 0 BF 0
0 AK 0 BK
CF 0 DF 0
0 CK 0 DK

 .

Minimizing memory effects of a system 15

Notice that

F :

{
ẋF = AFxF +BFw
v = CFxF +DFw

, K :

{
ẋK = AKxK +BKe
u = CKxK +DKe

can be further structured if we wish. In our experiment, we will use this ex-
ample with F a reduced-order filter, and K a PID.

7 Control of flow in a graph

We consider the flow in a directed graph G = (V ,A) with interior nodes,
sources and sinks, V = Vstay ∪ Vin ∪ Vout, and not excluding self-arcs. For
nodes i, j ∈ V connected by an arc (i, j) ∈ A the transition probability
i→ j quantifies the tendency of flow going from node i towards node j. As an
example consider for instance a large fairground with separated entrances and
exits, with itineraries represented by the graph. By acting on the transition
probabilities between nodes connected by arcs, we expect to guide the crowd
in such a way that a steady flow is assured, and a safe evacuation is possible.

Assume that an individual at interior node j ∈ Vstay decides with proba-
bility ajj′ > 0 to proceed to a neighboring node j′ ∈ Vstay, where neighboring
means (j, j′) ∈ A , or with probability ajk > 0 to move to a neighboring exit
node k ∈ Vout, where (j, k) ∈ A . The case (j, j) ∈ A of deciding to stay at
stand j ∈ Vstay is not excluded. Similarly, an individual entering at i ∈ Vin pro-
ceeds to a neighboring interior node j ∈ Vstay with probability bij > 0, where
(i, j) ∈ A . We suppose for simplicity that there is no direct transmission from
entrances to exits. Then,∑

j′∈Vstay:(j,j′)∈A

ajj′ +
∑

k∈Vout:(j,k)∈A

ajk = 1, (19)

for every j ∈ Vstay, and ∑
j∈Vstay:(i,j)∈A

bij = 1 (20)

for every i ∈ Vin. Let xj(t) denote the number of people present at interior node
j ∈ Vstay and time t, and wi(t) the number of people entering the fairground
through entry i ∈ Vin at time t. Then, the number of people present at interior
node j ∈ Vstay and time t+ 1 is

xj(t+ 1) =
∑

j′∈Vstay:(j′,j)∈A

aj′jxj′(t) +
∑

i∈Vin:(i,j)∈A

bijwi(t),

while the number of people leaving the fairground at time t through exit
k ∈ Vout is

∑
j∈Vstay:(j,k)∈A ajkxj(t). To assess the evacuation pattern, we

quantify the total number of people still inside the fairground at time t via
the weighted sum

z(t) =
∑

j∈Vstay

cjxj(t),

16 Minh Ngoc Dao, Dominikus Noll

where cj > 0 are fixed weights, and where cj = 1 would correspond to simply
counting the number of people inside the fairground. We let x regroup the
parameters ajj′ , ajk, bij , so that the discrete linear time-invariant system has
the form G(x) = (A(x), B(x), C), where C is the row vector of cj ’s.

Let us now consider an evacuation scenario, where at time T the inflow w(t)
through the entrance gates is stopped by closing the gates, and the time until
the fairground is evacuated is assessed by measuring the evacuation pattern
z(t), t > T . This corresponds to computing the Hankel norm ‖G(x)‖H , which
identifies the worst case evacuation scenario. Minimizing ‖z‖2,[T,∞)/‖w‖2,(0,T]

may then be understood as enhancing overall safety of the network by orienting
the crowd in such a way that the worst case evacuation time is minimized. This
leads to the optimization program

minimize ‖G(x)‖H
subject to G(x) internally stable

ajj′ > 0, ajk > 0, bij > 0, (19), (20)
(21)

which is a discrete version of (2) including linear constraints. Notice that
these linear constraints are readily added in our algorithmic approach. In an
extended model, one might consider measuring the number of people y at some
selected nodes i ∈ Vstay ∪ Vout, and use this to react via feedback u = Ky at
the entry gates. This leads to a problem where controller and parts of the plant
are optimized simultaneously. Other variants include cases, where some of the
probabilities ajj′ , bij are imposed and cannot be modified by the designer.

8 Proximal bundle algorithm

In this section, we present our main algorithm to solve programs (2) and (12).
Let us consider an abstract constrained optimization program of the form

minimize f(x)
subject to h(x) 6 0

(22)

where x ∈ Rn is the decision variable, and f and h are locally Lipschitz but
potentially nonsmooth and nonconvex functions, representing objective and
constraints. To find solutions of the constraint program (22), using an idea
inspired by Polak [20, Section 2.2.2], we introduce the progress function

F (y,x) = max{f(y)− f(x)− νh(x)+, h(y)− h(x)+},

where h(x)+ = max{h(x), 0}, and ν > 0 is some fixed parameter (with ν = 1
a typical value). One can think of x as the current iterate, and y as the next
iterate or as a candidate to become the next iterate. We need to collect a few
facts about F . Note first that F (x,x) = 0. For the subdifferential, we have the
useful

Minimizing memory effects of a system 17

Lemma 3 Suppose f and h are lower-C1 functions. Then, the Clarke subdif-
ferential of the progress function F with respect to the first variable is obtained
as

∂1F (x,x) =


∂f(x) if h(x) < 0,

conv{∂f(x) ∪ ∂h(x)} if h(x) = 0,

∂h(x) if h(x) > 0.

Proof Applying the formula for the Clarke subdifferential of a maximum [8,
Proposition 2.3.12] we readily get ∂1F (x,x) = ∂f(x) if h(x) < 0, ∂1F (x,x) ⊂
conv{∂f(x) ∪ ∂h(x)} if h(x) = 0, and ∂1F (x,x) = ∂h(x) if h(x) > 0. But
since f and g are lower-C1, according to [24, Proposition 2.4, Theorem 3.9],
they are Clarke regular, so we have equality in the second case h(x) = 0. �

Lemma 4 Suppose x∗ is a local minimum of program (22), then it is also a lo-
cal minimum of F (·,x∗), and 0 ∈ ∂1F (x∗,x∗). Conversely, if 0 ∈ ∂1F (x∗,x∗)
then x∗ is either a Karush–Kuhn–Tucker point of (22), or a critical point of
constraint violation.

Proof Since x∗ is a local minimum of (22), we have feasibility h(x∗) 6 0, and
so h(x∗)+ = 0, which implies F (y,x∗) = max{f(y)−f(x∗), h(y)}. Now, there
exists a neighborhood U of x∗ such that f(y) > f(x∗) for every y ∈ U with
h(y) 6 0. We argue that F (y,x∗) > F (x∗,x∗) for every y ∈ U . Namely,
if h(y) > 0, then F (y,x∗) > h(y) > 0 = F (x∗,x∗). On the other hand, if
h(y) 6 0, then y is feasible, and we have f(y) > f(x∗) by what was said
before. But then F (y,x∗) > f(y)− f(x∗) > 0 = F (x∗,x∗). This proves x∗ is
a local minimum of F (·,x∗), and so 0 ∈ ∂1F (x∗,x∗).

Next, suppose 0 ∈ ∂1F (x∗,x∗), then by Lemma 3, there exist non-negative
constants λ∗0, λ

∗
1 summing up to 1 such that 0 ∈ λ∗0∂f(x∗) + λ∗1∂h(x∗). If

h(x∗) > 0, we have ∂1F (x∗,x∗) = ∂h(x∗), and then 0 ∈ ∂h(x∗), meaning that
x∗ is a critical point of h. If h(x∗) < 0 then ∂1F (x∗,x∗) = ∂f(x∗), so λ∗1 = 0
and x∗ is a Karush–Kuhn–Tucker point of (22). Assume that h(x∗) = 0 but
x∗ fails to meet the Karush–Kuhn–Tucker conditions, we then obtain λ∗0 = 0
and 0 ∈ ∂h(x∗). This completes the proof of the lemma. �

The consequence of this argument is that we should seek points x∗ with 0 ∈
∂1F (x∗,x∗). We now present our method for computing solutions of program
(22), which is based on this rationale. It generates a sequence xj of estimates
which converges to a solution x∗ in the sense of subsequences. At the current
iterate x, the inner loop of the algorithm constructs first-order working models
φk(·,x) and the corresponding second-order working models

Φk(y,x) = φk(y,x) +
1

2
(y − x)>Q(x)(y − x),

updated with counter k. The Φk(·,x) are approximations of F (·,x) around
x, where Q(x) is symmetric, depends only on the current iterate x, and may
reflect second-order information of F around x. The first-order working model
φk(·,x) has to satisfy φk(x,x) = F (x,x) = 0 and ∂1φk(x,x) ⊂ ∂1F (x,x) at

18 Minh Ngoc Dao, Dominikus Noll

all instants k. This is guaranteed when me(·,x) = g(x)>(· − x) with g(x) ∈
∂1F (x,x) is an affine minorant of φk(·,x) at all times k. We refer to me(·,x)
as the exactness plane at x.

For a given working model, we solve the tangent program

min
y∈Rn

Φk(y,x) +
τk
2
‖y − x‖2,

with the so-called proximity control parameter τk > 0. We requireQ(x)+τkI �
0, which assures that the tangent program is strictly convex and has a unique
solution yk, called the trial step. According to standard terminology, yk is
called a serious step if it is accepted as the new iterate yk = x+, and a null
step otherwise. Suppose yk is a null step, then we will have to make sure that
the next working model φk+1(·,x) improves over φk(·,x). This is achieved by
adding cutting and aggregate planes. Let us first look at aggregation. The
optimality condition for the tangent program implies

g∗k := (Q(x) + τkI)(x− yk) ∈ ∂1φk(yk,x).

We call m∗k(·,x) = φk(yk,x) + g∗>k (· − yk) = a∗k + g∗>k (· − x) with a∗k =
φk(yk,x) + g∗>k (x − yk) the aggregate plane. By assuring that m∗k(·,x) is an
affine minorant of φk+1(·,x), we have φk+1(yk,x) > m∗k(yk,x) = φk(yk,x).

A central element in bundle methods is the cutting plane whose role is to
cut away the unsuccessful trial step yk. For each subgradient gk ∈ ∂1F (yk,x),
the affine function tk(·) = F (yk,x) + g>k (· − yk) is a tangent to F (·,x) at yk.
Without convexity, we cannot use tk(·) directly as a cutting plane. Instead, we
use a technique first analyzed in [14], which shifts the tangent down. Fixing a
parameter c > 0, we define the cutting plane as

mk(·,x) = tk(·)− s = ak + g>k (· − x), (23)

where ak = min{tk(x),−c‖yk − x‖2}, and where s = [tk(x) + c‖yk − x‖2]+
is the downshift. The detailed statement is described as Algorithm 1, while a
flowchart of the algorithm is shown in Fig. 1. For more details we refer to [17,
Section 3], [16, Section 4] for unconstrained optimization case, and [2, Section
5], [11, Section 3] for the constrained case.

Next, we establish the following result on the convergence of Algorithm 1.

Theorem 1 Suppose that f and h in (22) are lower-C1 functions, and let
{x ∈ Rn : f(x) 6 f(x1)} be bounded. Then, every accumulation point x∗

of the sequence of serious iterates xj generated by Algorithm 1 satisfies 0 ∈
∂1F (x∗,x∗). In other words, x∗ is either a critical point of constraint violation,
or a Karush–Kuhn–Tucker point of (22).

Proof We will adapt the proof of Theorem 6.6 and Corollary 6.7 in [17] to our
needs. For that let us recall a notion from [17, Definitions 2.1 and 6.1], which
we apply here to the progress function F . We call φ : Rn × S → R a strict
first-order model of F on the set S ⊂ Rn if for every x ∈ S the function φ(·,x)
is convex and the following axioms hold:

Minimizing memory effects of a system 19

Algorithm 1 Proximal bundle algorithm with downshifted tangents

Parameters: 0 < γ < γ̃ < Γ < 1, 0 < δ � 1, 0 < q < T 6∞.

. Step 1 (Initialize outer loop). Choose initial feasible guess x1, fix memory control

parameter τ]1 , and put outer loop counter j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop if 0 ∈ ∂1F (xj ,xj). Otherwise,
take a symmetric matrix Qj respecting −qI � Qj � qI, and goto inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize control

parameter τ1 = max{τ]j ,−λmin(Qj) + δ}, where λmin(·) denotes the minimum eigen-

value of a symmetric matrix. Choose initial working model φ1(·,xj) = g(xj)>(· − xj)
with g(xj) ∈ ∂1F (xj ,xj).

. Step 4 (Tangent program). At inner loop counter k, let Φk(y,xj) = φk(y,xj) + 1
2

(y−
xj)>Qj(y − xj) and find solution yk (trial step) of the tangent program

min
y∈Rn

Φk(y,xj) +
τk

2
‖y − xj‖2.

� Step 5 (Acceptance test). Compute the quotient

ρk =
F (yk,xj)

Φk(yk,xj)
.

If ρk > γ (serious step), put xj+1 = yk and update memory element τ]j+1 as τk if

ρk < Γ , and 1
2
τk otherwise. Reset τ]j+1 = T if τ]j+1 > T , increase outer loop counter j

and loop back to step 2. If ρk < γ (null step), continue inner loop with step 6.

. Step 6 (Update working model). Generate a cutting plane mk(·,xj) at null step yk and
counter k using downshifted tangents. Compute aggregate plane m∗k(·,xj) at yk, and

then build new working model φk+1(·,xj) by adding the new cutting plane, keeping
the exactness plane and using aggregation to avoid overflow.

� Step 7 (Update control parameter). Compute secondary control parameter

ρ̃k =
Mk(yk,xj)

Φk(yk,xj)
,

with Mk(y,xj) = mk(y,xj) + 1
2

(y− xj)>Qj(y− xj). If ρ̃k < γ̃ then keep τk+1 = τk,
otherwise step up τk+1 = 2τk. Increase inner loop counter k and loop back to step 4.

(M1) φ(x,x) = F (x,x) = 0 and ∂1φ(x,x) ⊂ ∂1F (x,x).

(M̂2) If yj → x and xj → x then there exists εj → 0+ such that F (yj ,xj)−
φ(yj ,xj) 6 εj‖yj − xj‖.
(M3) φ is jointly upper semicontinuous on Rn × S, i.e., if (yj ,xj) → (y,x)
then lim sup

j→∞
φ(yj ,xj) 6 φ(y,x).

Representing the cutting plane in (23) as my+(·,x) = a+g>(·−x) with g ∈
∂1F (y+,x) and a = min{ty+(x),−c‖y+−x‖2}, ty+(·) = F (y+,x)+g>(·−y+),
we define

φ(y,x) = sup{my+(y,x) : y+ ∈ B(x, r)},

where B(x, r) is a fixed ball large enough to contain all possible trial steps,
and where the supremum is over all possible cases of my+(·,x). It then follows

20 Minh Ngoc Dao, Dominikus Noll

start
initialize x1, τ ♯

1

put j = 1
outer loop

τ ♯
j+1 := τk/2 j := j + 1 0 ∈ ∂1F (xj ,xj) exit

ρk > Γ τ ♯
j+1 := τk

initialize Qj , τ1, put k = 1
initialize working model

inner loop

update Qj+1 tangent program k := k + 1

recycle planes xj+1 := yk ρk > γ τk+1 := 2τk τk+1 := τk

cutting and aggregate plane
update working model

ρ̃k > γ̃

yes

noyes

no

yes

no yes

no

Fig. 1 Flowchart of proximal bundle algorithm. Inner loop is shown in the lower right box

that φ is a strict model of F in the sense of the above definition. This can be
shown as in [16, Lemmas 7–9]. Axiom (M̂2) relies on the fact that F (·,x) is
lower-C1 by the assumptions on f and h. Furthermore, the construction of φ
and φk also guarantees that the working models φk are lower approximations
of φ satisfying φk(x,x) = φ(x,x) = F (x,x) = 0, ∂1φk(x,x) ⊂ ∂1φ(x,x)
and φk(·,x) 6 φ(·,x). The difference with [17] is that here the cutting planes
mk(·,x) are not directly tangents of φ, but we shall argue that the essential
link between φk and φ rests the same.

The proof now follows essentially [17, Theorem 6.6, Corollary 6.7], which
assures that every accumulation point x∗ of the iterates xj satisfies 0 ∈
∂1F (x∗,x∗). Note that f(xj) and f(yk) used in [17] have to be replaced by
F (xj ,xj) = 0 and F (yk,x). The fact that Φ(yk+1) in the definition of ρ̃k in
[17] is changed to Mk(yk,x) can be treated using the property that if yj → x
and xj → x then there exists εj → 0+ such that F (yj ,xj) −myj (yj ,xj) 6
εj‖yj − xj‖, as follows from [16, Lemma 8], using again crucially that F (·,x)
is lower-C1. The equality φk+1(yk+1,x) = φ(yk+1,x) used in the proof of [17,
Lemma 4.2] is now replaced by φk+1(yk,x) > mk(yk,x). Finally, Lemma 4
completes the last statement of the theorem. �

9 A smooth relaxation of the Hankel norm

Here, we introduce a smooth relaxation of the Hankel norm based on a result
of Nesterov in [15]. He provides a fine analysis of the convex bundle method
in situations where the objective f(x) has the specific structure of a max-
function, including the case of a convex maximum eigenvalue function. These
findings indicate that for a given precision, such programs may be solved with
lower algorithmic complexity using smooth relaxations. While these results are

Minimizing memory effects of a system 21

a priori limited to the convex case, it may be interesting to apply Nesterov’s
idea as a heuristic in the nonconvex situation. This leads to the following

Proposition 4 Let Z be a symmetric matrix of order m depending smoothly
on a parameter x ∈ Rn with eigenvalues λ1(Z) > · · · > λm(Z). Then, for a
tolerance parameter µ > 0, the function

fµ(x) = µ ln

(
m∑
i=1

eλi(Z(x))/µ

)
(24)

is a uniform smooth approximation of the nonsmooth function f(x) = λ1(Z(x))
in the sense that fµ(x) converges uniformly to f(x) as µ→ 0.

Proof Following [15, Section 4], fµ is smooth in Z and

∇fµ(Z) =

(
m∑
i=1

eλi(Z)/µ

)−1 m∑
i=1

eλi(Z)/µqiq
>
i ,

where qi is the ith column of the orthogonal matrix Q(Z) from the eigen-
decomposition of the symmetric matrix Z = Q(Z)D(Z)Q(Z)>. This implies
that fµ is smooth at x with the gradient given by

∇fµ(x) =
[
Tr(∇fµ(Z(x))>Z1(x)) . . . Tr(∇fµ(Z(x))>Zm(x))

]>
.

On the other hand, we have the estimate

f(x) 6 fµ(x) 6 f(x) + µ lnm,

which says that fµ(x) is a uniform approximation of the function f(x). �

Now, we can try to solve problem (2) and (12) on replacing the function
f(x) = λ1(Z(x)) by its smooth approximation fµ(x) in (24). Due to the
estimate in the above proof, to find an ε-solution x̄ of problem (2) and (12),
we have to find an ε

2 -solution of the smooth problem

min{fµ(x) : h(x) 6 0} (25)

with µ = ε
2 lnm . Here, we use a local solution of (25) to initialize the nonsmooth

Algorithm 1. The smooth problem (25) can be solved using standard NLP
software.

22 Minh Ngoc Dao, Dominikus Noll

10 Numerical experiments

In this section, we apply our approach to a variety of problems. Let us start by
commenting on practical ways to implement the stopping test 0 ∈ ∂1F (xj ,xj)
in step 2 of the algorithm. In practice, this is delegated to the inner loop. If
the inner loop at xj finds a new feasible serious iterate xj+1 satisfying

|f(xj+1)− f(xj)|
1 + |f(xj)|

< tol1, (26)

then we accept xj+1 as optimal. This corresponds to stopping the algorithm in
step 2 of the (j+1)st outer loop. In our experiments, we have used tol1 = 10−8.

On the other hand, if the inner loop has difficulties finding a serious step
and provides three unsuccessful trial steps satisfying

‖xj − yk‖
1 + ‖xj‖

< tol2, (27)

then we interpret this in the sense that xj is already optimal. This corresponds
to stopping the algorithm in step 2 of the jth outer loop. Here, we have
used tol2 = 10−7. Theoretically, both tests are based on the observation that
0 ∈ ∂1F (xj ,xj) if and only if yk = xj is solution of the tangent program in
the trial step generation (see [11] for theoretical results).

In general, our stopping strategy is similar to recommendations in smooth
optimization, see e.g., [10, Chapter 7], where the goal is to obtain scale inde-
pendent choices of the tolerances tol1 and tol2. Nonetheless, one has to accept
that a nonsmooth algorithm converges very slowly at the final stages, which
makes stopping a delicate task.

Before applying Algorithm 1 to solve examples of (2), note that internal
stability is not a constraint in the usual sense of mathematical programming
since the set S = {x ∈ Rn : G(x) internally stable} is open. The stability
of the system can be formulated as a constraint α (A(x)) 6 −ε using the
spectral abscissa α(A) = max{Re(λ) : λ eigenvalue of A} in the continuous
time case, and as ρ (A(x)) 6 1− ε using the spectral radius ρ(A) = max{|λ| :
λ eigenvalue of A} in the discrete time case, for ε > 0 some small threshold.
Theoretical properties of the spectral abscissa and the spectral radius have
been studied in [7]. In general, before optimization can start, one has, indeed,
to find a stabilizing x. Using the method in [4], this can be achieved by an initial
phase where α (A(x)) is minimized until an iterate x1 with α

(
A(x1)

)
6 −ε is

found.

10.1 Hankel feedback synthesis

We introduce an application of program (14) to a classical 1-DOF control
system design, using an example from [5, Section 2.4]. The open-loop system

Minimizing memory effects of a system 23

G, exogenous input w and regulated output z, are given by

G =
10− s

s2(10 + s)
, w =

 dny
r

 , z =

[
yp
u

]
.

The corresponding plant is

P :

 A B1 B2

C1 0 D12

C2 D21 0

 ,
where

A =

−10 0 0
1 0 0
0 1 0

 B1 =

1 0 0
0 0 0
0 0 0

 B2 =

1
0
0


C1 =

[
0 −1 10
0 0 0

]
D12 =

[
0
1

]
C2 =

[
0 1 −10

]
D21 =

[
0 −1 1

]
.

Inspired by a manually tuned controller

Kb =
219.6s2 + 1973.95s+ 724.5

s3 + 19.15s2 + 105.83s+ 965.95
,

proposed in [5, Section 2.4], we compute the optimal Hankel controllerKH with
the same proposed structure and compare it to Kb and also to the optimal
H∞-controller K∞ of that same structure

K(x) =
as2 + bs+ c

s3 +ms2 + ns+ p
=


−m −n −p 1

1 0 0 0
0 1 0 0
a b c 0

 ,
where x = [m,n, p, a, b, c]> regroups the unknown tunable parameters. Using
the Matlab function hinfstruct based on [1], we obtain

K∞ =
7941.9s2 + 13028.4s+ 3611.6

s3 + 3206.2s2 + 12528.3s+ 11078.3
.

The interest in this example is also to show that parametrizations x may arise
naturally in the frequency domain. Note also that the closed-loop has no direct
transmission term since D11 = 0 and K is strictly proper. To compute KH ,
we solve (14) with the standard Hankel norm (1) and start Algorithm 1 at an
initial stabilizing controller

x1 = [2.1460, 12.7448, 7.4208, 1.2271, 1.8013, 0.3517]>

with f(x1) = 455.2874, using the stability constraint h(x) = α(A(x)) + ε 6 0
with a typical value ε = 10−8. The stopping tests were (26) and (27). The
algorithm came to a halt due to (26) and returned the optimal solution

x∗ = [77.0614, 255.2324, 74.6195, 188.0709, 133.9333, 22.2401]>

24 Minh Ngoc Dao, Dominikus Noll

with f(x∗) = 10.8419, meaning ‖Tw→z(P,KH)‖H = 3.2927 and

KH := K(x∗) =
77.0614s2 + 255.2324s+ 74.6195

s3 + 188.0709s2 + 133.9333s+ 22.2401
.

0 10 20 30 40 50
0

100

200

300

400

500
The objective and the stability contraint

Outer loop iterations

0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0
objective
stability contraint

0 10 20 30 40 50
0

2

4

6

8

10
Step size

Outer loop iterations

0 10 20 30 40 50
0

2

4

6

8

10
Number of iterations in each inner loop

Outer loop iterations
0 10 20 30 40 50

10
−4

10
−2

10
0

10
2

10
4

Memory control parameter

Outer loop iterations

Fig. 2 Hankel feedback synthesis. Bearing of the algorithm. Top left shows j 7→ f(xj) and
j 7→ α(A(xj)) + 10−8. Top right shows j 7→ ‖xj − xj+1‖. Lower left shows j 7→ kj , lower

right shows j 7→ τ]j , the evolution of the memory control parameter at serious steps

The algorithm needed 50 serious iterates with 2.3 s CPU to reach the local
minimum KH . Bearing of the algorithm is shown in Fig. 2. The improvement
of ‖Tw→z(P,KH)‖H = 3.2927 over ‖Tw→z(P,K∞)‖H = 3.3265 is moderate,
while the improvement over ‖Tw→z(P,Kb)‖H = 109.52 is plain. Step responses
and magnitude plots of the controllers Kb, KH and K∞ are shown in Fig.
3. Posterior testing displays ringing effects caused by various input signals
w, including w = unit step, white noise and sinc, shown in Fig. 4. As can
be seen e.g., in Fig. 4, middle image, for a truncated white noise function
wT = wχ[0,T], with T = 3, comparison of the responses zH = Tw→z(KH)wT
and z∞ = Tw→z(K∞)wT , while confirming optimality ‖z∞‖∞ = 0.5413 <
‖zH‖∞ = 0.5498, reveals that the bulk of energy in z∞ has a wider spread
over time, and ‖zH‖2,[T,∞) = 1.1626 < ‖z∞‖2,[T,∞) = 1.1878 corroborating
that the memory effects in KH are reduced by the use of program (14).

Minimizing memory effects of a system 25

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (seconds)

Am
pli

tud
e

0 5 10 15
−2

−1

0

1

2

3

4
Impulse Response

Time (seconds)

Am
pli

tud
e

10
0

10
5

−250

−200

−150

−100

−50

0

50

Singular Values

Frequency (rad/s)

Si
ng

ula
r V

alu
es

 (d
B)

Fig. 3 Hankel feedback synthesis. Step responses (left), impulse responses (middle), mag-
nitude plot (right) for controllers Kb (dotted), K∞ (dashed), and KH (solid)

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Unit step signal

Time (seconds)
0 5 10 15

−1.5

−1

−0.5

0

0.5

1

1.5
White noise signal

Time (seconds)
0 5 10 15

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Sinc signal

Time (seconds)

Fig. 4 Hankel feedback synthesis. Ringing for controllers Kb (dotted), K∞ (dashed), and
KH (solid). Inputs: Unit step signal (left), white noise signal (middle), sinc signal (right)

10.2 Hankel system reduction

In this section, we solve program (15) with the usual Hankel norm, where our
tests use the 15th order Rolls-Royce Spey gas turbine engine model described
in [23, Chapter 11], with data available for download on I. Postlethwaites’s
homepage as aero0.mat. The goal of this study is to use the theoretical val-
ues to perform a blind testing of our algorithm. For k = 1, 2, . . . , 14, using
Algorithm 1, we computed Hankel reduced-order systems Gk of order k, and
compared the achieved objective f(x∗) = ‖G−Gk(x∗)‖H of (15) with the theo-
retically known optimal Hankel norm approximation errors ‖G−Gk‖H = σk+1,

26 Minh Ngoc Dao, Dominikus Noll

the (k + 1)st Hankel singular value of G. As can be seen in columns 2 and 3
of Table 1, this error is within the limits of numerical precision.

Table 1 Hankel system reduction. Comparison of optimal values ‖G − Gk(x∗)‖H with
theoretical values σk+1

k σk+1 ‖G−Gred‖H No of iterations Time

1 4.046418 4.046418 26 3.5
2 2.754623 2.754624 71 21.0
3 1.763527 1.763529 124 47.3
4 1.296531 1.299542 151 101.5
5 0.629640 0.629640 88 118.0
6 0.166886 0.166887 183 197.3
7 0.093407 0.093408 93 185.8
8 0.022193 0.022201 76 132.4
9 0.015669 0.015675 162 203.7
10 0.013621 0.013624 175 191.3
11 0.003997 0.003997 140 380.0
12 0.001179 0.001179 57 488.4
13 0.000324 0.000324 24 224.2
14 0.000033 0.000033 68 372.5

In each run, the algorithm was started from a random initial guess, and
no information as to the specific structure of problem (15) was provided. On
average, the algorithm needed about 103 serious steps to reach the optimal
objective function value within a tolerance of < 10−10. See Table 1 for number
of iterations and running times in seconds.

Remark 7 The results show no clear relation between running times and the
order of the reduced system, as one might have expected. This is due to the fact
that local optimization techniques depend very sensibly on the initial guess,
which in this comparison was chosen randomly.

Remark 8 In [9], we have used the same example to give a comparison between
Hankel system reduction and H∞-system reduction, which is compared to the
H∞-bound (see [12]).

10.3 Maximizing the memory of a system

We use here an illustrative example for (18), where G and Gref are defined as

G(s) =
1

s− 1
, Gref =

11.11

s2 + 6s+ 11.11
.

The filter F is chosen of order 2,

F (s) =
as2 + bs+ c

s2 + ds+ e
=

 −d −e 1
1 0 0

b− ad c− ae a

 ,

Minimizing memory effects of a system 27

which leads to 5 tunable parameters, whereas K is a PID

K(s) = kp +
ki
s

+
kds

Tfs+ 1
=

 0 0 ki
0 − 1

Tf
− kd
T 2
f

1 1 kp + kd
Tf

 ,
adding another 4 unknowns. We have added a low-pass filter W1(s) = 0.25s+0.6

s+0.006
to the output z1 to asses the tracking error y−yref in low-frequency, and a high-
pass filter W2(s) = s

s+0.001 on the control output z2 to reduce high-frequency
components of the control signal u+ v.

Due to the choice of the performance channel w → z = (W1z1,W2z2), the
closed-loop has a non-vanishing direct transmission term. We therefore solve
problem (14) for the setup (18) using the extended Hankel program (2) with
(10), and also using the constraint program (12). Running Algorithm 1 from
the same starting point, these two methods give Hankel controllers (FeH ,KeH)
and (FcH ,KcH) with

FeH(s) = −3.4778s2−13.9996s−0.0546
s2+1.9202s+0.0001 , KeH(s) = 6.3078 + 3.6689

s − 1.0924
0.4739s+1 ,

FcH(s) = −3.6552s2−13.6987s−0.0522
s2+1.9588s+0.0001 , KcH(s) = 6.1959 + 3.8435

s − 0.7121
0.3644s+1 ,

where we used the constraint σ1(D) 6 η with η = 1. For comparison, we also
synthesized the usual Hankel norm controller, where the direct transmission
is ignored, and the H∞-controller, both with the same architecture:

FH(s) = −2.2376s2−1.9738s−2.4161
s2+0.9054s+0.9836 , KH(s) = 2.4482 + 0.7883

s + 0.8023
0.7817s+1 ,

F∞(s) = −9.9366s2−1.5077s−0.0349
s2+0.9969s+0.0273 , K∞(s) = 11.5131 + 0.2673

s − 0.5507
1.0117s+1 .

Figure 5 compares step responses y and step reference responses yref for these
controllers. The evolution of the optimization method for the three Hankel
controllers can be traced in Fig. 6. The achieved Hankel norms are

‖Tw→z(FeH ,KeH)‖H = 0.8767 < ‖Tw→z(FcH ,KcH)‖H = 0.8862

< ‖Tw→z(FH ,KH)‖H = 1.0160 < ‖Tw→z(F∞,K∞)‖H = 1.0277.

This example is again interesting in so far as the parametrization of F and K
arises naturally in the frequency domain.

10.4 Control of flow in a graph

Here, we give an application of program (21). Let Vstay = {1, 2, . . . , nx}, Vin =
{1, 2, . . . ,m}, Vout = {1, 2, . . . , p}. Let x regroup the unknown tunable param-
eters ajj′ , bij and set A(x) = [ajj′]

>
nx×nx

, B(x) = [bij]
>
m×nx

, C = [c1, . . . , cnx
],

where ajj′ = 0 if (j, j′) 6∈ A , bij = 0 if (i, j) 6∈ A . We have a discrete linear
time-invariant system

G(x) :

{
x(t+ 1) = A(x)x(t) +B(x)w(t)
z(t) = Cx(t).

28 Minh Ngoc Dao, Dominikus Noll

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step Response
From: r To: y

Time (seconds)

Am
pli

tud
e

reference model
syn. with H∞−norm

syn. with monitoring
syn. with constraint σ

1
(D)

syn. with ext. Hankel norm

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Step Response
From: r To: y − yref

Time (seconds)

Am
pli

tud
e

syn. with H∞−norm

syn. with monitoring
syn. with constraint σ

1
(D)

syn. with ext. Hankel norm

Fig. 5 Maximizing memory. Comparison between step responses y and yref for H∞-
controller and Hankel controllers computed by programs (2) with monitoring (dotted), (12)
(dashed) and (2) with (10) (solid)

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

Synthesis with contraint σ
1
(D)

Outer loop iterations

||(A,B,C)||

H

σ
1
(D)

0 20 40 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Synthesis with extended Hankel norm

Outer loop iterations

||(A,B,C,D)||

H

σ
1
(D)

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

Synthesis with monitoring

Outer loop iterations

||(A,B,C)||

H

σ
1
(D)

Fig. 6 Maximizing memory. Comparison between standard Hankel program (2) with moni-
toring (left), constraint program (12) (middle), and extended Hankel program (2) with (10)
(right). While (2) with (10) and (12) give comparable results, minimization of ‖(A,B,C)‖H
alone (left) gives a large direct transmission

Remark that the linear constraint conditions in (21) can be transferred to
the form Aeqx = beq,x > 0, which are added in each trial step generation of
Algorithm 1.

We now take the following graph G = (V ,A) with nx = 24,m = 4 and
p = 4.

Minimizing memory effects of a system 29

s - c
-
�
6
?

�

ZZ~}
�
�>
=

�
-

6
?
�
�=
>

6
?

?
6

-
�

ZZ}

-
�

�
�7
/
-
�

�
�/
7
SSwo
�
-

6
?

?
6
�
-

6s
?

c

SSwo

-
�

SSow
�
�7
/�
-

?
6

6
?�
-

?s6 c

SSow
?
6

�
�/
7

6
?�
�>
=

ZZ~}

ZZ}~�
�=
>
6
?
-
�

�
- 6

?
-

s
� c

Let z(t) be the total number of people on the fairground, which corresponds
to the weights c1 = · · · = cnx

= 1. We start Algorithm 1 at the uniform
distribution x1, where f(x1) = 714.8634, and ‖G(x1)‖H = 26.7369. After
2469 serious iterates with 8768 s CPU, our algorithm returns the optimal x∗

with f(x∗) = 8.6056, meaning ‖G(x∗)‖H = 2.9335. For comparison, with the
Matlab function fmincon started at x1, we obtain x† with f(x†) = 12.5994 >
f(x∗) = 8.6056. However, if we take x† as initial for Algorithm 1, the result is
f(x∗) = 8.6056, meaning ‖G(x∗)‖H = 2.9335, which is achieved very fast (29
serious iterates, 87 s CPU).

t
d t

dZZ~
��>

-?

-?

��=

6

ZZ~

6

ZZ~

�

-?

-

��=
?

��=
?

6

-

6

-

�

6

�

�
�3

-?

�7

�

?

�

?

A
AAK

U -�

So

Q
Qk

�
���

�
-�

�
���

�
Q
Qs

Sw

A
AAU

K

6

-

6

-

�/

6

�
�

�+

-?

-

�

?

�

?

6

��>

6

ZZ~

�

6

�

��=
ZZ}

We next consider an example using the second graph with nx = 36,m = 2 and
p = 2. Let z(t) quantify the number of people on the fairground, where the 6
central nodes are counted twice. In this example, we will directly compare our
nonsmooth method to the heuristic in Sect. 9. Optimization starts again at the
uniform distribution x1. Minimizing smooth function fµ(x) in (24) with initial
x1 leads to x†, where f(x†) = 21.7291, ‖G(x†)‖H = 4.6614, while f(x1) =
578.6875, ‖G(x1)‖H = 24.0559. We now use x† to initialize the nonsmooth
Algorithm 1. After 44 serious steps with 168 s CPU, our algorithm returns the
optimal x∗ with f(x∗) = 14.8353, meaning ‖G(x∗)‖H = 3.8517.

For the two displayed graphs, Figs. 7 and 8 compare ringing effects in unit
step and white noise responses truncated at T = 30 for the three systems
G(x1), G(x†) and G(x∗). We can see that ringing for G(x†) and G(x∗) is
substantially reduced.

Tables 2 and 3 show a simulated study, where we compare the effects of
the transition probability distributions x1,x†,x∗ by recording the evacuation
of people from the fairground. We simulate crowd entering through the gates
1, . . . , 4 for different scenarios w. We then close the entrance gates at time
T = 15, when in the first study 6994 people have entered the ground, and

30 Minh Ngoc Dao, Dominikus Noll

0 50
0

5

10

15

20

Unit step signal
From: In(1)

Time (seconds)
0 50

0

5

10

15

20

Unit step signal
From: In(2)

Time (seconds)
0 50

0

5

10

15

20

Unit step signal
From: In(3)

Time (seconds)
0 50

0

5

10

15

20

Unit step signal
From: In(4)

Time (seconds)

0 50
0

2

4

6

8

10

White noise signal
From: In(1)

Time (seconds)
0 50

0

2

4

6

8

10

White noise signal
From: In(2)

Time (seconds)
0 50

0

2

4

6

8

10

White noise signal
From: In(3)

Time (seconds)
0 50

0

2

4

6

8

10

White noise signal
From: In(4)

Time (seconds)

Fig. 7 Ringing effects of three systems G(x1) (dotted), G(x†) (dashed) and G(x∗) (solid)
for the first graph. Input: Unit step signal (top) and white noise signal (bottom)

Table 2 First graph, three distributions x1, x†, x∗. Times when 90% of crowd in fairground
has been evacuated

Input signal People z1(T) G(x1) z†(T) G(x†) z∗(T) G(x∗)
Entering Remain Evac. time Remain Evac. time Remain Evac. time

[w1;w2;w3; 0] 6994 4680 78 1478 18 1141 17
[w1;w2; 0;w3] 6994 4375 75 1293 18 941 17
[w1; 0;w2;w3] 6994 4367 75 1306 18 941 17
[0;w1;w2;w3] 6994 4367 75 1374 18 941 17
Entry gates are closed at T = 15

Table 3 Second graph, three distributions. Times when 90% of crowd in the fairground has
been evacuated

Input signal People z1(T) G(x1) z†(T) G(x†) z∗(T) G(x∗)
Entering Remain Evac. time Remain Evac. time Remain Evac. time

[w1;w2] 4994 3794 63 1530 20 1216 19
[w1;w3] 5200 3901 63 1546 20 1227 19
[w2;w3] 3794 2704 63 1034 20 804 20
Entry gates are closed at T = 15

record the time which passes until 90% of the crowd has been evacuated. In

Minimizing memory effects of a system 31

0 20 40 60 80
0

5

10

15

20

Unit step signal
From: In(1)

Time (seconds)
0 20 40 60 80

0

5

10

15

20

Unit step signal
From: In(2)

Time (seconds)

0 20 40 60 80
0

2

4

6

8

10

White noise signal
From: In(1)

Time (seconds)
0 20 40 60 80

0

2

4

6

8

10

White noise signal
From: In(2)

Time (seconds)

Fig. 8 Ringing effects of three systems G(x1) (dotted), G(x†) (dashed) and G(x∗) (solid)
for the second graph. Input: Unit step signal (top) and white noise signal (bottom)

our tests w1 is a step signal, w2 is a sine wave, and w3 is a square wave. A
similar approach is chosen in the second graph.

Column z1(T) gives the number of people still present on the fairground
at time T when distribution x1 is used, and column G(x1) gives the time
which then elapses until this crowd is reduced below 10% of the total number
6994. Columns 5–8 are analogous. As compared to x1, the optimal strategy
x∗ reduces the evacuation time to close to 1/5 in the first graph, and to close
to 1/3 in the second graph.

11 Conclusion

We have proposed a new methodology to reduce unwanted ringing effects in a
tunable linear time-invariant system. The problem was addressed by minimiz-
ing the Hankel norm of the system, a problem which leads to an eigenvalue
optimization program for the associated Hankel operator. A proximal bundle
algorithm was presented to solve a variety of test problems successfully, and
a smooth heuristic, based on work of Nesterov [15], was added and used to
initialize the algorithm with a favorable initial seed.

32 Minh Ngoc Dao, Dominikus Noll

Acknowledgements The authors acknowledge helpful discussions with Dr. Armin Rainer
(University of Vienna).

References

1. Apkarian P, Noll D (2006) Nonsmooth H∞ synthesis. IEEE Trans Automat Control
51(1):71–86

2. Apkarian P, Noll D, Rondepierre A (2008) Mixed H2/H∞ control via nonsmooth opti-
mization. SIAM J Control Optim 47(3):1516–1546

3. Bellman R (1959) Kronecker products and the second method of Lyapunov. Math Nachr
20: 17–19

4. Bompart V, Apkarian P, Noll D (2007) Non-smooth techniques for stabilizing linear
systems. In: Proceedings of the American Control Conference, New York, pp 1245–1250

5. Boyd S, Barratt C (1991) Linear controller design: limits of performance. Prentice Hall,
New York

6. Bronshtein MD (1979) Smoothness of roots of polynomials depending on parameters.
Sibirsk Mat Zh 20(3): 493–501. English Transl. in (1980) Siberian Math J, vol 20, pp
347–352

7. Burke JV, Overton ML (1994) Differential properties of the spectral abscissa and the
spectral radius for analytic matrix-valued mappings. Nonlinear Anal 23(4):467–488

8. Clarke FH (1983) Optimization and nonsmooth analysis. John Wiley & Sons, Inc., New
York

9. Dao MN, Noll D (2013) Minimizing the memory of a system. In: Proceedings of the
Asian Control Conference, Istanbul

10. Dennis JE Jr, Schnabel RB (1983) Numerical methods for unconstrained optimization
and nonlinear equations. Prentice Hall, New Jersey

11. Gabarrou M, Alazard D, Noll D (2013) Design of a flight control architecture using a
non-convex bundle method. Math Control Signals Syst 25(2):257–290

12. Glover K (1984) All optimal Hankel-norm approximations of linear multivariable sys-
tems and their L∞-error bounds. Int J Control 39(6):1115–1193

13. Mangasarian OL (1969) Nonlinear programming. McGraw-Hill Book Co., New York-
London-Sydney

14. Mifflin R (1982) A modification and extension of Lemaréchal’s algorithm for nonsmooth
minimization. Nondifferential and variational techniques in optimization (Lexington,
Ky., 1980). Math Programming Stud 17:77–90

15. Nesterov Y (2007) Smoothing technique and its applications in semidefinite optimiza-
tion. Math Program, Ser A 110(2):245–259

16. Noll D (2010) Cutting plane oracles to minimize non-smooth non-convex functions.
Set-Valued Var Anal 18(3-4):531–568

17. Noll D, Prot O, Rondepierre A (2008) A proximity control algorithm to minimize non-
smooth and nonconvex functions. Pac J Optim 4(3):571–604

18. Overton ML (1992) Large-scale optimization of eigenvalues. SIAM J Optim 2(1):88–120
19. Parusiński A, Rainer A (2014) A new proof of Bronshtein’s theorem. arXiv:1309.2150v2
20. Polak E (1997) Optimization: algorithms and consistent approximations. Applied Math-

ematical Sciences 124. Springer-Verlag, New York
21. Rainer A (2011) Smooth roots of hyperbolic polynomials with definable coefficients.

Israel J Math 184: 157–182
22. Rockafellar RT, Wets RJ-B (1998) Variational analysis. Springer-Verlag, Berlin
23. Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design.

John Wiley & Sons, Chichester
24. Spingarn JE (1981) Submonotone subdifferentials of Lipschitz functions. Trans Amer

Math Soc 264(1):77–89
25. van den Dries L (1998) Tame topology and o-minimal structures. London Math Soc

Lecture Note Ser 248. Cambridge University Press, Cambridge
26. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, New

Jersey

